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ABSTRACT

Recent advances in text-to-image (T2I) diffusion models have significantly im-
proved the quality of generated images. However, providing efficient control over
individual subjects, particularly the attributes characterizing them, remains a key
challenge. While existing methods have introduced mechanisms to modulate at-
tribute expression, they typically provide either detailed, object-specific localiza-
tion of such a modification or fine-grained, nuanced control of attributes. No cur-
rent approach offers both simultaneously, resulting in a gap when trying to achieve
precise continuous and subject-specific attribute modulation in image generation.
In this work, we demonstrate that token-level directions exist within commonly
used CLIP text embeddings that enable fine-grained, subject-specific control of
high-level attributes in T2I models. We introduce two methods to identify these di-
rections: a simple, optimization-free technique and a learning-based approach that
utilizes the T2I model to characterize semantic concepts more specifically. Our
methods allow the augmentation of the prompt text input, enabling fine-grained
control over multiple attributes of individual subjects simultaneously, without re-
quiring any modifications to the diffusion model itself. This approach offers a
unified solution that fills the gap between global and localized control, providing
competitive flexibility and precision in text-guided image generation.

1 INTRODUCTION

Text-to-image (T2I) diffusion models have rapidly advanced, achieving remarkable quality in gener-
ating visually stunning images (Rombach et al., 2022; Imagen-Team, 2024). However, as the quality
of generated images improves, the need for precise control over the generation process becomes in-
creasingly crucial. This control should extend beyond simply adjusting what is depicted in the scene.
It must also provide nuanced control of the attributes describing how these objects are characterized.
Attributes, such as a person’s age, are not binary or static – they often span a continuum, requiring
models to capture fine-grained variations to produce results that align with user intent.

Currently, a fundamental gap exists: no method provides fine-grained modulation and subject-
specific localization simultaneously. Recent works like Prompt-to-Prompt (P2P) (Hertz et al., 2023)
and Concept Sliders (Gandikota et al., 2024) have made significant strides in introducing control into
T2I models. P2P enables localized expression changes, allowing adjustments to specific aspects of
a given image based on text modifications, while Concept Sliders facilitate fine-grained modulation
over global attributes across all subject instances. This limitation means that while we can tweak at-
tributes globally or localize changes to subjects, we still lack a unified, generalized approach capable
of concurrently achieving fine-grained control for both aspects.

This work aims to bridge this gap by introducing a method that enables unified, subject-specific, fine-
grained control over attributes within T2I diffusion models. Unlike existing methods that provide
either localized coarse control or global fine-grained control, our approach offers precise modulation
of attributes that can be directed at specific subjects within the generated image (see Figure 1). This
results in an unprecedented level of intuitive control, allowing users to fine-tune not just what appears
in an image but how it appears, down to the smallest level of attribute expression.
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“A close-up photo of a man and a woman sitting on a bench”

(a) Our Method: Detailed Control
of Localization and Expression

man
+•

∆age

woman
+•

∆age

Original Generated
without Modifications Gradually Stronger Age Modulation Applied

(b) Concept Sliders (Gandikota et al., 2024): Only Global Control

Original Generated
without Modifications Gradual Global Age Increase

× continuity breaks

(c) Prompt-to-Prompt (Hertz et al., 2023): No Continuous Control

Original Generated
without Modifications

Image Generated
with Modified Prompt×

No Gradual, Fine-Grained Control

Figure 1: (a) Our method augments the prompt input of image generation models with fine-grained
control of attribute expression in generated images (unmodified images are marked in green) in a
subject-specific manner without additional cost during generation. (b, c) Previous methods only al-
low either fine-grained expression control or fine-grained localization when starting from the image
generated from a basic prompt.

We summarize our main contributions as follows:

• We show that token-level edit directions exist within common CLIP embeddings, enabling
fine-grained control of subject-specific attributes, and show that diffusion models can ef-
fectively interpret these directions.

• We introduce a simple, optimization-free approach to identify attribute-specific directions
by contrasting text prompts that describe the desired attributes or concepts.

• We introduce a second, learning-based method that identifies more robust directions
through backpropagation of high-level semantic concepts to the text embedding input, us-
ing a reconstruction loss objective.

• We show that these token-level edit directions enable fine-grained, subject-specific, com-
positional control of attributes and concepts in generated images.

2 RELATED WORK

The rapid advancements in generative models for image and video synthesis, particularly diffusion
models like Stable Diffusion (Rombach et al., 2022), have spurred efforts to develop techniques
for fine-grained editing and control of specific attributes in generated content. Our work focuses
on enabling precise, subject-specific control in images by targeting individual characteristics in a
controlled and continuous manner.

Existing methods for controlled generation and image editing can be broadly categorized based on
the underlying generative models – primarily Generative Adversarial Networks (GANs) (Goodfel-
low et al., 2014) and Diffusion Models (Ho et al., 2020) –, and the mechanisms they use for control
– typically latent space manipulations or textual descriptions.

T2I Diffusion Model Preliminaries T2I Diffusion models (Rombach et al., 2022; Podell et al.,
2024) simulate a reverse diffusion process pθ(x0:T |P ) that enables sampling from the distribution
of images pθ(x0|P ) given a text conditioning P and a Gaussian noise sample xT . They iteratively
denoise xT using a diffusion model ϵ̂θ(xt|P, t). This is typically done by learning to predict the
noise content ϵ in the sample xt = αtx0 + σtϵ using the following loss function:

LDiffusion = E(x0,c)∼pdata(x0,c),ϵ∼N (0,I),t∼U(0,T ]

[
w(t) ∥ϵ− ϵ̂θ(αtx0 + σtϵ|c, t)∥22

]
, (1)

where ϵ̂θ(·) is the diffusion model conditioned on the timestep t and the conditioning signal c,
w(t) is a loss weighting term, and αt and σt are noise schedule parameters. The conditioning c is
typically obtained using a CLIP (Radford et al., 2021) text encoder ECLIP as a tokenwise embedding
e = ECLIP(P ) of a text prompt P .
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2.1 GAN-BASED IMAGE EDITING AND CLIP-BASED DIRECTIONS

GANs (Goodfellow et al., 2014; Radford et al., 2016), particularly StyleGANs (Karras et al., 2019),
are popular for image editing due to their generative power and disentangled latent space. Methods
like InterFaceGAN (Shen et al., 2020) manipulate attributes by identifying latent space directions.
Approaches such as StyleCLIP (Patashnik et al., 2021), CLIP2StyleGAN (Abdal et al., 2022), and
TediGAN (Xia et al., 2021) use CLIP (Radford et al., 2021) for text-based guidance in latent space
editing. Despite these advancements, these methods inherit the limitations of StyleGAN and struggle
to generalize to complex, multi-subject images.

2.2 STEERING THE GENERATION PROCESS OF DIFFUSION MODELS

Direction-based Control Similar to GAN-based editing, approaches like DiffusionCLIP (Kim
et al., 2022) use CLIP for editing with unconditional closed-domain diffusion models. Recent meth-
ods, such as Asyrp (Kwon et al., 2023), InterpretDiffusion (Li et al., 2024a), LFM (Hu et al., 2024),
and BoundaryDiffusion (Zhu et al., 2023), modulate learned directions in the diffusion backbone
or noise space, similar to StyleGAN. Concept Sliders (Gandikota et al., 2024) achieve disentangled
attribute modulation by training attribute-specific LoRAs (Hu et al., 2022), however these methods
typically lack subject specificity, as they perform global modulations . Mask-based approaches like
MAG (Mao et al., 2023) allow more targeted control but require significant user input to define the
masks.

Attention Map-based Control Building on the observation by Hertz et al. (2023) that fixing at-
tention maps during generation while changing the text prompt enables generating variations of
images, a range of control methods utilizing this mechanism have been introduced. Methods like
Prompt-to-Prompt (Hertz et al., 2023), MasaCtrl (Cao et al., 2023), AdapEdit (Ma et al., 2024), and
many others (Brooks et al., 2023; Simsar et al., 2023; Zhang et al., 2024) leverage attention control
combined with prompt editing to allow for subject-specific manipulations via text interfaces. These
methods provide intuitive control and subject-specificity but suffer from the inherent discreteness of
text inputs and struggle with fine-grained control over the magnitude of changes.

From Controlled Generation to Editing For editing real images, inversion techniques are em-
ployed to map images back into a model’s latent space. In GAN-based methods, Image2StyleGAN
(Abdal et al., 2019) and In-Domain GAN Inversion (Zhu et al., 2020) are commonly used. Similarly,
for diffusion models, DDIM Inversion (Dhariwal & Nichol, 2021), Null-Text Inversion (Mokady
et al., 2023), and ReNoise (Garibi et al., 2024) enable mapping images to the latent noise space,
allowing editing of real images via re-generation with controlled generation methods.

3 METHOD

Let M denote the number of attributes we consider in our work and let N denote the number of
subjects mentioned in a prompt P , A = {Ai | i ∈ J1,MK} denote the set of attributes Ai and
SP = {Sj | j ∈ J1, NK} denote the set of subjects Sj mentioned in the prompt. We aim to influence
the generation process to enable control over the expression expr(Ai) of specific attributes Ai ∈ A
of specific subjects Sj ∈ SP . As an example, consider the prompt “a portrait of a man and woman
sharing a laugh”. If the man should be younger, one can change “man” to “young man”, but this
does not offer continuous control over how young the man is supposed to be. Instead, we aim to
provide the same subject-specificity that changing the prompt offers, but without the limitations
of the non-continuousness of language. Unlike previous works, we wish to provide control that is
simultaneously i) continuous, ii) subject-specific, and iii) does not require manual image masks or
reference images.

Our key observation is that the diffusion model’s interpretation of the tokenwise CLIP text embed-
ding vector e = ECLIP(P ) = (e<SOS>, e1, . . . , ek, e<EOS>), which is typically used to condition
the model, is locally smooth and enables subject-specific semantic modulations (Section 3.1). Using
this property, we can continuously modulate semantic attributes of specific subject instances in the
prompt P . To enable targeted modulation of specific attributes, we introduce methods to identify
latent space directions corresponding to attributes A (e.g., “old”, “happy”, “expensive”).
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“a portrait of a beautiful car” “a portrait of a beautiful frog”interpolation

“a portrait of a beautiful car” “a portrait of a beautiful suv”interpolation

Figure 2: The tokenwise CLIP text embedding space is not
globally smooth. We linearly interpolate between the embed-
dings of two prompts while keeping the noise seed fixed. Near
the original embeddings, changes are smooth and semantically
interpretable, but strong phase transitions exist between sub-
stantially different subjects (e.g., “car” vs. “frog”).

original embedding random deviation to
“woman” token emb.

“a portrait of a beautiful woman
with her beautiful dog”

Figure 3: The tokenwise CLIP
embedding space enables subject-
specific interventions. Changes
to the embedding of subject to-
kens can lead to disentangled local
changes focused on that subject.

3.1 INTERPRETATION OF TOKENWISE CLIP TEXT EMBEDDINGS IN DIFFUSION MODELS

Global v.s. Local Behavior Unlike the pooled text embedding space of CLIP (Radford et al.,
2021) models, which has been explored extensively in previous works (Patashnik et al., 2021; Wang
et al., 2023; Ramesh et al., 2022), the tokenwise text embedding space has not been investigated as
much. Previous methods (Chefer et al., 2024; Li et al., 2024b; Wang et al., 2024) typically interpret
this space globally, applying projections onto subspaces to decompose concepts or eliminate them
from the generated images. Conversely, we find two distinct local behaviors in the tokenwise CLIP
embedding space as interpreted by diffusion models (Podell et al., 2024). We can observe strong
local phase changes when interpolating between substantially different subjects (see Figure 2, top
row). Here minor changes in the embedding cause drastic changes in the generated images. At the
same time, the space shows smooth, semantically interpretable changes in the vicinity of the original
embeddings and when interpolating between similar subjects (see Figure 2, bottom row).

Subject-Specificity The CLIP tokenizer typically maps individual words to single tokens. Diffu-
sion models also directly attend to adjectives added to subjects in the prompt to determine details
of the subjects’ appearance (Hertz et al., 2023; Rassin et al., 2023). Despite this direct connection,
additional information is also stored in other tokens, especially the following tokens describing the
subject, and is interpreted by the diffusion model (Li et al., 2024b). Our key observation here is
that we can exploit this semantic aggregation in the subject tokens to perform targeted interventions:
modulating the token embedding e[Sj ] of a specific subject Sj primarily affects only that subject in
the generated image (see Figure 3), without the need for adding new tokens.

3.2 IDENTIFYING SEMANTIC DIRECTIONS FROM CONTRASTIVE PROMPTS

To use the key observations in Section 3.1 for subject-specific control, we have to identify which
directions enable modulating specific attributes. We previously found that interpolation of the to-
kenwise text embeddings leads to locally smooth changes around the original embeddings (c.f. Fig-
ure 2). Motivated by this finding, we propose identifying semantic directions in the tokenwise
embedding space by comparing embeddings of contrastive prompts.

Formally, given a target attribute Ai, defined via an adjective (e.g., “old”), we want to identify a
direction vector ∆eAi

∈ RdCLIP that can be added to the embedding of a target subject token e[Sj ]

to modulate the expression of that attribute exprSj
(Ai) in the generated image. To identify this

direction, we first obtain the tokenwise CLIP embeddings for two prompts: a neutral prompt P
describing a single subject S and a positive prompt P+, which prepends the adjective to the subject.
Then, we compute the difference between the subject token embeddings e[S] :

∆eAi
= (ECLIP(P+)− ECLIP(P ))[S]. (2)

This directly yields a direction ∆eAi
that captures the change induced by prepending the adjective

to the subject noun in the text prompt. To obtain more robust estimates of this direction, we average
it over a multitude of prompt pairs which describe the same target attribute Ai.
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Figure 4: Variations along “vehicle price” directions identified using our methods. (a) Modulate
along direction from difference-based approach (Section 3.2). (b) Modulate along direction from
robust learned approach (Section 3.3). Unmodified images are marked in green. These directions
successfully capture the target attribute and allow for fine-grained modulation but (a) also shows
unwanted side-effects such as flipping the car’s orientation.

To modulate that attribute’s expression exprSj
(Ai) in the generated image for a given prompt em-

bedding e and target subject Sj , we apply the modulation λi∆eAi
to e with

e′(e, λi∆eAi)[Sj ] = e[Sj ] + λi∆eAi
, (3)

where λi is a scalar controlling the magnitude of the modulation. This modified embedding is then
passed to the diffusion model in place of e. This omits any changes to tokens other than the target
subject noun, including the <EOS> token, which plays a crucial role in the image generation process
(Yesiltepe et al., 2024; Li et al., 2024b; Wu et al., 2024). Despite this, it successfully enables the
modulation of target attributes (see Figure 4a).

3.3 IDENTIFYING ROBUST SEMANTIC DIRECTIONS VIA DIFFUSION NOISE PREDICTIONS

Although the simple difference-based method introduced in Section 3.2 is effective in many scenar-
ios, it has several limitations. In practice, it often leads to unintended side effects (see Figure 4)
and is limited to attributes Ai expressible as prefixes to the subject noun, due to the causality of
the CLIP text encoder. To address these issues, we propose a substantially more robust approach
for identifying such directions. To obtain more robust directions, we use a T2I diffusion model to
identify associations of adjectives to directions in the tokenwise embedding space. This effectively
inverts the typical relation, where language models are used to augment the T2I model, such as
with prompt augmentation (Betker et al., 2023). We use the diffusion model to identify sample-
specific directions corresponding to modulations of the target attribute in the noise prediction space
and backpropagate them through the diffusion model to discover generalizable, fine-grained local
modulation directions ∆eAi

within the tokenwise CLIP embedding space. Specifically, we aim to
apply the modulation and change the image similarly to adding an adjective to the prompt, but with-
out adding additional tokens or affecting the rest of the embedding, and while enabling fine-grained
modulations.

We start with a random (generated) image x0 and its corresponding neutral prompt P describing
one subject S and sample a random timestep t ∼ U [0, T ). We obtain the noised latent as xt =
αtx0 + σtϵ, ϵ ∼ N (0, I), where αt and σt are time-dependent noise schedule coefficients. Then,
we predict the noise for two different prompts with the T2I diffusion model: the original prompt,
ϵ̃ = ϵ̂θ(xt|P ) and the prompt with the adjective added, ϵ̃+ = ϵ̂θ(xt|P+). Using these two noise
predictions, we obtain a direction ∆ϵ̃ = ϵ̃+ − ϵ̃ in that particular image’s and prompt’s noise space
corresponding to modulating Ai.1 Finally, we distill that direction in the noise space through the
diffusion model into the direction ∆eAi (see Figure 5 for an illustration) using the reconstruction
loss

L(x0, e; ∆eAi) = Eλi,ϵ∼N (0,I),t∼U [0,T )

[
w(t) ∥(ϵ+ λi∆ϵ̃)− ϵ̂θ(xt|e′(e, λi∆eAi), t)∥

2
2

]
, (4)

adapted from Equation (1). To capture the full scale of potential changes, including fine-grained
ones, we randomly vary λi. Finally, to obtain a robust, generalizable direction for Ai, we optimize

1If an attribute can be described using a contrastive pair of adjectives (e.g., “old” and “young”), we use the
direction ∆ϵ̃ = ϵ̃+ − ϵ̃− between the noise predictions instead to increase robustness.
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Noise Prediction Space
(Image Space)

ϵ̃

ϵ̃+

∆
ϵ̃

e[Sj ]

∆
e
A

i

xt

ϵ̂θ(·|E(person))

ϵ̂θ(·|E(happy person))

xt ϵ̂θ(xt| · )

∆eAi

E(person)

L (Equation (4))
ϵ̃

Figure 5: Illustration of the intuition of our method. We find that directions that correspond to mod-
ulating an attribute Ai in the noise prediction space ∆ϵ̃ (green) from a specific starting point xt

can be backpropagated (purple) through the diffusion model (Equation (4)) to obtain a generalized
corresponding direction ∆eAi

(blue) in the tokenwise embedding space. E(P ) is the prompt em-
bedding, and ϵ̂θ(·) denotes the diffusion model.

∆eAi
using AdamW (Loshchilov & Hutter, 2019) over a wide range of different sampled images x0

from different base prompts P , noises ϵ, and timesteps t. Unlike Gandikota et al. (2024), we predict
a continuous target direction and train on that by continuously varying λi. We provide an overview
of the full training algorithm in Algorithm 1.

3.4 ATTRIBUTE CONTROL

−6 −4 −2 0 2

CLIP(I,P+)− CLIP(I,P)

0.0

0.2

0.4

D
en

si
ty

Scale λi

0.0
1.0
2.0
3.0

Figure 6: Applying modulations
λi∆eAi

gradually shifts the distri-
bution of generated images w.r.t.
the expression of the target at-
tribute expr(Ai). We show the
kernel density estimation of the
CLIP score difference between
“a photo of an expensive car”
& “a photo of a car” (orig-
inal prompt) while modulating
exprcar(vehicle price).

During inference time, we use Equation (3) to control the ex-
pression exprSj

(Ai) of an attribute Ai of a specific subject
Sj . By adding the modulation ∆eAi to the target subject Sj

in the tokenwise prompt embedding e, we bias the distribution
of generated images p(x0) towards increased or decreased ex-
pression of the target attribute Ai for the target subject Sj (see
Figure 6). We typically apply the modulation after the first
20% of sampling steps to achieve more fine-grained changes,
as in (Meng et al., 2022; Gandikota et al., 2024). Moreover,
this approach supports the additivity of attribute modulations,
allowing for multiple simultaneous edits. By adding several
modulation vectors ∆eAi , we can independently adjust differ-
ent attributes for the same subject Sj without interfering with
each other. Our method also allows for editing multiple sub-
jects within the same image by applying separate modulations
to different subjects. As applying our method only requires
one addition, it effectively adds zero inference cost.

Application to Real Image Editing In addition to modulat-
ing attributes in generated images, our method can also be used to perform fine-grained edits of
real images. We first invert the given real image I with a matching caption (obtained, e.g., by user
input or synthetic captioning) into its corresponding noise latent xT using an off-the-shelf inversion
method (Garibi et al., 2024). Then, we regenerate the image while applying our attribute modu-
lation to the target subject in the same manner as when generating images from scratch to obtain
fine-grained subject-specific edits of real images.

4 EXPERIMENTS

In this section, we comprehensively evaluate our proposed method. We conduct experiments by
applying our semantic directions to both biasing the distribution of generated images and editing
real images. We validate key properties such as subject specificity, the disentanglement of edits, the
fine-grainedness of control, and inference performance.

4.1 EXPERIMENTAL SETUP

We evaluate our proposed method primarily on Stable Diffusion XL (Podell et al., 2024), a widely
used large-scale T2I diffusion model. To test our method, we obtain a large variety of semantic direc-
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Figure 7: Our modulations allow fine-grained control
of many attributes over many categories. Unmodulated
images are marked in green. As the changes are fine-
grained and smooth, we recommend zooming in.
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Figure 8: Qualitative comparison with other methods.
(a) We continuously modulate the age of a person. (b)
P2P (Hertz et al., 2023) and MasaCtrl (Cao et al., 2023)
do not offer full continuous control, first modulating to
“old” or “young” and then optionally reweighting the
adjective from there in the case of P2P. Unmodulated
images are marked in green.

Original
Image Inversion + Car Age

Original
Image

Inversion
+ Smiling

Figure 9: Real image editing: we apply
our method to editing by inverting the im-
age with ReNoise (Garibi et al., 2024) and
regenerating the image with our modula-
tions applied.
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Figure 10: Zero-shot transfer: our mod-
ulations can be learned on one model
(SDXL) and transferred to others (in-
cluding non-diffusion models) without re-
training. This also allows us to combine
them with methods for other models, such
as AdapEdit (Ma et al., 2024) on SD 1.5,
which does not offer continuous subject-
specific modulations by itself. Unmodu-
lated images are marked in green.

tions for various attributes, primarily focused on humans, but also including vehicles and furniture.
Detailed training procedures and parameters are in Appendix B.1.

Integration with other methods As our modulations augment the text prompt embedding input
without adapting the model, they can directly be combined with many controlled generation and
editing methods that utilize prompt changes for control, augmenting them with more fine-grained
control. As part of our experiments, we demonstrate this integration with both Prompt-to-Prompt
(P2P) (Hertz et al., 2023) and AdapEdit (Ma et al., 2024), where we simply replace their text modi-
fications with our attribute modulations. Both methods improve consistency with an original gener-
ated image when changing the prompt. This combines the benefits of improved disentanglement and
structure retainment of these methods with the more fine-grained control of our modulations. We
also combine our method with inversion using ReNoise (Garibi et al., 2024) to perform real image
editing (see Figure 9). Our combination with AdapEdit uses SD 1.5 (Ma et al., 2024), as AdapEdit
is not available for SDXL. Similarly, we use ReNoise with SDXL Turbo (Sauer et al., 2023).

4.2 ATTRIBUTE CONTROL FOR IMAGE GENERATION

We evaluate our method’s ability to control attribute expression for specific target attributes Ai in
different settings and compare it against other approaches both quantitatively and qualitatively. Full
descriptions of our experimental setup and evaluation protocols are available in Appendix B.3.
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Table 1: Quantitative comparison with other control methods. We evaluate (a) subject-specificity
of control in multi-subject settings, (b) disentangledness of attribute control v.s. overall image
changes, where we normalize the change metrics ∆Id and LPIPS by the attribute expression change
|∆CLIPBi|, (c) whether the method can be used for continuous control, and (d) image generation
speed (using an Nvidia A100 80GB SXM at batch size 1).

(a) Subject-Specificity (b) Disentangledness (c) (d) Performance

Method Subject-Specificity ↑ ∆Id ↓ LPIPS ↓ Continuous Time ↓
Adjectives in Text Prompt 4.14 0.48 0.28 ✗ 12.0s [4.17it/s]
Concept Sliders (Gandikota et al., 2024) ✗ 0.45 0.20 ✓ 33.8s [1.48it/s]
Prompt-to-Prompt (Hertz et al., 2023) 3.93 0.60 0.29 ✗ 23.5s [4.16it/s]
AdapEdit (Ma et al., 2024) 6.92 0.24 0.10 ✗ 13.2s [7.58it/s]
MasaCtrl (Gen.) (Cao et al., 2023) 2.48 0.66 0.28 ✗ 153.0s [0.65it/s]
MasaCtrl (Edit*) (Cao et al., 2023) 1.93 0.61 0.43 ✗ 10.2s [4.86it/s]
Ours 3.35 0.40 0.10 ✓ 12.0s [4.17it/s]
Ours + Prompt-to-Prompt (Hertz et al., 2023) 2.23 0.37 0.08 ✓ 23.5s [4.16it/s]
Ours + AdapEdit (Ma et al., 2024) 6.46 0.19 0.05 ✓ 13.2s [7.58it/s]
Ours + ReNoise (Garibi et al., 2024) 2.28 0.82 0.32 ✓ 32.2s [5.367it/s]

Ablations
Ours (w/o Delay) 3.47 0.50 0.22 ✓ 12.0s [4.17it/s]
Our CLIP Difference Method (Section 3.2) 2.38 1.20 0.58 ✓ 12.0s [4.17it/s]
Directly modulating ∆ϵ̃ (Section 3.3) with CFG 3.15 0.73 0.39 ✓ 23.0s [2.17it/s]

best and 2nd are highlighted. *MasaCtrl editing & AdapEdit are only available for SD 1.5; the other methods use SDXL. CFG denotes Classifier-free Guidance.

Subject-Specificity of Control To evaluate subject-specificity, we apply different attribute mod-
ulations to individual subjects within multi-subject-prompts. As shown in Figure 12b (see also Ap-
pendix A.3 for additional examples), our method can apply attribute modulations independently to
each subject Sj ∈ S in multi-subject prompts P , yielding fine-grained, compositional control. This
is despite training the directions ∆eAi only in a single-subject setting. We also find that our modula-
tions enable an extensive coverage of the 2D attribute expression space when applied to multi-subject
modulations, improving upon the coverage achieved by other methods (see Figure 11).

For a quantitative evaluation, we use two-subject prompts containing a target entity Starget and an-
other Sother of the same category and measure the change induced by modulating an attribute of one
subject relative to the other. Using detected bounding boxes, we calculate the change in CLIP score
(a standard metric often used to quantify semantic control magnitudes (Gandikota et al., 2024; Ma
et al., 2024)) for both Starget and the other subject Sother as:

∆CLIP = 100 · (cossimCLIP(Imod, Pedit)− cossimCLIP(Iorig, Pedit)) (5)

where Iorig and Imod denote the original and edited images, respectively, and Pedit is the desired at-
tribute edit prompt. The cosine similarity cossimCLIP measures the alignment between the CLIP
embeddings of the images and the attribute-edit prompts. From this, we compute the subject-
specificity ratio by comparing the relative change in ∆CLIP for the target subject Starget, to the
other subject, Sother. Formally, we define the subject-specificity metric as:

Subject-Specificity =
|∆CLIP(Starget)|
|∆CLIP(Sother)|

. (6)

As shown in our evaluation against state-of-the-art control methods in Table 1a, our method retains
subject-specificity similar to adding adjectives to the prompt and Prompt-to-Prompt (Hertz et al.,
2023), allowing it to achieve fairly isolated changes in attribute expression. AdapEdit, which does
not allow continuous modulations, performs substantially better. As AdapEdit uses text prompts
to specify changes, we can combine it with our method (unlike other continuous modulation meth-
ods such as Concept Sliders, which can not be combined this way) to retain the superior subject-
specificity, but also achieve continuous modulations.

Disentangledness of Control We also evaluate how disentangled the achieved semantic modula-
tion is from both overall image changes and person identity changes (when applying modulations to
people). We quantify overall perceptual image change using LPIPS (Zhang et al., 2018) and for iden-
tity similarity, we use the cosine similarity in the ReID embedding space, denoted as cossimReID,

8
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Figure 11: We continuously modulate the target attribute for each of two subjects and estimate the
individual attribute expression exprSj

(Ai) of the target attribute. Our modulations enable reach-
ing a large range of attribute expression combinations, as they are both subject-specific and fully
continuous. Other methods are limited in one of these aspects and thus do not allow full coverage.
Samples with AdapEdit use SD 1.5, while the rest use SDXL.

Image Generated
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Figure 12: (a) Multiple modulations can be composed simply by adding them. (b) Modulations can
be applied to different subjects with different magnitudes. Unmodified images are marked in green.

based on ArcFace embeddings (Deng et al., 2019). The identity change is computed as:

∆Id = 1− cossimReID(Imod, Iorig), (7)

We show both results over the magnitude of the achieved semantic change in Figure 13, quantifying
the semantic change as a bidirectional CLIP score change:

∆CLIPBi = ∆CLIP+ −∆CLIP−, (8)

where ∆CLIP+ uses a positive prompt (e.g., “an old man”) and ∆CLIP− uses a negative prompt
(e.g., “a young man”). This approach enables us to quantify both positive and negative changes in
attribute expression faithfully. We also consolidate these results into a single quantitative ratio each
for image and person identity change in Table 1b. Compared to other methods, the attribute expres-
sion changes achieved with Attribute Control are well-disentangled from auxiliary image changes.
When combined with AdapEdit, our method significantly outperforms all other approaches.

Fine-Grainedness of Control We further demonstrate the fine-grained control capabilities of our
method by showing smooth, gradual modifications in attribute expression across multiple target cat-

0 5

∆CLIPBi

0.0

0.2

0.4

0.6

0.8

∆
Id
↓

Identity Change

0 5

∆CLIPBi

0.0

0.1

0.2

0.3

L
PI

PS
↓

Perceptual Image Change
Concept Sliders (Gandikota et al., 2024)
Prompt-to-Prompt (Hertz et al., 2023)
AdapEdit (Ma et al., 2024)
MasaCtrl (Gen.) (Cao et al., 2023)
MasaCtrl (Edit) (Cao et al., 2023)
Ours
Ours + Prompt-to-Prompt
Ours + AdapEdit

Figure 13: We measure the perceptual change in the image (LPIPS) and the person identity change
(∆Id) to the unmodified image while modulating the target attribute. Our modulations enable
fully continuous and highly disentangled modulations, which is further improved by combining
our method with others such as Prompt-to-Prompt or AdapEdit.
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egories in Figure 7, qualitatively compared to other methods in Figure 8, and quantitatively evaluated
in Figure 13. Unlike other methods such as MasaCtrl (Cao et al., 2023), AdapEdit (Ma et al., 2024),
or P2P (Hertz et al., 2023), which do not allow for fine-grained modulations, our approach enables
continuous, well-disentangled modulation across a wide range of attribute expression expr(Ai) sim-
ilar to Concept Sliders (Gandikota et al., 2024), but while offering subject-specificity. This can also
be seen in the multi-subject evaluation in Figure 11.

Ablation We also ablate over different variations of our method (see Table 1). We find that only
applying the modulation after the first 20% of steps in the sampling process substantially improves
the disentangledness of modulations. Furthermore, we find that our learning-based method for iden-
tifying modulation directions significantly improves upon the simple approach introduced in Sec-
tion 3.2. Similarly, our learned directions are substantially more disentangled than just applying the
∆e modulation they were trained on with Classifier-free Guidance (CFG) (Ho & Salimans, 2021)
and do not incur the substantial sampling cost overhead.

Generalization We further investigate the generalizability of our method. Generally, any learned
modulation direction ∆eAi will have only been trained on a closed set of nouns describing the target
subject S. To verify that they generalize beyond this set, we apply directions that have been trained
on a very small set of generic nouns (e.g., “person”, “woman”, and “man” for people) to more
specific nouns (see Appendix A.2). We find that our directions generalize to this setting as expected.
We also find that our learned modulation directions ∆eAi

can generalize to other models that use
the same text encoders in a zero-shot manner. By learning a direction on one model, in this case,
SDXL (Podell et al., 2024), we can directly transfer it to models that use the same text encoders (see
Figure 10), such as SDXL Turbo (Sauer et al., 2023), or a subset of them, as with SD 1.5 (Rombach
et al., 2022) or the image+depth model LDM3D (Stan et al., 2023). Our learned directions even
generalize to non-diffusion models such as aMUSEd (Patil et al., 2024).

5 CONCLUSION

This work uncovers the powerful capabilities of the tokenwise CLIP Radford et al. (2021) text em-
bedding for exerting control over the image generation process in T2I diffusion models. Instead of
just acting as a discrete space of embeddings of words, we find that diffusion models are capable of
interpreting local deviations in the tokenwise CLIP text embedding space in semantically meaning-
ful ways. We use this insight to augment the typically rather coarse prompt with fine-grained, con-
tinuous control over the attribute expression of specific subjects by identifying semantic directions
that correspond to specific attributes. Since we only modify the tokenwise CLIP text embedding
along pre-identified directions, we enable more fine-grained manipulation at no additional cost in
the generation process.

Limitations and Future Work This work is a step towards revealing the hidden capabilities of the
text embedding input to common large-scale diffusion models and making them usable in straight-
forward ways. While our approach works for different off-the-shelf models without modifying them,
it is also inherently limited by their capabilities. Specifically, our method inherits the limitation that
diffusion models sometimes mix up attributes between different subjects. Complementary meth-
ods (Chefer et al., 2023; Rassin et al., 2023) reduce these problems substantially, and future work
could investigate their combination with our method in depth. Our approach also uses linear mod-
ulations along semantic directions in CLIP’s tokenwise embedding space. In GANs, where similar
linear modulations are often used, previous works (Balakrishnan et al., 2022) found that more disen-
tangled changes can be achieved using nonlinear modulations. The tokenwise CLIP text embedding
space might share this property and could benefit from applying similar strategies to further improve
disentanglement.
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ETHICS STATEMENT

This work aims to improve the capabilities of text-to-image diffusion models by enabling more fine-
grained control over generated content, with applications to controlled generation and image editing.
Text-to-image models can generally be used to create misleading or inappropriate content and may
inherit biases from training data, including gender, race, and cultural stereotypes. Our method offers
a potential mitigation strategy for some of these issues, helping to counteract biases by providing
users with more precise control over generated images instead of purely relying on the pre-trained
model to determine appropriate attribute combinations. We encourage responsible use and further
research into mitigating biases in text-to-image generation.

REPRODUCIBILITY STATEMENT

In addition to the information given in the main body of the paper, we provide extensive details
about both our method (Appendices B.1 and B.2) and experiments (Appendix B.3), including im-
plementation considerations and hardware, in the appendix. Further, we provide a fully documented
reference implementation of our method in the supplementary material. For figures, we also include
additional details like prompts used for generated images in Appendix C.
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A ADDITIONAL EXPERIMENTS & RESULTS

A.1 POSTFIX ATTRIBUTE LEARNING

Some attributes are not easily expressible as prefixes to the noun. This means that, due to the
causal nature of the CLIP text encoder, our optimization-free method for identifying attribute direc-
tions (see Section 3.2) can not be applied. However, we find that this limitation does not apply to
our optimization-based approach (see Section 3.3): we can learn directions based on attributes ex-
pressed as postfixes (e.g., “a person wearing sunglasses”, for which we show a qualitative example
in Figure 14).

+ “... wearing sunglasses”

Figure 14: Our learning-based method can also learn to represent attributes represented as postfixes
to the target subject noun during training.
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A.2 SUBJECT NOUN TRANSFERABILITY

We investigate how much our learned attribute modulations can generalize across different nouns
that describe the same subject. We generally learn them on a set of different nouns that describe
a subject of a specific category (e.g., for people with the words “man”, “woman”, and “person”).
However, these words typically do not cover the whole range of possible nouns that can be used to
describe subjects of a general category. Ideally, one could learn one modulation for one concept,
such as age, on a small set of nouns and generalize across all nouns of a category or even to subjects
of other categories.

First, we test the generalization of modulations learned for people on “man”, “woman”, and “person”
and apply them to increasingly more specific nouns that describe people. Results are shown in
Figures 15 and 16, and all prompts are “a photo of a beautiful <noun>”. As a baseline, we apply
them to “child”, “mother”, and “father”, three words that are previously unseen but still describe very
high-level sub-categories of people. We find that the learned modulations still work as expected.
Similarly, for categories of jobs such as “doctor”, “barista”, or “firefighter”, which are substantially
more specific and also substantially affect their clothing and the rest of the image, we find that
they also work well. Finally, applying these learned modulations to very specific nouns such as the
names “John” and “Jane” also works as expected. This demonstrates that our learned modulations
can generalize well across a wide range of unseen nouns describing instances of a specific category,
even if they were only learned on a small set of high-level, potential nouns.

Age (learned on {“Man”, “Woman”, “Person”})
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Figure 15: Subject Noun Transferability. We stress-test applying modulations that have been
learned only on the nouns “man“, “woman“, and “person“ to various other nouns that describe
people. The unmodified image is marked in green. All samples are generated using attribute modu-
lations being applied with a linear scale from -2 to 2 across each.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Width (learned on {“Man”, “Woman”, “Person”})
+−

D
oc

to
r

Fa
th

er
M

ot
he

r
C

hi
ld

B
ar

is
ta

Fi
re

-
fig

ht
er

Jo
hn

Ja
ne

Figure 16: Subject Noun Transferability. We stress-test applying modulations that have been
learned only on the nouns “man“, “woman“, and “person“ to various other nouns that describe
people. The unmodified image is marked in green. All samples are generated using attribute modu-
lations being applied with a linear scale from -2 to 2 across each.
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A.3 MULTI-SUBJECT ATTRIBUTE EDITING

Figures 17 and 18 show examples of modulating attributes in a subject-specific manner using our
learned modulations. These show that various attributes can be applied to subjects individually, even
if both subjects are of the same category (e.g., “people”). A slight correlation between, e.g., the age
of the man and the age of the woman in Figure 17 is visible and expected, as the diffusion model
also models these dependencies between different subjects in the generated image. By applying
both modulations with different strengths, the whole spectrum of combinations can be achieved, as
shown in Figure 11.
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Figure 17: Multi-Subject Attribute Modifications. The unmodified image is marked in green.
All samples are generated using one attribute modulation each being applied to the two subjects
mentioned in the prompt with a linear scale from -2 to 2 across each.
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Figure 18: Multi-Subject Attribute Modifications. The unmodified image is marked in green.
All samples are generated using one attribute modulation each being applied to the two subjects
mentioned in the prompt with a linear scale from -2 to 2 across each.
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A.4 COMPOSITIONAL ATTRIBUTE EDITING

We show some 2d grids where two attributes are modulated for the same target subject in an additive
manner in Figures 19 and 20. Both attribute modulations interact with each other according to the
world knowledge of the diffusion model to produce a realistic image for every combination.
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Figure 19: Compositional Attribute Modifications. The unmodified image is marked in green.
All samples are generated using two attribute modulations being applied additively with a linear
scale from -2 to 2 across each.
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Figure 20: Compositional Attribute Modifications. The unmodified image is marked in green.
All samples are generated using two attribute modulations being applied additively with a linear
scale from -2 to 2 across each.
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A.5 CONTINUOUS ATTRIBUTE MODULATION

To illustrate the breadth of attributes that can be modulated and how continuous the attribute changes
are, we show a range of attributes being continuously modulated. Figures 21 to 24 show examples
where attribute modulations are applied with our delayed sampling, Figure 25 shows attribute mod-
ulations applied for the full sampling time. For every category, we re-use the same sample instances
as a starting point.

{Bike, Car} Age
+−

{Bed, Chair} Age
+−

Figure 21: Continuous Attribute Modifications. Unmodified images are marked in green. All
samples are generated using a linear scale from -2 to 2.
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Age
+−

Fitness
+−

Tiredness
+−

Figure 22: Continuous Attribute Modifications. Unmodified images are marked in green. All
samples are generated using a linear scale from -2 to 2.
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Elegance
+−

Freckled
+−

Groomed
+−

Figure 23: Continuous Attribute Modifications. Unmodified images are marked in green. All
samples are generated using a linear scale from -2 to 2.
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Makeup
+−

Tan
+−

Width
+−

Figure 24: Continuous Attribute Modifications. Unmodified images are marked in green. All
samples are generated using a linear scale from -2 to 2.
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Hair Length
+−

Scarred
+−

Hair Curliness
+−

Figure 25: Continuous Attribute Modifications. Unmodified images are marked in green. All
samples are generated using a linear scale from -2 to 2, with the modulations being applied
for all steps (w/o Delay).
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B IMPLEMENTATION DETAILS

This section gives details about the implementation of our method. We generally use the default
settings as set in diffusers2-v0.25.0 with a classifier-free guidance (Ho & Salimans, 2021) scale
of 7.5 and 50-step DDIM (Song et al., 2021) sampling unless specified otherwise.

B.1 SEMANTIC DIRECTION TRAINING

Algorithm 1 Algorithm for Learning the Semantic Directions

1: Input:
Pre-trained diffusion model ϵ̂θ
CLIP embedding dimension dCLIP

Learning rate η, number of steps S, batch size B
2: Output:

Learned semantic direction ∆eAi

3: Initialize ∆eAi
= 0 ▷ Initialization

4: for s = 1 to S do ▷ Training loop
5: Lbatch ← 0 ▷ Initialize batch loss
6: for each entry in batch of size B do
7: Sample random subject Sj and neutral prompt P
8: Generate image x0 from neutral prompt P
9: t ∼ U [0, T ) ▷ Sample random timestep

10: xt = αtx0 + σtϵ, ϵ ∼ N (0, I) ▷ Add noise
11: ϵ̃ = ϵ̂θ(xt|P ) ▷ Predict noise for P
12: ϵ̃+ = ϵ̂θ(xt|P+) ▷ Predict noise for P+

13: ∆ϵ̃ = ϵ̃+ − ϵ̃ ▷ Compute noise direction
14: λi ∼ U([−5, 5] \ (−0.1, 0.1)) ▷ Sample scale factor
15: Li = w(t) ∥(ϵ+ λi∆ϵ̃)− ϵ̂θ(xt|e′(e, λi∆eAi

), t)∥22 ▷ Compute loss for this entry
16: Lbatch ← Lbatch + Li ▷ Accumulate batch loss
17: end for
18: Compute mean loss for the batch: Lmean ← 1

BLbatch
19: Update ∆eAi

using AdamW optimizer with learning rate η based on Lmean
20: end for
21: Return: ∆eAi

The semantic directions ∆eAi for target attribute Ai are implemented as learnable parameters of
shape 1× dCLIP, with dCLIP being the embedding dimension of the CLIP text encoder. For SDXL
(Podell et al., 2024), this is 2048, resulting from the channelwise concatenation of embeddings from
the OpenAI CLIP ViT-L (Radford et al., 2021) and OpenCLIP ViT-bigG (Ilharco et al., 2021). This
direction is applied additively with scaling according to Equation (3) to the target subject tokens
(e.g., “person” in the case of “a photo of a person”) in the original text embedding e. If the target
subject consists of multiple tokens, we broadcast ∆eAi

across those tokens, although this is only
very rarely the case in practice. Similarly, if one subject is mentioned in the prompt multiple times,
we apply the same modulation to all instances.

We train our semantic directions ∆eAi
for 1000 steps3 at a batch size of 10. We use AdamW

(Loshchilov & Hutter, 2019) with a learning rate of 0.1, (β1, β2) = (0.5, 0.8), and weight decay of
0.333. All directions are trained on a single A100 with 40GB of VRAM using a bfloat16 version of
SDXL (Podell et al., 2024).

For every entry in the batch, we use a random combination of prefix prompt (e.g. “an photo of”,
optionally with attributes such as ethnicity, to focus the implied direction on one that is invariant to
these attributes) and prompt tuple (e.g “a woman”) and sample an image with the neutral prompt
(e.g. (“a photo of a woman”) and a random seed, stopping at a random timestep. We then compute

2https://github.com/huggingface/diffusers
3The directions tend to be mostly converged after 10 steps, but we train for a unified training time across all

attributes for consistency.
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the prediction starting from that step for all two/three prompts, resulting in ϵ̃, ϵ̃+, and optionally ϵ̃−.
In contrast to Gandikota et al. (2024), we explicitly distill the full direction implied by ∆ϵ̃ by using
multiple scales λi sampled from a continuous scale distribution. Preliminary experiments showed
that this helps obtain substantially more robust directions. Additionally, we sample our starting
samples using standard sampling instead of a modified generation process.

We then sample four values for λi ∼ U([−5, 5] \ (−0.1, 0.1)) and compute our training loss (Equa-
tion (4)) over them. We found that sampling multiple values for λi substantially boosts the quality
of our learned directions at little overhead cost (as the online sampling of the original images is the
most costly part) and that values for λi very close to zero were not particularly useful for the training
process. Empirically, we find that most of our learned directions are already close to convergence
after five optimization steps, but we keep training for the full time for simplicity.

B.2 COMBINATION OF ATTRIBUTE CONTROL WITH OTHER METHODS

In Section 4, we combine our attribute control method with other off-the-shelf controlled generation
methods.

Combination with Prompt-to-Prompt (Hertz et al., 2023) To combine our method with Prompt-
to-Prompt, we apply the standard Prompt-to-Prompt method. We use the same adaptation mode and
hyperparameters as used for adding adjectives in the text prompt, but add our modulations on the
text prompt embedding instead. To modulate the change, we scale our directions as usual.

Combination with AdapEdit (Ma et al., 2024) AdapEdit uses the same general external interface
as Prompt-to-Prompt. Here, we apply our modulations in the exact same way as previously described
for Prompt-to-Prompt. As AdapEdit is not available for SDXL (Podell et al., 2024), we use zero-shot
adaptation of our semantic directions obtained on SDXL to SD1.5, as described in Section 4.2.

Combination with ReNoise (Garibi et al., 2024) To apply our controlled generation approach to
editing, we combine it with ReNoise, a standard inversion approach. We use their official reference
implementation based on SDXL Turbo (Sauer et al., 2023) and apply our modulations learned on
SDXL there. We perform inversion purely with ReNoise with default settings and an image de-
scription prompt to obtain a starting latent xT , and then perform controlled generation purely with
our method with standard settings. This could optionally be combined further with other methods
during inference, such as Prompt-to-Prompt (Hertz et al., 2023) and AdapEdit (Ma et al., 2024).

B.3 EXPERIMENT EVALUATION DETAILS

To compute perceptual image differences, we use LPIPS (Zhang et al., 2018) as implemented in the
lpips4 package with default settings at a resolution of 2562 (interpolated bi-linearly). For CLIP
scores, we use the standard implementation in torchmetrics5 (which outputs cosine similarities
scaled to [0, 100]) with default settings, including the default CLIP choice of the CLIP-ViT-L/14
trained by OpenAI (Radford et al., 2021). For image-image similarity evaluations with DINOv2
(Oquab et al., 2024), we use the ViT-L/14 variant with registers (Darcet et al., 2024) and bi-linearly
resize to 2242 before passing them to the model and comparing the cosine similarity of the CLS
token outputs. Finally, for ReID evaluations, we use the ArcFace (Deng et al., 2019) implementation
provided by the insightface6 python package with the default buffalo l model, where we
compute the cosine similarity of the embeddings of the detected faces.

Implementations of other Methods For Concept Sliders (Gandikota et al., 2024), we use the
official public implementation7. For Prompt-to-Prompt (Hertz et al., 2023), we use the unofficial port
of the method to Stable Diffusion XL8. This implementation also served as the basis for integrating
our method with Prompt-to-Prompt in our codebase. As this implementation is partially incomplete,

4https://github.com/richzhang/PerceptualSimilarity
5https://github.com/Lightning-AI/torchmetrics
6https://github.com/deepinsight/insightface
7https://github.com/rohitgandikota/sliders
8https://github.com/RoyiRa/prompt-to-prompt-with-sdxl
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we referred to the official implementation9 for the implementation of reweighting of added words.
For AdapEdit10, MasaCtrl11, and ReNoise12, we also used the respective official implementations.
When comparing attribute modulation capabilities across different methods, we compare using the
target attribute age on people, as this attribute is i) unambiguous in what exactly it describes, ii)
relatively well objectively quantifiable unlike the vast majority of attributes, iii) fully continuous,
and iv) the only reasonable attribute that is supported by Concept Sliders13.

Attribute Distribution Shifts (Figure 6) For each value of λi ∈ {0, 1, 2, 3}, 20 samples (with
fixed seeds across scales) were drawn. We compute the delta CLIP score as specified in the exper-
iments section of the paper and use scipy’s Gaussian KDE method14 to compute the kernel density
estimate for the resulting distributions with Scott’s rule and default settings.

Qualitative Continuous Modulation (Figure 8) We continuously modulate the age of the person
described in the prompt with both our method and Concept Sliders (Gandikota et al., 2024), choosing
coefficients such that a wide range is covered and both methods show similar scales per column. For
Prompt-to-Prompt (Hertz et al., 2023) and MasaCtrl (Cao et al., 2023), we add “old” or “young”
to the prompt to coarsely modulate the target attribute. Prompt-to-Prompt further enables some
fine-grained control around the already offset attribute expression point from the added adjective
by re-weighting the added adjective. This does, at least for Stable Diffusion XL (Podell et al.,
2024), not allow continuous modulation back to the original image, causing a discontinuity. This
can intuitively be explained by the fact that attributes are aggregated in the subject noun, a fact that
our method exploits to directly enable fine-grained, subject-specific target attribute modulation: as
the attribute modulation for P2P is already partially contained in the subject noun, modulating just
the added adjective’s cross-attention map can not fully recover the original generated image. At
the same time, when combined with our method, where we just modulate the target subject noun’s
embedding instead of adding new adjectives, this problem immediately subsides.

Quantitative Subject Specificity Evaluation (Table 1a) With each method, we generate varia-
tions across a set of 50 images with individual prompts describing two people, where we modulate
the target attribute of one of the two subjects. We detect each subject in the unmodified image as
previously described with the standard pipeline from insightface, and then compute the target
metric for each bounding box. We aggregate the specificity metric as described in Equation (6) by
computing the fraction individually per sample and then aggregating the overall mean. As there are
some cases where this effectively results in a division by zero, we clamp the resulting individual
values to [0, 10]. We chose 10 as a threshold, as it prevents these outlier samples from having an
extraordinarily strong effect on the overall mean.

Attribute Coverage Evaluation (Figure 11) To evaluate the set of attribute combinations reach-
able by each method, we start from the same setup as previously described for Table 1a, but con-
tinuously modulate the age for both subjects visible in the image, covering all combinations of
modulation scales for each method. We evaluate 20 values per subject, producing 400 generated
samples per method for methods that allow independent continuous modulation of both subjects.
We then measure the attribute expression for each subject bounding box (obtained as previously in
Table 1a) using Equation (8) and plot the distribution for one representative sample in Figure 11.

Quantitative Disentangledness Evaluation (Figure 13, Table 1b) We generate 50 base samples
showing people with different prompts of the format “a close-up portrait of a {modifiers} {woman,
man}”, where {modifiers} describes a set of prefixes (e.g., “{∅, beautiful, elegant} asian”, “{∅,
beautiful, elegant} african-american”, etc) to cover a wide variety of different images. Then, we
modulate the target attribute continuously using each method. We then measure the attribute ex-
pression change with Equation (8), the image change with LPIPS, and the identity change as in

9https://github.com/google/prompt-to-prompt
10https://github.com/AnonymousPony/adap-edit
11https://github.com/TencentARC/MasaCtrl
12https://github.com/garibida/ReNoise-Inversion
13https://sliders.baulab.info/weights/xl_sliders/
14https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.

gaussian_kde.html
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Equation (7). We aggregate these values over all 50 images per combination of method & hyperpa-
rameters and then plot them in Figure 13. For Table 1b, we compute the slope of these graphs (using
the absolute value of ∆CLIPBi for the denominator, to account for the fact that the changes increase
for positive values and one for negative values of ∆CLIPBi) to quantify the disentangledness of the
edits both from overall visual changes (LPIPS) and person identity changes (∆Id).

Inference Performance Evaluation (Table 1d) For each method, we use the released implemen-
tations of each respective method with default settings and replicate the original environments as
closely as possible, given the information documented by the authors. We measure inference times
on the same Nvidia A100 SXM with 80GB of RAM and document both the total time and (aver-
age) step time, as some methods use different step counts for sampling. For the main paper, we
consolidate inversion and generation time if applicable.

C VISUALIZATION DETAILS & PROMPTS

Generally, all examples in the paper use Stable Diffusion XL as introduced in Podell et al. (2024)
unless noted otherwise.

Figure 1 Prompt: “A close-up photo of a man and a woman sitting on a bench.”

Figure 2 Prompts: “a portrait of a beautiful car”, “a portrait of a beautiful frog”, and “a portrait
of a beautiful suv”.

Figure 3 Prompt: “a portrait of a beautiful woman with her beautiful dog”.

Figure 4 Prompt: “a photo of a car”.

Figure 6 Prompt: “a photo of a car”.

Figure 7 Prompt 1: “a portrait of a beautiful chair”.
Prompt 2: “ photo of an old car”.
Prompt 3: “a portrait of a beautiful truck”.
Prompt 4: “a photo of a beautiful man”.

Figure 8 Base prompt: “a close-up portrait of a indian woman”.

Figure 10 aMUSEd: “a photo of a beautiful man”.
SD 1.5: “a headshot of a relaxed woman and a friendly man”.

Figure 9 Image 1 is a photo with the title “a red rolls royce parked in front of a building” by Rico
Reynaldi, obtained from Unsplash15. The image is licensed under the Unsplash license16 and has
been center-cropped for inversion.
Inversion Prompt: “a photo of a beautiful red car on the top deck of a parking garage with large
buildings in the background, hazy weather with sunshine”.
Image 2 is a photo by The Royal Society, obtained from Wikimedia17. The image is licensed under
the Creative Commons Attribution-Share Alike 3.0 Unported license18 and has been cropped to
primarily show the person’s head.
Inversion Prompt: “a photo of a man wearing glasses and a suit”.

15https://unsplash.com/photos/a-red-rolls-royce-parked-in-front-of-a-building-sAN11DGnjqk
16https://unsplash.com/license
17https://commons.wikimedia.org/wiki/File:Demis_Hassabis_Royal_Society.

jpg
18https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Figure 12a Prompt: “a photo of a beautiful asian man”.

Figure 12b Prompt: “a portrait of a bearded man and a beautiful brunette woman”.

Figures 15 and 16 Prompt Template: “a photo of a beautiful [...]”

Figure 17 Prompt 1: “a photo of a bearded man in a beanie enjoying a concert with a bohemian
woman in flowing attire” Prompt 2: “a portrait of an indian woman standing next to an african-
american man”

Figure 18 Prompt 1: “a photo of a tech-savvy man with a laptop engaged in conversation with
a creative woman with colorful tattoos” Prompt 2: “a portrait of an indian woman dressed in
traditional clothing next to an african-american man wearing a hat standing in a library”

Figure 19 Prompt 1: “a photo of a car” Prompt 2: “a photo of a compact red car”

Figure 20 Prompt 1 & 2: “a photo of a beautiful asian man”

Figure 21 Prompt 1 & 2: “a photo of a bike”
Prompt 3 & 4: “a photo of a car”
Prompt 5 & 6: “a photo of a bed”
Prompt 7 & 8: “a photo of a chair”

Figures 22 to 25 Prompt 1 & 3: “a photo of a beautiful man”
Prompt 2 & 4: “a photo of a beautiful woman”
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