
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

QCR: QUANTISED CODEBOOKS FOR RETRIEVAL

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, the application of language models (LMs) to retrieval tasks has
gained significant attention. Dense retrieval methods, which represent queries and
document chunks as vectors, have gained popularity, but their use at scale can be
challenging. These models can under-perform traditional sparse approaches, like
BM25, in some demanding settings, e.g. at web-scale or out-of-domain. Moreover
the computational requirements, even with approximate nearest neighbour indices
(ANN) can be hefty. Sparse methods, remain, thanks to their efficiency, ubiqui-
tous in applications. In this work, we ask whether LMs can be leveraged to bridge
this gap. We introduce Quantised Codebooks for Retrieval (QCR): we encode
queries and documents as bags of latent discrete tokens, learned purely through a
contrastive objective. QCR’s encodings can be used as a drop-in replacement for
the original string in sparse retrieval indices, or can be instead used to complement
the text with higher-level semantic features. Experimental results demonstrate that
QCR outperforms BM25 with vanilla text on the challenging MSMARCO dataset.
What is more, when used in conjunction with standard lexical matching, our repre-
sentation yield and absolute 15.6% gain over BM25’s Success@100, highlighting
the complementary nature of textual and learned discrete features.

1 INTRODUCTION

Information retrieval (IR) systems have long relied on traditional term matching methods, represent-
ing both queries and documents as bags of words, i.e. very high-dimensional, sparse vectors, whose
non-zero components are based on lexical frequencies estimated on text corpora. Approaches such
as BM25 (Robertson & Zaragoza, 2009; Robertson & Walker, 1997) have withstood the test of time
because of their effectiveness, but also in no small part due to its simplicity and scalability. This
scalability is a product of the sparsity of the representations, that allows the use of efficient and flex-
ible data structures for search, such as the inverted index (Knuth, 1997). However, traditional sparse
retrieval methods are now losing their dominance. Since they are based on exact or near-exact term
matching between queries and documents, they face the well-known vocabulary mismatch problem
(Berger et al., 2000). Vocabulary mismatch arises when concepts with same meaning are worded
differently in the query and the related document, causing sparse models to fail at the retrieval task,
— e.g. with the synonyms pants and trousers.

In recent years, so-called dense retrieval models have become widely used in text applications (Wang
et al., 2024; Lee et al., 2019). Embedding models typically encode queries and documents as con-
tinuous, fixed-length vectors, computing relevance scores with dot product. Powered by the recent
improvements in language model pre-training, dense approaches have shown substantial improve-
ments in IR tasks (Karpukhin et al., 2020; Xiong et al., 2020; Izacard et al., 2022; Wang et al., 2024),
particularly in scenarios where large annotated datasets are available. Dense models can capture the
higher-level meaning of queries and documents, enabling retrieval to go beyond simple term match-
ing. Despite their success, dense retrieval methods come with significant drawbacks, including high
computational and memory costs (Cao et al., 2021), and the need for complex approximate nearest
neighbor indices (Douze et al., 2024; Malkov & Yashunin, 2018). Moreover, dense retrieval systems
can underperform simple term-matching where large-scale supervised data is unavailable or difficult
to collect (Ni et al., 2022).

In this paper, we introduce a method that improves standard term-matching retrieval performance
by leveraging learnt, discrete embeddings of queries and documents composed of tokens from a
latent codebook. These latent encodings can be used in place of natural language words with no

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

QUERY

What are the economic impacts of rising sea level?

Inference

DOCUMENTS

Coastal cities
are projected
to face
infrastructure
damages
exceeding...

Increased
sea levels
could
displace up
to 150
million
people
globally...

Agricoltural
losses due
to
salinization
of arable
land from
sea water...

...

Pre-processing

501,212,129,

478,639,684,

350,543,200,

815,703,492,

983,109,421,

832,290,652,

719,305,684,

429,558,910,

324,721,415,

607,700,876,

651,109,519,

390,721,482,

608,129,305,

328,684,217,

543,721,400,

100,876,652,

457,832,354,

543,265,700,

...

101 , 202 , 305 , 129 , 457 , 684 , 910 , 534 , 721 , 334 , ...

QCR

INVERTED INDEX

Figure 1: High-level structure of QCR. After training, we process the corpus to generate a discrete
representation for every document (or passage). These discrete encodings are used to create an
inverted index. At inference time, we encode an upcoming query and match it against our collection
using standard sparse retrieval methods.

modification to the existing indices used in sparse retrieval methods like BM25. Borrowing from
the field of discrete representation learning, we apply Finite Scalar Quantization (FSQ) (Mentzer
et al., 2023), a recently introduced vector quantisation method, on top of BERT (Devlin et al., 2019)
embeddings to generate discrete latent codes, which are optimised through backpropagation using
a ColBERT-like loss function (Khattab & Zaharia, 2020). We hypothesise the these discrete codes
can mitigate the vocabulary mismatch problem as they incorporate learnt, semantic information into
their discrete representation while retraining most of the computational benefits of sparse methods.

We empirically demonstrate that our discrete representations improve BM25 performance when
used in isolation and that further gains are achieved when combining these representations with the
original textual queries and documents. This finding suggests that discrete representations and text
provide complementary signals that enhance retrieval effectiveness when used together. This hybrid
approach allows us to combine the interpretability and computational efficiency of traditional sparse
methods with the semantic information of learned representations, offering a lightweight alternative
to dense retrieval methods, making it particularly well-suited for large-scale applications where
dense retrieval might be costly.

While our method does not outperform state-of-the-art dense retrieval models in terms of raw re-
trieval metrics, it offers a much more computationally efficient solution, making it highly attractive
in scenarios where dense retrieval methods are impractical due to their resource demands.

Our contributions are as follows:

1. We propose a method for generating discrete representations of queries and documents,
which can be used both as standalone inputs for inverted-index retrieval systems and in
conjunction with traditional lexical representations.

2. Our approach improves retrieval performance on the challenging MSMARCO benchmark,
demonstrating its effectiveness in both supervised and unsupervised settings. Notably, it
outperforms BM25 on all reported metrics when using discrete representations alone and
shows further gains when combining them with original text.

3. We highlight the practical advantages of integrating discrete representations with lexical
retrieval, offering a computationally efficient alternative to dense retrieval methods while
maintaining strong performance.

2 BACKGROUND

In Figure 1 we provide a schematic architecture of our QCR method. Our method relies on the
recently introduced FSQ quantization method (Mentzer et al., 2023) to induce a discretisation of
the Transformer model’s output hidden states, while optimising end-to-end with a ColBERT-like
loss. In the rest of this section, we provide the background useful understand the main technical
contribution of our work.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.1 COLBERT

ColBERT (Contextualized Late Interaction over BERT) (Khattab & Zaharia, 2020) is an information
retrieval model that combines the strengths of both traditional sparse retrieval techniques and dense
vector-based retrieval. At its core, ColBERT leverages deep contextual embeddings generated by
BERT to represent both queries and documents. However, instead of embedding into a single fixed-
length vector like most dense retrieval models, ColBERT retains individual token-level embeddings,
thus preserving fine-grained contextual information. Like in term-based sparse retrieval approaches,
in ColBERT the relevance score is computed as the max-pooling over the dot product between
individual query and document terms.

The ColBERT scoring is given by the following equation:

scoreColBERT(q, d) :=
∑
qi∈q

max
dj∈d

eqi · eTdj

∥ eqi ∥ · ∥ edj
∥

(1)

where eqi ∈ EQ and edi
∈ ED are the embeddings of query and document tokens, respectively.

2.2 FSQ

FSQ (Mentzer et al., 2023) is a technique used to discretise continuous data into a finite set of values,
which is particularly useful in scenarios where memory efficiency and computational simplicity are
priorities. FSQ maps each continuous value to the nearest point in a predefined set of quantised
levels, in contrast with its precursor VQ-VAE (van den Oord et al., 2018), where the codebook is
learnt and actively changes during training.

FSQ works by rounding each entry in the latent representation z to the nearest integer, usually after
applying a bounding function such as the hyperbolic tangent. To propagate gradients through the
rounding operation, it simply uses straight-through estimation (STE) (Bengio et al., 2013). FSQ
has been shown to be easier to optimise than other similar methods, while avoiding the issue of
codebook under-utilisation that VQ-VAE suffers from.

FSQ obtains a discrete representation of a continuous vector z by applying the following operation
on each one of its dimensions:

zi = round(⌊L/2⌋ tanh
(
zprequant
i

)
) (2)

Here, zprequant
i represents the pre-quantized value of the i-th dimension and L is the number of dis-

crete values of each dimension. Considering the same value L across all dimensions, and a total
number of d dimensions (|zi| = d), the dimension of the codebook is equal to |C| = Ld.

2.3 DISCRETE REPRESENTATION LEARNING

Discrete representations, particularly through methods such as VQ-VAE and FSQ, have gained trac-
tion in generative modeling, especially in the domain of image generation (Razavi et al., 2019;
Ramesh et al., 2021; Gu et al., 2022; Chang et al., 2022), but also music (Dhariwal et al., 2020) and
video (Rakhimov et al., 2020). These techniques enable the transformation of continuous data (e.g.,
pixel values) into discrete codes, which can be used to produce high-quality images. Discretisation
methods have also been applied to text generation (Zhang et al., 2024) to allow for better control of
textual output in LLMs.

Perhaps most similar to our method, Sun et al. (2023) propose GENRET to learn discrete document
identifiers for the purpose of using them during generative retrieval. Their goal is to obtain identifiers
that contain semantic information about the document and are easier for the LLM to generate. They
use an auto-encoding framework to generate docids that are autoregressive in nature and diverse
enough to avoid duplicate docids across multiple documents. Similarly, Wang et al. (2023) propose
a hierarchical k-means algorithm to generate docids for each documents.

3 METHODOLOGY

Our proposed approach builds on the idea of leveraging LLMs to generate discrete representations
optimized for retrieval tasks. We aim to combine the semantic richness of dense embeddings with

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the efficiency and interpretability of sparse methods. Below, we outline the key components of our
method, which includes FSQ and a novel loss function optimized for information retrieval.

3.1 ARCHITECTURE

We use an encoder LLM architecture, BERT (Devlin et al., 2019) specifically, to obtain embedding
representations for each query and document. In particular, we augment the input text, both for
queries and documents, by prepending a set of special tokens to each text string. These special
tokens serve as unique markers that define fixed positions for the embedding extraction.

Given a text input, we tokenize it, add special tokens, and then feed the modified text into a pre-
trained BERT model. In other words, for a tokenised query q = ⟨q1, q2, ..., qN ⟩ and document
d = ⟨d1, d2, ..., dM ⟩ where N and M are the lengths of the query and document respectively, we
obtain q′ = ⟨s1, s2, ..., sK , q1, q2, ..., qN ⟩ and d′ = ⟨s1, s2, ..., sK , d1, d2, ..., dM ⟩, where K is the
(same) number of special tokens prepended to both queries and documents. Instead of utilizing
the entire set of token embeddings generated by BERT, we focus exclusively on the embeddings
corresponding to the special tokens. This step decouples size of the tokenized string from that of
the embedded representation. Thus, given a sequence of embeddings ⟨e1, e2, . . . , eK+N ⟩, obtained
either from q′ or d′, we select only the first K embeddings.

Once the special token embeddings are extracted from BERT, they are passed through a single
linear projection layer. This layer reduces the embedding dimensionality to a size suitable for the
quantisation process, i.e. the number of levels. Following the projection, we apply FSQ to the
embeddings, converting the continuous embeddings into quantised codes.

3.2 CONTRASTIVE LOSS

Our goal is to obtain discrete representations where matching query-document pairs share as many
codebook tokens as possible, while the distance from other “negative” documents is maximised.
Contrastive losses are a popular choice in these settings, however they require big batch sizes to
minimise bias.

To train our model, we utilize a ColBERT-style loss function. Unlike traditional ColBERT model,
where the similarity between query and document embeddings is measured using cosine similarity,
we compute the ℓ2 distance between the pre-rounded FSQ representations of queries and docu-
ments. We use ℓ2 distance rather than cosine similarity as we want to give the maximal score to
exact matches in level space because of our use of BM25 at inference while, e.g., the codebook
entry (0, 0, 0, 0, 0) would return a 0 cosine-distance to all other codebook entries. Moreover, cosine
similarity would conflate some linearly dependant codes together. Let Zq and Zd be the sets of
quantized codes for the query and document, respectively. Our contrastive loss is defined as:

Lc =
∑
i∈Zq

max
j∈[|Zd|]

−||zqi − zdj
||2 (3)

To maximise batch size despite the constraints of training on limited hardware, we use a multi-
vector adaptation of GradCache (Gao et al., 2021). GradCache allows us to process sub-batches
sequentially while accumulating their gradients, effectively simulating a large batch size without
requiring all sub-batches to be stored in memory at once.

3.3 AUXILIARY ENTROPY LOSS

Even though FSQ was designed to obtain high codebook utilisation without the use of auxiliary
losses, we found that, with a contrastive loss, FSQ alone does not guarantee high codebook utilisa-
tion, and that instead the codebook usage collapses often at the beginning of training. To solve this
problem, we propose an auxiliary entropy loss. Our goal is to maximise the usage of the codebook
by maximising the codebook entropy. To do so, for each code in each query and document, we
compute all distances between the contextualised prequantized representation z and each codebook

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

vector ζ in C and use them as logits to get a probability distribution:

P (ζi|z) =
e−||ζi−z||2∑

ζj∈C e−||ζj−z||2
(4)

Our regularization objective would then be just the entropy of the batch-averaged probability distri-
bution P , i.e. −

∑
ζi∈C P (ζi) logP (ζi). However, as preliminary experiments showed, this doesn’t

take into account what token is actually “sampled” by the rounding procedure of FSQ. Therefore, we
use the crisp, one-hot probability P ∗(ζi|z), which is 1 if ζi = argmaxζj

P (ζj |z). Since the argmax
operation is non-differentiable, we optimize P ∗(ζi|z) with straight-through estimation STE (Bengio
et al., 2013) , i.e., we use the gradient of P (ζi|z). The full loss is then:

LH = −
∑
ζi∈C

P ∗(ζi) logP ∗(ζi); P ∗(ζ) =
1

b

1

t

b∑
i=1

t∑
j=1

P (ζ|zi;j) (5)

3.4 RETRIEVAL

To perform retrieval, we embed documents in the retrieval collection using our method, and index
using an inverted index data structure. We then search using TF-IDF1 to compute a relevance score
between queries and document:

score(q, d) =
∑
qi∈q

TF︷ ︸︸ ︷
f(ζqi , d) ·

IDF︷ ︸︸ ︷
f(ζqi , D)−1 (6)

where f(ζqi , d) is the frequency of the discrete token in a document, and f(ζqi , D) is the frequency
of the discrete token in the full collection. This scoring methodology, however does not take into
account non-exact matches. FSQ’s quantization levels can be used to compute relative distances
between tokens. Similarly to our contrastive objective Eq. 3, then, we use the sum of maximum
negative ℓ2 distances to rescore the top 5000 candidates returned by search over the inverted index
using the scoring in Eq. 6. This rescoring process is very computationally lightweight. Since the
distances between all possible codebook entries can be precomputed and stored in a |C|×|C| matrix,
the rescoring step can be performed efficiently without significantly increasing the overall inference
time. This enables the model to refine the rankings of retrieved documents while still maintaining
the efficiency necessary for practical deployment.

While the learned tokenisation can be used on its own, it can complement, and be complemented by,
standard lexical matching. Specifically, we retrieve documents based on text-only representations
and token-only representations independently and then merge the results using Reciprocal Rank
Fusion (RRF) (Cormack et al., 2009). This fusion method ensures a more balanced combination of
lexical and semantic retrieval signals, leading to improved results.

4 EXPERIMENTAL SETUP

In this section we highlight the experimental configuration for our experiments. All our code was im-
plemented using PyTorch (Paszke et al., 2019), using the ir-datasets (MacAvaney et al., 2021)
package to access publicly available datasets, pyserini for the (Lin et al., 2021) BM25 implemen-
tation and Huggingface transformers (Wolf et al., 2020) library for the BERT implementation.
All experiments were run on a single NVIDIA A100 GPU. Our code will be open-sourced upon
paper acceptance.

4.1 DATASETS

The MSMARCO dataset (Bajaj et al., 2018) is a large-scale benchmark commonly used in informa-
tion retrieval (IR) tasks. It is derived from real-world Bing search queries and contains three main

1The pyserini library that we use for our retrieval experiments provides a BM25 implementation that
takes into account document length and its relation with the average length in the corpus. The library also
provided a mechanism to saturate the TF component. In our setup, documents are of the same length and with
an extremely high number (around 98.5%) of unique tokens within each document.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

components: MSMARCO Passage Ranking, MSMARCO Document Ranking, and MSMARCO
Question Answering (QA). In our experiments, we focus on the Passage Ranking task, which con-
sists of approximately 8.8 million passages and 6,980 queries for evaluation. Each query in the
Passage Ranking task is paired with a relevant passage, with relevance labels provided for training.
The goal is to retrieve the most relevant passages from the corpus given a query.

We will train our model in two different settings: supervised, where we assume the model has had
some exposure to the MSMARCO training set of query-document pairs, and an unsupervised setting
where this dataset was not used.

Supervised Dataset Generation During training, we apply data augmentation and use the same
MSMARCO silver-queries originally introduced in Li et al. (2023). This dataset is generated using a
passage-conditioned neural model trained on the original MSMARCO query-passage training pairs.
We sample one query per passage yielding a training set of 8.8M queries in total. We refer to the
original paper for additional details on the data generation process. We use this dataset to train
our QCR architecture. Given that the original query-generation model has had access to the golden
queries, we dubbed our resulting model QCR-supervised.

Unsupervised Dataset Generation We further evaluated our model in a scenario reflective of
more realistic data environments, where access to traditional training queries, such as those provided
by the MSMARCO dataset, were not available. This setup simulates situations where explicit query-
document pairings might be absent, as is often the case in real-world datasets. To address this, we
employed Gemma-2-2b (Team Gemma et al., 2024), to autonomously generate relevant queries for
each document in the dataset.2 This approach allows us to train our retrieval model effectively
without relying on large-scale annotated datasets, thus showcasing the adaptability of our method
to less ideal, unstructured data scenarios. We call the resulting model trained on this data as QCR-
unsupervised.

4.2 POSITIONALLY-AWARE RETRIEVAL

During inference, we improve the matching accuracy of our discrete representations by incorporat-
ing positional information into each code. Specifically, we prefix each discrete code with its position
in the sequence; for example, we transform the codes c0, c1, c2 into 0 c0, 1 c1, 2 c2. This modifi-
cation enables sparse retrieval methods like BM25 to match tokens only if they align in both their
semantic content (i.e., code ID) and their position in the sequence.

For instance, consider a query with positional codes 0 c52, 1 c113, 2 c23, . . . and a document with
positional codes 0 c52, 1 c45, 2 c113, In this case, the only match occurs at position 0, where
both the query and the document have the code c52. Although the code c113 appears in both the
query and the document, it is at different positions (position 1 in the query and position 2 in the
document). Therefore, with positional codes, these are not considered a match. We empirically
found that this approach leads to better results by a small margin (roughly 2% in Success100), as it
leverages the model’s tendency to store information at fixed positions in the code sequence.

4.3 HYPERPARAMETERS

We initialise the BERT transformer architecture with the weights of the TCT-ColBERT (Lin et al.,
2020) model for QCR-supervised and we use the weights of Contriever (unsupervised) (Izacard
et al., 2022) for QCR-unsupervised. We use a learning rate of 1e-5, an Adam (Kingma & Ba,
2017) optimiser and no weight decay, as it encouraged codebook collapse. We use a 5-dimensional
codebook where each component is divided across 5 different levels, yielding a codebook with a
total of 55 = 3125 distinct elements. Although we experimented with multiple batch size and
discrete representation lengths, our best model was trained on a schedule of increasing batch sizes
and representation lengths. The batch size increased from 256 to 2048, while the representation
length increased from 150 to 250. Overall, QCR was trained for 4000 gradient steps.

2We report the prompt used in Appendix A.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.4 BASELINE

We also consider a simpler alternative method that maps sequences of text into sequences of dis-
crete codes using k-means. Specifically, we employ k-means clustering on token-level embeddings
obtained from ColBERT to assign input tokens to codes based on their cluster IDs. Note that this
baseline is in part an ingredient of the ColBERT recipe, in that k-means is used for ANN retrieval of
candidate tokens. We begin by sampling a subset of the MSMARCO dataset and encoding each doc-
ument into vectors. For each document we extract the sequence of encoded token embeddings and
then aggregate these embeddings across all sampled documents to form a corpus of 50M token-level
embeddings. Using this corpus we train a k-means model with k clusters, each cluster is associated
with a centroid of its members. Finally, we use the clustering model to convert all documents in
MSMARCO into sequences of discrete tokens: for each document, we encode it to obtaining token
embeddings ⟨e1, e2, ..., e|d|⟩; we then map each ei to a cluster identifier ci = {1, 2, . . . ,K} associ-
ated with its nearest centroid according to their euclidean distance. For retrieval, we consider these
cluster identifiers as regular tokens. We report results with the discrete tokens as well as with the
addition of regular words. Note that for queries and documents the transformed discrete sequences
have an 1-1 mapping with their respective (input) text tokens and therefore we do not consider po-
sitional matching for scoring. We report results with a k-means model with K = 32000, which
produced the best results in a small hyper-parameter tuning experiment.

5 RESULTS

The performance of QCR was evaluated on the MSMARCO dataset. The experiments were designed
to compare our approach against traditional BM25 and assess the benefits of incorporating discrete
embeddings in conjunction with textual information.

In Table 1, we report several evaluation metrics, including mean reciprocal rank (MRR), normalized
discounted cumulative gain (nDCG), and precision at various cutoffs for supervised QCR. Super-
vised QCR demonstrated superior performance over the baseline BM25 across all evaluated metrics,
supporting our hypothesis that QCR is able to generate semantically rich and discrete embeddings
that capture underlying textual semantics better than BM25. We observe similar results in the un-
supervised setting, although with a generally lower performance. Furthermore, the optimal results
were achieved through a hybrid approach that amalgamates text with discrete representations, pro-
viding an hybrid approach that benefits from the complementary strengths of discrete and traditional
text embeddings, providing a more holistic representation of text for retrieval tasks.

Even though supervised dense retrieval methods trained on the same architecture (BERT-large) out-
perform our method, this comes at the cost of high computational and memory overhead. Moreover,
we outperform the unsupervised version of Contriever when combining words and discrete codes
from QCR-unsupervised. Moreover, we surpass the unsupervised version of Contriever across all
reported metrics, demonstrating the potential of integrating both word-level and semantic informa-
tion through learned tokens. It is important to note, however, that the unsupervised Contriever was
trained on Wikipedia passages and CCNet (Wenzek et al., 2019) data using ICT and random crops,
without any exposure to MSMARCO passages, whereas our approach leverages MSMARCO data
and synthetic queries.

5.1 ANALYSIS

How Much do Queries and Documents match? In Figure 2 we plot the distribution of the num-
ber of tokens in MSMARCO dev queries that match a) a random document; b) a hard negative,
i.e. a random document in the top-100 returned by lexical BM25; c) the ground truth document.
We can see a clear correlation between the degree of relevance and the number of matches; but the
in-group variance is increasing as well, so that there is a lot of diversity in the scores of ground truth
document.

Representation Length and Batch Size During our experimentation, we observed a notable im-
provement in performance correlating with increases in both batch size and representation length,
as can be observed in Figure 3. This trend highlights a significant opportunity for performance en-
hancement through the use of larger batch sizes. Training with bigger batches typically allows for

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model nDCG-10 RR-10 Succ@10 R@100 Succ@100

Supervised

DPR (Dense) - 0.288 - - -
Contriever Sup (Dense) 0.407 - - 0.891 -
QCR-sup. 0.252 0.194 0.427 0.707 0.717
QCR-sup w/ rescoring 0.273 0.220 0.461 0.750 0.760
QCR-sup w/ words 0.270 0.216 0.460 0.749 0.758
QCR-sup w/ words + RRF 0.288 0.229 0.750 0.795 0.802

Unsupervised

k-means (K=32k) 0.115 0.092 0.199 0.403 0.404
k-means (K=32k) w/ words 0.197 0.158 0.335 0.602 0.611
BM25 0.219 0.176 0.371 0.658 0.646
Contriever Unsup (Dense) 0.206 - - 0.672 -
QCR-uns. 0.128 0.102 0.221 0.453 0.462
QCR-uns. w/ rescoring 0.160 0.127 0.280 0.556 0.566
QCR-uns. w/ words 0.169 0.134 0.298 0.580 0.590
QCR-uns. w/ words + RRF 0.227 0.178 0.395 0.708 0.717

Table 1: We report metrics on the MSMARCO passage dev set. QCR is trained on a subset of the
MSMARCO passages and queries generated to resemble those from the MSMARCO train dataset.
The RRF uses a coefficient of 0.6 for the token-only results. DPR results from Oğuz et al. (2021),
Contriever results from Izacard et al. (2022). Our method yields the best results in the unsupervised
setting and shows promising performance in the supervised one.

0 20 40 60 80 100
Number of Matching Codebook Entries

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

De
ns

ity

Distribution of Matching Codebook Entries
Negative Documents
Hard Negative Documents
Positive Documents

Figure 2: The plot shows the distribution of the number of matching codebook tokens between
queries from the MSMARCO training set and three types of associated documents: the correspond-
ing positive document, a hard negative document, and a randomly sampled negative document.

Token 188 Token 2639

adaptations: 1.79, pericardial: 1.79, receptors:
1.79, cysts: 1.73, ventricular: 1.71, leptin: 1.71,
prostaglandin: 1.71, serotonin: 1.70, minerals:
1.65, nuclei: 1.65, combustion: 1.58, absorption:
1.56, fats: 1.56, cranial: 1.55, bloodstream: 1.55,
diets: 1.55, membrane: 1.53, sheep: 1.53, vitamin:
1.47, neurons: 1.47, encounter: 1.45, yogurt: 1.45,
oatmeal: 1.44, headaches: 1.44, supplements: 1.42,
uric: 1.42, sick: 1.41, constipation: 1.41

preheat: 1.80, chartered: 1.80, stir-fry: 1.80, mer-
lin: 1.80, equifax: 1.80, brat: 1.80, araya: 1.80,
theodora: 1.80, dt: 1.80, cove: 1.70, ar: 1.68, sprin-
kle: 1.66, pepper: 1.60, skillet: 1.57, backup:
1.57, mp4: 1.53, steak: 1.49, tablespoons: 1.42,
seasoning: 1.42, sour: 1.39, bake: 1.37, defini-
tions: 1.31, stir: 1.30, purple: 1.28, saddle: 1.27,
samsung: 1.26, tender: 1.25, coat: 1.25, candy:
1.24, irish: 1.24, oven: 1.22, flour: 1.21

Table 2: Selection of token-word associations, sorted using pointwise mutual information. Token
188: physiology and metabolism (bold), diet (italics). Token 2639: cooking/seasoning (bold).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000
Batch Size

50

75

100

125

150

175

200

225

250

Re
pr

es
en

ta
tio

n
Le

ng
th

Success @ 100

0 500 1000 1500 2000
Batch Size

50

75

100

125

150

175

200

225

250

Re
pr

es
en

ta
tio

n
Le

ng
th

Success at 1000

78

80

82

84

86

88

90

92

Su
cc

es
s @

 1
00

88

90

92

94

96

Su
cc

es
s @

 1
00

0

Figure 3: The plots shows the correlation between increased representation length and batch size
and Success@100 metric (left) and the Success@1000 metric (right) on the hard negatives subset of
the MSMARCO dataset.

more stable and accurate gradient estimates, particularly when using contrastive losses, which can
lead to improved model convergence and overall effectiveness. However, due to existing hardware
constraints, our experiments were limited to a maximum batch size of 2048, despite the utilization of
GradCache. GradCache was instrumental in enabling us to approach this upper limit by optimizing
memory usage through gradient caching techniques, yet the restriction remained a bottleneck.

Are Latent Tokens Interpretable? Many latent tokens predominantly associated with a topic.
We include two example of this in Table 2, where we showcase latent token-natural language word
associations, weighted by pointwise mutual information. Token 188 seems to be connected to a
mixture of biological concepts related to health, mostly related to physiology and metabolism, and
diet. Token 2639 centers around cooking, with a focus on seasoning. Not all natural language words
seems to be related.

What is the codebook usage distribution? Our entropy loss effectively generates a uniform dis-
tribution over codebook tokens for both queries and documents, as illustrated in Figure A.2. A few
rare exceptions may arise, likely due to certain topics appearing with greater frequency than others.

6 RELATED WORK

6.1 INFORMATION RETRIEVAL

In recent years, dense retrieval methods have gained prominence, driven by advances in pre-trained
transformer-based models such as BERT (Devlin et al., 2019). These models generate dense vectors
representations of queries and documents in a continuous embedding space, enabling retrieval based
on semantic similarity rather than lexical matching alone. Dense retrieval models have demonstrated
strong performance on IR tasks, especially in settings with large human-annotated datasets, as seen
in works like DPR (Karpukhin et al., 2020) and ColBERT (Khattab & Zaharia, 2020).

Dense retrieval methods effectively overcome vocabulary mismatch by retrieving documents with
semantically related terms, even if they differ lexically from the query. However, this advantage
comes with high computational and memory costs due to large-scale matrix multiplications and the
need to store dense embeddings for both queries and documents.

In response to the high resource demands of dense retrieval models, hybrid approaches have been
proposed that combine dense and sparse signals to balance efficiency and effectiveness. Methods
such as DeepCT (Dai & Callan, 2019), doc2query (Gospodinov et al., 2023), SPARTA (Zhao et al.,
2020) and SPLADE (Formal et al., 2021) enrich sparse representations with semantic information

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

learned by neural networks. These hybrid models attempt to capture the strengths of both sparse
and dense representations, offering improved retrieval performance while mitigating some of the
computational costs associated with dense approaches. These methods are all orthogonal to QCR,
and could be used in conjuction with it to improve overall performance.

6.2 DISCRETE REPRESENTATION LEARNING

The precursor of FSQ, VQ-VAE, has shown impressive results, particularly in the image generation
space, but it is notoriously challenging to optimise, with frequent codebook collapse (i.e. only a
small subset of the codebook vectors are utilized by the model). Several techniques have been pro-
posed to address the issue of codebook collapse and improve the learning of discrete representations
in VQ-VAE models. One approach is the use of “random restarts” (Dhariwal et al., 2020), where
underutilized codebook vectors are reset to encoder outputs, helping to ensure diverse usage. Other
work, such as (Lancucki et al., 2020), improves codebook learning by periodically reinitializing the
codebook using offline clustering methods.

However, preliminary experiments with both techniques in their formulation they did not succeed in
preventing codebook collapse in our retrieval setting. While the goal of learning improving discreti-
sation methods was not our primary objective, the proposed entropy loss demonstrated remarkable
stability and performance in this retrieval setting. This suggests that it could serve as an effective
alternative for maximizing codebook utilization in FSQ, VQ-VAE, and similar techniques. An inter-
esting avenue for future work could be to analyse the impact of this loss on other vector quantisation
methods, outside of retrieval.

7 CONCLUSION

In this paper, we introduce QCR, a system able to leverage LMs to generate discrete representations
can significantly enhance the effectiveness of sparse retrieval tasks. QCR combines the semantic
richness of dense embeddings with the efficiency and scalability of sparse retrieval methods, such
as BM25. By introducing a novel integration of FSQ with BERT embeddings, optimized using a
ColBERT-style loss, our system offers a robust approach to information retrieval that significantly
outperforms traditional sparse methods in both supervised and unsupervised settings.

Furthermore, the use of these discrete representations into existing sparse retrieval infrastructures
suggests a scalable and efficient pathway for enhancing the retrieval process without the need for ex-
tensive computational resources. This characteristic is particularly valuable in resource-constrained
environments or scenarios where rapid scaling of information retrieval systems is required.

Future Work Looking ahead, the potential applications of these discrete embeddings extend be-
yond traditional text retrieval. QCR could be adaptable to more complex retrieval scenarios, includ-
ing multimodal contexts where integration of different types of data is necessary. Future work could
explore the application of discrete embeddings to help the performance of generative retrieval mod-
els, where the generative capabilities of LLMs can be harnessed to create dynamic query responses
based on the rich semantic understanding encapsulated within the discrete codes. Moreover, future
works might be able to dynamically control the size of the query and documents, as well optimise the
distribution of the codebook to maximise throughput and minimise latency beyond what is possible
for lexical term matching, which has to adapt itself to natural language statistics. Finally, train-
ing on larger models and for longer periods, with increased batch sizes, could lead to considerable
performance gains, unlocking further potential of the method.

REPRODUCIBILITY STATEMENT

Upon acceptance, we will open source our source code, alongside the hyperparameters and seed used
to run the experiments. We will also be releasing the generated dataset we used in the unsupervised
setting. All code used for training, evaluation, generating the dataset and baselines is included in the
Supplementary Material, organized in self-contained scripts.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica,
Saurabh Tiwary, and Tong Wang. Ms marco: A human generated machine reading comprehension
dataset, 2018. URL https://arxiv.org/abs/1611.09268.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation, 2013. URL https://arxiv.org/
abs/1308.3432.

Adam Berger, Rich Caruana, David Cohn, Dayne Freitag, and Vibhu Mittal. Bridging the lexi-
cal chasm: statistical approaches to answer-finding. In Proceedings of the International ACM
SIGIR Conference on Research and Development in Information Retrieval, New York, NY,
USA, 2000. Association for Computing Machinery. URL https://doi.org/10.1145/
345508.345576.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity retrieval,
2021. URL https://arxiv.org/abs/2010.00904.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative
image transformer, 2022. URL https://arxiv.org/abs/2202.04200.

Gordon V. Cormack, Charles L A Clarke, and Stefan Buettcher. Reciprocal rank fusion outperforms
condorcet and individual rank learning methods. In Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval, New York, NY, USA, 2009.
Association for Computing Machinery. URL https://doi.org/10.1145/1571941.
1572114.

Zhuyun Dai and Jamie Callan. Context-aware sentence/passage term importance estimation for first
stage retrieval, 2019. URL https://arxiv.org/abs/1910.10687.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever.
Jukebox: A generative model for music, 2020. URL https://arxiv.org/abs/2005.
00341.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library, 2024.
URL https://arxiv.org/abs/2401.08281.

Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant. Splade v2:
Sparse lexical and expansion model for information retrieval, 2021. URL https://arxiv.
org/abs/2109.10086.

Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan. Scaling deep contrastive learning batch size
under memory limited setup, 2021. URL https://arxiv.org/abs/2101.06983.

Mitko Gospodinov, Sean MacAvaney, and Craig Macdonald. Doc2query – : When less is more,
2023. URL https://arxiv.org/abs/2301.03266.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, 2022.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning,
2022. URL https://arxiv.org/abs/2112.09118.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen tau Yih. Dense passage retrieval for open-domain question answering, 2020. URL
https://arxiv.org/abs/2004.04906.

11

https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://doi.org/10.1145/345508.345576
https://doi.org/10.1145/345508.345576
https://arxiv.org/abs/2010.00904
https://arxiv.org/abs/2202.04200
https://doi.org/10.1145/1571941.1572114
https://doi.org/10.1145/1571941.1572114
https://arxiv.org/abs/1910.10687
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.00341
https://arxiv.org/abs/2005.00341
https://arxiv.org/abs/2401.08281
https://arxiv.org/abs/2109.10086
https://arxiv.org/abs/2109.10086
https://arxiv.org/abs/2101.06983
https://arxiv.org/abs/2301.03266
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2004.04906

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Omar Khattab and Matei Zaharia. Colbert: Efficient and effective passage search via contextualized
late interaction over bert, 2020. URL https://arxiv.org/abs/2004.12832.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980.

Donald E Knuth. The Art of Computer Programming: Fundamental Algorithms, Volume 1. Addison-
Wesley Professional, 1997.

Adrian Lancucki, Jan Chorowski, Guillaume Sanchez, Ricard Marxer, Nanxin Chen, Hans J.G.A.
Dolfing, Sameer Khurana, Tanel Alumae, and Antoine Laurent. Robust training of vector quan-
tized bottleneck models. In International Joint Conference on Neural Networks. IEEE, July 2020.
URL http://dx.doi.org/10.1109/IJCNN48605.2020.9207145.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised
open domain question answering. In Anna Korhonen, David Traum, and Lluı́s Màrquez (eds.),
Proceedings of the Annual Meeting of the Association for Computational Linguistics, Florence,
Italy, July 2019. Association for Computational Linguistics. URL https://aclanthology.
org/P19-1612.

Yongqi Li, Nan Yang, Liang Wang, Furu Wei, and Wenjie Li. Multiview identifiers enhanced gen-
erative retrieval, 2023. URL https://arxiv.org/abs/2305.16675.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak Pradeep, and Rodrigo
Nogueira. Pyserini: A Python toolkit for reproducible information retrieval research with sparse
and dense representations. In Proceedings of the International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, 2021.

Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. Distilling dense representations for ranking
using tightly-coupled teachers, 2020. URL https://arxiv.org/abs/2010.11386.

Sean MacAvaney, Andrew Yates, Sergey Feldman, Doug Downey, Arman Cohan, and Nazli Gohar-
ian. Simplified data wrangling with ir datasets. In Proceedings of the International ACM SIGIR
Conference on Research and Development in Information Retrieval, 2021.

Yu. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs, 2018. URL https://arxiv.org/abs/1603.
09320.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantiza-
tion: Vq-vae made simple, 2023. URL https://arxiv.org/abs/2309.15505.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernandez Abrego, Ji Ma, Vincent Zhao,
Yi Luan, Keith Hall, Ming-Wei Chang, and Yinfei Yang. Large dual encoders are general-
izable retrievers. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings
of the Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics. URL https:
//aclanthology.org/2022.emnlp-main.669.

Barlas Oğuz, Kushal Lakhotia, Anchit Gupta, Patrick Lewis, Vladimir Karpukhin, Aleksandra Pik-
tus, Xilun Chen, Sebastian Riedel, Wen tau Yih, Sonal Gupta, and Yashar Mehdad. Domain-
matched pre-training tasks for dense retrieval, 2021. URL https://arxiv.org/abs/
2107.13602.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library, 2019. URL https://arxiv.org/abs/1912.01703.

Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, Denis Zorin, and Evgeny Burnaev. Latent
video transformer, 2020. URL https://arxiv.org/abs/2006.10704.

12

https://arxiv.org/abs/2004.12832
https://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1109/IJCNN48605.2020.9207145
https://aclanthology.org/P19-1612
https://aclanthology.org/P19-1612
https://arxiv.org/abs/2305.16675
https://arxiv.org/abs/2010.11386
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/2309.15505
https://aclanthology.org/2022.emnlp-main.669
https://aclanthology.org/2022.emnlp-main.669
https://arxiv.org/abs/2107.13602
https://arxiv.org/abs/2107.13602
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2006.10704

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation, 2021. URL https://arxiv.org/
abs/2102.12092.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with
vq-vae-2, 2019. URL https://arxiv.org/abs/1906.00446.

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4), 2009. ISSN 1554-0669. URL http:
//dx.doi.org/10.1561/1500000019.

Stephen E. Robertson and Steve Walker. On relevance weights with little relevance information.
In Proceedings of the International ACM SIGIR Conference on Research and Development in
Information Retrieval, 1997. URL https://api.semanticscholar.org/CorpusID:
16829071.

Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang Wang, Haichao Zhu, Pengjie Ren, Zhumin
Chen, Dawei Yin, Maarten de Rijke, and Zhaochun Ren. Learning to tokenize for generative
retrieval, 2023. URL https://arxiv.org/abs/2304.04171.

Team Team Gemma, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, et al. Gemma 2: Improving
open language models at a practical size, 2024. URL https://arxiv.org/abs/2408.
00118.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing, 2018. URL https://arxiv.org/abs/1711.00937.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Ma-
jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training, 2024.
URL https://arxiv.org/abs/2212.03533.

Yujing Wang, Yingyan Hou, Haonan Wang, Ziming Miao, Shibin Wu, Hao Sun, Qi Chen, Yuqing
Xia, Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Allen Sun, Weiwei Deng,
Qi Zhang, and Mao Yang. A neural corpus indexer for document retrieval, 2023. URL
https://arxiv.org/abs/2206.02743.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán,
Armand Joulin, and Edouard Grave. Ccnet: Extracting high quality monolingual datasets from
web crawl data, 2019. URL https://arxiv.org/abs/1911.00359.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art nat-
ural language processing. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, Online, October 2020. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed,
and Arnold Overwijk. Approximate nearest neighbor negative contrastive learning for dense text
retrieval, 2020. URL https://arxiv.org/abs/2007.00808.

Yingji Zhang, Danilo S. Carvalho, Marco Valentino, Ian Pratt-Hartmann, and Andre Freitas. Improv-
ing semantic control in discrete latent spaces with transformer quantized variational autoencoders,
2024. URL https://arxiv.org/abs/2402.00723.

Tiancheng Zhao, Xiaopeng Lu, and Kyusong Lee. Sparta: Efficient open-domain question an-
swering via sparse transformer matching retrieval, 2020. URL https://arxiv.org/abs/
2009.13013.

13

https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/1906.00446
http://dx.doi.org/10.1561/1500000019
http://dx.doi.org/10.1561/1500000019
https://api.semanticscholar.org/CorpusID:16829071
https://api.semanticscholar.org/CorpusID:16829071
https://arxiv.org/abs/2304.04171
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/2212.03533
https://arxiv.org/abs/2206.02743
https://arxiv.org/abs/1911.00359
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2007.00808
https://arxiv.org/abs/2402.00723
https://arxiv.org/abs/2009.13013
https://arxiv.org/abs/2009.13013

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 UNSUPERVISED DATASET GENERATION

To generate the example queries from the given documents, we use the following prompt on
Gemma 2: "You are an expert search engine query generator. Your
task is to create a concise and effective query that could be used
to retrieve a specific document provided by the user. The query
should consist of key terms or phrases that are highly relevant to
the content of the document. Your response must include only the
generated query and nothing else. Document: <document>".

A.2 CODEBOOK ENTROPY

0 500 1000 1500 2000 2500 3000
Codebook Entries

0

500

1000

1500

2000

2500

3000

3500

Fr
eq

ue
nc

y

Distribution of Codebook Entry Frequencies

Figure 4: The plot shows the distribution of codebook tokens in the encoded MSMARCO dev set
queries.

14

	Introduction
	Background
	ColBERT
	FSQ
	Discrete Representation Learning

	Methodology
	Architecture
	Contrastive Loss
	Auxiliary Entropy Loss
	Retrieval

	Experimental Setup
	Datasets
	Positionally-Aware Retrieval
	Hyperparameters
	Baseline

	Results
	Analysis

	Related Work
	Information Retrieval
	Discrete Representation Learning

	Conclusion
	Appendix
	Unsupervised Dataset Generation
	Codebook Entropy

