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Abstract— Recent work [1] recasts neural network mixture
heads as a library of latent-space feedback skills, with each
skill behaving as a proportional (P) controller and achieving
improved robustness compared to behavior cloning baselines.
We extend this framework to proportional-integral (PI) control
in latent space and evaluate our model on FetchPush and robot-
trajectory tasks and compare it with P controller and other
Behaviour cloning baselines. Results show that the integral
path accumulates latent tracking error to cancel slowly varying
disturbances, which empirically enhances robustness and per-
formance at the cost of modestly lower sample efficiency in the
lowest data setting. We also find that the introduction of the PI
controller empirically bounds the deployment trajectory closer
to the training trajectory than the P controller

I. INTRODUCTION

A proficient robot should not only perform diverse tasks
but also reuse its skills across scenarios. A common strategy
for tackling long-horizon problems is to decompose a task
into shorter stages with intermediate goals [2], yielding
a library of reusable skills. Consider coffee preparation:
reaching for the cup, pouring, stirring, and carrying are
distinct subtasks. Each subtask requires bringing the robot
and relevant objects toward designated target states, and
transitions between subtasks are triggered by the joint state
of the robot and scene. This naturally suggests representing
each skill as a feedback control law with respect to a set
point (goal), and composing complex behavior by switching
among such controllers.

Mixture Density Networks (MDNs) are widely used to
model multimodal action distributions in robotics, from au-
tonomous driving [3]-[5] to manipulation [6]-[12]. However,
MDNs can overfit due to flexible mixtures [13], [14]. In
recent work [1], we reinterpreted the one-layer linear layer
as a classical feedback controller acting on a learned latent
state. This yields an MDN view as a switching library of
skill policies that share a latent state, but differ in goals and
gains. Building on this, we propose a probabilistic graphical
model of skill acquisition as segmentation in latent space,
where each segment is governed by a feedback proportional
integral control law.

In this work, we extend latent proportional (P) control
to a latent proportional-integral (PI) formulation by aug-
menting the action head with a short history of goal-relative
latent error. Concretely, each skill uses a finite-window (or
leaky) integrator that is reset on skill switches, providing
bias rejection (sensor drift, mild actuation errors) while
preserving tractability. We derive an ELBO that explicitly
encodes this switching PI structure, which can be end-to-
end trained without an explicit dynamics model. Importantly,
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Fig. 1: Skills are modelled as PI feedback laws in latent
space. The encoder maps observation o; to latent state
zy; a switcher activates skill § with the goal gs; and the
proportional gain K, 5 and the integral gains K;s. Yellow
blocks denote neural networks; the active controller outputs
u; to the robot for execution.

results show that this addition helps keep latent states closer
to the training data manifold at execution time, leading to
greater robustness.

The key contributions of this work are summarized as
follows:

e A probabilistic approach for learning a sequence of
latent-space feedback laws, with a new ELBO that
accounts for a switching P/ control structure via a finite-
history integrator.

o Empirical evaluation in FetchPush and robot letter writ-
ing, showing improved task success and robustness to
both observation and plant noise.

« Empirically, switching latent PI feedback yields deploy-
ment trajectories that stay closer to the training-data
manifold than latent P control.

II. RELATED WORK

As highlighted by [2], efficient skill acquisition hinges on
autonomously discovering a hierarchy of skills, and jointly
learning when to switch and how to control. Thus, seg-
mentation (where/when to apply a skill) and the underlying
feedback policy for each skill should be learned together.

Numerous approaches have been proposed to segment
demonstrations into skills. One line of work is based on
similarity. Similarity-based methods segment by clustering in
different spaces, such as state [15], policy [16], reward [17],
[18], or recently language spaces [19], including hierarchi-
cal/options RL [20], [21]. They are insightful yet fragile on
complex tasks where similarities do not generalize, and RL
can be sample-inefficient. Another line of work focuses on
Change-point approaches to detect regime shifts in dynamics



TABLE I: Average success rate on test seed based on 5 trained models given each setting in FetchPush. For the evaluation

of baselines, we reuse the metrics from our previous work [1]

(a) FetchPush: Average Success Rate given different numbers of skills

Number of Skills 5 10 20 100

MDN 79.08 % +2.70% 84.09 % +1.84% 77.25%=+3.54% 69.00%+3.30%
Latent P controllers 74.40%+3.19% 82.00%=+2.61% 84.40%+2.86% 82.80%=+1.96%
Latent PI controllers  77.00%+3.17% 78.67%=+2.04% 87.20%+1.02% 87.67%+2.39%

(b) FetchPush: Average Success Rate given different training data size with the optimal skill number

Sample Size 25% 50% 75% 100%
BC 59.09%+2.55% 74.45%+4.61% 79.25%+3.10% 83.25%+1.89%
MDN (10) 62.40%+4.45% 74.80%=2.42% 76.80%42.73% 84.09%+1.84%
Latent P controllers (20) 74.40 % +4.79 % 74.40%42.93% 82.40%+2.14% 84.40%+2.86%
Latent PI controllers (20)  71.60%=+3.19% 78.00% +2.61% 88.40% +1.72% 87.20% +1.02%
[22]. These work for simple proprioception but degrade with ~ form an integrator feature i, € R%:
high-dimensional observations, geodesic motions, or subtle W1
events, and are sensitive to noise. We instead assess skill iy = Z i( gt — 2 )
similarity via state—action causality in a probabilistic model =0 w

with latent states, yielding more robust segmentation on
multimodal data.

While the criteria above specify the segment target to
distinguish skills, a common approach to learn these skills is
fitting models, such as neural networks, to these demonstra-
tions. Mixture models [6], especially MDNs, remain standard
for switching among C' modes:

C
q(ue | z0) =D mi(z) NMu | pi(ze), Bi(z0)). (D)
=1

Switching density networks [23] add PID-structured heads to
identify goals/gains, but require true end-effector states and
are not scalable to multivariable control. Newtonian VAEs
[24] learn locally linear latent dynamics from broad data
and then infer proportional goals/gains from demonstrations.

Our previous work [1] reinterpret MDN heads as a library
of latent feedback skills: a linear head w; = Wz + b
is equivalent to uy = K(g — z;) with K = —W and
g = —WTb. It introduces a probabilistic model that segments
demonstrations, switches skills with a learned selector, and
trains via a tailored ELBO. In this work, we extend each skill
from P to PI by adding a short-horizon integrator, further
enhancing robustness while preserving the same switching
framework.

III. METHODOLOGY

A. Decomposition of sequential data with goals

We model the demonstrated sequence as observa-
tion—action pairs (o;,u;) with a hidden skill index §; €
{0,1,...,C — 1}, a latent state z; € R?, and a goal
embedding matrix G € R“*<. Given §;, the latent goal is
g+ = Gj,. Unlike a purely proportional controller, our latent
PI controller uses a finite history window of length W to

The action is then produced by a per-skill PI controller
ur = Kps, (96 —2) + K, it

With the presence of (g¢,it), (0¢,u:) are independent across
t. In addition, we use the indicator function I to represent
the deterministic relationship between goal index J; and g;:

}]I((S,,:c) °

T C
p(oltTaulva(sl:T) = H H |:p(0t7ut7gt7it)
t=1 c=1

where [(J; = ¢) is 1 if §; = ¢ O otherwise

Compared to the model with latent P controller where u;
depends only on z; and ¢, Eq. (2) captures the required
temporal coupling through the variable i; rather than the
entire trajectory, preserving a tractable, switching-skill de-
composition while enabling integral action over a bounded
history.

B. ELBO with a finite-window integrator

Our derivation closely follows [1] but augments the ac-
tion likelihood with a finite-window integrator. Let d, €
{0,...,C =1} be the skill index, z; € R< the latent state,
and G € R*? the goal embedding with g; = G, .

The joint distribution factors as

p(otvutagtvit) = 3)
/p(0t|2t)p(ut|ztait>gt)p(6t | 20)p(ie)p(2e)dze  (4)

We use a mean-field variational family that mirrors the
local dependencies:
T
q(0¢, zt|og, ug, iy) = HQ(Zt‘Ot)q (02 | 2, ug,0t)
t=1

where q(0;|z¢,us,4;) is the exact posterior given z; and i,
are known.



TABLE II: Robustness calculated on the AUC of the Success Rate given different factors.

(a) FetchPush: Robustness given different skill number

Number of Skills 5 10 20 100

BC 55.26%=3.61% 55.26%=3.61% 55.26%=+3.61% 55.26%=3.61%

MDN 57.47%=3.05% 57.83%4+2.21% 56.46%=+5.86% 53.49%44.20%

Latent P controllers 58.57% +4.30% 62.17% +5.64% 64.51%+3.74% 63.60%+4.72%

Latent PI controllers  58.19%+4.52% 56.67%=+4.18% 65.24% +4.22% 66.52% +2.87%
(b) FetchPush: Robustness given different training data size

Sample Size 25% 50% 75% 100%

BC 40.46%+2.56% 49.77%=+7.85% 54.34%=+5.19% 55.26%=3.61%

MDN (10) 43.94%+5.01% 50.69%42.63% 55.09%+4.47% 55.09%=+5.77%

Latent P controllers (20) 53.66% +3.55% 54.51%44.32% 60.34%=+3.16% 64.51%43.74%

Latent PI controllers (20) 52.69%+5.39% 55.43% +3.33% 62.97 % +2.96 % 65.24% +4.22%

Then the ELBO is formulated as

logp(olzT:ulzT) 2
E { p(o1.T,u1.T, 21.1,01.T)
q O,
q(z1.7,01.7 | 017, UL.T)

T

ZE‘I(ZtIOt) [lng(Ot | Zt)]+
t=1

T

ZEQ(thw:ta S¢lor.rur.T) [Ing(ut‘Z“ it 5’5)] -
t=1

T
> Dxr(a(ztlor) Ip(ze)) —
t=1

T
> Ey(zi o) DL (a(6¢|2e, wt, it)[[p(3¢|2¢)) } ®)

t=1

Compared to the P-only case (where p(u¢|z¢, d¢) is local in
t), the PI term in (5) introduces an expectation over a window
Zt—w:t,0¢ through s, retaining tractability while capturing
integral action over recent history.

C. Latent Proportional Integral Controller

Compared with [1], the control signals are modelled as
a library of PI controllers with different goals, gains, but
shared latent states z;.

For a particular demonstration, the sequence of control
signals is represented as a sequence of controllers with the
continuous shared latent states z; and different goals g;.
Therefore, the probability of the control signals is modeled
as

p(ut|zt,00) = N(ui; Kp(gs, — z1) + WEKriy, 35,(21)) (6)

Noticed that ; is the goal index at time t, given d; is known,
the goal g; is known, which is the d;-th row in the goal
embedding G.

Similar to the PI controller, at time ¢, we only consider
the steady error between the current goal g; and historical
states z;_,, and ignore the error between the historical goals
gt—q and their corresponding states 2;—.,.

IV. EVALUATION

The performance of the model is evaluated in the Fetch-
Push task and a Letter writing task. We also did an ablation
to compare the difference between the latent PI controllers
and the latent P controllers.

A. Metrics

1) Success Rate: We use the success rate as the perfor-
mance metric for the models, which measures the number
of successful trials in the test set defined by each of the
simulated environments.

2) Robustness AUC: To measure the robustness, we add
different levels of noise to the observations and monitor the
success rates. We use the AUC (Area Under the Curve) of
those success rates given different levels of noise as the
robustness metric.

B. FetchPush

1) Dataset: The FetchPush task requires a manipulator to
move a block to a target position on top of a table by pushing
with its gripper. The robot is controlled by the displacement
of the end effector position in Cartesian coordinates, and the
inverse kinematics are computed by the MuJoCo framework.
The gripper is locked for this task. The input and output are
sensory, which are detailed in [25].

2) Baselines: The model is compared with Behaviour
Cloning (BC), Mixture Density Network (MDN), and Latent
switching P controller model [1]. For BC, we use the same
structure as the behaviour cloning baseline from [26]. For
the MDN and Latent switching P controller model, we keep
the encoder and skill switching network the same as for our
model.

3) Analysis: The analysis focuses on two perspectives,
performance and robustness, quantified by success rate and
robustness AUC, respectively, across varying C and data
regimes.

a) Model Performance: Table 1 shows that latent PI
increasingly outperforms latent P as the skill library grows:
with C = 20 and C = 100, PI attains the best success
rates, respectively, while at small C, PI is on par or slightly
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Fig. 2: Fréchet distance between latent spaces of generated trajectories and training dataset trajectories under varying levels
of observation noise (top row) and plant noise (bottom row) for four different tasks (a, m, o, q). Lower distances indicate
better trajectory distribution matching. Models with latent PI controllers consistently achieve lower distances compared to
the latent P controllers, indicating improved robustness under noisy conditions.

below latent P Controller and MDN. This pattern matches the
control intuition: integral action removes steady-state bias
once each skill covers a relatively stationary slice of the
dynamics (larger C), but can add variance when a single
skill must explain heterogeneous behavior (small C).

With the optimal skill size for each baseline, PI dominates
as data increases. Therefore, PI trades a bit of low-data effi-
ciency for markedly higher final performance and robustness
as demonstrations and skill granularity grow.

b) Robustness: The robustness AUC improves with
finer skill granularity, and latent PI overtakes P once the
library is sufficiently large: at C' = 20 and C' = 100, PI
attains the top AUCs, while at small libraries (C' = 5,10) P
is equal or better, see Table. Ila.

With each method’s best skill number, robustness increases
with data, and PI is strictly the best from 50% onward;
at 25% data, P is slightly higher. In short, PI trades a bit
of low-data efficiency for stronger disturbance rejection at
realistic data scales and moderate-to-large skill libraries; see
Table. IIb.

C. LetterWritting Task

1) Dataset: The Character Trajectories dataset [27] con-
sists of multiple labelled samples of human pen tip move-
ments on a tablet, recorded while writing individual charac-
ters. All samples come from the same writer writing letters
in different ways and are intended for primitive extraction.
Each trajectory state is represented in 3D Cartesian space,
and the actions correspond to the displacements in the same
space.

2) Baselines: For the MDN baseline, we use a 3-layer
MLP combined with an LSTM as the state encoder and ac-
tion head as a single-layer MDN for the switching feedback

controllers. Our model only differs in the action head and
training objective. We deploy the model on a URS5 robot.
During testing, we compute the immediate waypoint with the
current pose from the sensor and the predicted displacement
from the model.

3) Analysis: Figure 2 reports Fréchet distance between
deployment trajectory distribution and training trajectory
distribution over time for four letters (a, m, o, g). The top
row sweeps observation noise and the bottom row sweeps
plant/actuation noise. Across all letters and both noise types,
the latent PI controller (blue) consistently lies below the
latent P controller (orange), indicating lower tracking error
throughout the rollout in a distributional sense.

V. CONCLUSION

We extend the switching latent P controller [1] to a
PI controller. This improves the model performance and
robustness, as well as reducing the distance to the training
manifold further compared with the latent P controller, at
the cost of modestly lower sample efficiency in the low data
setting.

A potential limitation of the proposed approach is that
the integral term can amplify noise and slow early-stage
convergence when both the dataset and the skill library are
small (low C). In these regimes, proportional-only heads
often match or slightly outperform PI. In addition, PI in-
troduces extra tunables, most notably the history-window
length, which increases tuning effort and implementation
complexity.
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