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ABSTRACT

Multi-View Clustering (MVC) has garnered increasing attention in recent years.
It is capable of partitioning data samples into distinct groups by learning a con-
sensus representation. However, a significant challenge remains: the problem of
untrustworthy fusion. This problem primarily arises from two key factors: 1) Ex-
isting methods often ignore the presence of inherent noise within individual views;
2) In traditional MVC methods using Contrastive Learning (CL), similarity com-
putations typically rely on different views of the same instance, while neglecting
the structural information from nearest neighbors within the same cluster. Con-
sequently, this leads to the wrong direction for multi-view fusion. To address
this problem, we present a novel Trusted Hierarchical Contrastive Representation
Learning (THCRL). It consists of two key modules. Specifically, we propose the
Deep Symmetry Hierarchical Fusion (DSHF) module, which leverages the UNet
architecture integrated with multiple denoising mechanisms to achieve trustwor-
thy fusion of multi-view data. Furthermore, we present the Average K-Nearest
Neighbors Contrastive Learning (AKCL) module to align the fused representa-
tion with the view-specific representation. Unlike conventional strategies, AKCL
enhances representation similarity among samples belonging to the same cluster,
rather than merely focusing on the same sample across views, thereby reinforcing
the confidence of the fused representation. Extensive experiments demonstrate
that THCRL achieves the state-of-the-art performance in deep MVC tasks.

1 INTRODUCTION

Driven by accelerating digitalization, data are increasingly generated from multiple heterogeneous
sources. For example, autonomous vehicles rely on synchronized multi-camera systems to cap-
ture diverse views, enabling real-time decisions for safe navigation. In structural biology, the com-
plex quaternary structures of proteins can be resolved through complementary analytical techniques.
Similarly, modern diagnostic practices integrate multi-modal clinical data to enhance diagnostic ac-
curacy. The term “multi-view data” refers to a type of data where each object is described by mul-
tiple heterogeneous sources. Multi-View Clustering (MVC) (Chowdhury et al., 2025; Tang et al.,
2023) aims to integrate such diverse data to form meaningful clusters. Typical methods utilize
view-specific encoders to extract representations from each view, which are then fused into a con-
sensus embedding for subsequent clustering tasks. Nevertheless, significant heterogeneity often
exists across views, posing a challenge for effective fusion. To address this issue, various align-
ment strategies have been proposed. Some methods, for instance, employ KL divergence to align
the distribution of labels or representations across views (Hershey & Olsen, 2007). Additionally,
Contrastive Learning (CL) has been adopted in MVC to enhance the consistency and compatibility
of representations from different views (Zhu et al., 2025).

Although existing methods have considerably advanced the MVC tasks, the problem of untrusted
fusion remains unresolved. This problem stems primarily from two factors: 1) Noise in Single or
Multiple Views. Since current deep MVC methods (e.g., CoMVC (Trosten et al., 2021), DSIMVC
(Tang & Liu, 2022a), DIMVC (Xu et al., 2022a)) commonly rely on basic fusion methods like
concatenation or weighted-sum fusion, it becomes challenging to derive a trustworthy fused repre-
sentation from multi-view data. 2) CL at the Sample Level. CL methods (e.g., MFLVC (Xu et al.,
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Figure 1: Deep Symmetry Hierarchical Fusion (DSHF). DSHF has multiple denoising mechanisms.
First, the View Attention Network performs dynamic weighting on the input features. Second, the
Initial Project maps the multi-view feature into a unified feature space. Third, hierarchical fusion
achieves denoising features through the UNet architecture with attention networks. Finally, the Final
Project reduces the number of feature channels to the original number of views.

2022b), DSIMVC (Tang & Liu, 2022a)) typically take different views of an instance as positive sam-
ples. However, these methods can introduce conflicts among samples that belong to the same cluster.
Since such samples inherently possess similar representations, the contrastive loss may inadvertently
drive the fused representation in an erroneous direction, further compromising the confidence of the
fusion process. These two factors collectively degrade the performance of MVC tasks, highlighting
the need for more trustworthy fusion.

To address the problem of untrusted fusion, we propose a novel Trusted Hierarchical Contrastive
Representation Learning (THCRL). It consists of two core modules, which are Deep Symmetry
Hierarchical Fusion (DSHF) and Average K-Nearest Neighbors Contrastive Learning (AKCL). As
illustrated in Figure 1, DSHF is a new paradigm in deep MVC tasks. This module incorporates
three key components: a view attention network, a channel attention network, and a symmetric hi-
erarchical fusion. Together, these components work synergistically to isolate noise patterns in the
feature space and achieve trustworthy integration of multi-view data. Furthermore, we present the
AKCL module to enhance semantic consistency among samples within the same cluster, rather than
merely aligning representations of the same instance across views. This design effectively mitigates
a fundamental limitation of conventional CL in MVC, enabling the capture of richer structural se-
mantics and thereby significantly boosting the confidence of the fused representation. The main
contributions of this work are summarized as follows:

• We propose a novel DSHF module designed to mitigate noise during the fusion of multi-view data.
By incorporating the UNet architecture equipped with multiple denoising mechanisms, DSHF
achieves trusted integration of heterogeneous features.

• Unlike previous methods that treat different views of the same instance as positive pairs, we
present a new AKCL module. This module enhances representation similarity among samples
within the same cluster, thereby significantly improving the confidence of the fused representation.

• Comprehensive experiments demonstrate that the THCRL achieves new state-of-the-art perfor-
mance in deep MVC tasks, performing better than current methods on the six open datasets.

2 RETATED WORK

Spurred by rapid advances in deep learning, recent research has increasingly gravitated toward Deep
Multi-View Clustering (MVC) (Yu et al., 2025; Xu et al., 2023). Specifically, these methods utilize
deep neural networks to capture the nonlinear feature. Adversarial training is adopted in Deep MVC
methods (Li & Liao, 2021; Wang et al., 2022) to align the latent patterns of multiple views and get
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Figure 2: The architecture overview of THCRL. The THCRL method contains two key modules:
DSHF and AKCL. DSHF implements trustworthy fusion by the UNet structure equipped with mul-
tiple denoising mechanisms. Furthermore, the AKCL module is proposed to enhance representation
similarity among samples within the same cluster, as opposed to only concentrating on the consis-
tency at the sample level. It significantly enhances the confidence of the fused representation.

a common representation. Zhou et al. (Zhou & Shen, 2020) employ an attention mechanism to
assign an adaptive weight to each view. They then aggregate the view-specific representations into a
consensus embedding via a weighted sum determined by those learned weights. Wang et al. (Wang
et al., 2022) derive the consensus representation through a weighted aggregation scheme and l1,2-
norm constraint. Contrastive Learning (CL) can align cross-view representations at the sample level,
thereby promoting coherent label distributions. These CL approaches (Yin et al., 2025; Wu et al.,
2024b; Guo et al., 2024) have surpassed prior distribution alignment methods in MVC, delivering
state-of-the-art performance on a wide range of public benchmarks.

3 THE PROPOSED METHODOLOGY

This paper proposes an innovative Trusted Hierarchical Contrastive Representation Learning
(THCRL), which aims to address the problem of untrusted fusion in deep Multi-View Clustering
(MVC). As illustrated in Figure 2, THCRL comprises two key components: 1) Deep Symmetry
Hierarchical Fusion (DSHF); 2) Average K-Nearest Neighbors Contrastive Learning (AKCL). The
multi-view data, which consists of N samples with M views, is denoted as {Xm = {xm1 ; ...;xmN} ∈
RN×Dm}Mm=1, where Dm represents the feature dimensionality for the m-th view.

3.1 AUTOENCODER NETWORK

We create the representation of each view by using the Autoencoder Network (Song et al., 2018). For
the m-th view, fm represents the encoder module. The encoder module generates the representation
of each view as follows:

zmi = fm (xmi ) , zmi ∈ Rdψ , (1)
where zmi denotes the representation of the i-th instance in the m-th view. dψ represents the feature
size of the zmi . The xmi is restored by the decoder module utilizing the feature zmi . Let gm represent
the decoder module in the m-th view. The recovered sample x̂mi is produced by decoding zmi in the
decoder module:

x̂mi = gm (zmi ) . (2)
The reconstruction loss is calculated as follows:

LRec =

M∑
m=1

N∑
i=1

∥xmi − gm (zmi )∥22 . (3)
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3.2 DEEP SYMMETRY HIERARCHICAL FUSION (DSHF)

We propose a novel Deep Symmetry Hierarchical Fusion (DSHF) method. DSHF is built upon the
UNet architecture with multiple denoising mechanisms. DSHF incorporates three denoising compo-
nents: the View Attention Network, the Channel Attention Network, and the symmetric hierarchical
fusion module. DSHF leverages the triple mechanism to effectively disentangle noise patterns in
the feature space, enabling the trusted fusion of multi-view data. Its basic constituent units are the
Channel Attention Network and the Residual Convolutional Block. In this section, we first introduce
these two constituent units and then elaborate on the overall network architecture of DSHF.

3.2.1 CHANNEL ATTENTION NETWORK

Given an input tensor q ∈ RC×L, C represents the number of channels, and L is the feature dimen-
sion. The Channel Attention Network (CAN) computes a channel-wise scaling vector and applies it
to the original features. The CAN operation is defined as follows:

q̂ = CAN(q) = q ⊙mlp1(
1

L

L∑
l=1

q[:,l]), (4)

where ⊙ denotes the Hadamard product. mlp1 represents a multi-layer perceptron. Its function is to
suppress noise channels and enhance effective features.

3.2.2 RESIDUAL CONVOLUTIONAL BLOCK

The Residual Convolutional Block (RCBlock) integrates a convolutional network, a channel atten-
tion network, and a residual connection. Given an input tensor o ∈ RC×L, C represents the number
of channels, and L is the feature dimension. The block performs the following operations:

ô = RCBlock(o) = CAN(conv1d(conv1d(o))) + conv1d(o), (5)

where conv1d denotes a one-dimensional convolutional neural network.

3.2.3 OVERALL NETWORK ARCHITECTURE OF DSHF

We concatenate the vectors {zmi }Mm=1 of M views as follows:

zi = [z1i ; z
2
i ; . . . ; z

M
i ]T , zi ∈ RM×dψ . (6)

M × dψ represents the M rows and dψ columns of the matrix. When processing data, we consider
M view features as M channel data. T represents the transpose of the matrix.

View Attention Network. The View Attention Network aims to learn view-specific importance
weights. This operation is defined as described below:

zai = zi ⊙ wa, zai ∈ RM×dψ , (7)

where wa ∈ RM is the learnable weight vector for views. Its function is to automatically learn the
confidence weights of each view and reduce the impact of noisy views.

Initial Projection. The Initial Projection uses a one-dimensional convolutional neural network to
transform zai to z′i as follows:

z′i = conv1d(zai ), z
′
i ∈ RC0×dψ , (8)

where C0 denotes the base channel dimension.

Encoder Pathway. The Encoder Pathway is a hierarchical feature denoising by U encoder stages.
At stage u ∈ [0, 1, . . . , U − 1]:

p
(u+1)
i = RCBlock(z

(u)
i ), p

(u+1)
i ∈ RCu+1×Lu , (9)

z
(u+1)
i = MaxPool1D(p

(u+1)
i ), z

(u+1)
i ∈ RCu+1×Lu+1 , (10)

where z
(0)
i = z′i, Lu = dψ/2

u, and Cu = 2uC0. p(u+1)
i is stored as skip connection. MaxPool1D

denotes a one-dimensional max pooling operator. The Encoder Pathway captures more robust fea-
tures through U encoder stages. These U stages have the function of continuously removing noise.
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Bottleneck Layer. The Bottleneck Layer utilizes the RCBlock module for deepest feature process-
ing. Its processing procedure is as follows:

z
(b)
i = RCBlock(z(U)

i ), z
(b)
i ∈ RCU×LU , (11)

where LU = dψ/2
U , CU = 2UC0. It performs semantic extraction to capture the most essential

global feature representation while simultaneously compressing spatial dimensions and eliminating
noisy data.

Decoder Pathway. The Decoder Pathway is a multi-stage feature reconstruction with long-range
information fusion. It contains U steps. At step u ∈ [0, 1, . . . , U − 1]:

e
(u+1)
i = UpConv(t

(u)
i ), e

(u+1)
i ∈ RC

′
u+1×L

′
u+1 , (12)

ξ
(u+1)
i = cat(e

(u+1)
i , p

(U−u)
i ), ξ

(u+1)
i ∈ RC

′′
u+1×L

′
u+1 , (13)

t
(u+1)
i = RCBlock(ξ

(u+1)
i ), t

(u+1)
i ∈ RC

′
u+1×L

′
u+1 , (14)

where t0i = z
(b)
i , L′

u = dψ/2
U−u, C ′

u = 2U−uC0, and C ′′
u = 2U−uC0 + 2U−u+1C0. UpConv is

Transposed convolution. cat represents the concatenation operator of two vectors along the channel
dimension.

Final Projection. The Final Projection reduces the number of channels from C0 to M as described
below:

ẑi = conv1d(z′i + t
(U)
i ), ẑi ∈ RM×dψ . (15)

Flattened Operator. The sequence vector ẑi is expanded into a one-dimensional vector as follows:

z̃i = re(ẑi), z̃i ∈ RMdψ , (16)

where re represents the vector deformation operation.

3.3 AVERAGE K-NEAREST NEIGHBORS CONTRASTIVE LEARNING (AKCL)

This paper presents the Average K-Nearest Neighbors Contrastive Learning (AKCL) to enhance
representation similarity among samples belonging to the same cluster. We construct the adjacency
matrix Sm leveraging the K-Nearest Neighbors graph (Peterson, 2009) as follows:

Smij =

{
1 j ∈ δmi
0 otherwise

. (17)

In the m-th view, δmi represents the set of K nearest neighbors of zmi according to the Euclidean
distance. By summing up the adjacency matrices of M views and calculating the average, we get

Sij =
1

M

M∑
m=1

Smij . (18)

AKCL needs to align the dimensions of each view feature and the fused feature. The precise com-
putation is as follows:

ĥi = mlp2(z̃i), ĥi ∈ Rdϕ , (19)
where the mlp2 operator is used to reduce the dimension of z̃i. dϕ represents the feature dimension
of the ĥi. Likewise, we use the mlp3,m operator to decrease the dimension on each view feature zmi ,

hmi = mlp3,m(zmi ), hmi ∈ Rdϕ . (20)

For the hmi , dϕ denotes the feature dimension. The similarity between the view-specific embedding
hmi and the common embedding ĥi is calculated using the cosine function:

C
(
ĥi, h

m
i

)
= cos(ĥi, h

m
i ). (21)

The loss of the AKCL is computed as follows:

LAkc = − 1

2N

N∑
i=1

M∑
m=1

log
eC(ĥi,h

m
i )/τ∑N

j=1 e
(1−Sij) C(ĥi,hmj )/τ − e1/τ

, (22)
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Table 1: Summary of the six public datasets.

Datasets Samples Views Clusters #-view Dimensions

MNIST 60000 3 10 [342, 1024, 64]
OutScene 2688 4 8 [512, 432, 256, 48]
BRCA 398 4 4 [2000, 2000, 278, 212]
Hdigit 10000 2 10 [784, 256]
Synthetic3d 600 3 3 [3, 3, 3]
LandUse 2100 3 21 [20, 59, 59]

where τ is the temperature factor. According to Eq. (18), Sij is generated. To increase the similarity
of the samples in the cluster, we add Sij to Eq. (22). The two samples do not belong to the
same cluster when Sij is small. Currently, the (1 − Sij) C(ĥi, h

m
j ) is important. A significantly

large Sij implies that the two samples are part of the same cluster. At present, the impact of (1 −
Sij) C(ĥi, h

m
j ) is nearly negligible.

The definition of the total loss function is as follows:

L = LRec + λLAkc, (23)

where λ balances the impact of LRec and LAkc.

3.4 CLUSTERING MODULE

We employ the K-Means algorithm as the clustering function (MacKay et al., 2003; Yan et al.,
2023). The fused embedding H = {ĥ1, ..., ĥN} serves as the input features to the K-Means method.
To evaluate the performance of the learned representations, the number of clusters in the clustering
algorithm is set to correspond to the true number of classes in the dataset, thereby enabling the
computation of standard clustering metrics.

4 EXPERIMENTS

We perform comprehensive experiments to evaluate the Trusted Hierarchical Contrastive Represen-
tation Learning (THCRL) method on six public datasets for deep Multi-View Clustering (MVC)
tasks. To demonstrate its advantage, we compare it against eight state-of-the-art methods across
three metrics. In addition, we conduct analyses on hyperparameters, visualization, and convergence.

4.1 BENCHMARK DATASETS

As shown in Table 1, we use six open datasets with different scales for evaluation (Yan et al.,
2023). The six datasets include Hdigit, Synthetic3d, BRCA, MNIST, OutScene, and LandUse.
The performance of MVC is regularly evaluated using the six public datasets.

4.2 COMPARED METHODS

We compare the effectiveness of THCRL with eight current state-of-the-art MVC methods. These
baselines are all deep learning methods (including DEMVC (Xu et al., 2021), DSMVC (Tang &
Liu, 2022b), DealMVC (Yang et al., 2023), GCFAggMVC (Yan et al., 2023), SCMVC (Wu et al.,
2024a), MVCAN (Xu et al., 2024), ACCMVC (Yan et al., 2024), and DMAC (Wang et al., 2025)).

4.3 IMPLEMENTATION DETAILS

The PyTorch framework is used for developing the source code of THCRL. The dropout parameter
of the network is set to 0.1. We set the batch size b to 256 during the model training procedure.
There are two phases of THCRL training: pre-training and fine-tuning. The number of pre-training
epochs Tp is 200, and the number of fine-tuning epochs Tf is 200. The temperature coefficient τ is
set to 0.5. We unify the dimensions of the vectors outputted by the encoder and the input vectors for
the contrastive loss, making dψ equal to 512 and dϕ equal to 128. We set the depth U of DSHF to 4.

6
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The parameter K of the AKCL module is 10. The learning rate of deep neural network is 0.0003.
The balance parameter λ of the two loss functions is set to 1. The hardware platforms we utilized in
our experiment are Intel(R) Xeon(R) Platinum 8358 CPU and Nvidia V100 GPU.

Table 2: Clustering result comparison on the MNIST, OutScene, and BRCA datasets. The best
results in bold, second in underline.

Methods MNIST OutScene BRCA

ACC NMI PUR ACC NMI PUR ACC NMI PUR

DEMVC [IS’21] 0.9734 0.9587 0.9734 0.3532 0.3049 0.3553 0.3945 0.0619 0.4397
DSMVC [CVPR’22] 0.9671 0.9215 0.9671 0.4702 0.3455 0.4747 0.5101 0.2300 0.5704
DealMVC [MM’23] 0.9804 0.9593 0.9804 0.5874 0.5111 0.5885 0.6256 0.3721 0.6357
GCFAggMVC [CVPR’23] 0.6949 0.6768 0.6949 0.3594 0.3141 0.3891 0.3392 0.0363 0.4296
SCMVC [TMM’24] 0.8610 0.8263 0.8610 0.5893 0.4645 0.5893 0.5603 0.2431 0.6055
MVCAN [CVPR’24] 0.9863 0.9612 0.9863 0.7072 0.5690 0.7072 0.5603 0.3288 0.6130
ACCMVC [TNNLS’24] 0.9886 0.9659 0.9886 0.6347 0.5161 0.6347 0.4673 0.1898 0.5704
DMAC [AAAI’25] 0.9720 0.9302 0.9720 0.4349 0.3460 0.4661 0.5327 0.3322 0.6030

THCRL (Ours) 0.9920 0.9747 0.9920 0.7474 0.5910 0.7474 0.6332 0.3820 0.6608

Table 3: Clustering result comparison on the Hdigit, Synthetic3d, and LandUse datasets. The best
in bold, the second underlined.

Methods Hdigit Synthetic3d LandUse

ACC NMI PUR ACC NMI PUR ACC NMI PUR

DEMVC [IS’21] 0.4318 0.3407 0.4318 0.8267 0.6373 0.8267 0.2057 0.2032 0.2171
DSMVC [CVPR’22] 0.9669 0.9368 0.9669 0.9567 0.8267 0.9567 0.2695 0.3476 0.3048
DealMVC [MM’23] 0.1980 0.1449 0.1982 0.8983 0.6904 0.8983 0.1895 0.2014 0.1929
GCFAggMVC [CVPR’23] 0.9730 0.9272 0.9730 0.5750 0.3462 0.6283 0.2610 0.2991 0.2833
SCMVC [TMM’24] 0.9402 0.8629 0.9402 0.9417 0.7944 0.9417 0.2595 0.2791 0.2752
MVCAN [CVPR’24] 0.9596 0.9047 0.9596 0.9850 0.9262 0.9850 0.2395 0.3099 0.2867
ACCMVC [TNNLS’24] 0.9706 0.9220 0.9706 0.9600 0.8381 0.9600 0.2610 0.2952 0.2767
DMAC [AAAI’25] 0.9113 0.8140 0.9113 0.6083 0.2593 0.6083 0.2429 0.2899 0.2786

THCRL (Ours) 0.9970 0.9903 0.9970 0.9883 0.9395 0.9883 0.2943 0.3497 0.3100

4.4 EVALUATION METRICS

We utilize three standard quantitative metrics, including unsupervised clustering accuracy (ACC),
normalized mutual information (NMI), and purity (PUR). The larger these three indicators are, the
better the clustering performance of the model.

4.5 EXPERIMENTAL COMPARATIVE RESULTS

As illustrated in Table 2 and Table 3, THCRL outperforms eight state-of-the-art methods (including
DEMVC, DSMVC, DealMVC, GCFAggMVC, SCMVC, MVCAN, ACCMVC, and DMAC) in six
benchmark datasets. Specifically, we obtain the following results: On the OutScene dataset, THCRL
surpasses the second-best method (MVCAN) by 4.02% in ACC. Similarly, on the Hdigit dataset, our
method outperforms GCFAggMVC by 2.40% in ACC, with consistently improved NMI and PUR.
In the other four datasets, THCRL furthermore achieves state-of-the-art results and exhibits strong
generalizability.

4.6 ABLATION STUDY

We perform an ablation experiment to evaluate the two key components of THCRL: Deep Symmetry
Hierarchical Fusion (DSHF) and Average K-Nearest Neighbors Contrastive Learning (AKCL).

Effectiveness of DSHF module. The “w/o DSHF” indicates eliminating the DSHF module from
the THCRL framework. All view-specific representations {zmi }Mm=1 are concatenated to form the
fused representation zi. As shown in Table 4, the results of w/o DSHF are 0.23, 6.25, 2.52, 2.37,
2.34, and 2.53 percent lower than those of the THCRL in the ACC term. The results show that
DSHF implements the trusted fusion, considerably enhancing the accuracy of deep MVC tasks.

Validity of AKCL module. The “w/o AKCL” denotes the removal of the AKCL module from the
THCRL framework. Table 4 shows that the results of w/o AKCL are 53.44, 34.45, 25.88, 29.79,
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Table 4: Ablation study on the six common datasets.

Datasets Method ACC NMI PUR

MNIST
w/o DSHF 0.9897 0.9692 0.9897
w/o AKCL 0.4576 0.5155 0.5279

THCRL 0.9920 0.9747 0.9920

OutScene
w/o DSHF 0.6849 0.5502 0.6849
w/o AKCL 0.4029 0.2793 0.4267

THCRL 0.7474 0.5910 0.7474

BRCA
w/o DSHF 0.6080 0.3295 0.6332
w/o AKCL 0.3744 0.0958 0.5075

THCRL 0.6332 0.3820 0.6608

Hdigit
w/o DSHF 0.9733 0.9288 0.9733
w/o AKCL 0.6991 0.5049 0.6991

THCRL 0.9970 0.9903 0.9970

Synthetic3d
w/o DSHF 0.9583 0.8352 0.9583
w/o AKCL 0.9633 0.8625 0.9633

THCRL 0.9883 0.9395 0.9883

LandUse
w/o DSHF 0.2690 0.3237 0.2833
w/o AKCL 0.1938 0.2562 0.2348

THCRL 0.2943 0.3497 0.3100

1.84, and 10.05 percent inferior to those of the THCRL on the ACC term. AKCL improves represen-
tation similarity among samples within the same cluster, rather than merely aligning representations
of the same instance across views. Consequently, it boosts the results in MVC tasks.
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Figure 3: The visualization results of the fused representations {ĥi}Ni=1 on the Hdigit, MNIST, and
Synthetic3d datasets after convergence.
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Figure 4: The convergence analysis on the Hdigit dataset. In the figure, the test ACC, NMI, and
PUR are shown at the top, and the training loss is depicted at the bottom.

4.7 VISUALIZATION

As illustrated in Figure 3, we employ the t-SNE approach (Van der Maaten & Hinton, 2008) to visu-
alize the fused representations {ĥi}Ni=1. We run visualization experiments using the three datasets:
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Figure 5: The hyperparameter analysis on the Hdigit dataset. The figure shows the changes in three
evaluation metrics: ACC, NMI, and PUR. The metrics are influenced by two hyperparameters λ and
τ . λ is the combination coefficient of two loss functions. τ denotes the temperature coefficient.

Hdigit, MNIST, and Synthetic3d. Figure 3 shows the visualization results for the Hdigit, MNIST,
and Synthetic3d datasets as (a), (b), and (c), respectively. The clustering findings show that the
boundaries are quite obvious and the clusters are fully separated after convergence. There is ob-
viously no interrelated between clusters. The visualization of Figure 3(a) demonstrates that the
samples are divided into 10 groups, and the visualization effect is excellent, which can also be cor-
related with the 10 labels of the Hdigit dataset. Likewise, the visualization results of Figures 3(b)
and 3(c) display 10 and 3 groups, which are in line with the labels of the MNIST and Synthetic3d
datasets.

4.8 CONVERGENCE ANALYSIS AND GENERALIZATION ABILITY

We perform experiments on the Hdigit dataset to verify the convergence and generalization efficacy
of THCRL. In Figure 4, the test ACC, NMI, PUR, and training loss are depicted. The three subfig-
ures that make up Figure 4 show the variation curves for test ACC, NMI, PUR, and training loss. As
training goes on, the loss curve gradually drops until it stabilizes at 300 epochs. This shows that the
deep MVC network is working well. At the beginning of the experiment, the test ACC, NMI, and
PUR for the evaluation measure exhibit a notable increase. After 400 epochs, the ACC, NMI, and
PUR hold steady and remain unchanged with further training, demonstrating strong generalization
and the absence of overfitting.

4.9 PARAMETER ANALYSIS

As illustrated in Figure 5, we make hyperparameter analysis experiments. In particular, we analyze
the effect of two hyperparameters, λ and τ , on clustering evaluation metrics. λ denotes the combi-
nation coefficient of two loss functions. τ is the temperature coefficient. The test ACC, NMI, and
PUR serve as the evaluation metrics. We run hyperparameter experiments on the Hdigit dataset.
The value of λ ranges from 10−3 to 103. The values of τ are 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8.
We depict three subfigures that show the changes in the three metrics ACC, NMI, and PUR under
the condition of hyperparameters. Figure 5 indicates that ACC, NMI, and PUR are not considerably
impacted by the two hyperparameters and exhibit rather steady performance.

5 CONCLUSION AND FUTURE WORK

This paper proposes a novel Trusted Hierarchical Contrastive Representation Learning (THCRL)
method. It aims to implement trusted fusion in Multi-View Clustering (MVC). It consists of two
key modules: Deep Symmetry Hierarchical Fusion (DSHF) and Average K-Nearest Neighbors
Contrastive Learning (AKCL). The DSHF module, which utilizes the UNet framework with mul-
tiple denoising mechanisms, enables the trustworthy fusion of multi-view data. Meanwhile, the
AKCL module alleviates conflicts among samples within the same cluster. It further enhances the
confidence of the fused representation. Extensive experiments demonstrate that THCRL outper-
forms state-of-the-art methods in deep MVC tasks. Specifically, the efficacy of THCRL is validated
through comparisons with eight baseline methods on six publicly available datasets. In summary,
THCRL provides an effective representation learning framework with strong potential for practical
applications.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we do not use the Large Language Models (LLMs) as an assistant.
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