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ABSTRACT

In recent years, the application of language models (LMs) to retrieval tasks has
gained significant attention. Dense retrieval methods, which represent queries and
document chunks as vectors, have gained popularity, but their use at scale can be
challenging. These models can under-perform traditional sparse approaches, like
BM25, in some demanding settings, e.g. at web-scale or out-of-domain. Moreover
the computational requirements, even with approximate nearest neighbour indices
(ANN) can be hefty. Sparse methods, remain, thanks to their efficiency, ubiqui-
tous in applications. In this work, we ask whether LMs can be leveraged to bridge
this gap. We introduce Quantised Codebooks for Retrieval (QCR): we encode
queries and documents as bags of latent discrete tokens, learned purely through a
contrastive objective. QCR’s encodings can be used as a drop-in replacement for
the original string in sparse retrieval indices, or can be instead used to complement
the text with higher-level semantic features. Experimental results demonstrate that
QCR outperforms BM25 with vanilla text on the challenging MSMARCO dataset.
What is more, when used in conjunction with standard lexical matching, our repre-
sentation yield and absolute 15.6% gain over BM25’s Success@100, highlighting
the complementary nature of textual and learned discrete features.

1 INTRODUCTION

Information retrieval (IR) systems have long relied on traditional term matching methods, represent-
ing both queries and documents as bags of words, i.e. very high-dimensional, sparse vectors, whose
non-zero components are based on lexical frequencies estimated on text corpora. Approaches such
as BM25 (Robertson & Zaragoza, 2009; Robertson & Walker, 1997) have withstood the test of time
because of their effectiveness, but also in no small part due to its simplicity and scalability. This
scalability is a product of the sparsity of the representations, that allows the use of efficient and flex-
ible data structures for search, such as the inverted index (Knuth, 1997). However, traditional sparse
retrieval methods are now losing their dominance. Since they are based on exact or near-exact term
matching between queries and documents, they face the well-known vocabulary mismatch problem
(Berger et al., 2000). Vocabulary mismatch arises when concepts with same meaning are worded
differently in the query and the related document, causing sparse models to fail at the retrieval task,
— e.g. with the synonyms pants and trousers.

In recent years, so-called dense retrieval models have become widely used in text applications (Wang
et al., 2024; Lee et al., 2019). Embedding models typically encode queries and documents as con-
tinuous, fixed-length vectors, computing relevance scores with dot product. Powered by the recent
improvements in language model pre-training, dense approaches have shown substantial improve-
ments in IR tasks (Karpukhin et al., 2020; Xiong et al., 2020; Izacard et al., 2022; Wang et al., 2024),
particularly in scenarios where large annotated datasets are available. Dense models can capture the
higher-level meaning of queries and documents, enabling retrieval to go beyond simple term match-
ing. Despite their success, dense retrieval methods come with significant drawbacks, including high
computational and memory costs (Cao et al., 2021), and the need for complex approximate nearest
neighbor indices (Douze et al., 2024; Malkov & Yashunin, 2018). Moreover, dense retrieval systems
can underperform simple term-matching where large-scale supervised data is unavailable or difficult
to collect (Ni et al., 2022).

In this paper, we introduce a method that improves standard term-matching retrieval performance
by leveraging learnt, discrete embeddings of queries and documents composed of tokens from a
latent codebook. These latent encodings can be used in place of natural language words with no
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QUERY

What are the economic impacts of rising sea level?

Inference

DOCUMENTS

Coastal cities 
are projected 
to face 
infrastructure 
damages 
exceeding...

Increased 
sea levels 
could 
displace up 
to 150 
million 
people 
globally...

Agricoltural 
losses due 
to 
salinization 
of arable 
land from 
sea water...

...

Pre-processing

501,212,129,

478,639,684,

350,543,200,

815,703,492,

983,109,421,

832,290,652,

719,305,684,

429,558,910,

324,721,415,

607,700,876,

651,109,519,

390,721,482,

608,129,305,

328,684,217,

543,721,400,

100,876,652,

457,832,354,

543,265,700,

...

101 , 202 , 305 , 129 , 457 , 684 , 910 , 534 , 721 , 334 , ...

QCR

INVERTED INDEX

Figure 1: High-level structure of QCR. After training, we process the corpus to generate a discrete
representation for every document (or passage). These discrete encodings are used to create an
inverted index. At inference time, we encode an upcoming query and match it against our collection
using standard sparse retrieval methods.

modification to the existing indices used in sparse retrieval methods like BM25. Borrowing from
the field of discrete representation learning, we apply Finite Scalar Quantization (FSQ) (Mentzer
et al., 2023), a recently introduced vector quantisation method, on top of BERT (Devlin et al., 2019)
embeddings to generate discrete latent codes, which are optimised through backpropagation using
a ColBERT-like loss function (Khattab & Zaharia, 2020). We hypothesise the these discrete codes
can mitigate the vocabulary mismatch problem as they incorporate learnt, semantic information into
their discrete representation while retraining most of the computational benefits of sparse methods.

We empirically demonstrate that our discrete representations improve BM25 performance when
used in isolation and that further gains are achieved when combining these representations with the
original textual queries and documents. This finding suggests that discrete representations and text
provide complementary signals that enhance retrieval effectiveness when used together. This hybrid
approach allows us to combine the interpretability and computational efficiency of traditional sparse
methods with the semantic information of learned representations, offering a lightweight alternative
to dense retrieval methods, making it particularly well-suited for large-scale applications where
dense retrieval might be costly.

While our method does not outperform state-of-the-art dense retrieval models in terms of raw re-
trieval metrics, it offers a much more computationally efficient solution, making it highly attractive
in scenarios where dense retrieval methods are impractical due to their resource demands.

Our contributions are as follows:

1. We propose a method for generating discrete representations of queries and documents,
which can be used both as standalone inputs for inverted-index retrieval systems and in
conjunction with traditional lexical representations.

2. Our approach improves retrieval performance on the challenging MSMARCO benchmark,
demonstrating its effectiveness in both supervised and unsupervised settings. Notably, it
outperforms BM25 on all reported metrics when using discrete representations alone and
shows further gains when combining them with original text.

3. We highlight the practical advantages of integrating discrete representations with lexical
retrieval, offering a computationally efficient alternative to dense retrieval methods while
maintaining strong performance.

2 BACKGROUND

In Figure 1 we provide a schematic architecture of our QCR method. Our method relies on the
recently introduced FSQ quantization method (Mentzer et al., 2023) to induce a discretisation of
the Transformer model’s output hidden states, while optimising end-to-end with a ColBERT-like
loss. In the rest of this section, we provide the background useful understand the main technical
contribution of our work.

2
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2.1 COLBERT

ColBERT (Contextualized Late Interaction over BERT) (Khattab & Zaharia, 2020) is an information
retrieval model that combines the strengths of both traditional sparse retrieval techniques and dense
vector-based retrieval. At its core, ColBERT leverages deep contextual embeddings generated by
BERT to represent both queries and documents. However, instead of embedding into a single fixed-
length vector like most dense retrieval models, ColBERT retains individual token-level embeddings,
thus preserving fine-grained contextual information. Like in term-based sparse retrieval approaches,
in ColBERT the relevance score is computed as the max-pooling over the dot product between
individual query and document terms.

The ColBERT scoring is given by the following equation:

scoreColBERT(q, d) :=
∑
qi∈q

max
dj∈d

eqi · eTdj

∥ eqi ∥ · ∥ edj
∥

(1)

where eqi ∈ EQ and edi
∈ ED are the embeddings of query and document tokens, respectively.

2.2 FSQ

FSQ (Mentzer et al., 2023) is a technique used to discretise continuous data into a finite set of values,
which is particularly useful in scenarios where memory efficiency and computational simplicity are
priorities. FSQ maps each continuous value to the nearest point in a predefined set of quantised
levels, in contrast with its precursor VQ-VAE (van den Oord et al., 2018), where the codebook is
learnt and actively changes during training.

FSQ works by rounding each entry in the latent representation z to the nearest integer, usually after
applying a bounding function such as the hyperbolic tangent. To propagate gradients through the
rounding operation, it simply uses straight-through estimation (STE) (Bengio et al., 2013). FSQ
has been shown to be easier to optimise than other similar methods, while avoiding the issue of
codebook under-utilisation that VQ-VAE suffers from.

FSQ obtains a discrete representation of a continuous vector z by applying the following operation
on each one of its dimensions:

zi = round(⌊L/2⌋ tanh
(
zprequant
i

)
) (2)

Here, zprequant
i represents the pre-quantized value of the i-th dimension and L is the number of dis-

crete values of each dimension. Considering the same value L across all dimensions, and a total
number of d dimensions (|zi| = d), the dimension of the codebook is equal to |C| = Ld.

2.3 DISCRETE REPRESENTATION LEARNING

Discrete representations, particularly through methods such as VQ-VAE and FSQ, have gained trac-
tion in generative modeling, especially in the domain of image generation (Razavi et al., 2019;
Ramesh et al., 2021; Gu et al., 2022; Chang et al., 2022), but also music (Dhariwal et al., 2020) and
video (Rakhimov et al., 2020). These techniques enable the transformation of continuous data (e.g.,
pixel values) into discrete codes, which can be used to produce high-quality images. Discretisation
methods have also been applied to text generation (Zhang et al., 2024) to allow for better control of
textual output in LLMs.

Perhaps most similar to our method, Sun et al. (2023) propose GENRET to learn discrete document
identifiers for the purpose of using them during generative retrieval. Their goal is to obtain identifiers
that contain semantic information about the document and are easier for the LLM to generate. They
use an auto-encoding framework to generate docids that are autoregressive in nature and diverse
enough to avoid duplicate docids across multiple documents. Similarly, Wang et al. (2023) propose
a hierarchical k-means algorithm to generate docids for each documents.

3 METHODOLOGY

Our proposed approach builds on the idea of leveraging LLMs to generate discrete representations
optimized for retrieval tasks. We aim to combine the semantic richness of dense embeddings with

3
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the efficiency and interpretability of sparse methods. Below, we outline the key components of our
method, which includes FSQ and a novel loss function optimized for information retrieval.

3.1 ARCHITECTURE

We use an encoder LLM architecture, BERT (Devlin et al., 2019) specifically, to obtain embedding
representations for each query and document. In particular, we augment the input text, both for
queries and documents, by prepending a set of special tokens to each text string. These special
tokens serve as unique markers that define fixed positions for the embedding extraction.

Given a text input, we tokenize it, add special tokens, and then feed the modified text into a pre-
trained BERT model. In other words, for a tokenised query q = ⟨q1, q2, ..., qN ⟩ and document
d = ⟨d1, d2, ..., dM ⟩ where N and M are the lengths of the query and document respectively, we
obtain q′ = ⟨s1, s2, ..., sK , q1, q2, ..., qN ⟩ and d′ = ⟨s1, s2, ..., sK , d1, d2, ..., dM ⟩, where K is the
(same) number of special tokens prepended to both queries and documents. Instead of utilizing
the entire set of token embeddings generated by BERT, we focus exclusively on the embeddings
corresponding to the special tokens. This step decouples size of the tokenized string from that of
the embedded representation. Thus, given a sequence of embeddings ⟨e1, e2, . . . , eK+N ⟩, obtained
either from q′ or d′, we select only the first K embeddings.

Once the special token embeddings are extracted from BERT, they are passed through a single
linear projection layer. This layer reduces the embedding dimensionality to a size suitable for the
quantisation process, i.e. the number of levels. Following the projection, we apply FSQ to the
embeddings, converting the continuous embeddings into quantised codes.

3.2 CONTRASTIVE LOSS

Our goal is to obtain discrete representations where matching query-document pairs share as many
codebook tokens as possible, while the distance from other “negative” documents is maximised.
Contrastive losses are a popular choice in these settings, however they require big batch sizes to
minimise bias.

To train our model, we utilize a ColBERT-style loss function. Unlike traditional ColBERT model,
where the similarity between query and document embeddings is measured using cosine similarity,
we compute the ℓ2 distance between the pre-rounded FSQ representations of queries and docu-
ments. We use ℓ2 distance rather than cosine similarity as we want to give the maximal score to
exact matches in level space because of our use of BM25 at inference while, e.g., the codebook
entry (0, 0, 0, 0, 0) would return a 0 cosine-distance to all other codebook entries. Moreover, cosine
similarity would conflate some linearly dependant codes together. Let Zq and Zd be the sets of
quantized codes for the query and document, respectively. Our contrastive loss is defined as:

Lc =
∑
i∈Zq

max
j∈[|Zd|]

−||zqi − zdj
||2 (3)

To maximise batch size despite the constraints of training on limited hardware, we use a multi-
vector adaptation of GradCache (Gao et al., 2021). GradCache allows us to process sub-batches
sequentially while accumulating their gradients, effectively simulating a large batch size without
requiring all sub-batches to be stored in memory at once.

3.3 AUXILIARY ENTROPY LOSS

Even though FSQ was designed to obtain high codebook utilisation without the use of auxiliary
losses, we found that, with a contrastive loss, FSQ alone does not guarantee high codebook utilisa-
tion, and that instead the codebook usage collapses often at the beginning of training. To solve this
problem, we propose an auxiliary entropy loss. Our goal is to maximise the usage of the codebook
by maximising the codebook entropy. To do so, for each code in each query and document, we
compute all distances between the contextualised prequantized representation z and each codebook
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vector ζ in C and use them as logits to get a probability distribution:

P (ζi|z) =
e−||ζi−z||2∑

ζj∈C e−||ζj−z||2
(4)

Our regularization objective would then be just the entropy of the batch-averaged probability distri-
bution P , i.e. −

∑
ζi∈C P (ζi) logP (ζi). However, as preliminary experiments showed, this doesn’t

take into account what token is actually “sampled” by the rounding procedure of FSQ. Therefore, we
use the crisp, one-hot probability P ∗(ζi|z), which is 1 if ζi = argmaxζj

P (ζj |z). Since the argmax
operation is non-differentiable, we optimize P ∗(ζi|z) with straight-through estimation STE (Bengio
et al., 2013) , i.e., we use the gradient of P (ζi|z). The full loss is then:

LH = −
∑
ζi∈C

P ∗(ζi) logP ∗(ζi); P ∗(ζ) =
1

b

1

t

b∑
i=1

t∑
j=1

P (ζ|zi;j) (5)

3.4 RETRIEVAL

To perform retrieval, we embed documents in the retrieval collection using our method, and index
using an inverted index data structure. We then search using TF-IDF1 to compute a relevance score
between queries and document:

score(q, d) =
∑
qi∈q

TF︷ ︸︸ ︷
f(ζqi , d) ·

IDF︷ ︸︸ ︷
f(ζqi , D)−1 (6)

where f(ζqi , d) is the frequency of the discrete token in a document, and f(ζqi , D) is the frequency
of the discrete token in the full collection. This scoring methodology, however does not take into
account non-exact matches. FSQ’s quantization levels can be used to compute relative distances
between tokens. Similarly to our contrastive objective Eq. 3, then, we use the sum of maximum
negative ℓ2 distances to rescore the top 5000 candidates returned by search over the inverted index
using the scoring in Eq. 6. This rescoring process is very computationally lightweight. Since the
distances between all possible codebook entries can be precomputed and stored in a |C|×|C| matrix,
the rescoring step can be performed efficiently without significantly increasing the overall inference
time. This enables the model to refine the rankings of retrieved documents while still maintaining
the efficiency necessary for practical deployment.

While the learned tokenisation can be used on its own, it can complement, and be complemented by,
standard lexical matching. Specifically, we retrieve documents based on text-only representations
and token-only representations independently and then merge the results using Reciprocal Rank
Fusion (RRF) (Cormack et al., 2009). This fusion method ensures a more balanced combination of
lexical and semantic retrieval signals, leading to improved results.

4 EXPERIMENTAL SETUP

In this section we highlight the experimental configuration for our experiments. All our code was im-
plemented using PyTorch (Paszke et al., 2019), using the ir-datasets (MacAvaney et al., 2021)
package to access publicly available datasets, pyserini for the (Lin et al., 2021) BM25 implemen-
tation and Huggingface transformers (Wolf et al., 2020) library for the BERT implementation.
All experiments were run on a single NVIDIA A100 GPU. Our code will be open-sourced upon
paper acceptance.

4.1 DATASETS

The MSMARCO dataset (Bajaj et al., 2018) is a large-scale benchmark commonly used in informa-
tion retrieval (IR) tasks. It is derived from real-world Bing search queries and contains three main

1The pyserini library that we use for our retrieval experiments provides a BM25 implementation that
takes into account document length and its relation with the average length in the corpus. The library also
provided a mechanism to saturate the TF component. In our setup, documents are of the same length and with
an extremely high number (around 98.5%) of unique tokens within each document.
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components: MSMARCO Passage Ranking, MSMARCO Document Ranking, and MSMARCO
Question Answering (QA). In our experiments, we focus on the Passage Ranking task, which con-
sists of approximately 8.8 million passages and 6,980 queries for evaluation. Each query in the
Passage Ranking task is paired with a relevant passage, with relevance labels provided for training.
The goal is to retrieve the most relevant passages from the corpus given a query.

We will train our model in two different settings: supervised, where we assume the model has had
some exposure to the MSMARCO training set of query-document pairs, and an unsupervised setting
where this dataset was not used.

Supervised Dataset Generation During training, we apply data augmentation and use the same
MSMARCO silver-queries originally introduced in Li et al. (2023). This dataset is generated using a
passage-conditioned neural model trained on the original MSMARCO query-passage training pairs.
We sample one query per passage yielding a training set of 8.8M queries in total. We refer to the
original paper for additional details on the data generation process. We use this dataset to train
our QCR architecture. Given that the original query-generation model has had access to the golden
queries, we dubbed our resulting model QCR-supervised.

Unsupervised Dataset Generation We further evaluated our model in a scenario reflective of
more realistic data environments, where access to traditional training queries, such as those provided
by the MSMARCO dataset, were not available. This setup simulates situations where explicit query-
document pairings might be absent, as is often the case in real-world datasets. To address this, we
employed Gemma-2-2b (Team Gemma et al., 2024), to autonomously generate relevant queries for
each document in the dataset.2 This approach allows us to train our retrieval model effectively
without relying on large-scale annotated datasets, thus showcasing the adaptability of our method
to less ideal, unstructured data scenarios. We call the resulting model trained on this data as QCR-
unsupervised.

4.2 POSITIONALLY-AWARE RETRIEVAL

During inference, we improve the matching accuracy of our discrete representations by incorporat-
ing positional information into each code. Specifically, we prefix each discrete code with its position
in the sequence; for example, we transform the codes c0, c1, c2 into 0 c0, 1 c1, 2 c2. This modifi-
cation enables sparse retrieval methods like BM25 to match tokens only if they align in both their
semantic content (i.e., code ID) and their position in the sequence.

For instance, consider a query with positional codes 0 c52, 1 c113, 2 c23, . . . and a document with
positional codes 0 c52, 1 c45, 2 c113, . . .. In this case, the only match occurs at position 0, where
both the query and the document have the code c52. Although the code c113 appears in both the
query and the document, it is at different positions (position 1 in the query and position 2 in the
document). Therefore, with positional codes, these are not considered a match. We empirically
found that this approach leads to better results by a small margin (roughly 2% in Success100), as it
leverages the model’s tendency to store information at fixed positions in the code sequence.

4.3 HYPERPARAMETERS

We initialise the BERT transformer architecture with the weights of the TCT-ColBERT (Lin et al.,
2020) model for QCR-supervised and we use the weights of Contriever (unsupervised) (Izacard
et al., 2022) for QCR-unsupervised. We use a learning rate of 1e-5, an Adam (Kingma & Ba,
2017) optimiser and no weight decay, as it encouraged codebook collapse. We use a 5-dimensional
codebook where each component is divided across 5 different levels, yielding a codebook with a
total of 55 = 3125 distinct elements. Although we experimented with multiple batch size and
discrete representation lengths, our best model was trained on a schedule of increasing batch sizes
and representation lengths. The batch size increased from 256 to 2048, while the representation
length increased from 150 to 250. Overall, QCR was trained for 4000 gradient steps.

2We report the prompt used in Appendix A.1.
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4.4 BASELINE

We also consider a simpler alternative method that maps sequences of text into sequences of dis-
crete codes using k-means. Specifically, we employ k-means clustering on token-level embeddings
obtained from ColBERT to assign input tokens to codes based on their cluster IDs. Note that this
baseline is in part an ingredient of the ColBERT recipe, in that k-means is used for ANN retrieval of
candidate tokens. We begin by sampling a subset of the MSMARCO dataset and encoding each doc-
ument into vectors. For each document we extract the sequence of encoded token embeddings and
then aggregate these embeddings across all sampled documents to form a corpus of 50M token-level
embeddings. Using this corpus we train a k-means model with k clusters, each cluster is associated
with a centroid of its members. Finally, we use the clustering model to convert all documents in
MSMARCO into sequences of discrete tokens: for each document, we encode it to obtaining token
embeddings ⟨e1, e2, ..., e|d|⟩; we then map each ei to a cluster identifier ci = {1, 2, . . . ,K} associ-
ated with its nearest centroid according to their euclidean distance. For retrieval, we consider these
cluster identifiers as regular tokens. We report results with the discrete tokens as well as with the
addition of regular words. Note that for queries and documents the transformed discrete sequences
have an 1-1 mapping with their respective (input) text tokens and therefore we do not consider po-
sitional matching for scoring. We report results with a k-means model with K = 32000, which
produced the best results in a small hyper-parameter tuning experiment.

5 RESULTS

The performance of QCR was evaluated on the MSMARCO dataset. The experiments were designed
to compare our approach against traditional BM25 and assess the benefits of incorporating discrete
embeddings in conjunction with textual information.

In Table 1, we report several evaluation metrics, including mean reciprocal rank (MRR), normalized
discounted cumulative gain (nDCG), and precision at various cutoffs for supervised QCR. Super-
vised QCR demonstrated superior performance over the baseline BM25 across all evaluated metrics,
supporting our hypothesis that QCR is able to generate semantically rich and discrete embeddings
that capture underlying textual semantics better than BM25. We observe similar results in the un-
supervised setting, although with a generally lower performance. Furthermore, the optimal results
were achieved through a hybrid approach that amalgamates text with discrete representations, pro-
viding an hybrid approach that benefits from the complementary strengths of discrete and traditional
text embeddings, providing a more holistic representation of text for retrieval tasks.

Even though supervised dense retrieval methods trained on the same architecture (BERT-large) out-
perform our method, this comes at the cost of high computational and memory overhead. Moreover,
we outperform the unsupervised version of Contriever when combining words and discrete codes
from QCR-unsupervised. Moreover, we surpass the unsupervised version of Contriever across all
reported metrics, demonstrating the potential of integrating both word-level and semantic informa-
tion through learned tokens. It is important to note, however, that the unsupervised Contriever was
trained on Wikipedia passages and CCNet (Wenzek et al., 2019) data using ICT and random crops,
without any exposure to MSMARCO passages, whereas our approach leverages MSMARCO data
and synthetic queries.

5.1 ANALYSIS

How Much do Queries and Documents match? In Figure 2 we plot the distribution of the num-
ber of tokens in MSMARCO dev queries that match a) a random document; b) a hard negative,
i.e. a random document in the top-100 returned by lexical BM25; c) the ground truth document.
We can see a clear correlation between the degree of relevance and the number of matches; but the
in-group variance is increasing as well, so that there is a lot of diversity in the scores of ground truth
document.

Representation Length and Batch Size During our experimentation, we observed a notable im-
provement in performance correlating with increases in both batch size and representation length,
as can be observed in Figure 3. This trend highlights a significant opportunity for performance en-
hancement through the use of larger batch sizes. Training with bigger batches typically allows for
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Model nDCG-10 RR-10 Succ@10 R@100 Succ@100

Supervised

DPR (Dense) - 0.288 - - -
Contriever Sup (Dense) 0.407 - - 0.891 -
QCR-sup. 0.252 0.194 0.427 0.707 0.717
QCR-sup w/ rescoring 0.273 0.220 0.461 0.750 0.760
QCR-sup w/ words 0.270 0.216 0.460 0.749 0.758
QCR-sup w/ words + RRF 0.288 0.229 0.750 0.795 0.802

Unsupervised

k-means (K=32k) 0.115 0.092 0.199 0.403 0.404
k-means (K=32k) w/ words 0.197 0.158 0.335 0.602 0.611
BM25 0.219 0.176 0.371 0.658 0.646
Contriever Unsup (Dense) 0.206 - - 0.672 -
QCR-uns. 0.128 0.102 0.221 0.453 0.462
QCR-uns. w/ rescoring 0.160 0.127 0.280 0.556 0.566
QCR-uns. w/ words 0.169 0.134 0.298 0.580 0.590
QCR-uns. w/ words + RRF 0.227 0.178 0.395 0.708 0.717

Table 1: We report metrics on the MSMARCO passage dev set. QCR is trained on a subset of the
MSMARCO passages and queries generated to resemble those from the MSMARCO train dataset.
The RRF uses a coefficient of 0.6 for the token-only results. DPR results from Oğuz et al. (2021),
Contriever results from Izacard et al. (2022). Our method yields the best results in the unsupervised
setting and shows promising performance in the supervised one.
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Figure 2: The plot shows the distribution of the number of matching codebook tokens between
queries from the MSMARCO training set and three types of associated documents: the correspond-
ing positive document, a hard negative document, and a randomly sampled negative document.

Token 188 Token 2639

adaptations: 1.79, pericardial: 1.79, receptors:
1.79, cysts: 1.73, ventricular: 1.71, leptin: 1.71,
prostaglandin: 1.71, serotonin: 1.70, minerals:
1.65, nuclei: 1.65, combustion: 1.58, absorption:
1.56, fats: 1.56, cranial: 1.55, bloodstream: 1.55,
diets: 1.55, membrane: 1.53, sheep: 1.53, vitamin:
1.47, neurons: 1.47, encounter: 1.45, yogurt: 1.45,
oatmeal: 1.44, headaches: 1.44, supplements: 1.42,
uric: 1.42, sick: 1.41, constipation: 1.41

preheat: 1.80, chartered: 1.80, stir-fry: 1.80, mer-
lin: 1.80, equifax: 1.80, brat: 1.80, araya: 1.80,
theodora: 1.80, dt: 1.80, cove: 1.70, ar: 1.68, sprin-
kle: 1.66, pepper: 1.60, skillet: 1.57, backup:
1.57, mp4: 1.53, steak: 1.49, tablespoons: 1.42,
seasoning: 1.42, sour: 1.39, bake: 1.37, defini-
tions: 1.31, stir: 1.30, purple: 1.28, saddle: 1.27,
samsung: 1.26, tender: 1.25, coat: 1.25, candy:
1.24, irish: 1.24, oven: 1.22, flour: 1.21

Table 2: Selection of token-word associations, sorted using pointwise mutual information. Token
188: physiology and metabolism (bold), diet (italics). Token 2639: cooking/seasoning (bold).
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Figure 3: The plots shows the correlation between increased representation length and batch size
and Success@100 metric (left) and the Success@1000 metric (right) on the hard negatives subset of
the MSMARCO dataset.

more stable and accurate gradient estimates, particularly when using contrastive losses, which can
lead to improved model convergence and overall effectiveness. However, due to existing hardware
constraints, our experiments were limited to a maximum batch size of 2048, despite the utilization of
GradCache. GradCache was instrumental in enabling us to approach this upper limit by optimizing
memory usage through gradient caching techniques, yet the restriction remained a bottleneck.

Are Latent Tokens Interpretable? Many latent tokens predominantly associated with a topic.
We include two example of this in Table 2, where we showcase latent token-natural language word
associations, weighted by pointwise mutual information. Token 188 seems to be connected to a
mixture of biological concepts related to health, mostly related to physiology and metabolism, and
diet. Token 2639 centers around cooking, with a focus on seasoning. Not all natural language words
seems to be related.

What is the codebook usage distribution? Our entropy loss effectively generates a uniform dis-
tribution over codebook tokens for both queries and documents, as illustrated in Figure A.2. A few
rare exceptions may arise, likely due to certain topics appearing with greater frequency than others.

6 RELATED WORK

6.1 INFORMATION RETRIEVAL

In recent years, dense retrieval methods have gained prominence, driven by advances in pre-trained
transformer-based models such as BERT (Devlin et al., 2019). These models generate dense vectors
representations of queries and documents in a continuous embedding space, enabling retrieval based
on semantic similarity rather than lexical matching alone. Dense retrieval models have demonstrated
strong performance on IR tasks, especially in settings with large human-annotated datasets, as seen
in works like DPR (Karpukhin et al., 2020) and ColBERT (Khattab & Zaharia, 2020).

Dense retrieval methods effectively overcome vocabulary mismatch by retrieving documents with
semantically related terms, even if they differ lexically from the query. However, this advantage
comes with high computational and memory costs due to large-scale matrix multiplications and the
need to store dense embeddings for both queries and documents.

In response to the high resource demands of dense retrieval models, hybrid approaches have been
proposed that combine dense and sparse signals to balance efficiency and effectiveness. Methods
such as DeepCT (Dai & Callan, 2019), doc2query (Gospodinov et al., 2023), SPARTA (Zhao et al.,
2020) and SPLADE (Formal et al., 2021) enrich sparse representations with semantic information

9
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learned by neural networks. These hybrid models attempt to capture the strengths of both sparse
and dense representations, offering improved retrieval performance while mitigating some of the
computational costs associated with dense approaches. These methods are all orthogonal to QCR,
and could be used in conjuction with it to improve overall performance.

6.2 DISCRETE REPRESENTATION LEARNING

The precursor of FSQ, VQ-VAE, has shown impressive results, particularly in the image generation
space, but it is notoriously challenging to optimise, with frequent codebook collapse (i.e. only a
small subset of the codebook vectors are utilized by the model). Several techniques have been pro-
posed to address the issue of codebook collapse and improve the learning of discrete representations
in VQ-VAE models. One approach is the use of “random restarts” (Dhariwal et al., 2020), where
underutilized codebook vectors are reset to encoder outputs, helping to ensure diverse usage. Other
work, such as (Lancucki et al., 2020), improves codebook learning by periodically reinitializing the
codebook using offline clustering methods.

However, preliminary experiments with both techniques in their formulation they did not succeed in
preventing codebook collapse in our retrieval setting. While the goal of learning improving discreti-
sation methods was not our primary objective, the proposed entropy loss demonstrated remarkable
stability and performance in this retrieval setting. This suggests that it could serve as an effective
alternative for maximizing codebook utilization in FSQ, VQ-VAE, and similar techniques. An inter-
esting avenue for future work could be to analyse the impact of this loss on other vector quantisation
methods, outside of retrieval.

7 CONCLUSION

In this paper, we introduce QCR, a system able to leverage LMs to generate discrete representations
can significantly enhance the effectiveness of sparse retrieval tasks. QCR combines the semantic
richness of dense embeddings with the efficiency and scalability of sparse retrieval methods, such
as BM25. By introducing a novel integration of FSQ with BERT embeddings, optimized using a
ColBERT-style loss, our system offers a robust approach to information retrieval that significantly
outperforms traditional sparse methods in both supervised and unsupervised settings.

Furthermore, the use of these discrete representations into existing sparse retrieval infrastructures
suggests a scalable and efficient pathway for enhancing the retrieval process without the need for ex-
tensive computational resources. This characteristic is particularly valuable in resource-constrained
environments or scenarios where rapid scaling of information retrieval systems is required.

Future Work Looking ahead, the potential applications of these discrete embeddings extend be-
yond traditional text retrieval. QCR could be adaptable to more complex retrieval scenarios, includ-
ing multimodal contexts where integration of different types of data is necessary. Future work could
explore the application of discrete embeddings to help the performance of generative retrieval mod-
els, where the generative capabilities of LLMs can be harnessed to create dynamic query responses
based on the rich semantic understanding encapsulated within the discrete codes. Moreover, future
works might be able to dynamically control the size of the query and documents, as well optimise the
distribution of the codebook to maximise throughput and minimise latency beyond what is possible
for lexical term matching, which has to adapt itself to natural language statistics. Finally, train-
ing on larger models and for longer periods, with increased batch sizes, could lead to considerable
performance gains, unlocking further potential of the method.

REPRODUCIBILITY STATEMENT

Upon acceptance, we will open source our source code, alongside the hyperparameters and seed used
to run the experiments. We will also be releasing the generated dataset we used in the unsupervised
setting. All code used for training, evaluation, generating the dataset and baselines is included in the
Supplementary Material, organized in self-contained scripts.
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A APPENDIX

A.1 UNSUPERVISED DATASET GENERATION

To generate the example queries from the given documents, we use the following prompt on
Gemma 2: "You are an expert search engine query generator. Your
task is to create a concise and effective query that could be used
to retrieve a specific document provided by the user. The query
should consist of key terms or phrases that are highly relevant to
the content of the document. Your response must include only the
generated query and nothing else. Document: <document>".

A.2 CODEBOOK ENTROPY
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Figure 4: The plot shows the distribution of codebook tokens in the encoded MSMARCO dev set
queries.
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