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Abstract

Post-hoc explanation methods for black-box
models often struggle with faithfulness and hu-
man interpretability due to the lack of explain-
ability in current neural models. Meanwhile, B-
cos networks have been introduced to improve
model explainability through architectural and
computational adaptations, but their application
has so far been limited to computer vision mod-
els and their associated training pipelines. In
this work, we introduce B-cos LMs, i.e., B-cos
networks empowered for NLP tasks. Our ap-
proach directly transforms pre-trained language
models into B-cos LMs by combining B-cos
conversion and task fine-tuning, improving ef-
ficiency compared to previous B-cos methods.
Our automatic and human evaluation results
demonstrate that B-cos LMs produce more
faithful and human interpretable explanations
than post hoc methods, while maintaining task
performance comparable to conventional fine-
tuning. Our in-depth analysis explores how B-
cos LMs differ from conventionally fine-tuned
models in their learning processes and expla-
nation patterns. Finally, we provide practical
guidelines for effectively building B-cos LMs
based on our findings. Our code is available at
https://anonymous.4open.science/r/bcos_Im.

1 Introduction

Pre-trained language models (PLMs) such as
BERT (Devlin et al., 2019) and GPT (Radford
et al., 2019; Brown et al., 2020; OpenAl, 2023)
have significantly advanced performance across
a plethora of NLP tasks (Wang et al., 2018; Gao
et al., 2023). However, their complex architectures
and black-box nature make understanding their be-
havior a persistent challenge (Bommasani et al.,
2021). To address this, research has increasingly
focused on explaining model predictions, partic-
ularly in relation to the input. These input-based
explanations, often referred to as local explanations
or rationales, aim to reveal how specific inputs in-
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Figure 1: Visualization of W (x)x in a conventionally
fine-tuned model (Conventional LM) and a B-cos
LM. Green (red) indicates the positive (negative) im-
pact of tokens on the prediction. In both examples, both
models correctly predict not toxic. In the Conventional
LM, “funny” is incorrectly assigned a negative attribu-
tion in example (a), while in example (b), irrelevant
words like “why” and “smell” are highlighted, making
the explanations unfaithful and less interpretable.

fluence a model’s predictions (Arras et al., 2019;
Atanasova et al., 2020; Lyu et al., 2024).

Most explanation methods for neural models
are post-hoc, meaning that they attempt to explain
a model’s behavior only after it has been trained
and deployed (Sundararajan et al., 2017; Ribeiro
et al.,, 2016). While these methods are widely
used and easy to apply, they have been shown
to produce unfaithful and less interpretable expla-
nations (Smilkov et al., 2017; Kindermans et al.,
2019; Slack et al., 2020; Pruthi et al., 2020)." Prior
research has attributed these shortcomings to the
lack of explainability in contemporary neural mod-
els (Kindermans et al., 2018; Alvarez Melis and
Jaakkola, 2018; Rudin, 2019). Figure 1 provides
examples illustrating this issue.

To overcome these limitations, we introduce B-
cos LM, a dynamic linear model that learns task-
relevant patterns through increased input-weight
alignment pressure. Building upon B-cos networks
from computer vision (Bohle et al., 2022; Arya
et al., 2024), we improve explainability of B-cos
LMs through mathematically grounded architec-

!Considering the evolving definition of these terms in past
literature, we provide a detailed definition in Appendix A.
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tural and computational adaptations. Furthermore,
we tailor B-cos LMs for NLP by incorporating spe-
cialized architectural modifications and training
pipelines. Our contributions are as follows:

1. We propose B-cos LM, a novel model with en-
hanced explainability. Automatic and human
evaluations demonstrate that B-cos LMs gen-
erate more faithful and human interpretable
explanations than post-hoc explanations while
maintaining a strong task performance.

2. We investigate different strategies for trans-
forming PLMs into task-specific B-cos LMs.
Our findings show that combining task fine-
tuning and B-cos conversion is the most effi-
cient approach, leading to faster convergence
than previous B-cos methods and conven-
tional fine-tuning.

3. We thoroughly investigate how B-cos LMs dif-
fer from conventionally fine-tuned models and
examine how alignment pressure influences
their behavior.

4. Based on our findings, we provide practical
guidelines for building effective B-cos LMs.

2 Related Work

Post-hoc Explanation Methods Various meth-
ods have been proposed to provide post-hoc expla-
nations for neural model predictions (Atanasova
et al., 2020). These methods can be broadly cate-
gorized based on how they generate explanations:
gradient-based (Simonyan et al., 2014; Kindermans
etal., 2016; Sundararajan et al., 2017), propagation-
based (Bach et al., 2015; Shrikumar et al., 2017;
Springenberg et al., 2015), and perturbation-based
methods (Li et al., 2016; Ribeiro et al., 2016; Lund-
berg and Lee, 2017). Besides, the attention mech-
anism (Bahdanau et al., 2015) is often viewed as
an explanation, particularly in transformer-based
models (Vaswani et al., 2017).

Although post-hoc methods can be applied to
generate explanations for existing models, numer-
ous studies have shown that they lack faithfulness,
often failing to capture the true decision-making
process of the model (Kindermans et al., 2019; Jain
and Wallace, 2019; Slack et al., 2020; Pruthi et al.,
2020). Furthermore, they may generate noisy expla-
nations that focus on irrelevant information, mak-
ing them difficult for humans to interpret (Smilkov
et al., 2017; Ismail et al., 2021).

From Post-hoc Explanations to Explainable
Models The limitations of post-hoc explanation
methods may be attributed to the inherent lack
of explainability in contemporary neural models,
which are typically optimized solely for task per-
formance (Kindermans et al., 2018; Rudin, 2019;
Atanasova et al., 2022). For instance, studies have
shown that existing models struggle to provide
faithful explanations (Alvarez Melis and Jaakkola,
2018) or tend to learn noisy patterns, resulting in
less interpretable explanations (Ismail et al., 2021).

In response, various efforts have been made
to enhance model explainability. Some work
has introduced constraints that improve specific
explanation properties, such as faithfulness (Tutek
and §najder, 2022; Moradi et al., 2020, 2021),
consistency (Atanasova et al., 2022), local-
ity (Alvarez Melis and Jaakkola, 2018), and
plausibility (Ismail et al., 2021). However, as these
constraints are typically imposed as regularizers,
their effectiveness in improving explanation quality
is not guaranteed (Pruthi et al., 2020). Others have
proposed self-explanatory model architectures
such as rationale-based models that utilize an
“explain-then-predict” pipeline, where one module
selects rationales for another to make predictions
based on them (Lei et al., 2016). Although seem-
ingly transparent, both components rely on neural
networks, making the rationale extraction and
utilization processes opaque (Zheng et al., 2022;
Jacovi and Goldberg, 2021). Besides, such models
may face optimization challenges that limit their
practicality in real-world tasks (Lyu et al., 2024).

To tackle these shortcomings, Bohle et al. (2022)
proposed B-cos networks. Unlike methods that im-
pose external constraints, B-cos networks improve
explainability through mathematically grounded
architectural and computational adaptations. More-
over, these adaptations are designed as drop-in re-
placements for conventional model components,
making B-cos networks easy to train with minimal
performance loss. Most recently, Arya et al. (2024)
explored B-cosification techniques to convert exist-
ing models into B-cos models, which reduces the
training costs of adopting B-cos architectures.

Despite their successful application in vision
tasks, B-cos networks have yet to be explored
in NLP, where input modalities and training
paradigms differ significantly. In this work, we
adapt B-cos models for the language domain, inte-
grating them efficiently into NLP pipelines.



Property Conventional Fine-tuning

B-cosification (Arya et al., 2024)

B-cos LM (ours)

Bias terms yes no no
B (alignment pressure) 1 2 1.5
Pred. Head Activations tanh n/a? identity
Prior task abilities no yes no

Training objectives Task fine-tuning

B-cos conversion

Task fine-tuning & B-cos conversion

Table 1: Comparison between conventional fine-tuning, B-cosification in computer vision and B-cosification in
NLP (B-cos LM). Conventional fine-tuning and B-cosification follow the configuration of BERT for sequence
classification and CLIP (Radford et al., 2021), respectively (cf. § 3 for details).

3 Methodology

In this section, we outline the architecture and train-
ing process of B-cos LMs and how their design en-
sures faithful and human interpretable explanations.
We first introduce B-cos networks (§ 3.1) and then
describe how we transform PLMs to task-specific
B-cos LMs (§ 3.2). Finally, we demonstrate how to
generate explanations from B-cos LMs (§ 3.3). No-
tations used in the work are detailed in Appendix B.

3.1 B-cos Networks

Complex neural networks can be interpreted
as generalized linear models (Nair and Hin-
ton, 2010; Alvarez Melis and Jaakkola, 2018;
Srinivas and Fleuret, 2019). For each input
x, the network applies a linear transformation:
f(x) = W(x)x + b(x), where both the weight
W (x) and bias b(x) depend on x. Given that many
activation functions are (approximately) piecewise
linear, the overall network can be viewed as (ap-
proximately) piecewise affine (Alvarez Melis and
Jaakkola, 2018). Earlier work refers to such models
as dynamic linear models (Bohle et al., 2021; Bohle
et al., 2022), highlighting the fact that the weight
and bias terms dynamically change according to x.

Under this dynamic linear perspective, the linear
mapping W (x) can be seen as attributing model
predictions to individual input features. However,
two challenges hinder the direct use of this interpre-
tation. First, W (x) alone provides an incomplete
and unfaithful explanation since f(x) # W (x)x
due to the presence of the bias term b(x), and
incorporating b(x) into explanations is highly non-
trivial (Wang et al., 2019). Second, W (x) is of-
ten difficult for humans to interpret, as it does not
necessarily align only with task-relevant input pat-
terns (Smilkov et al., 2017) and therefore yields
noisy and irrelevant explanations. Figure 1 illus-

ZArya et al. (2024) used a single linear layer on top of
CLIP so the prediction head activation is not applicable in
their setup.

trates these challenges. To address these issues,
Bohle et al. (2022) introduced B-cos networks by
replacing the conventional linear transformation:

f(x;w,b) = wrx +b = ||w]|||x][cos(x,w) + b
ey

with a B-cos transformation:

B-cos(x; w) = WTx x |cos(x, w)|B~! ()

= [[Wllflx|lcos(x, W)[® x sgn(cos(x, W))

where W is a scaled version of w with unit norm
and sgn denotes the sign function.

B-cos(x;w) can be seen as a linear trans-
formation of x with the dynamic linear weight
w(x) = |cos(x,W)|B~1 x w. The absence of
b(x) ensures the completeness of summary w(x).
We demonstrate that this completeness extends to
an entire network composed of bias-free dynamic
linear modules in 3.3. Moreover, with additional
alignment pressure (B>1), the weight w is forced to
align closely with task-relevant patterns to achieve
a high cosine similarity and strong activation within
the B-cos module. As a result, only the most rele-
vant features are highlighted in explanations, mak-
ing them more interpretable to humans.

While early B-cos models were trained from
scratch, Arya et al. (2024) recently introduced B-
cosification, an efficient method to obtain B-cos
models. This approach first modifies conventional
models with task capacities to adopt the B-cos ar-
chitecture, followed by fine-tuning on downstream
datasets for B-cos conversion. B-cosified models
generate explanations as faithful and interpretable
as B-cos models trained from scratch but at a much
lower training cost. However, directly applying
B-cosification to NLP models is non-trivial and in-
efficient due to the significant differences in model
architectures and training pipelines.

3.2 B-cosification in NLP

In this section, we present our B-cosification ap-
proach for NLP. We summarize the differences be-



tween B-cosification in NLP, its counterpart in vi-
sion, and conventional fine-tuning in Table 1. We
provide an extensive ablation study in Appendix C.

3.2.1 B-cos Adaptations

Given a conventional model, we first modify its
architecture and computation to integrate the B-cos
framework.

Architectural Adaptations For completeness
and faithfulness of explanations, we follow Arya
et al. (2024) and remove all bias terms in mod-
els, including those in the affine transformations of
layer normalization and attention blocks. Addition-
ally, a prediction head is typically added on top of
the transformer before fine-tuning for downstream
tasks in the NLP pipeline. This head often includes
activation functions that are not (approximately)
piecewise linear, such as sigmoid and tanh. To ac-
commodate the unique architecture of NLP models,
we remove all activation functions in the predic-
tion heads, as they reduce the locality of expla-
nations and introduce numerical instability during
their generation. We expect the added non-linearity
from B>1 to compensates for this removal.

Introducing B-cos Computation To promote
input-weight alignment and improve human inter-
pretability of explanations, we follow Arya et al.
(2024) and replace all linear transformations with
B-cos transformations in § 3.1. For a more efficient
B-cosification, B-cos layers are initialized with the
corresponding weights W of the original model.

3.2.2 Fine-tuning

The B-cos adaptations above modify the architec-
ture and computation of models, requiring fine-
tuning to restore their capabilities and adapt to
alignment pressure. Following the NLP-typical
“pre-train then fine-tune” paradigm, we directly
transform PLMs to B-cos LMs, rather than adapt-
ing task-specific models as done in previous
work (Arya et al., 2024). This fundamental dif-
ference in the training pipeline adds complexity
to B-cosification in NLP, as the objective involves
both B-cos conversion and task fine-tuning. While
there are multiple ways to conjoin these two steps
(cf. § 7), we find that the most efficient way is to
combine them by first applying B-cos adaptations
to a PLM and then fine-tuning it on a downstream
task. Following Bohle et al. (2022), we use the
binary cross-entropy (BCE) loss instead of conven-
tional cross-entropy loss, as it explicitly maximizes

the absolute target logits and strengthens alignment
pressure. We provide an extensive comparison of
B-cosification setups in § 7.

3.3 Computing B-cos Explanations

Once trained, the B-cos LM can generate explana-
tions that faithfully summarize its decision-making
process during inference. As all components are dy-
namic linear with no bias terms (cf. Appendix D),
the entire model computation can be expressed as
a sequence of dynamic linear transformations:

WL(AL)WL—I(AL—I)---WI(AI = X)X (3)

which can be completely summarized as a single
dynamic linear function Hlewj (A ;). Consider-
ing the textual inputs specific to NLP, we attribute
the model’s predictions to the embedding represen-
tations. Specifically, to quantify the contribution of
a token ¢ to a model prediction, we compute the dot
product W (x,)x; between its embedding x; and
the corresponding dynamic linear weight W (x;)
for the predicted class logit. For the remainder of
the paper, we will refer to such explanations as
B-cos explanations.

4 Experiments

We evaluate the task performance of B-cos LMs
and faithfulness of B-cos explanations against con-
ventional models and baseline explanation methods
across various tasks, PLMs, and metrics.

Datasets and Models Our experiments include
three sequence classification datasets: AG News
(topic classification, Zhang et al., 2015), IMDB
(sentiment analysis, Maas et al., 2011), and Hate-
Xplain (hate speech detection, Mathew et al., 2021).
We use BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), and DistilBERT (Sanh et al., 2019)
as the basis for conventional fine-tuning and for
obtaining B-cos LMs (B=1.5) with the same train-
ing hyperparameters (cf. Appendix E for details on
fine-tuning, B-cosification, and data splits).

Faithfulness Metrics For a more comprehensive
evaluation, we employ two different methods to as-
sess faithfulness. First, we report two perturbation-
based metrics (DeYoung et al., 2020):

* Comprehensiveness (Comp) measures the av-
erage drop in predicted class probability after
*Note that a residual connection of W (x)x 4 x with x €

R™ and W(x) € R"*" is mathematically equivalent to a
single dynamic linear transformation of (W (x) + I )x.



Model Method AG News IMDB HateXplain
Comp (1)  Suff (}) SeqPG (1) Comp (1) Suff(}) SeqPG (1) Comp () Suff(l) SeqPG (1)
Attention 24.40 8.09 50 26.84 14.56 50 27.64 13.83 50
IxG 15.28 10.19 4541 18.29 16.96 49.42 19.16 18.90 47.24
(a) Conv. BERT SIG 27.02 3.40 64.77 29.34 14.05 59.09 37.31 5.10 66.38
) Lonv. DecompX 52.16 0.92 84.48 57.94 2.41 63.27 44.86 2.72 66.76
ShapSampl ~ 43.96 0.46 82.87 58.29 2.44 71.29 44.86 2.43 67.17
LIME 44.95 0.06 80.28 51.45 6.07 60.15 22.64 14.30 57.61
Attention 33.51 2.71 50 3291 5.31 50 39.3 3.93 50
IxG 26.89 1.31 48.24 61.74 -2.39 52.95 44.93 -0.60 53.57
(b) B-cos BERT SIG 14.39 4.65 19.64 29.06 3.11 56.82 35.04 1.96 60.23
DecompX - - - - - - - - -
ShapSampl 15.90 391 52.71 35.95 0.66 52.14 39.6 0.66 65.02
LIME 57.99 0.07 79.30 70.05 -1.55 60.03 40.84 3.84 59.14
(c) B-cos BERT  B-cos 64.22 -1.26 87.92 75.33 -2.95 70.27 59.66 -4.89 71.57

Table 2: Faithfulness evaluation for conventionally fine-tuned BERT and B-cos BERT across three datasets. The
best results are in bold. We find that B-cos explanations are consistently more faithful than post-hoc explanations

from both models.

masking out the top £% most important tokens
in the explanation. A higher score indicates
better faithfulness.

* Sufficiency (Suff) measures the average drop
in predicted class probability after keeping
only the top k% tokens. A lower score indi-
cates better faithfulness.

To avoid arbitrary choices of k, we com-
pute Comp and Suff for multiple values (kK =
10, 20, ..., 90) and summarize them using the Area
Over the Perturbation Curve (AOPC, DeYoung
et al., 2020).

In addition, we introduce a new faithfulness
metric called Sequence Pointing Game (SeqPG),
inspired by the grid pointing game in vision
tasks (Bohle et al., 2021):

* Sequence Pointing Game (SeqPG). We eval-
uate models on synthetic sequences composed
of segments associated with different classes.
To assess faithfulness, we measure the pro-
portion of positive attribution assigned to the
corresponding segment of each class and com-
pute their average. A higher score indicates
better faithfulness.

Compared to perturbation-based metrics, SeqPG
does not rely on perturbations and thus avoids the
potential distortions introduced by token masking.
When constructing SeqPG examples, we truncate
each segment to a fixed length and randomize seg-
ment order to control for length and position effects.
We generate synthetic examples using correctly and
most confidently classified test instances. SeqPG

can be seen as a standardized version of hybrid
document evaluation (Poerner et al., 2018). We
provide an example of SeqPG in Figure 7 and more
details in Appendix F.

Baselines We compare B-cos explanations
against a diverse set of post-hoc explanation meth-
ods: Attention (Bahdanau et al., 2015), InputXGra-
dient (IxG, Kindermans et al., 2016), Sequential
Integrated Gradients (SIG, Enguehard, 2023), De-
compX (Modarressi et al., 2023), Shapley Value
Sampling (ShapSampl, Strumbelj and Kononenko,
2010), and LIME (Ribeiro et al., 2016). For a fair
comparison against embedding-level methods, we
aggregate attributions by summing across all em-
bedding dimensions (cf. Appendix E).
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Figure 2: Mean accuracy of conventionally fine-tuned
and B-cos BERT models averaged over three runs. B-
cos models perform comparably to conventional models
on most tasks.

Task Performance Figure 2 shows the accu-
racy of conventionally fine-tuned and B-cos BERT
across three datasets (we provide results for Distil-
BERT and RoBERTa in Appendix G). We find that



all B-cos LMs performs on par with conventional
models on AG News and HateXplain, with only a
minor drop (~1%) in accuracy. Only for IMDB,
we find a slightly larger drop of 4.21%, though the
performance remains strong overall.

Faithfulness Results Table 2 shows the faithful-
ness scores for post-hoc explanation methods on
(a) conventionally fine-tuned BERT models and (b)
B-cos BERT models, as well as (¢) B-cos expla-
nations extracted from B-cos BERT. The results
show that B-cos explanations are consistently and
substantially more faithful than post-hoc methods
across all datasets. This improvement holds both
across different models and within the same model.
B-cos explanations outperform the strongest post-
hoc methods on conventional models by an average
of 14.63 points in Comp score and achieve negative
Suff scores, indicating that the identified important
tokens alone enable even more confident predic-
tions. Additionally, B-cos explanations show a con-
siderable improvement in SeqPG. Similar trends
are observed for DistilBERT and RoBERTa (Ap-
pendix H), further strengthening our findings.
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Figure 3: Human evaluation reveals that B-cos expla-
nations have better human interpretability and human
agreement than baseline methods and the improvements
are statistically significant.

5 Human Evaluation

We conduct a human study to evaluate the hu-
man interpretability and agreement of B-cos ex-
planations, comparing them against three strong
post-hoc explanation methods on the conventional
BERT model. For the study, we randomly select
50 instances from AG News and HateXplain where
the B-cos and conventional model predict the same
label. We then ask five annotators to rate the respec-
tive explanations in terms of human interpretability

(how well they understand it) and human agree-
ment (how much they agree with the it) on a scale
of 1-5. We provide further details of the human
evaluation in Appendix I.

Human Evaluation Results Figure 3 shows
that B-cos explanations have a better human in-
terpretability and exhibit greater alignment with
human reasoning than post-hoc methods. Con-
ducting paired t-tests with a Bonferroni-corrected
o= 0% = 0.0083 (Bonferroni, 1936) shows that
the improvements of B-cos explanations are statis-
tically significant (p < «) for both metrics.

6 Qualitative Analysis

Figure 4 provides an example of B-cos and other
(post-hoc) explanations. It can be seen the B-cos ex-
planation highlights important tokens well with lit-
tle focus on irrelevant ones. In contrast, ShapSampl
attributes the highest importance to the [SEP] token
and provides only little useful information. Mean-
while, DecompX extracts a significant amount of
irrelevant information. Overall, we find that the B-
cos explanation provides clearer and more relevant
attributions compared to the post-hoc explanations.

7 Comparison of B-cosification Setups

Transforming PLMs into task-specific B-cos LMs
involves two key objectives: task fine-tuning and B-
cos conversion. While our main experiments com-
bine these two phases, they can also be performed
separately. To assess their effects, we compare two
alternative training setups:

* Task then B-cos: PLMs are first fine-tuned on
a downstream task. B-cos adaptations are then
applied, followed by further fine-tuning on the
same task for B-cos conversion. This setup is
equivalent to Arya et al. (2024) who apply B-
cosification to models with task capabilities.

* B-cos then task: B-cos adaptations are applied
to PLMs first, followed by pre-training on
unsupervised texts to enhance B-cosification
(cf. Appendix E). The pre-trained B-cos mod-
els are then fine-tuned on the downstream
task.

We evaluate these setups against the B-
cosification approach used in our main experiments
(B-cos LM) and compare task performance, faith-
fulness, and training efficiency. Additionally, we
report results for conventional fine-tuning (Conv.



Label: Sci/Tech, Model prediction: Sci/Tech

B-cos

[CLS] |microsoft to help [users prep for patching microsoft said today that it plans to give customers three days '

advance notice about its monthly security updates to help them prepare to install related - patches . [SEP]

ShapSampl [CLS] microsoft to help users prep for patching microsoft said today that it plans to give customers three days *

advance notice about its monthly security updates to help them prepare to install related software patches . -

DecompX [CLS] microsoft to help - prep for patching microsoft said to

ly that it plans to give customers three days *

advance notice about its monthly security updates to help them prepare to install related - patches . [SEP]

Figure 4: Examples of B-cos explanations (B-cos BERT) as well as ShapSampl and DecompX explanations (BERT)
from AG News. Green (red) indicates the positive (negative) impact of tokens on the prediction. The B-cos
explanation highlights only relevant tokens and is more interpretable to humans (cf. Appendix J for more examples).

LM) and training a randomly initialized B-cos LM
(B-cos from scratch). Experiments are conducted
on IMDB, with results averaged over three runs.

Setup Epochs Acc (1) SeqPG (1) Steps (K)
Conv. LM 5 94.06 - 7.33
B-cos LM 5 89.85 70.41 3.67
B-cos from scratch 5 88.36 60.92 4.33
1+4  90.14 70.28 1+4.33
2+3  90.33 70.36 3+3.33
Task then B-cos 342 90.07 69.94 443
4+1  88.19 70.36 5+1
5+5%  90.33 69.65 6.67+3.33
1+4  89.78 65.58 1+5.67
2+3  89.81 66.01 3+4
3+2  89.38 66.95 4+3
B-cos then task 4+1 87.42 67.9 6+1
5+5%  90.38 71.16 7+3
10+5* 91.08 75.06 15+3.67
20+5*%  91.75 76.66 31+6.33

Table 3: Different B-cosification setups. For two-phase
methods, we report epoch distribution and convergence
steps per phase. * marks additional training epochs.

Table 3 shows that B-cos LM requires fewer
training steps to reach optimal validation perfor-
mance than conventional fine-tuning. Training B-
cos LM from scratch results in worse task perfor-
mance and faithfulness, emphasizing the impor-
tance of good parameter initialization. Among the
two setups that separate task fine-tuning and B-
cos conversion, Task then B-cos achieves results
comparable to B-cos LM but requires more train-
ing steps. B-cos then task initially performs worse
under the same training budget. However, with
additional pre-training epochs, it surpasses other
B-cosification setups in both task performance and
faithfulness. Overall, we find that combining task
fine-tuning and B-cos conversion is the most ef-
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Figure 5: Varying B for B-cos BERT (HateXplain).
Accuracy and Comp both peak around B=1.5, while
explanation entropy negatively correlates with B.

ficient approach. However, with sufficient pre-
training, B-cos then task can produce more per-
formant and explainable models.

8 Effects of B-cosification and B Values

For a deeper understanding of how B-cosification
and parameter B affect model performance and be-
havior, we compare conventional and B-cos BERT
trained on HateXplain across different B values.
We also provide an empirical analysis of the impact
of B on input-weight alignment in Appendix K.

Model Performance Figure 5 shows the effects
of varying B on the task performance and explana-
tion faithfulness. Classification accuracy initially
improves slightly as B increases from 1 to 1.25,
benefiting from the extra non-linearity introduced
by B>1. However, beyond this point, accuracy de-
clines as higher alignment pressure reduces model
flexibility. A similar trend is observed for Comp,
peaking around B=1.5 before decreasing. This dif-
fers from previous findings in vision models (Bohle
et al., 2022), which we attribute to the high sparsity
of explanations at larger B values. As alignment



pressure increases, fewer tokens receive attribution
scores that are not close to zero, leading to poor to-
ken importance calibration and lower Comp scores.
The effects of B on other metrics are similar and
can be found in Appendix L.

Explanation Entropy Figure 5 also reveals a
negative correlation between explanation entropy
and B, indicating that higher alignment pressure
leads to sparser explanations. This aligns with
our expectations: a larger B amplifies the differ-
ences between dimensions in |cos(x, W)[B~1 of
B-cos layers (Equation 2) and the dynamic linear
weight assigns more distinct attributions to input
features. As a result, explanations become more
concentrated, where only a few tokens receive high
attributions, while most remain close to zero (cf.
Appendix M for an example).

Model Bias Since B-cos LMs with larger B val-
ues rely on fewer tokens for prediction, we investi-
gate whether this may cause them to learn biases
in the data. For this, we examine label bias and
word-level spurious correlations using the HateX-
plain dataset, where approximately 60% of training
and test examples have positive labels and societal
biases are present. Figure 6 shows that a larger B
value (B=2.5) reduces the model capacity, leading
to a substantially higher prediction positive rate
and lower balanced accuracy. Moreover, the B=2.5
model assigns higher attributions to non-semantic
[CLS] and [SEP] tokens, indicating a reduced re-
liance on meaningful content. Notably, this label
bias is not observed in the balanced datasets.
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Figure 6: Comparison of conv. BERT and B-cos BERT
with different B values. The attributions to [CLS] and
[SEP] tokens (M) indicate that B-cos LMs with large B
overfit to the non-semantic label distribution.

We also find that B-cosification—particularly
with large B—amplifies the reliance on spurious
correlations. For example, the prediction positive
rate for examples with the word “black” rises from
49.02% in the test set and 52.94% in the conven-

tional model to 59.80%, 56.86%, and 73.53% in
B-cos LMs with B=1, 1.5, and, 2.5, respectively
(we provide an example in Appendix N). However,
the faithfulness and interpretability of B-cos ex-
planations facilitate the identification of spurious
correlations and can effectively guide models to-
ward reducing them (Rao et al., 2023). We leave
the exploration of B-cos LMs for bias detection
and mitigation to future work.

9 Explanation Efficiency

Beyond improved faithfulness and human inter-
pretability, B-cos explanations are also efficient
to extract. Comparing their computational costs
with strong post-hoc methods shows that B-cos ex-
planations are the most efficient in both time and
memory usage (Table 4).

Method Conv. BERT B-cos BERT
Time (s) Memory (GB) Time (s) Memory (GB)

ShapSampl 37.22 21.95 70.49 22.95

LIME 6.82 21.96 8.92 22.95

SIG 67.46 29.09 108.48 69.32

DecompX  0.76 48.38 - -

B-cos - - 0.08 2.78

Table 4: Computational costs of generating explanations
for 100 instances randomly sampled from IMDB (test)
using an NVIDIA H100 GPU (batch size 1). We see
that the B-cos explanations (bold) are at least 9x faster
and require at most % of VRAM.

10 Conclusion

In this work, we introduce B-cos LM, a dynamic
linear model that learns task-relevant patterns
through increased input-weight alignment pressure.
B-cos LMs generate more faithful and human in-
terpretable explanations while maintaining strong
task performance and fast convergence. Based on
our in-depth analysis of B-cosification, we pro-
vide three recommendations for effectively trans-
forming PLMs into B-cos LMs: (1) combine B-
cos conversion and task fine-tuning for efficient
B-cosification. If resources allow, additional B-cos
pre-training can further improve task performance
and explanation faithfulness; (2) carefully select
the parameter B, as excessively large values can
reduce model capacity and lead to overly sparse ex-
planations; and (3) be mindful of biases in training
data, especially at high B values, as B-cosification
may amplify existing biases.



11 Limitations

This study has certain limitations that should be
acknowledged.

Firstly, the automatic evaluation metrics we use
may not fully capture the faithfulness of differ-
ent explanation methods (Feng et al., 2018; La-
puschkin et al., 2019). However, since there is no
universal consensus on the most reliable evaluation
metrics, this remains an open challenge in explain-
ability research.

Secondly, our study does not include a direct
comparison with other methods designed to en-
hance model explainability, which may limit the
scope of our findings. This omission is due to two
reasons: (1) existing explainable models often pro-
vide only marginal improvements over post-hoc
explanation methods (Brinner and Zarrie$3, 2024),
and (2) incorporating them into our study would re-
quire substantial computational resources, as many
baseline explanation methods are computationally
expensive.

Finally, although B-cos LMs can be applied to
different model architectures and tasks, our ex-
periments focus only on encoder-only models for
sequence classification tasks. Extending our ap-
proach to other architectures and tasks remains an
avenue for future work.

12 Ethical Considerations

As discussed in § 8, B-cos LMs can overfit to bi-
ases present in the training data. Although their
more faithful and human interpretable explanations
make biased predictions easier to detect, this does
not eliminate the risk of unintended bias ampli-
fication. We encourage users to carefully assess
potential biases in their specific use cases before
deploying B-cos LMs and to incorporate bias miti-
gation strategies where necessary.

All models and datasets used in this work comply
with their respective licenses. Their usage aligns
with their intended purpose as specified by their
creators.

The human study complies with all ethical re-
search guidelines set by our institutes. All partici-
pants of the human evaluation study were master’s
or doctoral students with backgrounds in computer
science or computational linguistics and were pro-
ficient in English. They were volunteers and were
compensated with the standard hourly salary set by
the university (at least 5% above minimum wage).
Before participation, all participants were informed

about the content and purpose of the study, the col-
lected data and its usage. They were instructed on
how they could access, modify, or delete their data
post-study and provided their informed consent.
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A Terminology

To ensure clarity, we define key terms used in this
work as follows:

* Faithfulness. The extent to which an explana-
tion accurately reflects the model’s actual rea-
soning process (Jacovi and Goldberg, 2020).
A faithful explanation should directly corre-
spond to the internal mechanisms that led to
the model’s prediction.

* Human Interpretability. The ease with
which a person can understand the model’s
reasoning from the explanation (Lage et al.,
2019). A highly interpretable explanation
should be clear, concise, and focused on rele-
vant information while avoiding unnecessary
or distracting information. However, an expla-
nation that is easy for humans to interpret may
not necessarily reflect the model’s actual rea-
soning process or align with human reasoning
patterns.

* Human Agreement. The degree to which a
model’s explanation aligns with the reasoning
a human would use for the same prediction.
A high-agreement explanation should follow
intuitive, logical reasoning patterns similar to
human decision-making.

¢ Explainability. The extent to which a
model’s computations can be faithfully ex-
plained and its learned patterns are under-
standable to humans. A highly explainable
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model should yield explanations that are both
faithful to its actual reasoning process and
interpretable to humans.

B Notation

In this paper, we use lowercase letters for scalars
(e.g., b), bold lowercase letters for vectors (e.g., w,
x), and bold uppercase letters (W) for matrices.
Additionally, we use bold uppercase letters X and
A to denote a sequence of model inputs or hidden
state activations. In § 3, we use x to denote the
input when a function is applied to each element
of the input sequence separately. In contrast, we
use X or A when the function involves interac-
tions between elements, such as in the attention
mechanism.

C Ablation Study

To gain deeper insights into B-cosification, we con-
duct an ablation study to evaluate the effects of
key design choices on model performance. Table 5
reports the effects of these modifications.
Consistent with § 8, B=1 results in worse task
performance and lower explanation faithfulness.
Using binary cross-entropy (BCE) loss instead of
conventional cross-entropy loss has minimal im-
pact on classification accuracy, but leads to better
faithfulness results in perturbation-based evalua-
tions. Additionally, architectural adaptations, in-
cluding removing bias terms and eliminating acti-
vation functions in prediction heads, play a cru-
cial role in improving both model performance
and explainability in B-cos LMs. Besides, we en-
countered numerical instability when generating ex-

planations without these architectural adaptations,
tanh(x) ) be-
(%)

as the dynamic linear weight for tanh (
comes unstable when x is close to 0.

Beyond ablating components in model design
and training, we also examine different explanation
methods across models. First, replacing dynamic
linear weights W (x) with gradients for computing
input contributions (equivalent to InputXGradient,
Kindermans et al., 2016) results in less faithful
explanations. Moreover, directly extracting B-cos-
like explanations, W (x)x, from a conventional
model results in worse faithfulness compared to
those from B-cos LMs..*

*Extracting W (x)x from conventional models follows
the same approach as in B-cos LMs (cf. § D), except that in
standard linear transformations, the dynamic linear weight is
replaced by the fixed weight matrix W.
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Acc (1)  Comp (1) Suff (}) SeqPG (1)
Full system 78.64 59.66 -4.89 77.57
w/o alignment pressure (B=1) 78.07 57.19 -2.57 70.18
w/o BCE training 79.00 49.22 -7.91 79.21
w/o architectural adaptations 77.65 52.23 -3.80 74.30
w/o dynamic linear weights (IxG)  78.64 44.93 -0.60 53.57
W (x)x from conv. model 80.77 44.92 2.80 70.20

Table 5: Ablation study of key designs in B-cos BERT model on HateXplain. Results are averaged over three runs.

D Dynamic Linear Representation of
Model Components

Here we describe how each model component func-
tions as a dynamic linear module in B-cos LMs.

B-cos Layers B-cos layers are designed as dy-
namic linear modules with a dynamic linear weight
matrix W (x) = |cos(x, W)|B~1 @ W. Here, ®
scales the rows of the matrix W to its right by the
scalar entries of the vector to its left.

Non-linear activation functions In transformer
models, non-linearity is typically introduced using
(approximately) piecewise linear activation func-
tions, such as ReLU (Nair and Hinton, 2010) and
GELU (Hendrycks and Gimpel, 2016). These func-
tions can be easily interpreted as linear transforma-
tions with input-dependent weights. For example,
GELU(x) = x x (0.5 + 0.5 x erf(x/+/2)) can
be interpreted as a linear transformation where the
second term acts as a dynamic linear weight.

Attention block Bohle et al. (2024) showed that
attention computations can be seamlessly inte-
grated into B-cos networks as a dynamic linear
module:

Att(X; Q.K, V) = softmax(XTQTKX)VX
=AX) VX =WIX)X (€]
For multi-head self-attention (MSA), the output
can be viewed as the concatenation of the outputs

from H attention heads, followed by a linear pro-
jection with matrix U:

MSA(X) = U[W, (X)X, ..., W,(X)X)] (5)

Since this operation maintains a dynamic linear
structure, the multi-head attention block remains a
dynamic linear module.

E Implementation Details

Fine-tuning Setups For all PLMs used in the ex-
periments, we use the uncased base version from
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huggingface (Wolf et al., 2020). For both conven-
tional models and B-cos LMs, we train them for
5 epochs with 10% linear warm-up steps on the
downstream task datasets. The learning rates are
set to 2e-5 for IMDB and HateXplain, and 3e-5 for
AG News. All models use a batch size of 16 and a
maximum sequence length of 512. For validation,
we randomly sample half of the test set from IMDB
and AG News.

Post-hoc Explanation Baselines For IxG and
ShapSampl, we use the Captum (Kokhlikyan et al.,
2020) implementations.> We implement the Atten-
tion method ourselves, and LIME is sourced from
the lit library®. For DecompX’ and SIG?, we use
their official implementations with default config-
urations. The number of samples is set to 25 for
ShapSampl and 3,000 for LIME, with [MASK] as
the baseline token. For all explanation methods
at the embedding level, model predictions are at-
tributed to the combined sum of word, position,
and token type embeddings (if applicable). In the
main experiments, we compute token attribution
scores by summing over all embedding dimensions,
as this approach demonstrates better faithfulness
results than using the L2 norm.

SeqPG Examples When constructing examples
for SeqPG, we set the sequence length to 50 for
AG News, 256 for IMDB, and 25 for HateXplain,
aligning with their median lengths. Only examples
longer than these thresholds are selected, and they
are truncated to construct synthetic examples. Ad-
ditionally, we only use examples that are correctly
predicted with a minimum confidence of 75% after
truncation. For a fair comparison, we evaluate B-
cos LMs on the same sets of examples constructed

5https
6https
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8https
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based on the predictions of the corresponding con-
ventional models.

Evaluation Setups For task performance evalua-
tion, we use the complete test set for each task. For
faithfulness evaluation, we conduct perturbation-
based evaluations on 2000 test examples and Se-
gPG on 500 test examples for AG News and
IMDB. For HateXplain, we use the full test set
for perturbation-based evaluation (1,924 examples)
and construct 269, 310, and 308 SeqPG examples
from it using BERT, DistilBERT, and RoBERTa,
respectively.

B-cos Pre-training For B-cos pre-training in § 7,
we further pre-train the model on the Wikipedia
dataset” using masked language modeling loss with
a learning rate of le-4 and a 15% masking ratio.

Compute Infrastructure Unless stated other-
wise, all experiments are conducted on a single
NVIDIA H100 GPU. Training one epoch of B-
cos BERT takes approximately 40 minutes on AG
News, 10 minutes on IMDB, and 5 minutes on
HateXplain.

F SeqPG Example

Figure 7 presents a SeqPG example from AG News
using B-cos BERT. For better visualization, each
segment is truncated to 20 tokens instead of 50 used
in the experiments. Unlike the hybrid document
evaluation proposed by Poerner et al. (2018), our
approach explicitly controls segment length and
position to ensure a fair comparison. Additionally,
we measure the proportion of correctly assigned
positive attributions rather than relying solely on
the highest attribution value.

G Task Performance of Other B-cos LMs

Figures 8 and 9 illustrate the task performance of
conventional and B-cos DistilBERT and RoBERTa
across datasets. Consistent with findings from
BERT models (cf. Figure 2), B-cos LMs exhibit
strong performance comparable to conventionally
fine-tuned models.

H Faithfulness Evaluation of Other B-cos
LMs

Tables 6 and 7 present the faithfulness evaluation
results for DistilBERT and RoBERTa. The find-
ings are consistent with our main experiments (cf.

9h'ctps ://huggingface.co/datasets/wikimedia/
wikipedia
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Table 2), confirming that B-cos LMs produce more
faithful explanations compared to post-hoc expla-
nation methods.

I Human Evaluation Details

In the human study, we select only examples
shorter than 25 tokens for HateXplain and 40 to-
kens for AG News to improve visualization. Ad-
ditionally, we replace [CLS] and [SEP] with ## to
make the examples more understandable for lay
users. Below, we provide the instructions along
with a detailed description of the criteria and scor-
ing used in our human evaluation.

WARNING: SOME CONTENT IN
THIS QUESTIONNAIRE IS HIGHLY
OFFENSIVE.

Prerequisites: Proficiency in English is
required for this evaluation task. If you
do not meet this criterion, please do not
proceed.

We invite you to review 50 examples
where NLP models perform classifica-
tion tasks and provide explanations for
their predictions.

* The first 25 examples come from a
hate speech detection task, where
the model predicts whether a text is
toxic or not toxic.

* The last 25 examples come from a
topic classification task, where the
model categorizes a text into one of
four topics: sports, world, business,
or sci/tech.

For each example:

* The model’s prediction is shown
along with four explanations justi-
fying the prediction.

* The order of the explanations is ran-
domized to prevent bias.

* Words highlighted in green indicate
words that had a positive influence
on the prediction, while words in
red indicate words that had a nega-
tive influence. The intensity of the
color reflects the strength of the im-
pact.

* Important: The model’s prediction
may be incorrect. Your task is to


https://huggingface.co/datasets/wikimedia/wikipedia
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Label: Sports --- Sci/tech

Target Class Sports  [CLS] carter could prove real plus for - the - reported deal for - carter very much surprises me given new [SEP]
earth ' s solar system shaped by brush with star , astronomers say ( space . com ) space . [SEP]

Target Class Sci/Tech [CLS] carter could prove real plus for - the - reported deal for - carter very much surprises me given new [SEP]

earth ' s solar system shaped by brush with star , astronomers say ( space . com ) space . [SEP]

Figure 7: An example of SeqPG from AG News (using B-cos BERT). Green (red) indicates the positive (negative)
impact of tokens on the prediction. The example consists of two sequences with different labels (Sports and
Sci/tech), separated by the [SEP] token after the first sequence. Explanations are generated for each label, and the
proportion of correctly attributed positive tokens is averaged across both labels to compute the SeqPG score for this
example.

Model Method AG News IMDB HateXplain
Comp (1) Suff () SeqPG (1) Comp (1) Suff(]) SeqPG (1) Comp (1) Suff(l) SeqPG (1)
Attention 26.36 5.37 50 31.62 10.46 50 30.56 14.67 50
IxG 19.29 6.21 53.71 23.78 12.38 49.23 25.13 18.08 46.60
() Conv. DistilBERT SIG 30.78 1.63 67.87 47.16 5.48 60.66 41.11 4.23 58.55
DecompX - - - - - - - - -
ShapSampl 52.56 -0.56 82.64 63.29 291 70.27 48.73 0.87 64.44
LIME 52.59 -0.56 77.64 58.6 5.12 61.11 31.61 12.94 56.49
Attention 28.47 3.05 50 31.36 4.15 50 37.33 6.49 50
IxG 22.33 9.09 58.63 51.02 -1.44 53.76 41.62 0.29 56.03
(b) B-cos DistlBERT SIG 14.73 5.62 53.09 39.75 -0.11 64.18 28.68 7.27 60.75
DecompX - - - - - - - - -
ShapSampl 31.78 1.77 62.60 64.65 -2.42 56.89 34.64 4.56 55.8
LIME 58.25 0.31 77.65 69.96 -0.43 61.08 44.66 1.66 59.27
(c) B-cos DistilBERT  B-cos 61.93 -1.01 86.78 75.73 -2.57 71.95 57.2 -4.49 74.89

Table 6: Faithfulness evaluation for conventionally fine-tuned DistilBERT and B-cos DistilBERT across three
datasets. The best results are in bold. We find that B-cos explanations are consistently more faithful than post-hoc
explanations from both models.
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Figure 8: Mean accuracy of conventionally fine-tuned  Figure 9: Mean accuracy of conventionally fine-tuned
and B-cos DistilBERT models averaged over three runs.  and B-cos RoBERTa models averaged over three runs.
B-cos models perform comparably to conventional mod- ~ B-cos models perform comparably to conventional mod-
els on most tasks. els on most tasks.

evaluate the explanations based on
how well they support the model’s
prediction, not the true labels.

low when making your assessments.

Human Interpretability: How easily

Evaluation Task: a person can understand the model’s

After reviewing each example, please reasoning based on the explanation. A
rate the the human interpretability and highly interpretable explanation should
human agreement of the four explana- be clear and easy to follow, focus on rel-
tions on a scale of 1 to 5. Refer to the evant words and avoid unnecessary or
definitions and rating scales provided be- distracting details.
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Model Method AG News IMDB HateXplain
Comp (1) Suff(l) SeqPG (1) Comp (1) Suff()) SeqPG (1) Comp (1) Suff()) SeqPG (1)
Attention 217 380 50 2526 584 50 294 752 50
xG 11.33 7.54 44.15 1615 1153 4720 2440 1516  50.59
SIG 19.64 1.63 66.43 3814 213 59.04 4421 142 6673
@ Conv. ROBERTa - 1y \pX 5000 -0.84 90.38 4924 065 72.80 4694 142 70.16
ShapSampl 3563  -0.68 7831 4332 1.83 65.85 4483 -130 6715
LIME 1928 285 66.73 2107 832 50.81 2797 1138 5859
Attention 1607 683 50 29.83 2.85 50 27.35 8.39 50
xG 2225 2.39 56.15 67.2 226 5695 4069  -1.11 58.59
(b) B-cos RoBERTa  SIC 4435 095 51.70 7470 239 58.03 5120 580  57.62
DecompX - - - - - - - - -
ShapSampl 5526 092  72.65 743 239 6274 5154 564 7058
LIME 23.01 2.46 63.11 3714 078 53.15 2986 5.4 63.61
(c) B-cos RoBERTa  B-cos 6247  -118  86.63 7515 239 7583 5133 518 7401

Table 7: Faithfulness evaluation for conventionally fine-tuned RoOBERTa and B-cos RoBERTa across three datasets.
The best results are in bold. We find that B-cos explanations are consistently more faithful than post-hoc explanations

from both models.

1. Not Interpretable: The explana-
tion is unclear, noisy, or provides
no meaningful insight.

. Slightly Interpretable: Some
clues are present, but the explana-
tion is too sparse, irrelevant, or con-
fusing.

. Moderately Interpretable: The ex-
planation contains useful informa-
tion but is cluttered with noise or
irrelevant details.

. Highly Interpretable: The expla-
nation is mostly clear, with minimal
irrelevant highlights.

. Completely Interpretable: The ex-
planation is fully transparent, high-
lighting only the most relevant
words, making the model’s reason-
ing fully clear.

Human Agreement: How closely the
model’s explanation aligns with the rea-
soning a human would use for the same
prediction. A high-agreement explana-
tion should follow logical, intuitive rea-
soning and align with typical human
decision-making patterns.

1. No Agreement: The explanation
contradicts human reasoning or
lacks logic.

. Low Agreement: The explanation
bears some resemblance to human
reasoning but includes major incon-
sistencies.

ing for Rating ion 2

Model prediction: Not Toxic

incorrect positive evidence for Not Toxic, -human agreement

Explanati

Explana

Figure 10: An example shown to participants that
demonstrates how to rate explanations.

3. Moderate Agreement: The expla-
nation partially aligns with human
reasoning, yet contains notable dif-
ferences.

. High Agreement: The explanation
largely aligns with human reason-
ing, showing only minor discrepan-
cies.

Complete Agreement: The expla-
nation fully matches human reason-
ing, following a logical and intuitive
path that a human would naturally
use.

We also provide participants with examples to
illustrate the reasoning behind rating explanations.
One such example is shown in Figure 10. Addi-
tionally, Figure 11 presents an example of a model
prediction and its explanations as displayed to par-
ticipants during the study.
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Words highlighted in green indicate words that had a positive influence on the prediction, while
words in red indicate words that had a negative influence. The intensity of the color reflects the
strength of the impact.

## symbols mark the beginning and end of the text.

Possible classes:

Toxic: The text contains language that is offensive, derogatory, or harmful toward individuals or
groups, including insults, slurs, threats, or dehumanizing statements.

Not Toxic: The text does not contain harmful intent or offensive language, expressing opinions,
criticism, or discussions in a respectful and non-threatening manner.

Model prediction: Not Toxic

Expl ion 1: ## [ ber ] [ ber ] people are removing shoes .
2: ## [ ber ] [ ber ] people are removing - ##
Expl ion 3: ## [ ber ] [ ber ] people are removing - ##
4: ## | ber ] [ ber ] people are removing - ##

Figure 11: An examples of a model prediction and its
explanations presented to participants.

J More Examples of B-cos Explanations

We provide two more examples of B-cos and other
(post-hoc) explanations from AG News in Fig-
ure 12. Consistent with our findings in § 6, B-cos
LMs provide more human interpretable explana-
tions.

K Impact of B on Input-weight
Alignment

To analyze how B-cosification and alignment pres-
sure influence the behavior of B-cos LMs, we com-
pute the alignment (cosine similarity) between each
input and its corresponding weight in B-cos mod-
ules across all layers. This analysis is performed on
100 examples from the HateXplain dataset. In Fig-
ure 13, we plot different percentiles of input-weight
alignment for conventional and B-cos BERT mod-
els with varying B values. For better visualization,
we display only the 10th to 90th percentiles.
Overall, larger B values generally lead to
stronger input-weight alignment compared to
smaller B and conventional models, as evidenced
by the curves for B=1.5 and B=2.5 lying above
those for the conventional model and B=1. How-
ever, the alignment pattern becomes more complex
when comparing B=1.5 and B=2.5. Specifically,
at B=2.5, the most aligned input-weight pairs ex-
hibit higher alignment than in other models, but
some pairs show very low alignment. This re-
sult may arise because certain weights are highly
optimized for specific input patterns, leading to
poor alignment with others, particularly in later lay-
ers where input features become more anisotropic
(Ethayarajh, 2019; Li et al., 2020). As a result,
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some outputs from the B-cos layers are highly neg-
ative. When these outputs are fed into GELU acti-
vation functions, their dynamic weights approach
zero, making the explanations more sparse.

L Effects of B on Other Metrics

Table 8 presents the complete results on how B
values affect task performance, explanation faith-
fulness and explanation entropy, as shown in Fig-
ure 5. Similar to Comp, SeqPG scores also decline
with higher alignment pressure. This could also be
attributed to the high sparsity of explanations. As
B increases, fewer tokens receive attribution scores
that are not close to zero, and in some SeqPG ex-
amples, B-cos LMs may attribute predictions to
a single segment. This can lead to numerical in-
stability when computing the positive attribution
ratio.

B 1.00 125 150 1.75 2.00 225 250

Acc (1)  78.57 79.23 78.10 77.41 77.48 70.44 73.55
Comp (1) 55.09 58.99 59.64 59.23 54.44 35.80 27.11
Suff ()  -425 -5.71 -5.47 -5.84 -6.69 -7.23 -5.47
SeqPG (1) 69.75 77.26 77.79 77.67 76.79 76.68 77.25
Entropy 3.09 279 258 235 228 198 1.89

Table 8: Task performance, explanation faithfulness,
and explanation entropy of B-cos BERT models on Hat-
eXplain with different B values. Results are averaged
over three runs. Similar to Figure 5, task performance
and explanation faithfulness peak around B=1.5, while
explanation entropy negatively correlates with B.

M B-cos Explanations with Different B
Values

Figure 14 illustrates that with increased alignment
pressure, B-cos LMs learn fewer but more task-
relevant features. Consequently, they produce
sparser explanations, with fewer tokens receiving
significant attribution. This finding aligns with the
statistics presented in § 8.

N Example of Model Bias

In the example shown in Figure 15, models become
increasingly confident in the incorrect prediction
as B increases, with attributions primarily assigned
to the word “blacks”. Moreover, simply replacing
“blacks” with “whites” results in a sharp drop in
confidence, which demonstrates a growing reliance
on spurious correlations with increased alignment
pressure. The observation further confirms our
findings in §8.



Label: World, Model prediction: World

B-cos [CLS] iran deploys new missile -: iran added one more missile to its military arsenal and the defense minister
said saturday his country was ready to confront any external threat . [SEP]

ShapSampl [CLS] iran deploys new missile tehran : iran added one more missile to its military arsenal and the defense minister
said saturday his country was ready to confront any external threat . -

DecompX [CLS] iran deploys new missile -: iran added one more missile to its military arsenal and the defense minister
said saturday his country was ready to confront any external threat . [SEP]

Label: Sci/Tech, Model prediction: Sci/Tech

B-cos [CLS] cisco and microsoft partner for crm 8 / 24 / 2004 - - cisco systems yesterday announced a new
customer relationship management ( crm ) communications - for microsofts crm offering . [SEP]

ShapSampl [CLS] cisco and microsoft partner for crm 8 / 24 / 2004 - - cisco systems yesterday announced a new
customer relationship management ( crm ) communications connector for microsofts crm offering . -

DecompX [CLS] - and microsoft partner for crm 8 / 24 / 2004 - - - systems - announced a new

customer relationship management ( crm ) communications - for microsofts crm offering . [SEP]

Figure 12: More examples of B-cos explanations (B-cos BERT) as well as ShapSampl and DecompX explanations
(BERT) from the AG News dataset. Green (red) indicates the positive (negative) impact of tokens on the prediction.
As can be seen, the B-cos explanation highlights only relevant tokens and is more interpretable to humans.
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Figure 13: Percentiles of input-weight alignment in B-
cos modules across selected layers of conventional and
B-cos BERT models with different B values (HateX-
plain).
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Label: Sci/Tech, Model prediction: Sci/Tech

B=1 [CLS] -: blame microsoft ? last year we explored the question of microsoft # 39 ; s potential - for
software flaws exploited by Mru_seé\ and other forms of malware . [SEP]

B=1.5 [CLS] -: blame |microsoft ? last year we explored the question of microsoft # 39 ; s potential liability for
- flaws exploited by viruses and other forms of malware . [SEP]

B=2.5 [CLS] -: blame microsoft ? last year we explored the question of microsoft # 39 ; s potential liability for
software flaws exploited by viruses and other forms of malware . [SEP]

Figure 14: B-cos explanations (B-cos BERT) on AG News with different B values. Green (red) indicates the positive

(negative) impact of tokens on the prediction. As B increases, B-cos LMs produce sparser explanations, with fewer
tokens receiving significant attribution scores.

Label: Not Toxic, Model prediction: Toxic

B=1: Prediction confidence=69.93, Confidence after perturbation=53.91

[CLS] america is so racist that they think asians are smarter than - and hispanics
B=1.5: Prediction confidence=92.54, Confidence after perturbation=8.93

- america is so racist that they think asians are smarter than blacks and hispanics
B=2.5: Prediction confidence=99.70, Confidence after perturbation=6.84

[CLS] america is so racist that they think asians are smarter than - and hispanics
Figure 15: Example of how larger B values lead B-cos LMs to learn word-level spurious correlations. Green (red)
indicates the positive (negative) impact of tokens on the prediction. Higher alignment pressure increases the reliance

of B-cos LMs on spurious correlations in the data. In this example, perturbation involves changing “blacks” to
“whites”.
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