
Under review as a conference paper at ICLR 2024

NAP2: NEURAL NETWORKS HYPERPARAMETER OP-
TIMIZATION USING WEIGHTS AND GRADIENTS ANAL-
YSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent hyper-parameter tuning methods for deep neural networks (DNNs) gener-
ally rely on first using low-fidelity methods to identify promising configurations
and then using high-fidelity methods for further evaluation. While effective, exist-
ing solutions treat DNNs as ‘black boxes’, which limits their predictive abilities.
In this work, we propose Neural Architectures Performance Prediction (NAP2), a
‘white box’ hyperparameter optimization approach. NAP2 models the changes in
the weights and gradients of the analyzed networks over time and can predict their
final performance with high accuracy, even after a short training period. Our eval-
uation shows that NAP2 outperforms the current state-of-the-art both in its ability
to identify top-performing architectures and in the amount of resources it utilizes.
Moreover, we show that our approach is transferable, meaning it is possible to
train NAP2 on one dataset and apply it to another.

1 INTRODUCTION

Hyperparameter optimization (HPO) refers to a large array of techniques that aim to identify hyper-
parameter configurations that will optimize the performance of the analyzed algorithms Bischl et al.
(2023). HPO approaches are diverse and include grid and random search Bergstra & Bengio (2012),
evolutionary algorithms Li et al. (2013), Bayesian optimization Lindauer et al. (2022), and succes-
sive halving-based approaches Jamieson & Talwalkar (2016). Generally, all of the above approaches
treat HPO as a black box optimization problem.

Performing HPO for deep neural architectures can be particularly challenging due to computational
cost. Because training a large number of networks until convergence is often not practical, existing
solutions Li et al. (2017); Jamieson & Talwalkar (2016) focus on the evaluation of intermediate
results (i.e., partial training) and the dynamic allocation of resources to promising candidates. These
approaches, which balance exploration and exploitation (e.g., multi-arm bandits Bouneffouf et al.
(2020)), are the current state-of-the-art.

In this study, we propose Neural Architectures Performance Prediction (NAP2), a novel HPO ap-
proach for deep neural networks. Unlike existing approaches, NAP2 treats the neural architectures
as white boxes and analyzes the changes in the weights and gradients of the networks during train-
ing. We model the weights and gradients using meta-features, which enable us to train a highly
accurate prediction model that can identify promising candidate architectures in their early stages
of training. Moreover, NAP2 can easily be used as part of existing HPO solutions (e.g., Successive
Halving Jamieson & Talwalkar (2016)), as we show in our evaluation.

We evaluate NAP2 on two commonly-used datasets, CIFAR-10 and CIFAR-100, using architectures
sampled from the NAS-Bench 101 dataset Ying et al. (2019). Our evaluation shows NAP2 outper-
forms SOTA baselines in both datasets, both in terms of accuracy and allocated resources. These
results are even more significant given that we use the prediction model trained on CIFAR-10 on the
CIFAR-100 architectures without any fine-tuning. These results show that NAP2 not only achieves
top results but is also generic and transferable across datasets and architectures.

Our contributions in this study are as follows:

1

Under review as a conference paper at ICLR 2024

• We present NAP2, a novel HPO approach for neural networks. Our approach analyzes the
inner workings of candidate architectures to predict their final performance and can achieve
SOTA results. Additionally, our approach is transferable across datasets.

• We release our training dataset, which contains summary statistics of the weights and gra-
dients of our training set networks at multiple points in their training process. This dataset
is the first of its kind and can facilitate future research. We also make our code and trained
prediction model publicly available.

2 RELATED WORK

2.1 HYPERPARAMETER OPTIMIZATION METHODS

All HPO methods reviewed in this section follow the same general approach: they iteratively gen-
erate hyperparameter configurations (HPCs) and evaluate them using a chosen metric. All configu-
rations and results are saved in a repository, where they can be recalled as needed. In Bischl et al.
(2023), the authors comprehensively review the field.

Bayesian optimization (BO). BO Frazier (2018) is one of the most common approaches for HPO. It
generally comprises of two components: a probabilistic surrogate model and an acquisition function.
In each iteration, the surrogate model is fitted to all HPCs in the repository. Then, the acquisition
model uses the distribution predicted by the surrogate model to select the next HPCs to be evaluated.
Multiple variations of both the surrogate model and the acquisition function exist. The authors of
McIntire et al. (2016) use sparse Gaussian processes as the surrogate model, while Eriksson et al.
(2019) use local Bayesian optimization. SMAC3 Lindauer et al. (2022), one of the most commonly-
used open-source optimization platforms, uses Random Forests. In recent years, neural networks
have also been increasingly used as surrogate models Lim et al. (2021).

Multifidelity-based approaches. Multifidelity refers to approaches that use approximators with
varying levels of fidelity. Low-fidelity approximators are less reliable in their predictions, but their
computational cost is lower. Multifidelity-based HPO approaches initially use low-cost, low-fidelity
approximators to evaluate many HPCs. The HPCs with the highest ranking are then further assessed
using high-fidelity approximators. Two of the most well-known Multifidelity approaches are Suc-
cessive Halving (SH) Jamieson & Talwalkar (2016) and Hyperband (HB) Li et al. (2017). SH is an
iterative algorithm initialized with a total budget B and predefined number of candidate HPCs n.
In each iteration, the algorithm allocates a percentage of B to the candidate HPCs, with the budget
being divided equally. At the end of each iteration, the lowest-performing HPCs are discarded, thus
enabling SH to further evaluate more promising candidates. HB attempts to allocate resources more
efficiently by running multiple SH processes (referred to as brackets), each with a different number
of HPCs. While all brackets have (roughly) the same budget, the varying number of HPCs enables
the algorithm to experiment with different exploration-exploitation trade-offs.

2.2 NEURAL NETWORKS PERFORMANCE PREDICTION METHODS

Lower fidelity methods. One type of lower-fidelity methods uses deep reinforcement learning
Tan et al. (2019); Baker et al. (2016) or evolutionary algorithm Real et al. (2019) to manage their
resource allocation. An important difference from HPO methods is the inability of these approaches
to evaluate a fixed set of candidates: NAS approaches explore a predefined search space, and the
process is often stochastic. Moreover, these approaches often constrain the types of architectures
they generate/evaluate (e.g., only residual blocks) to make the search problem more tractable.

Learning curve extrapolation. Methods that apply this approach attempt to train the neural net-
work for a short time and then extrapolate the overall learning curve and final performance. Extrap-
olation is often performed using an ensemble of functions such as pow3, log, and log-normal. The
work of Rorabaugh et al. (2021) hypothesizes that learning curves can be modeled with the function
of the form: f(x) = a − b(c−x). This function is bounded with different constraints to only allow
values possible by a learning curve. In Domhan et al. (2015), the authors use Markov Chain Monte
Carlo inference to account for the uncertainty in the data and the network’s parameters. This work
is extended in Klein et al. (2017), where the authors use Bayesian neural networks.

2

Under review as a conference paper at ICLR 2024

𝑇 𝑇 𝑇 ∗

LSTM

y

GradientsWeights GradientsWeights GradientsWeights

Weights
Encoder

Gradients
Encoder

Embeddings

Encoders

Feature
Maps

Performance
Predictor

𝑥 = 1
𝑥 = 2

𝑥 = 𝑛

Figure 1: The proposed NAP2 architecture. At fixed batch intervals, we extract feature maps that
represent the weights and gradients of the analyzed network. There feature maps are compressed
using an encoder, and then provided as input to an LSTM model. This model predicts the analyzed
network’s final performance.

Network topology-based prediction. This line of work attempts to predict the performance of
neural networks based on their structure. The Peephole architecture Deng et al. (2017) proposes
to create an encoding for each analyzed network and then use logistic regression to predict its final
performance on a given dataset. In Zhang et al. (2019), the authors use graph convolutional networks
(GCNs) for the prediction task. A similar approach is used in Lukasik et al. (2021), where a graph
neural network (GNN) is trained on the topology of the architectures of the NAS-Bench 101 Ying
et al. (2019) dataset. While all previously reviewed works were trained for specific datasets, TAPAS
Istrate et al. (2019) creates representations for both datasets and architectures to train its model.

3 THE PROPOSED METHOD

Our proposed approach is presented in Fig. 1. NAP2 is based on the hypothesis that analyzing
the ‘evolution’ of neural architectures (i.e., changes in weights and gradients) in their early training
stages will enable a learning model to predict their final performance. Starting with a set of |A|
architectures, we analyze every architecture by extracting summary statistics for each layer (Section
3.1). We repeat the process at fixed intervals of the network’s training, thus obtaining multiple
snapshots of its internal state. We represent the summary statistics using feature maps (Section 3.2)
and sequentially provide them as input to an LSTM model that serves as our performance predictor
(Section 3.3). Next, similarly to the successive halving used in Li et al. (2017), we discard a fixed
percentage of |A| whose performance is predicted to be the lowest (Section 3.4). We then train the
remaining architectures for another set of steps and repeat the above process.

3.1 META-FEATURES EXTRACTION AND REPRESENTATION

3.1.1 META-FEATURES EXTRACTION

We extract two sets of features for each analyzed neural architecture A: gradients-based and
weights-based. The meta-features are extracted from each trainable layer—either dense or
convolutional—at fixed intervals. In our experiments, we use 100 batches as our interval, a value we
found to provide a good balance between the need for frequent snapshots of the analyzed architecture
and the size of the log data that needs to be stored. All features are extracted in the same manner
for each layer. Firstly, we calculate a single value on the entire layer’s data (weights/gradients).
Secondly, we calculate a more fine-grained view for each layer.

3

Under review as a conference paper at ICLR 2024

• For dense layers, we calculate the value for each neuron’s inputs using the neuron’s
weights/gradients. For example, a layer of 100 neurons will produce meta-features con-
sisting of 101 values each (1 for the entire layer and 100 for each neuron).

• For convolutional layers, we calculate the meta-features across kernels. For example, a
convolutional layer with three input channels and 128 filters with a 4x4 kernel will produce
3× 4× 4 = 48 values. Ultimately producing 49 features (1 for the entire layer and the 48
fine-grained features).

Once we obtain the sets of values for each of our analyzed layers, we can calculate our meta-features.
These features are calculated in the same manner for the weights and gradient-based meta-features.
We calculate the meta-features for each layer individually.

• General statistics meta-features. This group of meta-features consists of basic statistical
operations: max, min, mean, variance, standard deviation, and median. Additionally, we
calculate the quartile values for the 0, 25, 75, 50, 100 quartiles.

• Distribution-based meta-features. We calculate the co-variance, kurtosis and skewness
of each analyzed layer.

Skewness -
µ3

σ3
(1)

Kurtosis -
µ4

σ4
(2)

where µi = 1
N

∑
k(wijk − wij)

i, wij is the weight, i is the index of the layer and j is
the index of the neuron, σ is the standard deviation and N is the number of weights of the
current neuron.

• Norm-based meta-features. We calculate the L1 and L2 norms over the weights/gradients
of each layer. In the following way: for a layer with weights W the norms are:
L1 : ||W ||1 =

∑
i abs(wi) ; L2 : ||W ||2 =

√∑
i w

2
i .

Overall, we extract 24 meta-features per layer (12 for each of our two types). One challenge posed
by our meta-features extraction method is their large variance in dimensioanlity across layers. We
address this challenge in the following sections.

3.1.2 META-FEATURES REPRESENTATION

The main challenge in using meta-features to represent the inner processes of deep neural networks
is the large variance of the latter in terms of topology. While neural architectures may differ signif-
icantly in width and depth, we require a fixed-size meta-features representation to train our perfor-
mance prediction model. Therefore, we use a feature maps-based representation for our features.
Feature maps (FM) enable us to represent layers and whole architectures using a fixed-size repre-
sentation. Our process is carried out as follows:

• Because we create two sets of 12 meta-features per layer, we create two [100, 12] matrices.
• For each meta-feature, we first insert the overall value (the summary value calculated over

all neurons/filters) and then insert 99 randomly sampled neuron/filter-based values. In cases
where there are fewer values, we use padding. For layers with a larger number of values,
some information is discarded.

• If our matrices contain NaN values, we replace them with zeros. Inf+/- values are replaced
with +/− 107.

• We now stack individual layer representations to represent the overall architecture. For
each neural net, we create two [65, 100, 12] feature maps. This representation encapsulates
the first 65 layers of the architecture. For smaller networks, we use padding; for larger
architectures, we discard the final layers.

Upon completing this step, we will have created a fixed-size meta-features representation for each of
our analyzed architectures, regardless of their topology. While this enables us to train a supervised
learning model, the high dimensionality of our data still makes training difficult (consider we extract
the feature maps every time we take a ‘snapshot’ of the network). In the following section, we
address this problem.

4

Under review as a conference paper at ICLR 2024

Input: M , Fi, Ci, Cd, Si, Fs

Output: Subset of selected top performing models
begin

Initialization W = ∅, G = ∅
while |M | > FS do

Cs ← Calculate new cut size

Ts ← Calculate new amount of train steps for agent iteration

Wi, Gi ← Train M Models for Ts steps and collect weight and gradients each 100th step

Sw, Sg ← Calculate statistics on Wi and Wg

Mw, Mg ← Generate feature maps on Sw and Sg

W ← insert(Mw), G← insert(Mg)

P ← Predict performance on |M | models

BM ← |M | ∗ Cs with worst performance

M ←M \BM

iteration
end
return M

end
Algorithm 1: Selection Agent Algorithm. W and G denote the collected weights and gradients
features maps for all current models, respectively. Cs denotes the current iteration models’ cut
size. Ts is the number of steps required to train all models in the current interation.

3.2 GENERATING FEATURE MAPS-BASED EMBEDDINGS

While informative, our feature maps have high dimensionality, which makes training the prediction
model computationally expensive. A more condensed FM representation will enable us to deploy
a smaller performance prediction model and use less training data. The latter advantage is also
important because of the large computational cost of creating our FM-based dataset.

We use convolutional autoencoders (CAE) to create embeddings for each feature map. The architec-
ture of the CAE is symmetric, and its dimensions are presented in Table 1 in the Appendix. We use
the ReLU activation function and apply batch normalization after each layer. We use the MSE loss
function and measure the distance between the original and reconstructed feature map using MSE
as our loss function. The embedding layer is a vector v, where |v| = 128.

3.3 TRAINING THE PREDICTION MODEL

Our training process consists of two stages. First, we train two autoencoders, one for each type
of feature map. We generate our training samples by randomly selecting architectures and time
steps and retrieving the corresponding FM. In the second stage, we train our performance prediction
model, an LSTM architecture with one hidden layer and an output layer with a Sigmoid function.

For each of our training set architectures, we train the model on sequences of FM in lengths of [1-10].
This setup means we train our model by providing it between one and ten sequential FMs (produced
in 100-batch intervals) and then task the former with predicting the architecture’s final performance.
This form of training pushes our prediction model to produce accurate predictions based on limited
information, which is more resource-efficient. We also use the maximal length sequence (i.e., 30
snapshots per sequence) to train our model to use all available information. Overall, we produce 11
training sequences per architecture.

As a result of our training process, we created a performance prediction model that is both generic
and robust. The model is generic because we train it on multiple neural architectures with diverse
topological features. This setup naturally forces our network to generalize. The robustness stems
from the need to produce accurate predictions while facing large diversity in the amounts of provided
information—from a single snapshot (i.e., only 100 batches) to 30.

5

Under review as a conference paper at ICLR 2024

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.04

0.03

0.02

0.01

0.00

Ac
cu

ra
cy

 D
iff

er
en

ce

NAP2 Successive Halving HyperBand SMAC

(a) 10 final models

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

Ac
cu

ra
cy

 D
iff

er
en

ce

NAP2 Successive Halving HyperBand SMAC

(b) 25 final models

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

Ac
cu

ra
cy

 D
iff

er
en

ce

NAP2 Successive Halving HyperBand SMAC

(c) 50 final models

Figure 2: Agents Accuracy Difference comparison on CNNS trained on Cifar-10, for different final
number of selected models. The green line in each plot is the pareto frontier of the Accuracy Differ-
ence. Zero is the best result

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.0

0.1

0.2

0.3

0.4

0.5

To
p-

K
Pr

ec
isi

on
 a

t 3

NAP2 Successive Halving HyperBand SMAC

(a) Precision at 3 for subset size of 10

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

To
p-

K
Pr

ec
isi

on
 a

t 5

NAP2 Successive Halving HyperBand SMAC

(b) Precision at 5 for subset size of 10

Figure 3: Precision-at-K comparisons using Cifar-10 CNNs. The green line in each plot is the pareto
frontier of the Precision-at-K

3.4 ITERATIVE SELECTION OF MODELS

We use a straightforward method for model selection by building on Successive Halving Jamieson
& Talwalkar (2016). At each step, we train all available architectures for a fixed number of steps
(i.e., until the subsequent extraction of our meta-features). Next, we use our prediction model to
predict the performance of all architectures and discard a fixed percentage of those with the lowest
prediction.

Our approach is formally presented in Algorithm 1. NAP2 requires 6 inputs: (1) - M – group of
models, (2) Fi – First iteration number of steps, (3) Ci – starting cut size, (4) Cd - Cut decay or
increase rate, (5) Si – step interval in each agent iteration, (6) Fs – Final number of models selected.
Except for M, all other inputs affect the agent resource usage, thus affecting its accuracy.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Training and meta-features extraction. All architectures used in our experiments were randomly
sampled from the NAS-Bench 101 dataset Ying et al. (2019), which consists of Inception-based
architectures and their reported results. Because we need the analyzed networks’ intermediary per-
formance (for NAP2 and the baselines), we initialized and trained our sampled architectures. Due to
our random initialization, performance may vary slightly from the one reported in Ying et al. (2019).

6

Under review as a conference paper at ICLR 2024

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.175

0.150

0.125

0.100

0.075

0.050

0.025

Ac
cu

ra
cy

 D
iff

er
en

ce

NAP2 Successive Halving HyperBand SMAC-HyperBand

(a) 10 final models

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

Ac
cu

ra
cy

 D
iff

er
en

ce

NAP2 Successive Halving HyperBand SMAC-HyperBand

(b) 25 final models

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.175

0.150

0.125

0.100

0.075

0.050

0.025

0.000

Ac
cu

ra
cy

 D
iff

er
en

ce

NAP2 Successive Halving HyperBand SMAC-HyperBand

(c) 50 final models

Figure 4: Agents Accuracy Difference comparison on CNNS trained on CIFAR-100, for different
final number of selected models. The green line in each plot is the pareto frontier of the Accuracy
Difference. Zero is the best result

We use the results of our training throughout the remainder of this study. Our meta-features dataset,
which is the first of its kind to be made public, is publicly available1.

We trained 1,160 and 440 architectures on CIFAR-10 and CIFAR-100, respectively. All architectures
were randomly sampled and trained for 36 epochs with a batch size of 128 (epoch=391 batches).
The two architecture sets are disjoint. We replicate NAS-Bench 101’s train/test/validation sets for
training. For the architectures we ran on CIFAR-100, we modified the output layer to fit the dataset’s
dimensions. We extracted our feature maps every 100 batches (see Section 3.1), generating approxi-
mately four ‘snapshots’ per epoch. We generated 30 snapshots per architecture. Our training process
resulted in two sets of architectures that are diverse both in performance and depth (see Table 2 and
Fig. 7 in the Appendix).

We trained the autoencoders for 300 epochs (at a maximum) with early stopping. We use MSE
as our loss function. Next, we trained the Performance Prediction Network on the train set folds
while utilizing the validation set fold for early stopping. The training had a maximal duration of 150
epochs, with the L1 loss function used on the differences in predicted network accuracy.

Baselines’ hyper-parameter configurations. To ensure that our evaluation is extensive, we ran
every possible configuration of the following hyper-parameters (values in brackets): a) Returned
set Size (10, 25, 50); b) Mini-batches before cutoff (100, 500, 700, 1000); c) Successive halving
cutoff rate (0.1, 0.15, 0.2, 0.25, 0.35, 0.45, 0.5, dynamic); d) The η parameter (all integers in the
range [2, 29]); e) Initial design of N configurations (1, 5, 10, 20, 30, 50, 75, 100, 150, and 200); f)
Number of trials (25, 50, 75, 100, 125, 150, 200, and 250). A full deception of the hyper-parameters
is presented in the Appendix.

4.2 EVALUATION METRICS

We use four-fold cross-validation for both datasets, with reported results averaged across all folds.
We use three metrics to evaluate the performance of our proposed approach:

Resources used. We defined one unit of resources to correspond to 100 mini-batch steps of a single
CNN during training (equivalent to ∼ 1

4 epoch). Note that we can disregard the hardware used in
our experiments using this definition.

Top-K precision. For a final set of architectures returned by the algorithm, we calculate the percent-
age of top-K-performing architectures included in the set. For example, when calculating the top-3
precision for a final set of 10 architectures, the presence of the two highest-performing architectures
yields a precision of 66%.

Accuracy difference from the top performer. We measure the accuracy differences between the
chosen architectures and the top-performing architecture on the relevant dataset. This measure com-
plements top-k precision because it enables the detection of cases where the returned architectures
are not in the ‘top’, but their performance is worse by a tiny margin.

1Due to its size, we cannot share the dataset anonymously. It will be made available pending acceptance

7

Under review as a conference paper at ICLR 2024

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

To
p-

K
Pr

ec
isi

on
 a

t 3

NAP2 Successive Halving HyperBand SMAC-HyperBand

(a) Precision at 3 for subset size of 10

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

To
p-

K
Pr

ec
isi

on
 a

t 5

NAP2 Successive Halving HyperBand SMAC-HyperBand

(b) Precision at 5 for subset size of 10

Figure 5: Precision-at-K comparisons using CIFAR-100 CNNs. The green line in each plot is the
Pareto frontier of the Precision-at-K

4.3 BASELINES

We compare NAP2 to the following baselines:

Successive Halving Jamieson & Talwalkar (2016). An iterative approach that trains the neural archi-
tectures in each iteration for a pre-specified amount of mini-batch steps. SH evaluates the networks’
validation losses at each iteration and discards the worst performers according to a predetermined
cut-off parameter.

HyperbandLi et al. (2017). HB builds upon the Successive Halving algorithm. It conducts mul-
tiple SH runs with different parameter configurations, designed to evaluate a varying number of
architectures using different training times. The multiple runs are carried out using different neural
architectures, selected uniformly from our predefined set of architectures.

SMAC3. SMAC3 Lindauer et al. (2022) is a highly-cited and popular hyperparameter optimization
framework. SMAC3 uses Bayesian optimization with the Hyperband algorithm to improve its per-
formance. We use HPObench Eggensperger et al. (2021) to define our search space and map each
of the algorithm’s sample selections to the most relevant architecture.

Both Hyperband and SMAC3 are configured to return only a single network. For our evaluation,
we require a ranked list of architectures, so we modified these two algorithms to return multiple
networks. The networks were selected based on their most recent performance.

4.4 EVALUATION RESULTS

4.4.1 CIFAR-10 EVALUATION RESULTS

Accuracy difference from top performer. We plot the performance of all evaluated configuration,
NAP2 and the baselines, in Fig. 2. We use three different final set sizes (i.e., the number of archi-
tectures chosen as the algorithm’s output): 10, 25, and 50. In all experiments, NAP2 significantly
outperforms all the baselines, and forms the Pareto Front. Another key conclusion is that NAP2
requires a very limited budget to reach top performance: we only needed to run each evaluated
architecture for a few batch-iterations to include a top-performing architecture in our final set.

Top-K precision as a function of resource usage. Fig. 3 presents the results for the Top-3 and
Top-5 architectures for a final sets of 10 architectures. The results for 25 architectures are presented
in the Appendix. NAP2 again outperforms the baselines in all experimental setups. Note that in the
more challenging setup—Top-3 precision—NAP2 is always able, on average, to detect at least one
top-performing architecture, unlike the baselines.

The results clearly demonstrate the advantages of our white-box approach, compared to existing
black-box approaches. An additional analysis of HyperBand (the top-performing baseline), is pre-
sented in the Appendix.

8

Under review as a conference paper at ICLR 2024

0 500 1000 1500 2000 2500 3000
Mini-Batch Steps

0.015

0.020

0.025

0.030

0.035
M

SE

Epoch: 1

Epoch: 2

Epoch: 3

Epoch: 4

Epoch: 5

Epoch: 6

Epoch: 7

(a) MSE error of the model on CIFAR-10 test sets

500 1000 1500 2000 2500 3000
Mini-Batch Steps

0.085

0.086

0.087

0.088

0.089

0.090

M
SE

Epoch: 1

Epoch: 2

Epoch: 3

Epoch: 4

Epoch: 5

Epoch: 6

Epoch: 7

(b) MSE error of the model on CIFAR-100 dataset

Figure 6: The MSE error of NAP2 on CIFAR-10 and CIFAR-100 as a function of the overall number
of mini-batch steps. For CIFAR-100, we use the model trained on CIFAR-10 (no additional training).

4.4.2 CIFAR-100 EVALUATION RESULTS

In the previous section, NAP2’s train and test architectures were trained on the same dataset. We
now evaluate our approach’s transferability by using the prediction model trained on CIFAR-10 to
predict the performance of previously unseen architectures on the CIFAR-100 dataset.

We repeat the experiments presented in Section 4.4.1. We run our experiments on four 110-
architecture folds and report the average results. Fig. 4 presents our results for the accuracy differ-
ence metric. It is clear that NAP2 is again the top performer, with a much lower accuracy difference
than all evaluated baselines. Moreover, for the larger final model set sizes (25 and 50), NAP2’s
accuracy difference is nearing zero, and the gap between our approach and the baselines is much
larger than in the CIFAR-10 experiments.

Next, we analyze the results for the Top-K precision metric. Figure 5 presents the results for top-
3 and top-5 accuracy for two final set sizes: 10 and 25. The results once again show that NAP2
significantly outperforms the two baselines. It is evident in all experiments that even the worst-
performing NAP2 architecture outperforms all baseline configurations.

4.5 ANALYSIS: PERFORMANCE PREDICTION ERROR OVER TIME

Until now, we evaluated NAP2’s ability to identify top-performing architectures. We have not,
however, evaluated the accuracy of its predictions (i.e., how close our predictions were to the actual
performance). We now calculate the mean squared error (MSE) of all our predictions—both for
CIFAR-10 and CIFAR-100—and plot them as a function of training duration.

Our results are presented in Fig. 6. NAP2 is highly accurate, with an MSE error smaller than 0.1 for
both datasets. It is also clear that our model requires very little training data - the performance of
our method plateaus after one training epoch for CIFAR-10, and two epochs for CIFAR-100. These
results show that our approach can produce highly accurate predictions at a minimal training budget.

5 CONCLUSION.

We present NAP2, a novel performance prediction model for neural networks. Unlike existing
solutions, our approach analyzes the ‘inner workings’ of networks and can, therefore, predict their
performance with high accuracy. Our evaluation shows that NAP2 requires analyzing only a fraction
of a network’s initial training to produce a highly accurate prediction. Our evaluation demonstrates
the superiority of our approach over the current state-of-the-art.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architec-
tures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of
machine learning research, 13(2), 2012.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter opti-
mization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 13(2):e1484, 2023.

Djallel Bouneffouf, Irina Rish, and Charu Aggarwal. Survey on applications of multi-armed and
contextual bandits. In 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE,
2020.

Boyang Deng, Junjie Yan, and Dahua Lin. Peephole: Predicting network performance before train-
ing. arXiv preprint arXiv:1712.03351, 2017.

Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparam-
eter optimization of deep neural networks by extrapolation of learning curves. In Twenty-fourth
international joint conference on artificial intelligence, 2015.

Katharina Eggensperger, Philipp Müller, Neeratyoy Mallik, Matthias Feurer, René Sass, Aaron
Klein, Noor Awad, Marius Lindauer, and Frank Hutter. Hpobench: A collection of reproducible
multi-fidelity benchmark problems for hpo. arXiv preprint arXiv:2109.06716, 2021.

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization. Advances in neural information processing
systems, 32, 2019.

Peter I Frazier. Bayesian optimization. In Recent advances in optimization and modeling of contem-
porary problems, pp. 255–278. Informs, 2018.

Roxana Istrate, Florian Scheidegger, Giovanni Mariani, Dimitrios Nikolopoulos, Constantine Bekas,
and Adelmo Cristiano Innocenza Malossi. Tapas: Train-less accuracy predictor for architecture
search. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3927–
3934, 2019.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. In Artificial intelligence and statistics, pp. 240–248. PMLR, 2016.

Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. Learning curve prediction
with bayesian neural networks. In International Conference on Learning Representations, 2017.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of Machine Learning
Research, 18(1):6765–6816, 2017.

Rui Li, Michael TM Emmerich, Jeroen Eggermont, Thomas Bäck, Martin Schütz, Jouke Dijkstra,
and Johan HC Reiber. Mixed integer evolution strategies for parameter optimization. Evolutionary
computation, 21(1):29–64, 2013.

Yee-Fun Lim, Chee Koon Ng, US Vaitesswar, and Kedar Hippalgaonkar. Extrapolative bayesian
optimization with gaussian process and neural network ensemble surrogate models. Advanced
Intelligent Systems, 3(11):2100101, 2021.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Car-
olin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian opti-
mization package for hyperparameter optimization. J. Mach. Learn. Res., 23(54):1–9, 2022.

10

Under review as a conference paper at ICLR 2024

Jovita Lukasik, David Friede, Heiner Stuckenschmidt, and Margret Keuper. Neural architecture per-
formance prediction using graph neural networks. In Pattern Recognition: 42nd DAGM German
Conference, DAGM GCPR 2020, Tübingen, Germany, September 28–October 1, 2020, Proceed-
ings 42, pp. 188–201. Springer, 2021.

Mitchell McIntire, Daniel Ratner, and Stefano Ermon. Sparse gaussian processes for bayesian opti-
mization. In UAI, 2016.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Aging evolution for image classifier
architecture search. In AAAI conference on artificial intelligence, volume 2, pp. 2, 2019.

Ariel Keller Rorabaugh, Silvina Caı́no-Lores, Michael R. Wyatt II, Travis Johnston, and Michela
Taufer. Peng4nn: An accurate performance estimation engine for efficient automated neural net-
work architecture search. CoRR, abs/2101.04185, 2021.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 2820–2828, 2019.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In International Conference on
Machine Learning, pp. 7105–7114. PMLR, 2019.

Enzhi Zhang, Tomohiro Harada, and Ruck Thawonmas. Using graph convolution network for pre-
dicting performance of automatically generated convolution neural networks. In 2019 IEEE Asia-
Pacific Conference on Computer Science and Data Engineering (CSDE), pp. 1–8. IEEE, 2019.

A ADDITIONAL DETAILS ON THE PROPOSED METHOD AND THE
EVALUATION

A.1 THE DIMENSIONS OF OUR CONVOLUTIONAL AUTOENCODER

Table 1: CAE Layers’ Dimensions

Layer num. Layer Dimensions
Layer 1 (1, 100, 512)
Layer 2 (65, 1, 256)
Layer 3 (embedding layer) (1, 1, 128)
Layer 4 (65, 1, 256)
Layer 5 (1, 100, 512)

A.2 NEURAL ARCHITECTURES AND HYPER-PARAMETERS CONFIGURATIONS DETAILS

We diversify our two architecture datasets, to test the ability of NAP2 and the baselines to gener-
alize over multiple hyperparameter configurations. We randomly assigned the follwoing options to
our architectures: Adam and SGD optimizers (NAS-Bench 101 only uses the latter), and multiple
options for the learning rate. When using the Adam optimizer, we disabled the cosine decay used in
Nas-Bench 101. We also allowed for networks to run without layer regularization, as in the original
Nas-Bench code.

We experiment with multiple configurations of the following hyperparameters:

• Returned set Size. The number of architectures returned as a final output. We experi-
mented with set sizes of 10, 25, and 50.

• Mini-batches before cutoff. The number of mini-batch steps each of our evaluated archi-
tectures is trained prior to another iteration of the baselines and NAP2. We used sizes of
100, 300, and 500.

11

Under review as a conference paper at ICLR 2024

• Initial CNN Steps. The number of steps all evaluated architectures are trained prior to the
first cutoff. We experimented with different hyperparameters for NAP2 and the evaluated
baselines. We used size of 100, 500, 700, and 1000. Note that for SMAC3, we controlled
this parameter by changing the scenario minimum budget.

• Successive Halving cutoff rate. The cutoff rate determines the percentage of architectures
that are discard with each operation of the baseline. We experimented with the following
values: 0.1, 0.15, 0.2, 0.25, 0.35, 0.45, and 0.5. Additionally, we enabled the baseline
to automatically set this value (the decision is made dynamically based on the number of
architectures and available resources).

• The η parameter. We experimented with multiple values of η for the Hyperband baseline.
This hyperparameter determines the percentage of discarded architectures in each of the
algorithm’s multiple successive halving iterations. We refer the reader to Li et al. (2017)
for full details. In our experiments, we experimented with all integers in the range [2, 29].
This range consists of all the legal values for η in our experimental setup. For SMAC, we
set this value to 3, as suggested in its documentation.

• Initial Design N Configurations. This hyperparameter is only relevant for SMAC3, as it
set the number of configuration used in the first iteration of the algorithm. we experimented
with multiple values: 1, 5, 10, 20, 30, 50, 75, 100, 150, and 200.

• Number of Trials. The number trials used by SMAC algorithm. To allow for comparison
with other methods we ignored the wall clock time restrictions, and used only the number
of trials to limit the SMAC algorithm steps. Values used: 25, 50, 75, 100, 125, 150, 200,
and 250.

A.3 THE DEPTH AND ACCURACY DISTRIBUTION OF THE EVALUATED ARCHITECTURES

The results presented in Figure 7 show the performance of all architectures when trained to conver-
gence. Table 2 presents the number of layers distribution of the evaluated architectures.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
accuracy

0

20

40

60

80

100

m

od
el

s

(a) Cifar-10: 1,160 CNN architectures

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
accuracy

0

5

10

15

20

25

30

35

m

od
el

s

(b) Cifar-100: 440 CNN architectures

Figure 7: Histograms presenting the accuracy distribution of our evaluated CNN architectures in
two datasets: CIFAR-10 and CIFAR-100.

Depth≤30 Depth≤40 Depth≤50 Depth≤60
CIFAR-10 27 212 473 448

CIFAR-100 3 58 223 215

Table 2: CNN Architectures Depth by Dataset

A.4 THE TOP-K PERFORMANCE METRIC RESULTS FOR A FINAL SET OF 25 ARCHITECTURES

These results, presented in Figures 8 and 9, show the performance of NAP2 and the baselines for a
larger final set. As in the previous results, NAP2 significantly outperforms the baseline.

12

Under review as a conference paper at ICLR 2024

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.0

0.2

0.4

0.6

0.8

1.0

To
p-

K
Pr

ec
isi

on
 a

t 3

NAP2 Successive Halving HyperBand SMAC

(a) Precision at 3 for subset size of 25

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p-

K
Pr

ec
isi

on
 a

t 5

NAP2 Successive Halving HyperBand SMAC

(b) Precision at 5 for subset size of 25

Figure 8: Precision-at-K comparisons using Cifar-10 CNNs. The green line in each plot is the Pareto
frontier of the Precision-at-K

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.0

0.2

0.4

0.6

0.8

To
p-

K
Pr

ec
isi

on
 a

t 3

NAP2 Successive Halving HyperBand SMAC-HyperBand

(a) Precision at 3 for subset size of 25

25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000
Resources (mini-batch steps)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
To

p-
K

Pr
ec

isi
on

 a
t 5

NAP2 Successive Halving HyperBand SMAC-HyperBand

(b) Precision at 5 for subset size of 25

Figure 9: Precision-at-K comparisons using CIFAR-100 CNNs. The green line in each plot is the
Pareto frontier of the Precision-at-K

A.5 ADDITIONAL ANLYSIS OF THE BASELINES’ PERFORMANCE

Analyzing the differences between HB configurations. While it is clear that NAP2 outperforms
HB by a wide margin overall, Fig. 2 shows that some HB runs were able to achieve results that are
close to those of our approach, for some budgets. An analysis of the top-performing HB configu-
rations showed that many of them had η = 3, which is one of the recommended configurations in
the original paper. However, it is important to note that two thirds of the η = 3 configurations fared
poorly in the accuracy difference metric. Moreover, when analyzing HB performance with respect
to the top-k metric, less than 50% of η = 3 configurations were able to identify a top-performing
architecture for any k. It is clear that HB can achieve comparable results to NAP2, but only when
the optimal configurations are known in advance (which is, of course, not possible).

13

	Introduction
	Related Work
	Hyperparameter Optimization Methods
	Neural Networks Performance Prediction Methods

	The Proposed Method
	Meta-Features Extraction and Representation
	Meta-Features Extraction
	Meta-Features Representation

	Generating Feature Maps-based Embeddings
	Training the Prediction Model
	Iterative Selection of Models

	Evaluation
	Experimental Setup
	Evaluation Metrics
	Baselines
	Evaluation Results
	CIFAR-10 Evaluation Results
	CIFAR-100 Evaluation Results

	Analysis: Performance Prediction Error Over Time

	Conclusion.
	Additional Details on the Proposed Method and the Evaluation
	The dimensions of our convolutional autoencoder
	Neural Architectures and Hyper-parameters Configurations Details
	The Depth and Accuracy Distribution of the Evaluated Architectures
	The Top-K performance metric results for a final set of 25 architectures
	Additional anlysis of the baselines' performance

