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Abstract001

Post-hoc explanation methods for black-box002
models often struggle with faithfulness and hu-003
man interpretability due to the lack of explain-004
ability in current neural models. Meanwhile, B-005
cos networks have been introduced to improve006
model explainability through architectural and007
computational adaptations, but their application008
has so far been limited to computer vision mod-009
els and their associated training pipelines. In010
this work, we introduce B-cos LMs, i.e., B-cos011
networks empowered for NLP tasks. Our ap-012
proach directly transforms pre-trained language013
models into B-cos LMs by combining B-cos014
conversion and task fine-tuning, improving ef-015
ficiency compared to previous B-cos methods.016
Our automatic and human evaluation results017
demonstrate that B-cos LMs produce more018
faithful and human interpretable explanations019
than post hoc methods, while maintaining task020
performance comparable to conventional fine-021
tuning. Our in-depth analysis explores how B-022
cos LMs differ from conventionally fine-tuned023
models in their learning processes and expla-024
nation patterns. Finally, we provide practical025
guidelines for effectively building B-cos LMs026
based on our findings. Our code is available at027
https://anonymous.4open.science/r/bcos_lm.028

1 Introduction029

Pre-trained language models (PLMs) such as030

BERT (Devlin et al., 2019) and GPT (Radford031

et al., 2019; Brown et al., 2020; OpenAI, 2023)032

have significantly advanced performance across033

a plethora of NLP tasks (Wang et al., 2018; Gao034

et al., 2023). However, their complex architectures035

and black-box nature make understanding their be-036

havior a persistent challenge (Bommasani et al.,037

2021). To address this, research has increasingly038

focused on explaining model predictions, partic-039

ularly in relation to the input. These input-based040

explanations, often referred to as local explanations041

or rationales, aim to reveal how specific inputs in-042
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Example (a) el attribution 

Conventional LM [cLs] [ user 1| RAY | guy [SEP] 

B-cos LM CLS] [ user uy [SEP cos (ours) [ ] [ ] funny guy [ ] Irrelevant 

Example (b) 7 ee attribution 

Conventional LM [CLs]| why |does it| AHEM ike black sesame (Moen! [SEP] 

B-cosLM(ours) [CLS] why does it smell like black sesame mochi [SEP]

Figure 1: Visualization of W(x)x in a conventionally
fine-tuned model (Conventional LM) and a B-cos
LM. Green (red) indicates the positive (negative) im-
pact of tokens on the prediction. In both examples, both
models correctly predict not toxic. In the Conventional
LM, “funny” is incorrectly assigned a negative attribu-
tion in example (a), while in example (b), irrelevant
words like “why” and “smell” are highlighted, making
the explanations unfaithful and less interpretable.

fluence a model’s predictions (Arras et al., 2019; 043

Atanasova et al., 2020; Lyu et al., 2024). 044

Most explanation methods for neural models 045

are post-hoc, meaning that they attempt to explain 046

a model’s behavior only after it has been trained 047

and deployed (Sundararajan et al., 2017; Ribeiro 048

et al., 2016). While these methods are widely 049

used and easy to apply, they have been shown 050

to produce unfaithful and less interpretable expla- 051

nations (Smilkov et al., 2017; Kindermans et al., 052

2019; Slack et al., 2020; Pruthi et al., 2020).1 Prior 053

research has attributed these shortcomings to the 054

lack of explainability in contemporary neural mod- 055

els (Kindermans et al., 2018; Alvarez Melis and 056

Jaakkola, 2018; Rudin, 2019). Figure 1 provides 057

examples illustrating this issue. 058

To overcome these limitations, we introduce B- 059

cos LM, a dynamic linear model that learns task- 060

relevant patterns through increased input-weight 061

alignment pressure. Building upon B-cos networks 062

from computer vision (Böhle et al., 2022; Arya 063

et al., 2024), we improve explainability of B-cos 064

LMs through mathematically grounded architec- 065

1Considering the evolving definition of these terms in past
literature, we provide a detailed definition in Appendix A.
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tural and computational adaptations. Furthermore,066

we tailor B-cos LMs for NLP by incorporating spe-067

cialized architectural modifications and training068

pipelines. Our contributions are as follows:069

1. We propose B-cos LM, a novel model with en-070

hanced explainability. Automatic and human071

evaluations demonstrate that B-cos LMs gen-072

erate more faithful and human interpretable073

explanations than post-hoc explanations while074

maintaining a strong task performance.075

2. We investigate different strategies for trans-076

forming PLMs into task-specific B-cos LMs.077

Our findings show that combining task fine-078

tuning and B-cos conversion is the most effi-079

cient approach, leading to faster convergence080

than previous B-cos methods and conven-081

tional fine-tuning.082

3. We thoroughly investigate how B-cos LMs dif-083

fer from conventionally fine-tuned models and084

examine how alignment pressure influences085

their behavior.086

4. Based on our findings, we provide practical087

guidelines for building effective B-cos LMs.088

2 Related Work089

Post-hoc Explanation Methods Various meth-090

ods have been proposed to provide post-hoc expla-091

nations for neural model predictions (Atanasova092

et al., 2020). These methods can be broadly cate-093

gorized based on how they generate explanations:094

gradient-based (Simonyan et al., 2014; Kindermans095

et al., 2016; Sundararajan et al., 2017), propagation-096

based (Bach et al., 2015; Shrikumar et al., 2017;097

Springenberg et al., 2015), and perturbation-based098

methods (Li et al., 2016; Ribeiro et al., 2016; Lund-099

berg and Lee, 2017). Besides, the attention mech-100

anism (Bahdanau et al., 2015) is often viewed as101

an explanation, particularly in transformer-based102

models (Vaswani et al., 2017).103

Although post-hoc methods can be applied to104

generate explanations for existing models, numer-105

ous studies have shown that they lack faithfulness,106

often failing to capture the true decision-making107

process of the model (Kindermans et al., 2019; Jain108

and Wallace, 2019; Slack et al., 2020; Pruthi et al.,109

2020). Furthermore, they may generate noisy expla-110

nations that focus on irrelevant information, mak-111

ing them difficult for humans to interpret (Smilkov112

et al., 2017; Ismail et al., 2021).113

From Post-hoc Explanations to Explainable 114

Models The limitations of post-hoc explanation 115

methods may be attributed to the inherent lack 116

of explainability in contemporary neural models, 117

which are typically optimized solely for task per- 118

formance (Kindermans et al., 2018; Rudin, 2019; 119

Atanasova et al., 2022). For instance, studies have 120

shown that existing models struggle to provide 121

faithful explanations (Alvarez Melis and Jaakkola, 122

2018) or tend to learn noisy patterns, resulting in 123

less interpretable explanations (Ismail et al., 2021). 124

In response, various efforts have been made 125

to enhance model explainability. Some work 126

has introduced constraints that improve specific 127

explanation properties, such as faithfulness (Tutek 128

and Šnajder, 2022; Moradi et al., 2020, 2021), 129

consistency (Atanasova et al., 2022), local- 130

ity (Alvarez Melis and Jaakkola, 2018), and 131

plausibility (Ismail et al., 2021). However, as these 132

constraints are typically imposed as regularizers, 133

their effectiveness in improving explanation quality 134

is not guaranteed (Pruthi et al., 2020). Others have 135

proposed self-explanatory model architectures 136

such as rationale-based models that utilize an 137

“explain-then-predict” pipeline, where one module 138

selects rationales for another to make predictions 139

based on them (Lei et al., 2016). Although seem- 140

ingly transparent, both components rely on neural 141

networks, making the rationale extraction and 142

utilization processes opaque (Zheng et al., 2022; 143

Jacovi and Goldberg, 2021). Besides, such models 144

may face optimization challenges that limit their 145

practicality in real-world tasks (Lyu et al., 2024). 146

To tackle these shortcomings, Böhle et al. (2022) 147

proposed B-cos networks. Unlike methods that im- 148

pose external constraints, B-cos networks improve 149

explainability through mathematically grounded 150

architectural and computational adaptations. More- 151

over, these adaptations are designed as drop-in re- 152

placements for conventional model components, 153

making B-cos networks easy to train with minimal 154

performance loss. Most recently, Arya et al. (2024) 155

explored B-cosification techniques to convert exist- 156

ing models into B-cos models, which reduces the 157

training costs of adopting B-cos architectures. 158

Despite their successful application in vision 159

tasks, B-cos networks have yet to be explored 160

in NLP, where input modalities and training 161

paradigms differ significantly. In this work, we 162

adapt B-cos models for the language domain, inte- 163

grating them efficiently into NLP pipelines. 164
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Property Conventional Fine-tuning B-cosification (Arya et al., 2024) B-cos LM (ours)

Bias terms yes no no
B (alignment pressure) 1 2 1.5
Pred. Head Activations tanh n/a2 identity

Prior task abilities no yes no
Training objectives Task fine-tuning B-cos conversion Task fine-tuning & B-cos conversion

Table 1: Comparison between conventional fine-tuning, B-cosification in computer vision and B-cosification in
NLP (B-cos LM). Conventional fine-tuning and B-cosification follow the configuration of BERT for sequence
classification and CLIP (Radford et al., 2021), respectively (cf. § 3 for details).

3 Methodology165

In this section, we outline the architecture and train-166

ing process of B-cos LMs and how their design en-167

sures faithful and human interpretable explanations.168

We first introduce B-cos networks (§ 3.1) and then169

describe how we transform PLMs to task-specific170

B-cos LMs (§ 3.2). Finally, we demonstrate how to171

generate explanations from B-cos LMs (§ 3.3). No-172

tations used in the work are detailed in Appendix B.173

3.1 B-cos Networks174

Complex neural networks can be interpreted175

as generalized linear models (Nair and Hin-176

ton, 2010; Alvarez Melis and Jaakkola, 2018;177

Srinivas and Fleuret, 2019). For each input178

x, the network applies a linear transformation:179

f(x) = W(x)x+ b(x), where both the weight180

W(x) and bias b(x) depend on x. Given that many181

activation functions are (approximately) piecewise182

linear, the overall network can be viewed as (ap-183

proximately) piecewise affine (Alvarez Melis and184

Jaakkola, 2018). Earlier work refers to such models185

as dynamic linear models (Böhle et al., 2021; Böhle186

et al., 2022), highlighting the fact that the weight187

and bias terms dynamically change according to x.188

Under this dynamic linear perspective, the linear189

mapping W(x) can be seen as attributing model190

predictions to individual input features. However,191

two challenges hinder the direct use of this interpre-192

tation. First, W(x) alone provides an incomplete193

and unfaithful explanation since f(x) ̸= W(x)x194

due to the presence of the bias term b(x), and195

incorporating b(x) into explanations is highly non-196

trivial (Wang et al., 2019). Second, W(x) is of-197

ten difficult for humans to interpret, as it does not198

necessarily align only with task-relevant input pat-199

terns (Smilkov et al., 2017) and therefore yields200

noisy and irrelevant explanations. Figure 1 illus-201

2Arya et al. (2024) used a single linear layer on top of
CLIP so the prediction head activation is not applicable in
their setup.

trates these challenges. To address these issues, 202

Böhle et al. (2022) introduced B-cos networks by 203

replacing the conventional linear transformation: 204

f(x;w, b) = wTx+ b = ∥w∥∥x∥cos(x,w) + b
(1) 205

with a B-cos transformation: 206

B-cos(x;w) = ŵTx× |cos(x, ŵ)|B−1 (2) 207

= ∥ŵ∥∥x∥|cos(x, ŵ)|B × sgn(cos(x, ŵ)) 208

where ŵ is a scaled version of w with unit norm 209

and sgn denotes the sign function. 210

B-cos(x;w) can be seen as a linear trans- 211

formation of x with the dynamic linear weight 212

w(x) = |cos(x, ŵ)|B−1 × ŵ. The absence of 213

b(x) ensures the completeness of summary w(x). 214

We demonstrate that this completeness extends to 215

an entire network composed of bias-free dynamic 216

linear modules in 3.3. Moreover, with additional 217

alignment pressure (B>1), the weight w is forced to 218

align closely with task-relevant patterns to achieve 219

a high cosine similarity and strong activation within 220

the B-cos module. As a result, only the most rele- 221

vant features are highlighted in explanations, mak- 222

ing them more interpretable to humans. 223

While early B-cos models were trained from 224

scratch, Arya et al. (2024) recently introduced B- 225

cosification, an efficient method to obtain B-cos 226

models. This approach first modifies conventional 227

models with task capacities to adopt the B-cos ar- 228

chitecture, followed by fine-tuning on downstream 229

datasets for B-cos conversion. B-cosified models 230

generate explanations as faithful and interpretable 231

as B-cos models trained from scratch but at a much 232

lower training cost. However, directly applying 233

B-cosification to NLP models is non-trivial and in- 234

efficient due to the significant differences in model 235

architectures and training pipelines. 236

3.2 B-cosification in NLP 237

In this section, we present our B-cosification ap- 238

proach for NLP. We summarize the differences be- 239
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tween B-cosification in NLP, its counterpart in vi-240

sion, and conventional fine-tuning in Table 1. We241

provide an extensive ablation study in Appendix C.242

3.2.1 B-cos Adaptations243

Given a conventional model, we first modify its244

architecture and computation to integrate the B-cos245

framework.246

Architectural Adaptations For completeness247

and faithfulness of explanations, we follow Arya248

et al. (2024) and remove all bias terms in mod-249

els, including those in the affine transformations of250

layer normalization and attention blocks. Addition-251

ally, a prediction head is typically added on top of252

the transformer before fine-tuning for downstream253

tasks in the NLP pipeline. This head often includes254

activation functions that are not (approximately)255

piecewise linear, such as sigmoid and tanh. To ac-256

commodate the unique architecture of NLP models,257

we remove all activation functions in the predic-258

tion heads, as they reduce the locality of expla-259

nations and introduce numerical instability during260

their generation. We expect the added non-linearity261

from B>1 to compensates for this removal.262

Introducing B-cos Computation To promote263

input-weight alignment and improve human inter-264

pretability of explanations, we follow Arya et al.265

(2024) and replace all linear transformations with266

B-cos transformations in § 3.1. For a more efficient267

B-cosification, B-cos layers are initialized with the268

corresponding weights W of the original model.269

3.2.2 Fine-tuning270

The B-cos adaptations above modify the architec-271

ture and computation of models, requiring fine-272

tuning to restore their capabilities and adapt to273

alignment pressure. Following the NLP-typical274

“pre-train then fine-tune” paradigm, we directly275

transform PLMs to B-cos LMs, rather than adapt-276

ing task-specific models as done in previous277

work (Arya et al., 2024). This fundamental dif-278

ference in the training pipeline adds complexity279

to B-cosification in NLP, as the objective involves280

both B-cos conversion and task fine-tuning. While281

there are multiple ways to conjoin these two steps282

(cf. § 7), we find that the most efficient way is to283

combine them by first applying B-cos adaptations284

to a PLM and then fine-tuning it on a downstream285

task. Following Böhle et al. (2022), we use the286

binary cross-entropy (BCE) loss instead of conven-287

tional cross-entropy loss, as it explicitly maximizes288

the absolute target logits and strengthens alignment 289

pressure. We provide an extensive comparison of 290

B-cosification setups in § 7. 291

3.3 Computing B-cos Explanations 292

Once trained, the B-cos LM can generate explana- 293

tions that faithfully summarize its decision-making 294

process during inference. As all components are dy- 295

namic linear with no bias terms (cf. Appendix D), 296

the entire model computation can be expressed as 297

a sequence of dynamic linear transformations: 298

ŴL(AL)ŴL−1(AL−1)...Ŵ1(A1 = X)X (3) 299

which can be completely summarized as a single 300

dynamic linear function ΠL
j=1Ŵj(Aj).3 Consider- 301

ing the textual inputs specific to NLP, we attribute 302

the model’s predictions to the embedding represen- 303

tations. Specifically, to quantify the contribution of 304

a token i to a model prediction, we compute the dot 305

product W(xi)xi between its embedding xi and 306

the corresponding dynamic linear weight W(xi) 307

for the predicted class logit. For the remainder of 308

the paper, we will refer to such explanations as 309

B-cos explanations. 310

4 Experiments 311

We evaluate the task performance of B-cos LMs 312

and faithfulness of B-cos explanations against con- 313

ventional models and baseline explanation methods 314

across various tasks, PLMs, and metrics. 315

Datasets and Models Our experiments include 316

three sequence classification datasets: AG News 317

(topic classification, Zhang et al., 2015), IMDB 318

(sentiment analysis, Maas et al., 2011), and Hate- 319

Xplain (hate speech detection, Mathew et al., 2021). 320

We use BERT (Devlin et al., 2019), RoBERTa (Liu 321

et al., 2019), and DistilBERT (Sanh et al., 2019) 322

as the basis for conventional fine-tuning and for 323

obtaining B-cos LMs (B=1.5) with the same train- 324

ing hyperparameters (cf. Appendix E for details on 325

fine-tuning, B-cosification, and data splits). 326

Faithfulness Metrics For a more comprehensive 327

evaluation, we employ two different methods to as- 328

sess faithfulness. First, we report two perturbation- 329

based metrics (DeYoung et al., 2020): 330

• Comprehensiveness (Comp) measures the av- 331

erage drop in predicted class probability after 332

3Note that a residual connection of W(x)x+ x with x ∈
Rn and W(x) ∈ Rn×n is mathematically equivalent to a
single dynamic linear transformation of (W(x) + In)x.
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Model Method AG News IMDB HateXplain

Comp (↑) Suff (↓) SeqPG (↑) Comp (↑) Suff (↓) SeqPG (↑) Comp (↑) Suff (↓) SeqPG (↑)

(a) Conv. BERT

Attention 24.40 8.09 50 26.84 14.56 50 27.64 13.83 50
IxG 15.28 10.19 45.41 18.29 16.96 49.42 19.16 18.90 47.24
SIG 27.02 3.40 64.77 29.34 14.05 59.09 37.31 5.10 66.38
DecompX 52.16 0.92 84.48 57.94 2.41 63.27 44.86 2.72 66.76
ShapSampl 43.96 0.46 82.87 58.29 2.44 71.29 44.86 2.43 67.17
LIME 44.95 0.06 80.28 51.45 6.07 60.15 22.64 14.30 57.61

(b) B-cos BERT

Attention 33.51 2.71 50 32.91 5.31 50 39.3 3.93 50
IxG 26.89 1.31 48.24 61.74 -2.39 52.95 44.93 -0.60 53.57
SIG 14.39 4.65 19.64 29.06 3.11 56.82 35.04 1.96 60.23
DecompX - - - - - - - - -
ShapSampl 15.90 3.91 52.71 35.95 0.66 52.14 39.6 0.66 65.02
LIME 57.99 0.07 79.30 70.05 -1.55 60.03 40.84 3.84 59.14

(c) B-cos BERT B-cos 64.22 -1.26 87.92 75.33 -2.95 70.27 59.66 -4.89 77.57

Table 2: Faithfulness evaluation for conventionally fine-tuned BERT and B-cos BERT across three datasets. The
best results are in bold. We find that B-cos explanations are consistently more faithful than post-hoc explanations
from both models.

masking out the top k% most important tokens333

in the explanation. A higher score indicates334

better faithfulness.335

• Sufficiency (Suff) measures the average drop336

in predicted class probability after keeping337

only the top k% tokens. A lower score indi-338

cates better faithfulness.339

To avoid arbitrary choices of k, we com-340

pute Comp and Suff for multiple values (k =341

10, 20, ..., 90) and summarize them using the Area342

Over the Perturbation Curve (AOPC, DeYoung343

et al., 2020).344

In addition, we introduce a new faithfulness345

metric called Sequence Pointing Game (SeqPG),346

inspired by the grid pointing game in vision347

tasks (Böhle et al., 2021):348

• Sequence Pointing Game (SeqPG). We eval-349

uate models on synthetic sequences composed350

of segments associated with different classes.351

To assess faithfulness, we measure the pro-352

portion of positive attribution assigned to the353

corresponding segment of each class and com-354

pute their average. A higher score indicates355

better faithfulness.356

Compared to perturbation-based metrics, SeqPG357

does not rely on perturbations and thus avoids the358

potential distortions introduced by token masking.359

When constructing SeqPG examples, we truncate360

each segment to a fixed length and randomize seg-361

ment order to control for length and position effects.362

We generate synthetic examples using correctly and363

most confidently classified test instances. SeqPG364

can be seen as a standardized version of hybrid 365

document evaluation (Poerner et al., 2018). We 366

provide an example of SeqPG in Figure 7 and more 367

details in Appendix F. 368

Baselines We compare B-cos explanations 369

against a diverse set of post-hoc explanation meth- 370

ods: Attention (Bahdanau et al., 2015), InputXGra- 371

dient (IxG, Kindermans et al., 2016), Sequential 372

Integrated Gradients (SIG, Enguehard, 2023), De- 373

compX (Modarressi et al., 2023), Shapley Value 374

Sampling (ShapSampl, Strumbelj and Kononenko, 375

2010), and LIME (Ribeiro et al., 2016). For a fair 376

comparison against embedding-level methods, we 377

aggregate attributions by summing across all em- 378

bedding dimensions (cf. Appendix E). 379

AG news IMDB HateXplain
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

 (%
)

95.76 95.06

80.54

94.81
90.85

79.41

Conv. BERT
B-cos BERT

Figure 2: Mean accuracy of conventionally fine-tuned
and B-cos BERT models averaged over three runs. B-
cos models perform comparably to conventional models
on most tasks.

Task Performance Figure 2 shows the accu- 380

racy of conventionally fine-tuned and B-cos BERT 381

across three datasets (we provide results for Distil- 382

BERT and RoBERTa in Appendix G). We find that 383

5



all B-cos LMs performs on par with conventional384

models on AG News and HateXplain, with only a385

minor drop (∼1%) in accuracy. Only for IMDB,386

we find a slightly larger drop of 4.21%, though the387

performance remains strong overall.388

Faithfulness Results Table 2 shows the faithful-389

ness scores for post-hoc explanation methods on390

(a) conventionally fine-tuned BERT models and (b)391

B-cos BERT models, as well as (c) B-cos expla-392

nations extracted from B-cos BERT. The results393

show that B-cos explanations are consistently and394

substantially more faithful than post-hoc methods395

across all datasets. This improvement holds both396

across different models and within the same model.397

B-cos explanations outperform the strongest post-398

hoc methods on conventional models by an average399

of 14.63 points in Comp score and achieve negative400

Suff scores, indicating that the identified important401

tokens alone enable even more confident predic-402

tions. Additionally, B-cos explanations show a con-403

siderable improvement in SeqPG. Similar trends404

are observed for DistilBERT and RoBERTa (Ap-405

pendix H), further strengthening our findings.406

Human Interpretability Human Agreement
0
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g

3.37 3.48

2.70
2.982.94

3.16

2.41 2.53

B-cos
ShapSampl
DecompX
SIG

Figure 3: Human evaluation reveals that B-cos expla-
nations have better human interpretability and human
agreement than baseline methods and the improvements
are statistically significant.

5 Human Evaluation407

We conduct a human study to evaluate the hu-408

man interpretability and agreement of B-cos ex-409

planations, comparing them against three strong410

post-hoc explanation methods on the conventional411

BERT model. For the study, we randomly select412

50 instances from AG News and HateXplain where413

the B-cos and conventional model predict the same414

label. We then ask five annotators to rate the respec-415

tive explanations in terms of human interpretability416

(how well they understand it) and human agree- 417

ment (how much they agree with the it) on a scale 418

of 1-5. We provide further details of the human 419

evaluation in Appendix I. 420

Human Evaluation Results Figure 3 shows 421

that B-cos explanations have a better human in- 422

terpretability and exhibit greater alignment with 423

human reasoning than post-hoc methods. Con- 424

ducting paired t-tests with a Bonferroni-corrected 425

α = 0.05
6 = 0.0083 (Bonferroni, 1936) shows that 426

the improvements of B-cos explanations are statis- 427

tically significant (p < α) for both metrics. 428

6 Qualitative Analysis 429

Figure 4 provides an example of B-cos and other 430

(post-hoc) explanations. It can be seen the B-cos ex- 431

planation highlights important tokens well with lit- 432

tle focus on irrelevant ones. In contrast, ShapSampl 433

attributes the highest importance to the [SEP] token 434

and provides only little useful information. Mean- 435

while, DecompX extracts a significant amount of 436

irrelevant information. Overall, we find that the B- 437

cos explanation provides clearer and more relevant 438

attributions compared to the post-hoc explanations. 439

7 Comparison of B-cosification Setups 440

Transforming PLMs into task-specific B-cos LMs 441

involves two key objectives: task fine-tuning and B- 442

cos conversion. While our main experiments com- 443

bine these two phases, they can also be performed 444

separately. To assess their effects, we compare two 445

alternative training setups: 446

• Task then B-cos: PLMs are first fine-tuned on 447

a downstream task. B-cos adaptations are then 448

applied, followed by further fine-tuning on the 449

same task for B-cos conversion. This setup is 450

equivalent to Arya et al. (2024) who apply B- 451

cosification to models with task capabilities. 452

• B-cos then task: B-cos adaptations are applied 453

to PLMs first, followed by pre-training on 454

unsupervised texts to enhance B-cosification 455

(cf. Appendix E). The pre-trained B-cos mod- 456

els are then fine-tuned on the downstream 457

task. 458

We evaluate these setups against the B- 459

cosification approach used in our main experiments 460

(B-cos LM) and compare task performance, faith- 461

fulness, and training efficiency. Additionally, we 462

report results for conventional fine-tuning (Conv. 463
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Figure 4: Examples of B-cos explanations (B-cos BERT) as well as ShapSampl and DecompX explanations (BERT)
from AG News. Green (red) indicates the positive (negative) impact of tokens on the prediction. The B-cos
explanation highlights only relevant tokens and is more interpretable to humans (cf. Appendix J for more examples).

LM) and training a randomly initialized B-cos LM464

(B-cos from scratch). Experiments are conducted465

on IMDB, with results averaged over three runs.466

Setup Epochs Acc (↑) SeqPG (↑) Steps (K)

Conv. LM 5 94.06 - 7.33

B-cos LM 5 89.85 70.41 3.67

B-cos from scratch 5 88.36 60.92 4.33

Task then B-cos

1+4 90.14 70.28 1+4.33
2+3 90.33 70.36 3+3.33
3+2 90.07 69.94 4+3
4+1 88.19 70.36 5+1

5+5* 90.33 69.65 6.67+3.33

B-cos then task

1+4 89.78 65.58 1+5.67
2+3 89.81 66.01 3+4
3+2 89.38 66.95 4+3
4+1 87.42 67.9 6+1

5+5* 90.38 71.16 7+3
10+5* 91.08 75.06 15+3.67
20+5* 91.75 76.66 31+6.33

Table 3: Different B-cosification setups. For two-phase
methods, we report epoch distribution and convergence
steps per phase. * marks additional training epochs.

Table 3 shows that B-cos LM requires fewer467

training steps to reach optimal validation perfor-468

mance than conventional fine-tuning. Training B-469

cos LM from scratch results in worse task perfor-470

mance and faithfulness, emphasizing the impor-471

tance of good parameter initialization. Among the472

two setups that separate task fine-tuning and B-473

cos conversion, Task then B-cos achieves results474

comparable to B-cos LM but requires more train-475

ing steps. B-cos then task initially performs worse476

under the same training budget. However, with477

additional pre-training epochs, it surpasses other478

B-cosification setups in both task performance and479

faithfulness. Overall, we find that combining task480

fine-tuning and B-cos conversion is the most ef-481
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Figure 5: Varying B for B-cos BERT (HateXplain).
Accuracy and Comp both peak around B=1.5, while
explanation entropy negatively correlates with B.

ficient approach. However, with sufficient pre- 482

training, B-cos then task can produce more per- 483

formant and explainable models. 484

8 Effects of B-cosification and B Values 485

For a deeper understanding of how B-cosification 486

and parameter B affect model performance and be- 487

havior, we compare conventional and B-cos BERT 488

trained on HateXplain across different B values. 489

We also provide an empirical analysis of the impact 490

of B on input-weight alignment in Appendix K. 491

Model Performance Figure 5 shows the effects 492

of varying B on the task performance and explana- 493

tion faithfulness. Classification accuracy initially 494

improves slightly as B increases from 1 to 1.25, 495

benefiting from the extra non-linearity introduced 496

by B>1. However, beyond this point, accuracy de- 497

clines as higher alignment pressure reduces model 498

flexibility. A similar trend is observed for Comp, 499

peaking around B=1.5 before decreasing. This dif- 500

fers from previous findings in vision models (Böhle 501

et al., 2022), which we attribute to the high sparsity 502

of explanations at larger B values. As alignment 503

7



pressure increases, fewer tokens receive attribution504

scores that are not close to zero, leading to poor to-505

ken importance calibration and lower Comp scores.506

The effects of B on other metrics are similar and507

can be found in Appendix L.508

Explanation Entropy Figure 5 also reveals a509

negative correlation between explanation entropy510

and B, indicating that higher alignment pressure511

leads to sparser explanations. This aligns with512

our expectations: a larger B amplifies the differ-513

ences between dimensions in |cos(x,Ŵ)|B−1 of514

B-cos layers (Equation 2) and the dynamic linear515

weight assigns more distinct attributions to input516

features. As a result, explanations become more517

concentrated, where only a few tokens receive high518

attributions, while most remain close to zero (cf.519

Appendix M for an example).520

Model Bias Since B-cos LMs with larger B val-521

ues rely on fewer tokens for prediction, we investi-522

gate whether this may cause them to learn biases523

in the data. For this, we examine label bias and524

word-level spurious correlations using the HateX-525

plain dataset, where approximately 60% of training526

and test examples have positive labels and societal527

biases are present. Figure 6 shows that a larger B528

value (B=2.5) reduces the model capacity, leading529

to a substantially higher prediction positive rate530

and lower balanced accuracy. Moreover, the B=2.5531

model assigns higher attributions to non-semantic532

[CLS] and [SEP] tokens, indicating a reduced re-533

liance on meaningful content. Notably, this label534

bias is not observed in the balanced datasets.535
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Figure 6: Comparison of conv. BERT and B-cos BERT
with different B values. The attributions to [CLS] and
[SEP] tokens (■) indicate that B-cos LMs with large B
overfit to the non-semantic label distribution.

We also find that B-cosification—particularly536

with large B—amplifies the reliance on spurious537

correlations. For example, the prediction positive538

rate for examples with the word “black” rises from539

49.02% in the test set and 52.94% in the conven-540

tional model to 59.80%, 56.86%, and 73.53% in 541

B-cos LMs with B=1, 1.5, and, 2.5, respectively 542

(we provide an example in Appendix N). However, 543

the faithfulness and interpretability of B-cos ex- 544

planations facilitate the identification of spurious 545

correlations and can effectively guide models to- 546

ward reducing them (Rao et al., 2023). We leave 547

the exploration of B-cos LMs for bias detection 548

and mitigation to future work. 549

9 Explanation Efficiency 550

Beyond improved faithfulness and human inter- 551

pretability, B-cos explanations are also efficient 552

to extract. Comparing their computational costs 553

with strong post-hoc methods shows that B-cos ex- 554

planations are the most efficient in both time and 555

memory usage (Table 4). 556

Method Conv. BERT B-cos BERT

Time (s) Memory (GB) Time (s) Memory (GB)

ShapSampl 37.22 21.95 70.49 22.95
LIME 6.82 21.96 8.92 22.95
SIG 67.46 29.09 108.48 69.32
DecompX 0.76 48.38 - -
B-cos - - 0.08 2.78

Table 4: Computational costs of generating explanations
for 100 instances randomly sampled from IMDB (test)
using an NVIDIA H100 GPU (batch size 1). We see
that the B-cos explanations (bold) are at least 9x faster
and require at most 1

8 of VRAM.

10 Conclusion 557

In this work, we introduce B-cos LM, a dynamic 558

linear model that learns task-relevant patterns 559

through increased input-weight alignment pressure. 560

B-cos LMs generate more faithful and human in- 561

terpretable explanations while maintaining strong 562

task performance and fast convergence. Based on 563

our in-depth analysis of B-cosification, we pro- 564

vide three recommendations for effectively trans- 565

forming PLMs into B-cos LMs: (1) combine B- 566

cos conversion and task fine-tuning for efficient 567

B-cosification. If resources allow, additional B-cos 568

pre-training can further improve task performance 569

and explanation faithfulness; (2) carefully select 570

the parameter B, as excessively large values can 571

reduce model capacity and lead to overly sparse ex- 572

planations; and (3) be mindful of biases in training 573

data, especially at high B values, as B-cosification 574

may amplify existing biases. 575

8



11 Limitations576

This study has certain limitations that should be577

acknowledged.578

Firstly, the automatic evaluation metrics we use579

may not fully capture the faithfulness of differ-580

ent explanation methods (Feng et al., 2018; La-581

puschkin et al., 2019). However, since there is no582

universal consensus on the most reliable evaluation583

metrics, this remains an open challenge in explain-584

ability research.585

Secondly, our study does not include a direct586

comparison with other methods designed to en-587

hance model explainability, which may limit the588

scope of our findings. This omission is due to two589

reasons: (1) existing explainable models often pro-590

vide only marginal improvements over post-hoc591

explanation methods (Brinner and Zarrieß, 2024),592

and (2) incorporating them into our study would re-593

quire substantial computational resources, as many594

baseline explanation methods are computationally595

expensive.596

Finally, although B-cos LMs can be applied to597

different model architectures and tasks, our ex-598

periments focus only on encoder-only models for599

sequence classification tasks. Extending our ap-600

proach to other architectures and tasks remains an601

avenue for future work.602

12 Ethical Considerations603

As discussed in § 8, B-cos LMs can overfit to bi-604

ases present in the training data. Although their605

more faithful and human interpretable explanations606

make biased predictions easier to detect, this does607

not eliminate the risk of unintended bias ampli-608

fication. We encourage users to carefully assess609

potential biases in their specific use cases before610

deploying B-cos LMs and to incorporate bias miti-611

gation strategies where necessary.612

All models and datasets used in this work comply613

with their respective licenses. Their usage aligns614

with their intended purpose as specified by their615

creators.616

The human study complies with all ethical re-617

search guidelines set by our institutes. All partici-618

pants of the human evaluation study were master’s619

or doctoral students with backgrounds in computer620

science or computational linguistics and were pro-621

ficient in English. They were volunteers and were622

compensated with the standard hourly salary set by623

the university (at least 5% above minimum wage).624

Before participation, all participants were informed625

about the content and purpose of the study, the col- 626

lected data and its usage. They were instructed on 627

how they could access, modify, or delete their data 628

post-study and provided their informed consent. 629

References 630

David Alvarez Melis and Tommi Jaakkola. 2018. To- 631
wards robust interpretability with self-explaining neu- 632
ral networks. In Advances in Neural Information 633
Processing Systems, volume 31. Curran Associates, 634
Inc. 635

Leila Arras, Ahmed Osman, Klaus-Robert Müller, and 636
Wojciech Samek. 2019. Evaluating recurrent neural 637
network explanations. In Proceedings of the 2019 638
ACL Workshop BlackboxNLP: Analyzing and Inter- 639
preting Neural Networks for NLP, pages 113–126, 640
Florence, Italy. Association for Computational Lin- 641
guistics. 642

Shreyash Arya, Sukrut Rao, Moritz Böhle, and Bernt 643
Schiele. 2024. B-cosification: Transforming deep 644
neural networks to be inherently linterpretable. In 645
Advances in Neural Information Processing Systems, 646
volume 37, pages 62756–62786. Curran Associates, 647
Inc. 648

Pepa Atanasova, Jakob Grue Simonsen, Christina Li- 649
oma, and Isabelle Augenstein. 2020. A diagnostic 650
study of explainability techniques for text classifi- 651
cation. In Proceedings of the 2020 Conference on 652
Empirical Methods in Natural Language Processing 653
(EMNLP), pages 3256–3274, Online. Association for 654
Computational Linguistics. 655

Pepa Atanasova, Jakob Grue Simonsen, Christina Li- 656
oma, and Isabelle Augenstein. 2022. Diagnostics- 657
guided explanation generation. In Proceedings of 658
the AAAI Conference on Artificial Intelligence, vol- 659
ume 36, pages 10445–10453. 660

Sebastian Bach, Alexander Binder, Grégoire Montavon, 661
Frederick Klauschen, Klaus-Robert Müller, and Wo- 662
jciech Samek. 2015. On pixel-wise explanations 663
for non-linear classifier decisions by layer-wise rele- 664
vance propagation. PloS one, 10(7):e0130140. 665

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben- 666
gio. 2015. Neural machine translation by jointly 667
learning to align and translate. In 3rd International 668
Conference on Learning Representations, ICLR 2015, 669
San Diego, CA, USA, May 7-9, 2015, Conference 670
Track Proceedings. 671

Moritz Böhle, Mario Fritz, and Bernt Schiele. 2022. 672
B-cos networks: Alignment is all we need for inter- 673
pretability. In Proceedings of the IEEE/CVF Confer- 674
ence on Computer Vision and Pattern Recognition 675
(CVPR), pages 10329–10338. 676

Moritz Böhle, Navdeeppal Singh, Mario Fritz, and Bernt 677
Schiele. 2024. B-cos alignment for inherently inter- 678
pretable cnns and vision transformers. IEEE Transac- 679
tions on Pattern Analysis and Machine Intelligence. 680

9

https://proceedings.neurips.cc/paper_files/paper/2018/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/3e9f0fc9b2f89e043bc6233994dfcf76-Paper.pdf
https://doi.org/10.18653/v1/W19-4813
https://doi.org/10.18653/v1/W19-4813
https://doi.org/10.18653/v1/W19-4813
https://proceedings.neurips.cc/paper_files/paper/2024/file/72d50a87b218d84c175d16f4557f7e12-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/72d50a87b218d84c175d16f4557f7e12-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/72d50a87b218d84c175d16f4557f7e12-Paper-Conference.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473


Rishi Bommasani, Drew A. Hudson, Ehsan Adeli,681
Russ B. Altman, Simran Arora, Sydney von Arx,682
Michael S. Bernstein, Jeannette Bohg, Antoine683
Bosselut, Emma Brunskill, Erik Brynjolfsson, Shya-684
mal Buch, Dallas Card, Rodrigo Castellon, Ni-685
ladri S. Chatterji, Annie S. Chen, Kathleen Creel,686
Jared Quincy Davis, Dorottya Demszky, Chris Don-687
ahue, Moussa Doumbouya, Esin Durmus, Stefano688
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-689
Fei, Chelsea Finn, Trevor Gale, Lauren E. Gillespie,690
Karan Goel, Noah D. Goodman, Shelby Grossman,691
Neel Guha, Tatsunori Hashimoto, Peter Henderson,692
John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,693
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky,694
Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-695
ing, Fereshte Khani, Omar Khattab, Pang Wei Koh,696
Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,697
and et al. 2021. On the opportunities and risks of698
foundation models. CoRR, abs/2108.07258.699

Carlo Bonferroni. 1936. Teoria statistica delle classi e700
calcolo delle probabilita. Pubblicazioni del R Istituto701
Superiore di Scienze Economiche e Commericiali di702
Firenze, 8:3–62.703

Marc Felix Brinner and Sina Zarrieß. 2024. Rationaliz-704
ing transformer predictions via end-to-end differen-705
tiable self-training. In Proceedings of the 2024 Con-706
ference on Empirical Methods in Natural Language707
Processing, pages 11894–11907, Miami, Florida,708
USA. Association for Computational Linguistics.709

Tom Brown, Benjamin Mann, Nick Ryder, Melanie710
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind711
Neelakantan, Pranav Shyam, Girish Sastry, Amanda712
Askell, Sandhini Agarwal, Ariel Herbert-Voss,713
Gretchen Krueger, Tom Henighan, Rewon Child,714
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens715
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-716
teusz Litwin, Scott Gray, Benjamin Chess, Jack717
Clark, Christopher Berner, Sam McCandlish, Alec718
Radford, Ilya Sutskever, and Dario Amodei. 2020.719
Language models are few-shot learners. In Ad-720
vances in Neural Information Processing Systems,721
volume 33, pages 1877–1901. Curran Associates,722
Inc.723

Moritz Böhle, Mario Fritz, and Bernt Schiele. 2021.724
Convolutional dynamic alignment networks for in-725
terpretable classifications. In Proceedings of the726
IEEE/CVF Conference on Computer Vision and Pat-727
tern Recognition, pages 10029–10038.728

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and729
Kristina Toutanova. 2019. BERT: pre-training of730
deep bidirectional transformers for language under-731
standing. In Proceedings of the 2019 Conference of732
the North American Chapter of the Association for733
Computational Linguistics: Human Language Tech-734
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,735
June 2-7, 2019, Volume 1 (Long and Short Papers),736
pages 4171–4186. Association for Computational737
Linguistics.738

Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani,739
Eric Lehman, Caiming Xiong, Richard Socher, and740

Byron C. Wallace. 2020. ERASER: A benchmark to 741
evaluate rationalized NLP models. In Proceedings 742
of the 58th Annual Meeting of the Association for 743
Computational Linguistics, pages 4443–4458, Online. 744
Association for Computational Linguistics. 745

Joseph Enguehard. 2023. Sequential integrated gradi- 746
ents: a simple but effective method for explaining 747
language models. In Findings of the Association for 748
Computational Linguistics: ACL 2023, pages 7555– 749
7565, Toronto, Canada. Association for Computa- 750
tional Linguistics. 751

Kawin Ethayarajh. 2019. How contextual are contextu- 752
alized word representations? Comparing the geom- 753
etry of BERT, ELMo, and GPT-2 embeddings. In 754
Proceedings of the 2019 Conference on Empirical 755
Methods in Natural Language Processing and the 756
9th International Joint Conference on Natural Lan- 757
guage Processing (EMNLP-IJCNLP), pages 55–65, 758
Hong Kong, China. Association for Computational 759
Linguistics. 760

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer, 761
Pedro Rodriguez, and Jordan Boyd-Graber. 2018. 762
Pathologies of neural models make interpretations 763
difficult. In Proceedings of the 2018 Conference on 764
Empirical Methods in Natural Language Processing, 765
pages 3719–3728, Brussels, Belgium. Association 766
for Computational Linguistics. 767

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, 768
Sid Black, Anthony DiPofi, Charles Foster, Laurence 769
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, 770
Kyle McDonell, Niklas Muennighoff, Chris Ociepa, 771
Jason Phang, Laria Reynolds, Hailey Schoelkopf, 772
Aviya Skowron, Lintang Sutawika, Eric Tang, An- 773
ish Thite, Ben Wang, Kevin Wang, and Andy Zou. 774
2023. A framework for few-shot language model 775
evaluation. 776

Dan Hendrycks and Kevin Gimpel. 2016. Bridging non- 777
linearities and stochastic regularizers with gaussian 778
error linear units. CoRR, abs/1606.08415. 779

Aya Abdelsalam Ismail, Hector Corrada Bravo, and 780
Soheil Feizi. 2021. Improving deep learning in- 781
terpretability by saliency guided training. In Ad- 782
vances in Neural Information Processing Systems, 783
volume 34, pages 26726–26739. Curran Associates, 784
Inc. 785

Alon Jacovi and Yoav Goldberg. 2020. Towards faith- 786
fully interpretable NLP systems: How should we 787
define and evaluate faithfulness? In Proceedings 788
of the 58th Annual Meeting of the Association for 789
Computational Linguistics, pages 4198–4205, On- 790
line. Association for Computational Linguistics. 791

Alon Jacovi and Yoav Goldberg. 2021. Aligning faithful 792
interpretations with their social attribution. Transac- 793
tions of the Association for Computational Linguis- 794
tics, 9:294–310. 795

10

https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://arxiv.org/abs/2108.07258
https://doi.org/http://dx.doi.org/10.4135/9781412961288.n455
https://doi.org/http://dx.doi.org/10.4135/9781412961288.n455
https://doi.org/http://dx.doi.org/10.4135/9781412961288.n455
https://doi.org/10.18653/v1/2024.emnlp-main.664
https://doi.org/10.18653/v1/2024.emnlp-main.664
https://doi.org/10.18653/v1/2024.emnlp-main.664
https://doi.org/10.18653/v1/2024.emnlp-main.664
https://doi.org/10.18653/v1/2024.emnlp-main.664
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2020.acl-main.408
https://doi.org/10.18653/v1/2023.findings-acl.477
https://doi.org/10.18653/v1/2023.findings-acl.477
https://doi.org/10.18653/v1/2023.findings-acl.477
https://doi.org/10.18653/v1/2023.findings-acl.477
https://doi.org/10.18653/v1/2023.findings-acl.477
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D18-1407
https://doi.org/10.18653/v1/D18-1407
https://doi.org/10.18653/v1/D18-1407
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://proceedings.neurips.cc/paper_files/paper/2021/file/e0cd3f16f9e883ca91c2a4c24f47b3d9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/e0cd3f16f9e883ca91c2a4c24f47b3d9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/e0cd3f16f9e883ca91c2a4c24f47b3d9-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.18653/v1/2020.acl-main.386
https://doi.org/10.1162/tacl_a_00367
https://doi.org/10.1162/tacl_a_00367
https://doi.org/10.1162/tacl_a_00367


Sarthak Jain and Byron C. Wallace. 2019. Attention is796
not Explanation. In Proceedings of the 2019 Con-797
ference of the North American Chapter of the Asso-798
ciation for Computational Linguistics: Human Lan-799
guage Technologies, Volume 1 (Long and Short Pa-800
pers), pages 3543–3556, Minneapolis, Minnesota.801
Association for Computational Linguistics.802

Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo,803
Maximilian Alber, Kristof T Schütt, Sven Dähne,804
Dumitru Erhan, and Been Kim. 2019. The (un) relia-805
bility of saliency methods. Explainable AI: Interpret-806
ing, explaining and visualizing deep learning, pages807
267–280.808

Pieter-Jan Kindermans, Kristof Schütt, Klaus-Robert809
Müller, and Sven Dähne. 2016. Investigating the810
influence of noise and distractors on the interpretation811
of neural networks. CoRR, abs/1611.07270.812

Pieter-Jan Kindermans, Kristof T. Schütt, Maximilian813
Alber, Klaus-Robert Müller, Dumitru Erhan, Been814
Kim, and Sven Dähne. 2018. Learning how to ex-815
plain neural networks: Patternnet and patternattribu-816
tion. In 6th International Conference on Learning817
Representations, ICLR 2018, Vancouver, BC, Canada,818
April 30 - May 3, 2018, Conference Track Proceed-819
ings. OpenReview.net.820

Narine Kokhlikyan, Vivek Miglani, Miguel Martin,821
Edward Wang, Bilal Alsallakh, Jonathan Reynolds,822
Alexander Melnikov, Natalia Kliushkina, Carlos823
Araya, Siqi Yan, and Orion Reblitz-Richardson. 2020.824
Captum: A unified and generic model interpretability825
library for pytorch. CoRR, abs/2009.07896.826

Isaac Lage, Emily Chen, Jeffrey He, Menaka Narayanan,827
Been Kim, Sam Gershman, and Finale Doshi-Velez.828
2019. An evaluation of the human-interpretability of829
explanation. CoRR, abs/1902.00006.830

Sebastian Lapuschkin, Stephan Wäldchen, Alexander831
Binder, Grégoire Montavon, Wojciech Samek, and832
Klaus-Robert Müller. 2019. Unmasking clever hans833
predictors and assessing what machines really learn.834
Nature communications, 10(1):1096.835

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.836
Rationalizing neural predictions. In Proceedings of837
the 2016 Conference on Empirical Methods in Nat-838
ural Language Processing, pages 107–117, Austin,839
Texas. Association for Computational Linguistics.840

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,841
Yiming Yang, and Lei Li. 2020. On the sentence842
embeddings from pre-trained language models. In843
Proceedings of the 2020 Conference on Empirical844
Methods in Natural Language Processing (EMNLP),845
pages 9119–9130, Online. Association for Computa-846
tional Linguistics.847

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-848
derstanding neural networks through representation849
erasure. CoRR, abs/1612.08220.850

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 851
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 852
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 853
Roberta: A robustly optimized BERT pretraining 854
approach. CoRR, abs/1907.11692. 855

Scott M Lundberg and Su-In Lee. 2017. A unified 856
approach to interpreting model predictions. In Ad- 857
vances in Neural Information Processing Systems, 858
volume 30, pages 1–10. Curran Associates, Inc. 859

Qing Lyu, Marianna Apidianaki, and Chris Callison- 860
Burch. 2024. Towards faithful model explanation 861
in NLP: A survey. Computational Linguistics, 862
50(2):657–723. 863

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, 864
Dan Huang, Andrew Y. Ng, and Christopher Potts. 865
2011. Learning word vectors for sentiment analysis. 866
In Proceedings of the 49th Annual Meeting of the 867
Association for Computational Linguistics: Human 868
Language Technologies, pages 142–150, Portland, 869
Oregon, USA. Association for Computational Lin- 870
guistics. 871

Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, 872
Chris Biemann, Pawan Goyal, and Animesh Mukher- 873
jee. 2021. Hatexplain: A benchmark dataset for ex- 874
plainable hate speech detection. In Proceedings of 875
the AAAI conference on artificial intelligence, vol- 876
ume 35, pages 14867–14875. 877

Ali Modarressi, Mohsen Fayyaz, Ehsan Aghazadeh, 878
Yadollah Yaghoobzadeh, and Mohammad Taher Pile- 879
hvar. 2023. DecompX: Explaining transformers deci- 880
sions by propagating token decomposition. In Pro- 881
ceedings of the 61st Annual Meeting of the Associa- 882
tion for Computational Linguistics (Volume 1: Long 883
Papers), pages 2649–2664, Toronto, Canada. Associ- 884
ation for Computational Linguistics. 885

Pooya Moradi, Nishant Kambhatla, and Anoop Sarkar. 886
2020. Training with adversaries to improve faithful- 887
ness of attention in neural machine translation. In 888
Proceedings of the 1st Conference of the Asia-Pacific 889
Chapter of the Association for Computational Lin- 890
guistics and the 10th International Joint Conference 891
on Natural Language Processing: Student Research 892
Workshop, pages 93–100, Suzhou, China. Associa- 893
tion for Computational Linguistics. 894

Pooya Moradi, Nishant Kambhatla, and Anoop Sarkar. 895
2021. Measuring and improving faithfulness of at- 896
tention in neural machine translation. In Proceedings 897
of the 16th Conference of the European Chapter of 898
the Association for Computational Linguistics: Main 899
Volume, pages 2791–2802, Online. Association for 900
Computational Linguistics. 901

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified 902
linear units improve restricted boltzmann machines. 903
In Proceedings of the 27th International Conference 904
on Machine Learning (ICML-10), June 21-24, 2010, 905
Haifa, Israel, pages 807–814. Omnipress. 906

11

https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://arxiv.org/abs/1611.07270
https://arxiv.org/abs/1611.07270
https://arxiv.org/abs/1611.07270
https://arxiv.org/abs/1611.07270
https://arxiv.org/abs/1611.07270
https://openreview.net/forum?id=Hkn7CBaTW
https://openreview.net/forum?id=Hkn7CBaTW
https://openreview.net/forum?id=Hkn7CBaTW
https://openreview.net/forum?id=Hkn7CBaTW
https://openreview.net/forum?id=Hkn7CBaTW
https://arxiv.org/abs/2009.07896
https://arxiv.org/abs/2009.07896
https://arxiv.org/abs/2009.07896
https://arxiv.org/abs/1902.00006
https://arxiv.org/abs/1902.00006
https://arxiv.org/abs/1902.00006
https://doi.org/10.18653/v1/D16-1011
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://doi.org/10.18653/v1/2020.emnlp-main.733
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1612.08220
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://doi.org/10.1162/coli_a_00511
https://doi.org/10.1162/coli_a_00511
https://doi.org/10.1162/coli_a_00511
https://aclanthology.org/P11-1015/
https://doi.org/10.18653/v1/2023.acl-long.149
https://doi.org/10.18653/v1/2023.acl-long.149
https://doi.org/10.18653/v1/2023.acl-long.149
https://doi.org/10.18653/v1/2020.aacl-srw.14
https://doi.org/10.18653/v1/2020.aacl-srw.14
https://doi.org/10.18653/v1/2020.aacl-srw.14
https://doi.org/10.18653/v1/2021.eacl-main.243
https://doi.org/10.18653/v1/2021.eacl-main.243
https://doi.org/10.18653/v1/2021.eacl-main.243
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf


OpenAI. 2023. GPT-4 technical report. CoRR,907
abs/2303.08774.908

Nina Poerner, Hinrich Schütze, and Benjamin Roth.909
2018. Evaluating neural network explanation meth-910
ods using hybrid documents and morphosyntactic911
agreement. In Proceedings of the 56th Annual Meet-912
ing of the Association for Computational Linguis-913
tics (Volume 1: Long Papers), pages 340–350, Mel-914
bourne, Australia. Association for Computational915
Linguistics.916

Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham917
Neubig, and Zachary C. Lipton. 2020. Learning to918
deceive with attention-based explanations. In Pro-919
ceedings of the 58th Annual Meeting of the Asso-920
ciation for Computational Linguistics, pages 4782–921
4793, Online. Association for Computational Lin-922
guistics.923

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya924
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-925
try, Amanda Askell, Pamela Mishkin, Jack Clark,926
et al. 2021. Learning transferable visual models927
from natural language supervision. In International928
Conference on Machine Learning, pages 8748–8763.929
PMLR.930

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,931
Dario Amodei, Ilya Sutskever, et al. 2019. Language932
models are unsupervised multitask learners. OpenAI933
blog, 1(8):9.934

Sukrut Rao, Moritz Böhle, Amin Parchami-Araghi, and935
Bernt Schiele. 2023. Studying how to efficiently and936
effectively guide models with explanations. In Pro-937
ceedings of the IEEE/CVF International Conference938
on Computer Vision (ICCV), pages 1922–1933.939

Marco Tulio Ribeiro, Sameer Singh, and Carlos940
Guestrin. 2016. " why should i trust you?" explaining941
the predictions of any classifier. In Proceedings of942
the 22nd ACM SIGKDD international conference on943
knowledge discovery and data mining, pages 1135–944
1144.945

Cynthia Rudin. 2019. Stop explaining black box ma-946
chine learning models for high stakes decisions and947
use interpretable models instead. Nature machine948
intelligence, 1(5):206–215.949

Victor Sanh, Lysandre Debut, Julien Chaumond, and950
Thomas Wolf. 2019. Distilbert, a distilled version951
of BERT: smaller, faster, cheaper and lighter. CoRR,952
abs/1910.01108.953

Avanti Shrikumar, Peyton Greenside, and Anshul Kun-954
daje. 2017. Learning important features through955
propagating activation differences. In International956
conference on machine learning, pages 3145–3153.957
PMlR.958

Karen Simonyan, Andrea Vedaldi, and Andrew Zis-959
serman. 2014. Deep inside convolutional networks:960
Visualising image classification models and saliency961

maps. In 2nd International Conference on Learn- 962
ing Representations, ICLR 2014, Banff, AB, Canada, 963
April 14-16, 2014, Workshop Track Proceedings. 964

Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, 965
and Himabindu Lakkaraju. 2020. Fooling lime and 966
shap: Adversarial attacks on post hoc explanation 967
methods. In Proceedings of the AAAI/ACM Confer- 968
ence on AI, Ethics, and Society, pages 180–186. 969

Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. 970
Viégas, and Martin Wattenberg. 2017. Smooth- 971
grad: removing noise by adding noise. CoRR, 972
abs/1706.03825. 973

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas 974
Brox, and Martin A. Riedmiller. 2015. Striving for 975
simplicity: The all convolutional net. In 3rd Inter- 976
national Conference on Learning Representations, 977
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, 978
Workshop Track Proceedings. 979

Suraj Srinivas and François Fleuret. 2019. Full-gradient 980
representation for neural network visualization. In 981
Advances in Neural Information Processing Systems, 982
volume 32. Curran Associates, Inc. 983

Erik Strumbelj and Igor Kononenko. 2010. An efficient 984
explanation of individual classifications using game 985
theory. The Journal of Machine Learning Research, 986
11:1–18. 987

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. 988
Axiomatic attribution for deep networks. In Pro- 989
ceedings of the 34th International Conference on 990
Machine Learning, volume 70 of Proceedings of Ma- 991
chine Learning Research, pages 3319–3328. PMLR. 992

Martin Tutek and Jan Šnajder. 2022. Toward practi- 993
cal usage of the attention mechanism as a tool for 994
interpretability. IEEE access, 10:47011–47030. 995

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 996
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 997
Kaiser, and Illia Polosukhin. 2017. Attention is all 998
you need. In Advances in Neural Information Pro- 999
cessing Systems 30: Annual Conference on Neural 1000
Information Processing Systems 2017, December 4-9, 1001
2017, Long Beach, CA, USA, pages 5998–6008. 1002

Alex Wang, Amanpreet Singh, Julian Michael, Felix 1003
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: 1004
A multi-task benchmark and analysis platform for nat- 1005
ural language understanding. In Proceedings of the 1006
2018 EMNLP Workshop BlackboxNLP: Analyzing 1007
and Interpreting Neural Networks for NLP, pages 1008
353–355, Brussels, Belgium. Association for Com- 1009
putational Linguistics. 1010

Shengjie Wang, Tianyi Zhou, and Jeff Bilmes. 2019. 1011
Bias also matters: Bias attribution for deep neural net- 1012
work explanation. In Proceedings of the 36th Interna- 1013
tional Conference on Machine Learning, volume 97 1014
of Proceedings of Machine Learning Research, pages 1015
6659–6667. PMLR. 1016

12

https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/P18-1032
https://doi.org/10.18653/v1/2020.acl-main.432
https://doi.org/10.18653/v1/2020.acl-main.432
https://doi.org/10.18653/v1/2020.acl-main.432
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1706.03825
https://arxiv.org/abs/1706.03825
https://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
https://proceedings.neurips.cc/paper_files/paper/2019/file/80537a945c7aaa788ccfcdf1b99b5d8f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/80537a945c7aaa788ccfcdf1b99b5d8f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/80537a945c7aaa788ccfcdf1b99b5d8f-Paper.pdf
https://proceedings.mlr.press/v70/sundararajan17a.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://proceedings.mlr.press/v97/wang19p.html
https://proceedings.mlr.press/v97/wang19p.html
https://proceedings.mlr.press/v97/wang19p.html


Thomas Wolf, Lysandre Debut, Victor Sanh, Julien1017
Chaumond, Clement Delangue, Anthony Moi, Pier-1018
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,1019
Joe Davison, Sam Shleifer, Patrick von Platen, Clara1020
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le1021
Scao, Sylvain Gugger, Mariama Drame, Quentin1022
Lhoest, and Alexander M. Rush. 2020. Transform-1023
ers: State-of-the-art natural language processing. In1024
Proceedings of the 2020 Conference on Empirical1025
Methods in Natural Language Processing: System1026
Demonstrations, pages 38–45, Online. Association1027
for Computational Linguistics.1028

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.1029
Character-level convolutional networks for text clas-1030
sification. In Advances in Neural Information Pro-1031
cessing Systems, volume 28. Curran Associates, Inc.1032

Yiming Zheng, Serena Booth, Julie Shah, and Yilun1033
Zhou. 2022. The irrationality of neural rationale mod-1034
els. In Proceedings of the 2nd Workshop on Trustwor-1035
thy Natural Language Processing (TrustNLP 2022),1036
pages 64–73, Seattle, U.S.A. Association for Compu-1037
tational Linguistics.1038

A Terminology1039

To ensure clarity, we define key terms used in this1040

work as follows:1041

• Faithfulness. The extent to which an explana-1042

tion accurately reflects the model’s actual rea-1043

soning process (Jacovi and Goldberg, 2020).1044

A faithful explanation should directly corre-1045

spond to the internal mechanisms that led to1046

the model’s prediction.1047

• Human Interpretability. The ease with1048

which a person can understand the model’s1049

reasoning from the explanation (Lage et al.,1050

2019). A highly interpretable explanation1051

should be clear, concise, and focused on rele-1052

vant information while avoiding unnecessary1053

or distracting information. However, an expla-1054

nation that is easy for humans to interpret may1055

not necessarily reflect the model’s actual rea-1056

soning process or align with human reasoning1057

patterns.1058

• Human Agreement. The degree to which a1059

model’s explanation aligns with the reasoning1060

a human would use for the same prediction.1061

A high-agreement explanation should follow1062

intuitive, logical reasoning patterns similar to1063

human decision-making.1064

• Explainability. The extent to which a1065

model’s computations can be faithfully ex-1066

plained and its learned patterns are under-1067

standable to humans. A highly explainable1068

model should yield explanations that are both 1069

faithful to its actual reasoning process and 1070

interpretable to humans. 1071

B Notation 1072

In this paper, we use lowercase letters for scalars 1073

(e.g., b), bold lowercase letters for vectors (e.g., w, 1074

x), and bold uppercase letters (W) for matrices. 1075

Additionally, we use bold uppercase letters X and 1076

A to denote a sequence of model inputs or hidden 1077

state activations. In § 3, we use x to denote the 1078

input when a function is applied to each element 1079

of the input sequence separately. In contrast, we 1080

use X or A when the function involves interac- 1081

tions between elements, such as in the attention 1082

mechanism. 1083

C Ablation Study 1084

To gain deeper insights into B-cosification, we con- 1085

duct an ablation study to evaluate the effects of 1086

key design choices on model performance. Table 5 1087

reports the effects of these modifications. 1088

Consistent with § 8, B=1 results in worse task 1089

performance and lower explanation faithfulness. 1090

Using binary cross-entropy (BCE) loss instead of 1091

conventional cross-entropy loss has minimal im- 1092

pact on classification accuracy, but leads to better 1093

faithfulness results in perturbation-based evalua- 1094

tions. Additionally, architectural adaptations, in- 1095

cluding removing bias terms and eliminating acti- 1096

vation functions in prediction heads, play a cru- 1097

cial role in improving both model performance 1098

and explainability in B-cos LMs. Besides, we en- 1099

countered numerical instability when generating ex- 1100

planations without these architectural adaptations, 1101

as the dynamic linear weight for tanh ( tanh(x)
(x) ) be- 1102

comes unstable when x is close to 0. 1103

Beyond ablating components in model design 1104

and training, we also examine different explanation 1105

methods across models. First, replacing dynamic 1106

linear weights W(x) with gradients for computing 1107

input contributions (equivalent to InputXGradient, 1108

Kindermans et al., 2016) results in less faithful 1109

explanations. Moreover, directly extracting B-cos- 1110

like explanations, W(x)x, from a conventional 1111

model results in worse faithfulness compared to 1112

those from B-cos LMs..4 1113

4Extracting W(x)x from conventional models follows
the same approach as in B-cos LMs (cf. § D), except that in
standard linear transformations, the dynamic linear weight is
replaced by the fixed weight matrix W.
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Acc (↑) Comp (↑) Suff (↓) SeqPG (↑)
Full system 78.64 59.66 -4.89 77.57
w/o alignment pressure (B=1) 78.07 57.19 -2.57 70.18
w/o BCE training 79.00 49.22 -7.91 79.21
w/o architectural adaptations 77.65 52.23 -3.80 74.30
w/o dynamic linear weights (IxG) 78.64 44.93 -0.60 53.57
W(x)x from conv. model 80.77 44.92 2.80 70.20

Table 5: Ablation study of key designs in B-cos BERT model on HateXplain. Results are averaged over three runs.

D Dynamic Linear Representation of1114

Model Components1115

Here we describe how each model component func-1116

tions as a dynamic linear module in B-cos LMs.1117

B-cos Layers B-cos layers are designed as dy-1118

namic linear modules with a dynamic linear weight1119

matrix W(x) = |cos(x,Ŵ)|B−1 ⊗ Ŵ. Here, ⊗1120

scales the rows of the matrix Ŵ to its right by the1121

scalar entries of the vector to its left.1122

Non-linear activation functions In transformer1123

models, non-linearity is typically introduced using1124

(approximately) piecewise linear activation func-1125

tions, such as ReLU (Nair and Hinton, 2010) and1126

GELU (Hendrycks and Gimpel, 2016). These func-1127

tions can be easily interpreted as linear transforma-1128

tions with input-dependent weights. For example,1129

GELU(x) = x × (0.5 + 0.5 × erf(x/
√
2)) can1130

be interpreted as a linear transformation where the1131

second term acts as a dynamic linear weight.1132

Attention block Böhle et al. (2024) showed that1133

attention computations can be seamlessly inte-1134

grated into B-cos networks as a dynamic linear1135

module:1136

Att(X;Q,K,V) = softmax(XTQTKX)VX1137

= A(X)VX = W(X)X (4)1138

For multi-head self-attention (MSA), the output1139

can be viewed as the concatenation of the outputs1140

from H attention heads, followed by a linear pro-1141

jection with matrix U:1142

MSA(X) = U[W1(X)X, ...,WH(X)X)] (5)1143

Since this operation maintains a dynamic linear1144

structure, the multi-head attention block remains a1145

dynamic linear module.1146

E Implementation Details1147

Fine-tuning Setups For all PLMs used in the ex-1148

periments, we use the uncased base version from1149

huggingface (Wolf et al., 2020). For both conven- 1150

tional models and B-cos LMs, we train them for 1151

5 epochs with 10% linear warm-up steps on the 1152

downstream task datasets. The learning rates are 1153

set to 2e-5 for IMDB and HateXplain, and 3e-5 for 1154

AG News. All models use a batch size of 16 and a 1155

maximum sequence length of 512. For validation, 1156

we randomly sample half of the test set from IMDB 1157

and AG News. 1158

Post-hoc Explanation Baselines For IxG and 1159

ShapSampl, we use the Captum (Kokhlikyan et al., 1160

2020) implementations.5 We implement the Atten- 1161

tion method ourselves, and LIME is sourced from 1162

the lit library6. For DecompX7 and SIG8, we use 1163

their official implementations with default config- 1164

urations. The number of samples is set to 25 for 1165

ShapSampl and 3,000 for LIME, with [MASK] as 1166

the baseline token. For all explanation methods 1167

at the embedding level, model predictions are at- 1168

tributed to the combined sum of word, position, 1169

and token type embeddings (if applicable). In the 1170

main experiments, we compute token attribution 1171

scores by summing over all embedding dimensions, 1172

as this approach demonstrates better faithfulness 1173

results than using the L2 norm. 1174

SeqPG Examples When constructing examples 1175

for SeqPG, we set the sequence length to 50 for 1176

AG News, 256 for IMDB, and 25 for HateXplain, 1177

aligning with their median lengths. Only examples 1178

longer than these thresholds are selected, and they 1179

are truncated to construct synthetic examples. Ad- 1180

ditionally, we only use examples that are correctly 1181

predicted with a minimum confidence of 75% after 1182

truncation. For a fair comparison, we evaluate B- 1183

cos LMs on the same sets of examples constructed 1184

5https://captum.ai/api/
6https://github.com/PAIR-code/lit
7https://github.com/mohsenfayyaz/DecompX
8https://github.com/josephenguehard/time_

interpret
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based on the predictions of the corresponding con-1185

ventional models.1186

Evaluation Setups For task performance evalua-1187

tion, we use the complete test set for each task. For1188

faithfulness evaluation, we conduct perturbation-1189

based evaluations on 2000 test examples and Se-1190

qPG on 500 test examples for AG News and1191

IMDB. For HateXplain, we use the full test set1192

for perturbation-based evaluation (1,924 examples)1193

and construct 269, 310, and 308 SeqPG examples1194

from it using BERT, DistilBERT, and RoBERTa,1195

respectively.1196

B-cos Pre-training For B-cos pre-training in § 7,1197

we further pre-train the model on the Wikipedia1198

dataset9 using masked language modeling loss with1199

a learning rate of 1e-4 and a 15% masking ratio.1200

Compute Infrastructure Unless stated other-1201

wise, all experiments are conducted on a single1202

NVIDIA H100 GPU. Training one epoch of B-1203

cos BERT takes approximately 40 minutes on AG1204

News, 10 minutes on IMDB, and 5 minutes on1205

HateXplain.1206

F SeqPG Example1207

Figure 7 presents a SeqPG example from AG News1208

using B-cos BERT. For better visualization, each1209

segment is truncated to 20 tokens instead of 50 used1210

in the experiments. Unlike the hybrid document1211

evaluation proposed by Poerner et al. (2018), our1212

approach explicitly controls segment length and1213

position to ensure a fair comparison. Additionally,1214

we measure the proportion of correctly assigned1215

positive attributions rather than relying solely on1216

the highest attribution value.1217

G Task Performance of Other B-cos LMs1218

Figures 8 and 9 illustrate the task performance of1219

conventional and B-cos DistilBERT and RoBERTa1220

across datasets. Consistent with findings from1221

BERT models (cf. Figure 2), B-cos LMs exhibit1222

strong performance comparable to conventionally1223

fine-tuned models.1224

H Faithfulness Evaluation of Other B-cos1225

LMs1226

Tables 6 and 7 present the faithfulness evaluation1227

results for DistilBERT and RoBERTa. The find-1228

ings are consistent with our main experiments (cf.1229

9https://huggingface.co/datasets/wikimedia/
wikipedia

Table 2), confirming that B-cos LMs produce more 1230

faithful explanations compared to post-hoc expla- 1231

nation methods. 1232

I Human Evaluation Details 1233

In the human study, we select only examples 1234

shorter than 25 tokens for HateXplain and 40 to- 1235

kens for AG News to improve visualization. Ad- 1236

ditionally, we replace [CLS] and [SEP] with ## to 1237

make the examples more understandable for lay 1238

users. Below, we provide the instructions along 1239

with a detailed description of the criteria and scor- 1240

ing used in our human evaluation. 1241

WARNING: SOME CONTENT IN 1242

THIS QUESTIONNAIRE IS HIGHLY 1243

OFFENSIVE. 1244

Prerequisites: Proficiency in English is 1245

required for this evaluation task. If you 1246

do not meet this criterion, please do not 1247

proceed. 1248

We invite you to review 50 examples 1249

where NLP models perform classifica- 1250

tion tasks and provide explanations for 1251

their predictions. 1252

• The first 25 examples come from a 1253

hate speech detection task, where 1254

the model predicts whether a text is 1255

toxic or not toxic. 1256

• The last 25 examples come from a 1257

topic classification task, where the 1258

model categorizes a text into one of 1259

four topics: sports, world, business, 1260

or sci/tech. 1261

For each example: 1262

• The model’s prediction is shown 1263

along with four explanations justi- 1264

fying the prediction. 1265

• The order of the explanations is ran- 1266

domized to prevent bias. 1267

• Words highlighted in green indicate 1268

words that had a positive influence 1269

on the prediction, while words in 1270

red indicate words that had a nega- 1271

tive influence. The intensity of the 1272

color reflects the strength of the im- 1273

pact. 1274

• Important: The model’s prediction 1275

may be incorrect. Your task is to 1276
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Figure 7: An example of SeqPG from AG News (using B-cos BERT). Green (red) indicates the positive (negative)
impact of tokens on the prediction. The example consists of two sequences with different labels (Sports and
Sci/tech), separated by the [SEP] token after the first sequence. Explanations are generated for each label, and the
proportion of correctly attributed positive tokens is averaged across both labels to compute the SeqPG score for this
example.

Model Method AG News IMDB HateXplain

Comp (↑) Suff (↓) SeqPG (↑) Comp (↑) Suff (↓) SeqPG (↑) Comp (↑) Suff (↓) SeqPG (↑)

(a) Conv. DistilBERT

Attention 26.36 5.37 50 31.62 10.46 50 30.56 14.67 50
IxG 19.29 6.21 53.71 23.78 12.38 49.23 25.13 18.08 46.60
SIG 30.78 1.63 67.87 47.16 5.48 60.66 41.11 4.23 58.55
DecompX - - - - - - - - -
ShapSampl 52.56 -0.56 82.64 63.29 2.91 70.27 48.73 0.87 64.44
LIME 52.59 -0.56 77.64 58.6 5.12 61.11 31.61 12.94 56.49

(b) B-cos DistilBERT

Attention 28.47 3.05 50 31.36 4.15 50 37.33 6.49 50
IxG 22.33 9.09 58.63 51.02 -1.44 53.76 41.62 0.29 56.03
SIG 14.73 5.62 53.09 39.75 -0.11 64.18 28.68 7.27 60.75
DecompX - - - - - - - - -
ShapSampl 31.78 1.77 62.60 64.65 -2.42 56.89 34.64 4.56 55.8
LIME 58.25 0.31 77.65 69.96 -0.43 61.08 44.66 1.66 59.27

(c) B-cos DistilBERT B-cos 61.93 -1.01 86.78 75.73 -2.57 71.95 57.2 -4.49 74.89

Table 6: Faithfulness evaluation for conventionally fine-tuned DistilBERT and B-cos DistilBERT across three
datasets. The best results are in bold. We find that B-cos explanations are consistently more faithful than post-hoc
explanations from both models.
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65
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95.59 94.38

79.19

94.99
91.30

79.14

Conv. DistilBERT
B-cos DistilBERT

Figure 8: Mean accuracy of conventionally fine-tuned
and B-cos DistilBERT models averaged over three runs.
B-cos models perform comparably to conventional mod-
els on most tasks.

evaluate the explanations based on1277

how well they support the model’s1278

prediction, not the true labels.1279

Evaluation Task:1280

After reviewing each example, please1281

rate the the human interpretability and1282

human agreement of the four explana-1283

tions on a scale of 1 to 5. Refer to the1284

definitions and rating scales provided be-1285

AG news IMDB HateXplain
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

 (%
)

95.78 96.51

80.63

94.88
91.68

79.41

Conv. RoBERTa
B-cos RoBERTa

Figure 9: Mean accuracy of conventionally fine-tuned
and B-cos RoBERTa models averaged over three runs.
B-cos models perform comparably to conventional mod-
els on most tasks.

low when making your assessments. 1286

Human Interpretability: How easily 1287

a person can understand the model’s 1288

reasoning based on the explanation. A 1289

highly interpretable explanation should 1290

be clear and easy to follow, focus on rel- 1291

evant words and avoid unnecessary or 1292

distracting details. 1293
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Model Method AG News IMDB HateXplain

Comp (↑) Suff (↓) SeqPG (↑) Comp (↑) Suff (↓) SeqPG (↑) Comp (↑) Suff (↓) SeqPG (↑)

(a) Conv. RoBERTa

Attention 22.17 3.80 50 25.26 5.84 50 32.94 7.52 50
IxG 11.33 7.54 44.15 16.15 11.53 47.20 24.40 15.16 50.59
SIG 19.64 1.63 66.43 38.14 2.13 59.04 44.21 -1.42 66.73
DecompX 50.00 -0.84 90.38 49.24 0.65 72.80 46.94 -1.42 70.16
ShapSampl 35.63 -0.68 78.31 43.32 1.83 65.85 44.83 -1.30 67.15
LIME 19.28 2.85 66.73 21.07 8.32 50.81 27.97 11.38 58.59

(b) B-cos RoBERTa

Attention 16.07 6.83 50 29.83 2.85 50 27.35 8.39 50
IxG 22.25 2.39 56.15 67.2 -2.26 56.95 40.69 -1.11 58.59
SIG 44.35 -0.95 51.70 74.70 -2.39 58.03 51.20 -5.80 57.62
DecompX - - - - - - - - -
ShapSampl 55.26 -0.92 72.65 74.3 -2.39 62.74 51.54 -5.64 70.58
LIME 23.01 2.46 63.11 37.14 0.78 53.15 29.86 5.74 63.61

(c) B-cos RoBERTa B-cos 62.47 -1.18 86.63 75.15 -2.39 75.83 51.33 -5.18 74.01

Table 7: Faithfulness evaluation for conventionally fine-tuned RoBERTa and B-cos RoBERTa across three datasets.
The best results are in bold. We find that B-cos explanations are consistently more faithful than post-hoc explanations
from both models.

1. Not Interpretable: The explana-1294

tion is unclear, noisy, or provides1295

no meaningful insight.1296

2. Slightly Interpretable: Some1297

clues are present, but the explana-1298

tion is too sparse, irrelevant, or con-1299

fusing.1300

3. Moderately Interpretable: The ex-1301

planation contains useful informa-1302

tion but is cluttered with noise or1303

irrelevant details.1304

4. Highly Interpretable: The expla-1305

nation is mostly clear, with minimal1306

irrelevant highlights.1307

5. Completely Interpretable: The ex-1308

planation is fully transparent, high-1309

lighting only the most relevant1310

words, making the model’s reason-1311

ing fully clear.1312

Human Agreement: How closely the1313

model’s explanation aligns with the rea-1314

soning a human would use for the same1315

prediction. A high-agreement explana-1316

tion should follow logical, intuitive rea-1317

soning and align with typical human1318

decision-making patterns.1319

1. No Agreement: The explanation1320

contradicts human reasoning or1321

lacks logic.1322

2. Low Agreement: The explanation1323

bears some resemblance to human1324

reasoning but includes major incon-1325

sistencies.1326

Figure 10: An example shown to participants that
demonstrates how to rate explanations.

3. Moderate Agreement: The expla- 1327

nation partially aligns with human 1328

reasoning, yet contains notable dif- 1329

ferences. 1330

4. High Agreement: The explanation 1331

largely aligns with human reason- 1332

ing, showing only minor discrepan- 1333

cies. 1334

5. Complete Agreement: The expla- 1335

nation fully matches human reason- 1336

ing, following a logical and intuitive 1337

path that a human would naturally 1338

use. 1339

We also provide participants with examples to 1340

illustrate the reasoning behind rating explanations. 1341

One such example is shown in Figure 10. Addi- 1342

tionally, Figure 11 presents an example of a model 1343

prediction and its explanations as displayed to par- 1344

ticipants during the study. 1345
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Figure 11: An examples of a model prediction and its
explanations presented to participants.

J More Examples of B-cos Explanations1346

We provide two more examples of B-cos and other1347

(post-hoc) explanations from AG News in Fig-1348

ure 12. Consistent with our findings in § 6, B-cos1349

LMs provide more human interpretable explana-1350

tions.1351

K Impact of B on Input-weight1352

Alignment1353

To analyze how B-cosification and alignment pres-1354

sure influence the behavior of B-cos LMs, we com-1355

pute the alignment (cosine similarity) between each1356

input and its corresponding weight in B-cos mod-1357

ules across all layers. This analysis is performed on1358

100 examples from the HateXplain dataset. In Fig-1359

ure 13, we plot different percentiles of input-weight1360

alignment for conventional and B-cos BERT mod-1361

els with varying B values. For better visualization,1362

we display only the 10th to 90th percentiles.1363

Overall, larger B values generally lead to1364

stronger input-weight alignment compared to1365

smaller B and conventional models, as evidenced1366

by the curves for B=1.5 and B=2.5 lying above1367

those for the conventional model and B=1. How-1368

ever, the alignment pattern becomes more complex1369

when comparing B=1.5 and B=2.5. Specifically,1370

at B=2.5, the most aligned input-weight pairs ex-1371

hibit higher alignment than in other models, but1372

some pairs show very low alignment. This re-1373

sult may arise because certain weights are highly1374

optimized for specific input patterns, leading to1375

poor alignment with others, particularly in later lay-1376

ers where input features become more anisotropic1377

(Ethayarajh, 2019; Li et al., 2020). As a result,1378

some outputs from the B-cos layers are highly neg- 1379

ative. When these outputs are fed into GELU acti- 1380

vation functions, their dynamic weights approach 1381

zero, making the explanations more sparse. 1382

L Effects of B on Other Metrics 1383

Table 8 presents the complete results on how B 1384

values affect task performance, explanation faith- 1385

fulness and explanation entropy, as shown in Fig- 1386

ure 5. Similar to Comp, SeqPG scores also decline 1387

with higher alignment pressure. This could also be 1388

attributed to the high sparsity of explanations. As 1389

B increases, fewer tokens receive attribution scores 1390

that are not close to zero, and in some SeqPG ex- 1391

amples, B-cos LMs may attribute predictions to 1392

a single segment. This can lead to numerical in- 1393

stability when computing the positive attribution 1394

ratio. 1395

B 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Acc (↑) 78.57 79.23 78.10 77.41 77.48 70.44 73.55
Comp (↑) 55.09 58.99 59.64 59.23 54.44 35.80 27.11
Suff (↓) -4.25 -5.71 -5.47 -5.84 -6.69 -7.23 -5.47
SeqPG (↑) 69.75 77.26 77.79 77.67 76.79 76.68 77.25
Entropy 3.09 2.79 2.58 2.35 2.28 1.98 1.89

Table 8: Task performance, explanation faithfulness,
and explanation entropy of B-cos BERT models on Hat-
eXplain with different B values. Results are averaged
over three runs. Similar to Figure 5, task performance
and explanation faithfulness peak around B=1.5, while
explanation entropy negatively correlates with B.

M B-cos Explanations with Different B 1396

Values 1397

Figure 14 illustrates that with increased alignment 1398

pressure, B-cos LMs learn fewer but more task- 1399

relevant features. Consequently, they produce 1400

sparser explanations, with fewer tokens receiving 1401

significant attribution. This finding aligns with the 1402

statistics presented in § 8. 1403

N Example of Model Bias 1404

In the example shown in Figure 15, models become 1405

increasingly confident in the incorrect prediction 1406

as B increases, with attributions primarily assigned 1407

to the word “blacks”. Moreover, simply replacing 1408

“blacks” with “whites” results in a sharp drop in 1409

confidence, which demonstrates a growing reliance 1410

on spurious correlations with increased alignment 1411

pressure. The observation further confirms our 1412

findings in §8. 1413
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Figure 12: More examples of B-cos explanations (B-cos BERT) as well as ShapSampl and DecompX explanations
(BERT) from the AG News dataset. Green (red) indicates the positive (negative) impact of tokens on the prediction.
As can be seen, the B-cos explanation highlights only relevant tokens and is more interpretable to humans.

Figure 13: Percentiles of input-weight alignment in B-
cos modules across selected layers of conventional and
B-cos BERT models with different B values (HateX-
plain).
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Figure 14: B-cos explanations (B-cos BERT) on AG News with different B values. Green (red) indicates the positive
(negative) impact of tokens on the prediction. As B increases, B-cos LMs produce sparser explanations, with fewer
tokens receiving significant attribution scores.

Figure 15: Example of how larger B values lead B-cos LMs to learn word-level spurious correlations. Green (red)
indicates the positive (negative) impact of tokens on the prediction. Higher alignment pressure increases the reliance
of B-cos LMs on spurious correlations in the data. In this example, perturbation involves changing “blacks” to
“whites”.
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