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ABSTRACT

Embedding models play a crucial role in a variety of downstream tasks, including
semantic similarity, information retrieval, and clustering. While there has been a
surge of interest in developing universal text embedding models that generalize
across tasks (e.g., MTEB), progress in learning universal multimodal embedding
models has been comparatively slow, despite their importance and practical appli-
cations. In this work, we explore the potential of building universal multimodal
embeddings capable of handling a broad range of downstream tasks. Our contri-
butions are two fold: (1) we propose MMEB (Massive Multimodal Embedding
Benchmark), which covers 4 meta-tasks (i.e. classification, visual question an-
swering, multimodal retrieval, and visual grounding) and 36 datasets, including
20 training datasets and 16 evaluation datasets covering both in-distribution and
out-of-distribution tasks, and (2) VLM2VEC (Vision-Language Model → Vector),
a contrastive training framework that converts any vision-language model into
an embedding model via contrastive training on MMEB. Unlike previous mod-
els such as CLIP and BLIP, which encode text and images independently without
task-specific guidance, VLM2VEC can process any combination of images and text
while incorporating task instructions to generate a fixed-dimensional vector. We
develop a series of VLM2VEC models based on state-of-the-art VLMs, including
Phi-3.5-V, LLaVA-1.6, and Qwen2-VL, and evaluate them on MMEB’s bench-
mark. With LoRA tuning, VLM2VEC achieves a 10% to 20% improvement over
existing multimodal embedding models on MMEB’s evaluation sets. Our findings
reveal that VLMs are secretly strong embedding models.

1 INTRODUCTION

Embeddings, or distributed representations, encode inputs (whether text or images) as
fixed-dimensional vectors, enabling a range of downstream tasks. Since the advent of
Word2Vec (Mikolov, 2013) and GloVe (Pennington et al., 2014), substantial research efforts have
focused on learning textual embeddings (Kiros et al., 2015; Conneau et al., 2017) and image em-
beddings (Radford et al., 2021; Li et al., 2022; Jia et al., 2021; Yu et al., 2022). These embeddings
facilitate a variety of applications, including textual and visual semantic similarity (Agirre et al.,
2012; Marelli et al., 2014; Chechik et al., 2010; Cer et al., 2017), information retrieval (Mitra et al.,
2017; Karpukhin et al., 2020; Lin et al., 2014), automatic evaluation (Zhang et al., 2020; Sellam
et al., 2020), prompt retrieval for in-context learning (Liu et al., 2022; Rubin et al., 2022; Hongjin
et al., 2022), and retrieval-augmented generation (Lewis et al., 2020; Guu et al., 2020; Izacard &
Grave, 2020). A recent shift in research has focused on developing universal embeddings that can
generalize across a wide range of tasks. For instance, Muennighoff et al. (2023) introduced MTEB
(Massive Text Embedding Benchmark) to comprehensively assess text embeddings across tasks such
as classification and clustering. MTEB has become the standard for evaluating universal text em-
beddings. Recent works (Wang et al., 2022a; Su et al., 2023; Wang et al., 2024a; Springer et al.,
2024; BehnamGhader et al., 2024) have demonstrated promising results on the MTEB benchmark.
However, progress in multimodal embeddings has been relatively slower. Despite advancements
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Foods The napkin is under the utensil.

Instruction: Represent the given image and the 

related question.

Visual Question Answering

What is under the utensil 

on the left?

VLM2Vec

Instruction: Represent the given news image with the 

following caption for domain classification.

Classification

The menu is to the point: 

meat, above all lamb.

Instruction: Select the portion of the image that 

follows the language expressions.

Visual Grounding

right sandwich, left half

Instruction: Retrieve an image-description pair that 

provides evidence for the given question and image.

Retrieval

What is the name of this 

place?

The Titisee is a lake 

in the southern Black 

Forest in Baden-

Württemberg.

MMEB

Figure 1: We develop a universal multimodal embedding benchmark, MMEB, along with
VLM2VEC, an embedding model adapted from vision-language models (VLMs). VLM2VEC is capa-
ble of following instructions and performing various multimodal embedding tasks, accommodating
any combination of image and text modalities.

in text embeddings, the lack of both benchmarks and methodologies in the multimodal embedding
domain remains a challenge.

Current research in multimodal embeddings faces two primary limitations: (1) existing studies typ-
ically evaluate visual embeddings on isolated tasks, such as ImageNet classification (Deng et al.,
2009; Hendrycks et al., 2021a;b) or MSCOCO/Flickr retrieval (Lin et al., 2014; Plummer et al.,
2015); (2) most existing models, such as CLIP (Radford et al., 2021), BLIP (Li et al., 2022), and
SigLIP (Zhai et al., 2023), either process text and images separately or perform shallow fusion of
visual and textual information (Wei et al., 2023), limiting their ability to fully capture the relation-
ships between text and image modalities. Furthermore, these models exhibit limited reasoning and
generalization capabilities, particularly in zero-shot scenarios for complex reasoning tasks.

In this paper, we attempt to build an universal multimodal embedding framework to pave road for
the future research, which consists of two efforts:

- MMEB: We introduce a novel benchmark, MMEB (Massive Multimodal Embedding Benchmark),
which includes 36 datasets spanning four meta-task categories: classification, visual question an-
swering, retrieval, and visual grounding. MMEB provides a comprehensive framework for training
and evaluating embedding models across various combinations of text and image modalities. All
tasks are reformulated as ranking tasks, where the model follows instructions, processes a query,
and selects the correct target from a set of candidates. The query and target can be an image, text,
or a combination of both. MMEB is divided into 20 in-distribution datasets, which can be used for
training, and 16 out-of-distribution datasets, reserved for evaluation.

- VLM2VEC: We adopt the pre-trained vision-language models like Phi-3.5-V (Abdin et al., 2024)
and LLaVA-1.6 (Li et al., 2024) as the backbone for VLM2VEC. In contrast to other multimodal
embedding models like UniIR (Wei et al., 2023) and MagicLens (Zhang et al., 2024), which rely
on late fusion of CLIP (Radford et al., 2021) features, our approach leverages the deep integration
of vision and language features within a transformer architecture. There are several advantages to
this approach: (1) VLMs are trained on massive multimodal datasets and can handle any combi-
nation of images and text, as well as high-resolution images and long text inputs; (2) vision and
language features are deeply fused in the transformer model, improving the model’s ability to cap-
ture cross-modal relationships; and (3) these models are well-suited for generalizing across diverse
tasks, particularly those requiring instruction-following capabilities. These factors make VLM2VEC
an ideal choice for task generalization. We trained VLM2VEC on the 20 MMEB training datasets
using contrastive learning and compared its performance with various baselines.

Following extensive contrastive training, VLM2VEC can handle any combination of images and
text, producing fixed-dimensional vectors. We evaluate VLM2VEC against a wide array of mul-
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timodal embedding models, including CLIP (Radford et al., 2021), BLIP2 (Li et al., 2023a),
SigLIP (Zhai et al., 2023), MagicLens (Zhang et al., 2024), UniIR (Wei et al., 2023) and E5-V (Jiang
et al., 2024), demonstrating consistent improvements across all task categories. Notably, compared
to the best baseline model without fine-tuning, our model achieves a 21.1 point improvement (from
44.7 to 65.8) across all 36 MMEB datasets and a 16.1-point increase (from 41.7 to 57.8) on 16 out-of-
distribution datasets for zero-shot evaluation. Compared to the best baseline model with fine-tuning,
our model achieves a 18.6 point improvement (from 47.2 to 65.8) across all 36 MMEB datasets and
a 14.7-point increase (from 43.1 to 57.8) on 16 out-of-distribution datasets for zero-shot evaluation.
Moreover, as a general multimodal representation model, VLM2VEC can still achieve competitive
zero-shot T2I (Text-to-Image) and I2T (Image-to-Text) performance on Flickr30K compared to ex-
isting CLIP-like models, as presented in Table 11.

2 MMEB: A BENCHMARK FOR MULTIMODAL EMBEDDINGS

2.1 DATASET OVERVIEW

We present MMEB (Massive Multimodal Embedding Benchmark), a comprehensive benchmark
designed to evaluate multimodal embeddings across a diverse set of tasks. MMEB consists of 36
datasets organized into four meta-tasks: classification, visual question answering, retrieval, and
visual grounding. Each task is reformulated as a ranking problem, where the model is provided with
an instruction and a query (which may consist of text, images, or both) and is tasked with selecting
the correct answer from a set of candidates. These candidates could be text, images, or additional
instructions. The datasets are divided into two categories: 20 in-distribution datasets for training and
16 out-of-distribution datasets for evaluation. We report performance metrics across all 36 tasks. An
overview of MMEB is provided in Figure 2 and the dataset statistics are provided in Table 1.

The embedding models are supposed to compress the query side into a vector and the target can-
didates into a set of vectors. The candidate with the highest dot-product will be selected as the
prediction for evaluation. We measure the Precision@1 to reflect the percentage of top candidate
matching the groundtruth. For the number of target candidates, a higher count could increase eval-
uation costs and hinder rapid model iteration, while a lower count might make the benchmark too
simple and prone to saturation. To strike a balance between these extremes, we have chosen 1,000
candidates. Further details about this decision can be found in Section A.2.

MMEB offers a wide range of tasks from various domains, such as common, news, Wikipedia,
web, and fashion. The benchmark incorporates diverse combinations of modalities for both queries
and targets, including text, images, and text-image pairs. Additionally, tasks are designed to follow
different types of instructions. For instance, tasks may involve object recognition (e.g., “Identify the
object shown in the image.”), retrieval (e.g., “Find an image that matches the given caption.”), or
visual grounding (e.g., “Select the portion of the image that answers the question.”). Examples for
each dataset in MMEB are provided in Tables 7, 8, 9 and 10. The diversity in MMEB makes it an
ideal testbed for universal embeddings.

2.2 META-TASK AND DATASET DESIGN

MMEB is organized into four primary meta-task categories:

Classification The query consists of an instruction, an image, optionally accompanied by related
text, while the target is the class label. The number of candidates equals the number of classes.

Visual Question Answering The query consists of an instruction, an image, and a piece of text as
the question, while the target is the answer. Each query has 1 ground truth and 999 distractors as
candidates.

Information Retrieval Both the query and target sides can involve a combination of text, images,
and instructions. Each query has 1 ground truth and 999 distractors as candidates.

Visual Grounding The category is adapted from object detection tasks. The query combines an
instruction (e.g., “Select the portion of the image that isolates the object of the given label: red
apple”) with the full image. This instruction guides the model to focus on a specific object within
the image. Each candidate corresponds to cropped regions (bounding boxes) of the image, including
both the object of interest and distractor regions. Each query includes 1,000 candidates: 1 ground
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Table 1: The statistics of MMEB: 36 datasets across 4 meta-task categories, with 20 in-distribution
datasets used for training and 16 out-of-distribution datasets used exclusively for evaluation.

Meta-Task Dataset Query Target OOD? #Training #Eval #Candidates

Classification
(10 Tasks)

ImageNet-1K I T 100K 1000 1000
N24News I + T I 49K 1000 24

HatefulMemes I T 8K 1000 2
VOC2007 I T 8K 1000 20
SUN397 I T 20K 1000 397
Place365 I T ✓ - 1000 365

ImageNet-A I T ✓ - 1000 1000
ImageNet-R I T ✓ - 1000 200
ObjectNet I T ✓ - 1000 313

Country-211 I T ✓ - 1000 211

VQA
(10 Tasks)

OK-VQA I + T T 9K 1000 1000
A-OKVQA I + T T 17K 1000 1000
DocVQA I + T T 40K 1000 1000

InfographicVQA I + T T 24K 1000 1000
ChartQA I + T T 28K 1000 1000
Visual7W I + T T 70K 1000 1000

ScienceQA I + T T ✓ - 1000 1000
VizWiz I + T T ✓ - 1000 1000
GQA I + T T ✓ - 1000 1000

TextVQA I + T T ✓ - 1000 1000

Retrieval
(12 Tasks)

VisDial T I 123K 1000 1000
CIRR I + T I 26K 1000 1000

VisualNews-t2i T I 100K 1000 1000
VisualNews-i2t I T 100K 1000 1000
MSCOCO-t2i T I 100K 1000 1000
MSCOCO-i2t I T 113K 1000 1000

NIGHTS I I 16K 1000 1000
WebQA T I + T 17K 1000 1000
OVEN I + T I + T ✓ - 1000 1000

FashionIQ I + T I ✓ - 1000 1000
EDIS T I + T ✓ - 1000 1000

Wiki-SS-NQ T I ✓ - 1000 1000

Visual Grounding
(4 Tasks)

MSCOCO I + T I 100K 1000 1000
Visual7W-Pointing I + T I ✓ - 1000 1000

RefCOCO I + T I ✓ - 1000 1000
RefCOCO-Matching I + T I + T ✓ - 1000 1000

truth and 999 distractors. These distractors may include hard negatives from the same object class,
other objects in the image, or random objects from different images.

Further details on dataset processing can be found in Section A.1.

3 VLM2VEC : TRANSFORMING LVMS TO EMBEDDERS

3.1 CONTRASTIVE TRAINING

We develop VLM2VEC, a contrastive training framework designed to convert any state-of-the-art
vision-language model into an embedding model, as illustrated in Figure 3. A relevant query-target
pair is denoted as (q, t+). Both q and t+ could be either single image, text or single image + text.
We define q : (qt, qi) and t+ : (t+t , t

+
i ).

We then apply the instruction to the original query q to generate a new one qinst:

qinst = [IMAGE TOKEN]Instruct: {task definition} \n Query: {q} (1)

where “{task definition}” is a placeholder for a one-sentence description of the embedding task.
To enhance the embedding model’s generalizability by better understanding instructions, we have
crafted task-specific instructions, as shown in Tables 7, 8, 9 and 10.

Given a pretrained VLM, we feed query and target into it to obtain the query and target embeddings
(hqinst ,ht+ ) by taking the last layer vector representation of the last token. To train the embedding
model, we adopt the standard InfoNCE loss L over the in-batch negatives and hard negatives:

min L = − log
ϕ(hqinst ,ht+)

ϕ(hqinst ,ht+) +
∑
t−∈N

ϕ(hqinst ,ht−)
(2)
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Classification VQA

Retrieval Visual Grounding

MMEB: Massive Multimodal Embedding Benchmark

ObjectNet Country211

ImageNet-A ImageNet-R

Place365

SUN397N24NewsVOC2007

ImageNet-1K HatefulMemes

Visual7W-PointingRefCOCO-Matching

RefCOCOMSCOCO

GQA

TextVQA VizWiz

ScienceQA

Visual7WInfoVQA ChartQA

OK-VQA A-OKVQA DocVQA

FashionIQWiki-SS-NQ OVEN EDIS

MSCOCO
-i2t

MSCOCO
-t2i

VisualNews
-t2i

VisualNews
-i2t

NIGHTS WebQA

VisDial CIRR

Figure 2: An overview of the tasks and datasets in MMEB. MMEB includes four meta-tasks and
36 datasets: 20 in-distribution datasets used for training and 16 out-of-distribution datasets used
exclusively for evaluation.

where N denotes the set of all negatives, and ϕ(hq,ht) is a function that computes the matching
score between query q and target t. In this paper, we adopt the temperature-scaled cosine similarity
function as ϕ(hq,ht) = exp( 1τ cos(hq,ht)),where τ is a temperature hyper-parameter.

3.2 INCREASING BATCH SIZE THROUGH GRADCACHE

Since hard negatives are often difficult or ambiguous to collect for most multimodal datasets, using
larger batch sizes becomes crucial. This increases the number of in-batch random negatives, which
in turn helps improve the performance of the embedding model.

A bottleneck lies in the GPU memory that limits us from increasing the batch size and the number
of in-batch random negatives during training, as each training instance may include one image (ei-
ther from the query or target side) or multiple images (from both query and target sides), resulting in
substantial memory consumption. We apply GradCache (Gao et al., 2021a), a gradient caching tech-
nique that decouples backpropagation between contrastive loss and the encoder, removing encoder
backward pass data dependency along the batch dimension.

Mathematically, supposed we have a large batch of queries Q, and we divide it into a set of
sub-batches, each of which can fit into memory for gradient computation: Q = {Q̂1, Q̂2, . . . }.
There are two major steps: “Representation Gradient Computation and Caching” and “Sub-batch
Gradient Accumulation”. First, gradient tensors within each subbatch is calculated and stored:
ui =

∂L
∂f(qi)

, vi =
∂L

∂f(ti)
.

Then gradients are accumulated for encoder parameters across all sub-batches:

∂L
∂Θ

=
∑
Q̂j∈Q

∑
qi∈Q̂j

ui
∂f(qi)

∂Θ
+

∑
T̂j∈T

∑
ti∈T̂j

vi
∂f(ti)

∂Θ (3)
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LLM

Projection

Image Encoder VLM2Vec(Query)

LAST LASTContrastive Loss

Represent the given news image with the 

following caption for domain classification.

The menu is to the point: meat, above all lamb.

Foods

LLM

Projection

Image Encoder VLM2Vec(Target)

Figure 3: VLM2VEC uses a VLM as the backbone to deeply integrate image and text features. It
is trained with a contrastive loss between the query and target, following task-specific instructions.
The training data consists of diverse combinations of modalities on both the query and target sides,
which may include images, text, or image-text pairs.

4 EXPERIMENTS

In this section, we adopt Phi-3.5-V (Abdin et al., 2024), LLaVA-1.6 (Li et al., 2024) and Qwen2-
VL-7B-Instruct (Wang et al., 2024b) as the backbone VLMs, with training conducted via either full
model fine-tuning or LoRA. The temperature for the loss function is set to 0.02, with a batch size of
1,024, a maximum text length of 256 tokens, and 2K training steps. The LoRA variant uses a rank
of 8. For VLM2VEC leveraging Phi-3.5-V as the backbone, we configure the number of sub-image
crops to 4. For VLM2VEC using LLaVA-1.6 and Qwen2-VL as the backbone, we resize the input
images to a uniform resolution, employing two setups: a high-resolution configuration of 1344 ×
1344 and a low-resolution configuration of 336 × 336. For the 20 training datasets, we randomly
select up to 100K data points. When using GradCache, we set a sub-batch size accordingly, with
the total batch size accumulated to 1,024. All experiments were run on 8 H100 GPUs. We report
Precision@1 for all models in Table 2. It measures the ratio of positive candidates being ranked in
the top place for all queries.

4.1 BASELINES

Four groups of baselines are reported in this study.

CLIP-family: We utilize vision/language encoders such as CLIP (Radford et al., 2021), Open-
CLIP (Cherti et al., 2023), SigLIP (Zhai et al., 2023), and BLIP2 (Li et al., 2023a) as our baseline.
Due to the length limitations of the text encoder, some queries or target text in certain tasks may
be truncated. We apply score-level fusion by combining multimodal features using element-wise
addition with equal weights (w1 = w2 = 1). We do not use instructions, as they could potentially
degrade performance. For more details, please refer to Section 4.3.4.

UniIR: UniIR (Wei et al., 2023) is a unified, instruction-guided multimodal retriever designed to
handle eight different retrieval tasks across multiple modalities. The model builds on CLIP and
BLIP, employing shallow fusion techniques such as score-level and feature-level fusion to integrate
modalities. In this study, we use the CLIP SF and BLIP FF variations as baselines.

MagicLens: MagicLens (Zhang et al., 2024) is a self-supervised image retrieval model capable of
handling open-ended instructions. It utilizes a dual-encoder architecture with shared parameters,
initializing the vision and language encoders with either CoCa or CLIP. The model uses a multi-
head attention pooler to unify multimodal inputs into a single embedding. For this study, we report
results using the CLIP-Large backbone.

E5-V: E5-V (Jiang et al., 2024) is a contemporary model that also leverages vision-language models
for multimodal embedding tasks. It proposes a single-modality training approach, where the model
is trained exclusively on text pairs. In contrast, our model is trained on multimodal pairs, which
include various combinations of image and text modalities on both the query and target sides.

For all our baselines, we first use their original versions. Additionally, we have fine-tuned both
CLIP and OpenCLIP on MMEB training datasets. We adopt the same experimental configurations
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as VLM2VEC to ensure a fair comparison. For the remaining baseline models, UniIR and MagicLens
also utilize a shallow fusion approach based on CLIP models, with their primary contribution being
the datasets they were trained on. E5-V proposes training exclusively on text pairs, making it un-
suitable for fine-tuning on our datasets. Therefore, we have not included the fine-tuned versions of
these three models in this comparison.

4.2 MAIN RESULT

Table 2: Results on the MMEB benchmark. The scores are averaged per meta-task. For detailed
scores per dataset, see Table 6. We include baselines with and without fine-tuning on MMEB training
datasets and our models with three different backbones using a batch size of 1,024.

Model Per Meta-Task Score Average Score
Classification VQA Retrieval Grounding IND OOD Overall

# of datasets → 10 10 12 4 20 16 36

Baseline Models (No Fine-tuning on MMEB Training)

CLIP (Radford et al., 2021) 42.8 9.1 53.0 51.8 37.1 38.7 37.8
BLIP2 (Li et al., 2023a) 27.0 4.2 33.9 47.0 25.3 25.1 25.2
SigLIP (Zhai et al., 2023) 40.3 8.4 31.6 59.5 32.3 38.0 34.8
OpenCLIP (Cherti et al., 2023) 47.8 10.9 52.3 53.3 39.3 40.2 39.7
UniIR (BLIP FF) (Wei et al., 2023) 42.1 15.0 60.1 62.2 44.7 40.4 42.8
UniIR (CLIP SF) (Wei et al., 2023) 44.3 16.2 61.8 65.3 47.1 41.7 44.7
E5-V (Jiang et al., 2024) 21.8 4.9 11.5 19.0 14.9 11.5 13.3
Magiclens (Zhang et al., 2024) 38.8 8.3 35.4 26.0 31.0 23.7 27.8

Baseline Models (Fine-tuning on MMEB Training)

CLIP 55.2 19.7 53.2 62.2 47.6 42.8 45.4
OpenCLIP 56.0 21.9 55.4 64.1 50.5 43.1 47.2

Ours (VLM2VEC)

Phi-3.5-V, Full-model fine-tuned (#crop=4) 52.8 50.3 57.8 72.3 62.8 47.4 55.9
Phi-3.5-V, LoRA (#crop=4) 54.8 54.9 62.3 79.5 66.5 52.0 60.1
LLaVA-1.6, LoRA (low-res) 54.7 50.3 56.2 64.0 61.0 47.5 55.0
LLaVA-1.6, LoRA (high-res) 61.2 49.9 67.4 86.1 67.5 57.1 62.9
Qwen2-VL, LoRA (high-res) 62.6 57.8 69.9 81.7 72.2 57.8 65.8
∆ - Best baseline (No Fine-tuning) +17.9 +41.6 +8.1 +25.1 +25.1 +16.1 +21.1
∆ - Best baseline (Fine-tuning) +6.6 +35.9 +14.5 +22.0 +21.7 +14.7 +18.6

From Table 2, the best variant of VLM2VEC leverages Qwen2-VL, is trained with LoRA, and pro-
cesses input images at a relatively high resolution of 1344 × 1344. It achieves an average preci-
sion@1 of 65.8% across all 36 datasets from MMEB. Additionally, it maintains an average preci-
sion@1 of 57.8% on 16 out-of-distribution tasks in zero-shot evaluation, suggesting strong general-
ization ability. These results indicate that when trained on datasets spanning diverse task categories,
domains, and modality combinations, VLM2VEC effectively follows instructions to align visual and
textual representations while generalizing well to unseen tasks.

Furthermore, VLM2VEC using Phi-3.5-V and LLaVA-1.6 also outperforms baseline models. No-
tably, LLaVA-1.6 has a transparent pre-training data recipe with minimal overlap with MMEB’s
OOD datasets, reinforcing that the strong zero-shot performance of VLM2VEC is not due to prior
exposure of its backbone to the OOD datasets. When using the same backbone, the full fine-tuning
variant achieves slightly lower scores than the LoRA version. For a detailed discussion comparing
full fine-tuning and LoRA, please refer to Section 4.3.1.

Compared to other baseline models, with or without fine-tuning on MMEB training data, our model
demonstrates consistent improvements. Compared to the best baseline model without fine-tuning,
our model achieves a 21.1 point improvement (from 44.7 to 65.8) across all 36 MMEB datasets and
a 16.1-point increase (from 41.7 to 57.8) on 16 out-of-distribution datasets for zero-shot evaluation.
Compared to the best baseline model with fine-tuning, our model achieves a 18.6 point improvement
(from 47.2 to 65.8) across all 36 MMEB datasets and a 14.7-point increase (from 43.1 to 57.8) on
16 out-of-distribution datasets for zero-shot evaluation. Additionally, unlike the baseline models,
which fail to demonstrate reasonable performance across all different task categories, VLM2VEC
achieves strong performance across all four meta-task categories. This highlights its capability to
handle a wide range of multimodal embedding tasks effectively.
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4.3 RESULT ANALYSIS

To train an effective and generalizable multimodal embedding, various factors need to be considered,
ranging from the data to the training setup. In this section, we present detailed ablation studies on
these factors. We will discuss two training setups: Full Fine-Tuning vs. LoRA, along with Training
parameters, and two topics related to data: Meta-task generalization and Impact of instructions.

4.3.1 FULL FINE-TUNING VS. LORA

When fine-tuning the VLMs, a key decision is whether to conduct full fine-tuning, which updates
all parameters in the model, or to use a parameter-efficient method such as LoRA. We compare
the performance of fully fine-tuned VLM2VEC with its LoRA variants at different ranks. The train-
ing and data setups are kept consistent across all models. We observe that LoRA achieves better
performance when the rank is appropriately configured.

Table 3: We compare the performance of fully fine-tuned VLM2VEC with its LoRA variants at
different ranks. LoRA can achieve better performance when the rank is appropriately configured.
All the models utilize Phi-3.5-V as their backbone.

Model Meta-Task Average Score Average Score
Classification VQA Retrieval Grounding IND OOD Overall

# of datasets → 10 10 12 4 20 16 36

Full Fine-Tuning (bs=256) 50.4 46.4 52.6 68.6 57.9 44.7 52.0
LoRA r = 4 (bs=256) 52.7 53.6 60.1 80.2 64.9 50.4 58.4
LoRA r = 8 (bs=256) 52.9 52.5 60.3 80.0 64.2 50.8 58.2
LoRA r = 16 (bs=256) 51.1 40.5 52.0 72.5 54.9 45.8 50.8
LoRA r = 32 (bs=256) 50.6 47.8 53.9 72.5 58.9 46.5 53.4

4.3.2 TRAINING PARAMETERS

During our experiments, we identified three key parameters that significantly impact the perfor-
mance of VLM2VEC: training batch size, the number of sub-image crops, and the number of training
steps. In Figure 4, we observe that the final performance gradually improves as we increase the
batch size, training step size, and number of sub-image crops. We particularly want to highlight
the impact of batch size. Due to the lack of hard negatives, using a large batch size with plenty
of random negatives, supported by the GradCache technique, plays a crucial role in enhancing the
performance of VLM2VEC, as discussed in Section 3.2.
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Figure 4: The figures demonstrate the influence of the training setup on VLM2VEC’s final perfor-
mance. Here, we examine the effects of training batch size, the number of sub-image crops, and the
number of training steps. All the models utilize Phi-3.5-V as their backbone.

4.3.3 META-TASK GENERALIZATION

We have demonstrated that VLM2VEC has the potential to transfer to out-of-distribution datasets
after being trained on a diverse range of in-distribution datasets, with the instruction-following set-
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tings. An interesting question arises as to whether focusing on a specific meta-task can enhance the
model’s overall generalizability. We have trained three models, each focused solely on one meta-task
(classification, visual question answering, and retrieval). Visual grounding was not included due to
the limited number of training datasets. We then evaluated the models’ transferability to other meta-
tasks. We refer to these three models as VLM2VEC RET, trained on 8 retrieval tasks, VLM2VEC VQA,
trained on 6 visual question answering tasks, and VLM2VEC CLS, trained on 5 classification tasks.

Figure 5 illustrates the generalizability of these three models on unseen meta-tasks. We could ob-
serve that VLM2VEC RET has better generalizablilty on other meta-task, compared with other two
models, especially on visual grounding categories. The reason is that retrieval tasks involve a more
diverse combination of text and visual modalities from both the query and target sides, which helps
the model generalize better to unseen meta-tasks. This observation highlights the benefits of using
more diverse tasks in the VLM2VEC training process.
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Figure 5: The figures show the generalization ability of models trained on one meta-task to other
unseen meta-tasks. For example, the first subplot compares the performance of VLM2VEC trained
exclusively on VQA tasks with VLM2VEC trained exclusively on retrieval tasks across the other two
meta-task categories: classification and visual grounding. Overall, VLM2VEC trained on retrieval
tasks demonstrate better generalization ability. All the models utilize Phi-3.5-V as their backbone.

4.3.4 IMPACT OF INSTRUCTIONS

Previous studies have shown the influence of instructions on addressing various tasks. VLM2VEC,
which leverages a VLM as its backbone and is trained on large-scale datasets with instructions,
is expected to better generalize across tasks and improve performance in multimodal embedding
tasks. In this section, we evaluate the performance of both CLIP and VLM2VEC with and without
task-specific instructions to quantify the impact of incorporating instructions into the embedding
process. As shown in Table 4, incorporating instructions reduces the CLIP model’s performance by
29.4%, while our VLM2VEC achieves a 49.4% improvement. This highlights our model’s ability to
follow instructions.

5 RELATED WORK

5.1 TEXT EMBEDDING

Text embeddings have demonstrated significant potential in powering downstream applications such
as information retrieval (Karpukhin et al., 2020; Xiong et al., 2020), text similarity (Gao et al.,
2021b), prompt retrieval for in-context learning (Hongjin et al., 2022), and classification (Lo-
geswaran & Lee, 2018; Reimers & Gurevych, 2019). Early work focused on creating effective
embeddings for specific tasks. With the rise of pretrained language models, efforts have shifted to-
ward developing universal embedding models capable of handling a wide range of embedding tasks.
Studies such as GTR (Ni et al., 2022) and E5 (Wang et al., 2022a) leveraged large amounts of noisy
paired data to pretrain and fine-tune dense retrievers. More recent works like TART (Asai et al.,
2022) and InstructOR (Su et al., 2023) introduced natural language prompts to guide embedding
models in producing task-relevant embeddings. Building on this, models like E5Mistral(Wang et al.,
2024a), SFR-Embedding(Meng et al., 2024), RepLLaMA(Ma et al., 2024b), GTE-Qwen2(Li et al.,
2023b), and NV-Embed (Lee et al., 2024) have utilized pretrained large language models (LLMs)
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Table 4: Comparison of CLIP and our VLM2VEC with and without task-specific instructions. Incor-
porating instructions could decrease CLIP’s performance by 29.4%, whereas our VLM2VEC achieves
a 49.4% improvement. VLM2VEC utilizes Phi-3.5-V as its backbone.

Model Meta-Task Average Score Average Score
Classification VQA Retrieval Grounding IND OOD Overall

# of datasets → 10 10 12 4 20 16 36

CILP

w/o instruction 42.8 9.1 53.0 51.8 37.1 38.7 37.8
w/ instruction 17.4 8.0 41.3 52.9 23.8 30.3 26.7
∆ -59.3% -12.1% -22.1% 2.1% -35.8% -21.7% -29.4%

Ours (VLM2VEC)

w/o instruction 36.7 33.5 31.1 44.3 37.3 31.6 34.8
w/ instruction 50.4 46.4 52.6 68.6 57.9 44.7 52.0
∆ 37.3% 38.5% 69.1% 54.9% 55.2% 41.5% 49.4%

as their backbone, fine-tuning them with multi-task data and instructions. These models have de-
livered significant improvements over earlier approaches that did not use LLMs for initialization or
instruction tuning.

5.2 MULTIMODAL EMBEDDINGS

Multimodal embeddings have long been a significant research challenge. Early works like
CLIP (Radford et al., 2021), BLIP (Li et al., 2022; 2023a), Align (Jia et al., 2021), SigLIP (Zhai
et al., 2023), SimVLM (Wang et al., 2022b) and CoCa (Yu et al., 2022) primarily focused on learn-
ing universal representations from large-scale, weakly supervised image-text pairs. These models
generally encode images and text separately, projecting them into a shared space. This approach has
laid the groundwork for more recent multimodal models like LLaVA (Liu et al., 2024).

Most research on universal multimodal embeddings involves fine-tuning models like CLIP or BLIP,
typically using simple fusion mechanisms to combine visual and language information. For instance,
UniIR (Wei et al., 2023) creates multimodal embeddings by simply adding text and visual features,
while MagicLens (Zhang et al., 2024) employs shallow self-attention layers to integrate these fea-
tures more effectively. The study most similar to ours is E5-V (Jiang et al., 2024), a contemporary
work that fine-tunes a vision-language model using only text training data.

5.3 EMBEDDING BENCHMARKS

Significant efforts have been made to develop benchmarks for evaluating retrieval systems. For text
retrieval models, MS MARCO (Nguyen et al., 2016) and Natural Questions (Kwiatkowski et al.,
2019b) are two of the most widely used benchmarks in general domains. To broaden the evaluation
across more diverse domains, BEIR (Thakur et al.) was introduced, incorporating 18 datasets from
various fields. Building on this, MTEB (Muennighoff et al., 2023) further expands BEIR’s scope by
adding more tasks, such as classification, clustering, and semantic textual similarity (STS).

For multimodal retrieval, several benchmarks have been introduced to evaluate model performance
across different modalities. MBEIR (Wei et al., 2023) includes 8 tasks and 16 datasets, designed to
test models’ ability to retrieve information based on various forms of queries and instructions.

6 CONCLUSION

In this paper, we aim to build the first large-scale multimodal embedding framework, comprising
two main components: MMEB and VLM2VEC. MMEB includes 36 datasets across four meta-task
categories, providing a comprehensive and diverse framework for training and evaluating embed-
ding models. VLM2VEC leverages VLMs as a backbone to deeply fuse visual and textual spaces,
enhancing generalization to unseen tasks through instruction following.
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A DETAILS OF MMEB

In this section, we provide additional details about our proposed benchmark, MMEB (Massive Mul-
timodal Embedding Benchmark). Section A.1 outlines the specifics of the 36 datasets used in the
MMEB benchmark. Section A.2 explains the process for determining the number of candidates in
MMEB.

A.1 DATASET DETAILS

A.1.1 CLASSIFICATION

There are a total of 10 datasets for classification tasks.

ImageNet-1K (Deng et al., 2009) The dataset is s large-scale dataset commonly used in image
classification, consisting of over 1 million images across 1K different classes.

ImageNet-A (Hendrycks et al., 2021b) The dataset contains images from a distribution unlike the
ImageNet training distribution. ImageNet-A examples belong to ImageNet classes, but the exam-
ples are harder and can cause mistakes across various models. They cause consistent classification
mistakes due to scene complications encountered in the long tail of scene configurations and by
exploiting classifier blind spots.

ImageNet-R (Hendrycks et al., 2021a) The dataset contains set of images labeled with ImageNet
labels obtained by collecting art, cartoons, deviantart, graffiti, embroidery, graphics, origami, paint-
ings, patterns, plastic objects, plush objects, sculptures, sketches, tattoos, toys, and video game
renditions of ImageNet classes.

VOC2007 (Everingham et al., 2014) The dataset focuses on recognizing objects in realistic scenarios
and contains 20 object classes.

N24News (Wang et al., 2021) The dataset is sourced from the New York Times and consists of 24
categories, with each news article containing both text and image information. The task is to classify
the given news image and its accompanying text into one of the 24 categories.

HatefulMemes (Kiela et al., 2020) The dataset proposes a new challenge set for multimodal classi-
fication, focusing on detecting hate speech in multimodal memes.

Place365 (Zhou et al., 2017) The dataset is a repository of 10 million scene photographs, labeled
with scene semantic categories, comprising a large and diverse list of the types of environments
encountered in the world.

SUN397 (Xiao et al., 2010) The dataset is a dataset for scene recognition consisting of 397 cate-
gories.

ObjectNet (Barbu et al., 2019) The dataset is a crowd-sourced test set of 50K images featuring
objects in unusual poses and cluttered scenes, designed to challenge recognition performance. It
includes controls for rotation, background, and viewpoint, and covers 313 object classes.

Country-211 (Radford et al., 2021) The dataset is designed to assess the geolocation capability of
visual representations. It filters the YFCC100M dataset to find 211 countries that have at least 300
photos with GPS coordinates.

A.1.2 VISUAL QUESTION ANSWERING (VQA)

There are a total of 10 datasets for VQA tasks.

OK-VQA (Marino et al., 2019) The dataset includes questions that require external resources for
answers.

A-OKVQA (Schwenk et al., 2022) The dataset is an augmented successor of OK-VQA, requiring
a broad base of commonsense and world knowledge to answer. The questions generally cannot be
answered by simply querying a knowledge base, and instead require some form of commonsense
reasoning about the scene depicted in the image.
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DocVQA (Mathew et al., 2021) The dataset contains questions for document analysis and recogni-
tion over document images of various types and content.

InfographicsVQA (Mathew et al., 2022) The dataset comprises a diverse collection of infographics
accompanied by natural language question and answer annotations. The questions require methods
capable of jointly reasoning over the document layout, textual content, graphical elements, and data
visualizations.

ChartQA (Masry et al., 2022) The dataset is designed for question answering about charts, with a
focus on visual and logical reasoning applied to real-world charts.

ScienceQA (Lu et al., 2022) The dataset contains questions with diverse science topics and annota-
tions of their answers with corresponding lectures and explanations.

Visual7W-telling (Zhu et al., 2016) The dataset establishes a semantic link between textual descrip-
tions and image regions through object-level grounding. It has two types of questions: “telling”
and “pointing”. It leverages the six W questions (what, where, when, who, why, and how) to sys-
tematically examine a model’s capability for visual understanding through telling questions. Addi-
tionally, a seventh “which” question is appended for visual answers as pointing questions. We use
“Visual7W-telling” in our VQA category and “Visual7W-pointing” in our visual grounding category.

VizWiz (Gurari et al., 2018) The dataset originates from a natural visual question answering sce-
nario, where blind individuals captured images and recorded spoken questions about them, along
with 10 crowdsourced answers for each visual question. For our task, we select only the answerable
questions.

TextVQA (Singh et al., 2019) The dataset is designed to benchmark visual reasoning based on text
within images. Models need to read and reason about the text in images to answer related questions.

GQA (Hudson & Manning, 2019) The dataset is designed for real-world visual reasoning and com-
positional question answering. It uses real images from the Visual Genome dataset. Each image
is accompanied by scene graph annotations that describe the classes and attributes of objects in the
scene, as well as their pairwise relationships.

A.1.3 RETRIEVAL

There are a total of 12 datasets for retrieval tasks.

VisDial (Das et al., 2017) The dataset features dialogues created by two Amazon Mechanical Turk
workers. One worker takes the role of the “questioner”, who only sees the text description of an
image, while the other plays the “answerer”, who has access to the image. They engage in a 10-
round Q&A session about the image. We repurpose this dataset as a retrieval task, where the goal is
to retrieve the image based on the given dialogue.

CIRR (Liu et al., 2021) The dataset is designed for the task of composed image retrieval. It consists
of pairs of real-life reference and target images, along with a modification sentence that describes
the changes made between the two images.

FashionIQ (Wu et al., 2021) The dataset contains images of fashion products with crowd-sourced
descriptions highlighting the differences between these products. Similar to CIRR, FashionIQ can
also be used for the task of composed image retrieval, where each test case consists of a pair of
reference and target images, along with a modification sentence that describes the changes between
the two images.

VisualNews (Liu et al., 2020) The dataset contains publicly available news image paired with cap-
tions. We split this task into two setups: “VisualNews-i2t”, which retrieves the caption given the
news image and “VisualNews-t2i”, which retrieves the news image given the caption.

MSCOCO (Lin et al., 2014) The dataset is a well-known image caption dataset. Similar to Visu-
alNews, WE split this task into two setups: “MSCOCO-i2t’, which retrieves the caption given the
image and “MSCOCO-t2i”, which retrieves the image given the caption.

WebQA (Chang et al., 2022) The dataset is a multihop, multimodal QA dataset that requires re-
trieving a Wikipedia page to answer a given question. We use the Wikipedia page’s image and text
descriptions as the candidates for retrieval.
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NIGHTS (Fu et al., 2023) The dataset contains human similarity judgments on image pairs that are
alike in various ways. The original dataset consists of triplets: a reference image and two perturbed
versions, along with human judgments indicating which version is most similar to the reference.
Following M-BEIR (Wei et al., 2023), we refactor this dataset into a retrieval task to match pairwise
images, where the reference image serves as the query, and the perturbed version that aligns with
human judgment is the target.

OVEN (Hu et al., 2023) The dataset contains instances that include an image and a visual recog-
nition text question. Additionally, each instance provides a related Wikipedia image along with its
corresponding text description (the Wikipedia title and the first 100 tokens of its summary) as a
reference for answering the question, which we treat as the target candidate.

EDIS (Liu et al., 2023) The dataset is a cross-modal image search in the news domain. This dataset
contains entity-rich queries, requiring the model to understand both entities and events from the text
queries. The candidate consists of the news image and its accompanying headline.

Wiki-SS-NQ (Ma et al., 2024a) The dataset is another retrieval-based VQA dataset. Unlike the
original Natural Questions dataset (Kwiatkowski et al., 2019a), which uses a Wikipedia paragraph
to answer the question, this dataset leverages Wiki-SS, utilizing Wikipedia page screenshots as the
corpus. The screenshot provides more comprehensive information than a plain Wikipedia paragraph.

For CIRR, FashionIQ, VisualNews, MSCOCO, WebQA, NIGHTS, OVEN and EDIS, we use
the processed versions from M-BEIR (Wei et al., 2023).

A.1.4 VISUAL GROUNDING

There are a total of 4 datasets for visual grounding tasks.

MSCOCO (Lin et al., 2014) The dataset includes an object detection task, which involves recogniz-
ing an object from a given class in an image. We have repurposed this task into a ranking problem
within the MMEB format. The query consists of the image and the object name, while the target
is the cropped image of the specified object. We gather distractors from other objects in the same
image as well as from different images. We discard test cases where the object is too small.

RefCOCO (Kazemzadeh et al., 2014) The dataset includes an object detection task that requires
more reasoning than MSCOCO. Unlike simply identifying the object class, the RefCOCO dataset
uses language expressions to refer to specific objects within an image. In our MMEB, we have two
tasks related to RefCOCO: “RefCOCO” and “RefCOCO-Matching”. In “RefCOCO”, the query
consists of the image and the language expressions referring to a specific object, while the target is
the cropped image of that object. In “RefCOCO-Matching”, both the query and the target contain
the image and the language expressions referring to a specific object, where the two objects are
identical.

Visual7W-pointing (Zhu et al., 2016) The dataset establishes a semantic link between textual de-
scriptions and image regions through object-level grounding. It has two types of questions: “telling”
and “pointing”. It leverages the six W questions (what, where, when, who, why, and how) to sys-
tematically examine a model’s capability for visual understanding through telling questions. Addi-
tionally, a seventh “which” question is appended for visual answers as pointing questions. We use
“Visual7W-telling” in our VQA category and “Visual7W-pointing” in our visual grounding category.

A.2 SELECTION OF NUMBER OF CANDIDATES

A large number of candidates can make the benchmark more challenging and realistic. However,
we also considered the computational cost when designing the benchmark. Choosing an excessively
large number of candidates could result in very high inference costs, which may hinder rapid model
iteration. As shown in Table 5, we compare the performance of VLM2VEC with different numbers of
candidates in the MMEB benchmark. The results show that if the number of candidates is too small,
the benchmark becomes saturated quickly. To balance evaluation cost with benchmark difficulty, we
selected 1,000 as the optimal number of candidates.
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Table 5: We compare the performance of VLM2VEC using different numbers of candidates in
MMEB. To balance evaluation cost with benchmark difficulty, we selected 1,000 as the optimal
number of candidates.

#Candidates Meta-Task Average Score Average Score
Classification VQA Retrieval Grounding IND OOD Overall

# of datasets → 10 10 12 4 20 16 36

100 54.8 81.8 86.1 89.6 85.2 65.9 76.6
500 54.8 65.9 72.6 82.8 74.6 57.3 66.9
1000 54.8 54.9 62.3 79.5 66.5 52.0 60.1
2000 54.8 50.1 56.7 71.0 62.2 48.0 55.9
5000 54.8 41.3 46.5 65.3 54.5 43.2 49.5
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Table 6: The detailed results of the baselines and our VLM2VEC on MMEB, which includes 20 in-
distribution datasets and 16 out-of-distribution datasets. The out-of-distribution datasets are high-
lighted with a yellow background in the table. VLM2VEC is built upon the LLaVA-1.6 backbone.

CLIP OpenCLIP SigLIP BLIP2 MagicLens E5-V UniIR VLM2VEC

Classification (10 tasks)
ImageNet-1K 55.8 63.5 45.4 10.3 48.0 9.6 58.3 74.5
N24News 34.7 38.6 13.9 36.0 33.7 23.4 42.5 80.3
HatefulMemes 51.1 51.7 47.2 49.6 49.0 49.7 56.4 67.9
VOC2007 50.7 52.4 64.3 52.1 51.6 49.9 66.2 91.5
SUN397 43.4 68.8 39.6 34.5 57.0 33.1 63.2 75.8
Place365 28.5 37.8 20.0 21.5 31.5 8.6 36.5 44.0
ImageNet-A 25.5 14.2 42.6 3.2 8.0 2.0 9.8 43.6
ImageNet-R 75.6 83.0 75.0 39.7 70.9 30.8 66.2 79.8
ObjectNet 43.4 51.4 40.3 20.6 31.6 7.5 32.2 39.6
Country-211 19.2 16.8 14.2 2.5 6.2 3.1 11.3 14.7
All Classification 42.8 47.8 40.3 27.0 38.8 21.8 44.3 61.2

VQA (10 tasks)
OK-VQA 7.5 11.5 2.4 8.7 12.7 8.9 25.4 69.0
A-OKVQA 3.8 3.3 1.5 3.2 2.9 5.9 8.8 54.4
DocVQA 4.0 5.3 4.2 2.6 3.0 1.7 6.2 52.0
InfographicsVQA 4.6 4.6 2.7 2.0 5.9 2.3 4.6 30.7
ChartQA 1.4 1.5 3.0 0.5 0.9 2.4 1.6 34.8
Visual7W 4.0 2.6 1.2 1.3 2.5 5.8 14.5 49.8
ScienceQA 9.4 10.2 7.9 6.8 5.2 3.6 12.8 42.1
VizWiz 8.2 6.6 2.3 4.0 1.7 2.6 24.3 43.0
GQA 41.3 52.5 57.5 9.7 43.5 7.8 48.8 61.2
TextVQA 7.0 10.9 1.0 3.3 4.6 8.2 15.1 62.0
All VQA 9.1 10.9 8.4 4.2 8.3 4.9 16.2 49.9

Retrieval (12 tasks)
VisDial 30.7 25.4 21.5 18.0 24.8 9.2 42.2 80.9
CIRR 12.6 15.4 15.1 9.8 39.1 6.1 51.3 49.9
VisualNews-t2i 78.9 74.0 51.0 48.1 50.7 13.5 74.3 75.4
VisualNews-i2t 79.6 78.0 52.4 13.5 21.1 8.1 76.8 80.0
MSCOCO-t2i 59.5 63.6 58.3 53.7 54.1 20.7 68.5 75.7
MSCOCO-i2t 57.7 62.1 55.0 20.3 40.0 14.0 72.1 73.1
NIGHTS 60.4 66.1 62.9 56.5 58.1 4.2 66.2 65.5
WebQA 67.5 62.1 58.1 55.4 43.0 17.7 89.6 87.6
FashionIQ 11.4 13.8 20.1 9.3 11.2 2.8 40.2 16.2
Wiki-SS-NQ 55.0 44.6 55.1 28.7 18.7 8.6 12.2 60.2
OVEN 41.1 45.0 56.0 39.5 1.6 5.9 69.4 56.5
EDIS 81.0 77.5 23.6 54.4 62.6 26.8 79.2 87.8
All Retrieval 53.0 52.3 31.6 33.9 35.4 11.5 61.8 67.4

Visual Grounding (4 tasks)
MSCOCO 33.8 34.5 46.4 28.9 22.1 10.8 46.6 80.6
RefCOCO 56.9 54.2 70.8 47.4 22.8 11.9 67.8 88.7
RefCOCO-matching 61.3 68.3 50.8 59.5 35.6 38.9 62.9 84.0
Visual7W-pointing 55.1 56.3 70.1 52.0 23.4 14.3 71.3 90.9
All Visual Grounding 51.8 53.3 59.5 47.0 26.0 19.0 65.3 86.1

Final Score (36 tasks)
All 37.8 39.7 34.8 25.2 27.8 13.3 44.7 62.9
All IND 37.1 39.3 32.3 25.3 31.0 14.9 47.1 67.5
All OOD 38.7 40.2 38.0 25.1 23.7 11.5 41.7 57.1
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Table 7: Examples of datasets in MMEB (Part 1 of 4). Instructions are written in italic font style.

Category Dataset Query Text Query Image Target Text Target Image

Classification

ImageNet-1K (Deng et al.,
2009)

Represent the given image
for classification Italian greyhound -

ImageNet-A (Hendrycks
et al., 2021b)

Represent the given image
for classification. sea anemone, anemone -

ImageNet-R (Hendrycks
et al., 2021a)

Represent the given image
for classification. baseball player -

N24News (Wang et al.,
2021)

Represent the given news
image with the following
caption for domain classifi-
cation.
Ms. Goodman styled Am-
ber Valletta with wings for
a 1993 shoot by Peter Lind-
bergh for Harper’s Bazaar.

Style -

VOC2007 (Everingham
et al., 2014)

Identify the object shown in
the image. bus -

SUN397 (Xiao et al., 2010) Identify the scene shown in
the image. firing range indoor -

ObjectNet (Barbu et al.,
2019)

Identify the object shown in
the image. mug -

Country-211 (Radford
et al., 2021)

Identify the country de-
picted in the image. China -

HatefulMemes (Kiela et al.,
2020)

Represent the given image
for binary classification to
determine whether it con-
stitutes hateful speech or
not.

No -

Place365 (Zhou et al.,
2017)

Identify the scene shown in
the image. Airport Terminal -
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Table 8: Examples of datasets in MMEB (Part 2 of 4). Instructions are written in italic font style.

Category Dataset Query Text Query Image Target Text Target Image

VQA

OK-VQA (Marino et al., 2019)
Represent the given image with the
following question.
What breed of dog is this?

chihuahua -

A-OKVQA (Schwenk et al., 2022)

Represent the given image with the
following question.
What is the metal basket near the
net used to hold?

tennis balls -

DocVQA (Mathew et al., 2021)
Represent the given image with the
following question.
What is name of university?

university of california -

InfographicsVQA (Mathew et al.,
2022)

Represent the given image with the
following question.
Which social platform has heavy fe-
male audience?

pinterest -

ChartQA (Masry et al., 2022)

Represent the given image with the
following question.
How many food item is shown in
the bar graph?

14 -

ScienceQA (Lu et al., 2022)

Represent the given image with the
following question.
Which of these states is farthest
north?

South Carolina -

Visual7W-telling (Zhu et al., 2016)
Represent the given image with the
following question.
Where is the man sitting?

At the computer -

VizWiz (Gurari et al., 2018)

Represent the given image with the
following question.
Can you tell me what this medicine
is please?

night time -

GQA (Hudson & Manning, 2019)

Represent the given image with the
following question.
What is under the utensil on the
left?

The napkin is under the utensil. -

TextVQA (Singh et al., 2019)
Represent the given image with the
following question.
What is the brand of this camera?

dakota -
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Table 9: Examples of datasets in MMEB (Part 3 of 4). Instructions are written in italic font style.

Category Dataset Query Text Query Image Target Text Target Image

Retrieval

VisDial (Das et al., 2017)

Represent the given dialogue about
an image, which is used for image
retrieval.
Q:do you see a lot of people A:just
3 Q:what is the tennis player wear-
ing A:white tennis dress Q:what
color is her tennis racket A:black
Q:is she wearing a hat A:a visor
Q:is she close to the net A:no Q:do
you see another player A:no Q:do
you see a tennis bag A:no

- Represent the given image.

VisualNews-t2i (Liu et al., 2020)

Retrieve an image of this news cap-
tion.
US goalkeeper Hope Solo makes a
save.

- Represent the given image.

MSCOCO-t2i (Lin et al., 2014)

Find me an everyday image that
matches the given caption.
Man riding a motor bike on a dirt
road on the countryside.

- Represent the given image.

WebQA (Chang et al., 2022)

Find a Wikipedia image-passage
pair that answers this question.
Do both the Hays County Court-
house in San Marcos, Texas and the
Ike Wood House at 227 Mitchell
Street in San Marcos, Texas have
six columns on their front entrance?

-

Represent the given Wikipedia im-
age with related text information.
Hays County Courthouse (2018),
San Marcos, TX The Hays County
Courthouse in San Marcos, Texas.
Listed on the National Register of
Historic Places. 227 Mitchell, San
Marcos, Texas Ike Wood House at
227 Mitchell Street in San Marcos,
Texas.

EDIS (Liu et al., 2023)

Find a news image that matches the
provided caption.
Tom Holland makes his debut in
the Spidey suit in Captain America
Civil War.

-

Represent the given image with re-
lated text information.
Comic RiffsJon Favreau is set to
reprise his Iron Man role for Spider
Man: Homecoming.

Wiki-SS-NQ (Ma et al., 2024a) Find the document screenshot that
can answer the given query. - Represent the given document

screenshot.

VisualNews-i2t (Liu et al., 2020) Find a caption for the news in the
given photo.

Canadian Prime Minister Stephen
Harper shakes hands with President
Obama during the North American
Leaders Summit in Toluca Mexico
in February 2014.

-

MSCOCO-i2t (Lin et al., 2014) Find an image caption describing
the given everyday image.

A man on a bicycle riding next to a
train. -
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Table 10: Examples of datasets in MMEB (Part 4 of 4). Instructions are written in italic font style.

Category Dataset Query Text Query Image Target Text Target Image

Retrieval

CIRR (Liu et al., 2021)

Given an image, find a similar ev-
eryday image with the described
changes.
Show three bottles of soft drink.

Represent the given image.

FashionIQ (Wu et al., 2021)

Find an image to match the fashion
image and style note.
Is shiny and silver with shorter
sleeves and fit and flare.

Represent the given image.

NIGHTS (Fu et al., 2023)
Find a day-to-day image that looks
similar to the provided image. Represent the given image.

OVEN (Hu et al., 2023)

Retrieve a Wikipedia image-
description pair that provides
evidence for the question of this
image.
What is the name of this place?

Represent the given Wikipedia im-
age with related text information.
Titisee. The Titisee is a lake in
the southern Black Forest in Baden-
Württemberg. It covers an area of
1.3 (km2) and is an average of 20
(m) deep. It owes its formation to
the Feldberg glacier, the moraines
of which were formed in the Pleis-
tocene epoch and nowadays form
the shores of the lake. The lake’s
outflow, at 840 (m) above sea
level, is the River Gutach, which
merges with the Haslach stream be-
low Kappel to form the Wutach.
The waters of the Titisee thus drain
eventually into the Upper Rhine be-
tween Tiengen and Waldshut. On
the north shore lies the.

Grounding

MSCOCO (Lin et al., 2014)

Select the portion of the image that
isolates the object of the given label
The lable of the object is “stop
sign”.

Represent the given cropped image
of the object.

Visual7W-Pointing (Zhu et al.,
2016)

Select the portion of the image that
answers the given question.
Which door is behind a person sit-
ting on a bench?

Represent the given cropped image
of the object.

RefCOCO (Kazemzadeh et al.,
2014)

Select the portion of the image that
follows the language expressions.
man in black coat

Represent the given cropped image
of the object.

RefCOCO-Matching (Kazemzadeh
et al., 2014)

Select the portion of the image that
follows the language expressions.
kid on right in back, blondish hair

Select the portion of the image that
follows the language expressions.
top right kid

Table 11: Zero-shot text-image retrieval performance on Flickr30K. As a general multimodal rep-
resentation model, VLM2VEC can still achieve competitive T2I (Text-to-Image) and I2T (Image-
to-Text) scores when compared to existing CLIP-like models. The baseline numbers are sourced
from Sun et al. (2023) and Zhang et al. (2024). VLM2VEC is built upon the LLaVA-1.6 backbone.

Model image retrieval text retrieval

R@1 R@5 R@10 R@1 R@5 R@10

OpenAI CLIP-B/16 62.1 85.6 91.8 81.9 96.2 98.8
Open CLIP-B/16 69.8 90.4 94.6 86.3 97.9 99.4
EVA-02-CLIP-B/16 71.2 91.0 94.7 85.7 96.7 98.9
OpenAI CLIP-L/14 65.2 87.3 92.0 85.2 97.3 99.0
Open CLIP-L/14 75.0 92.5 95.6 88.7 98.4 99.2
EVA-02-CLIP-L/14 77.3 93.6 96.8 89.7 98.6 99.2
MagicLens-B 76.2 93.7 96.5 87.9 97.7 99.5
MagicLens-L 79.7 95.0 97.4 89.6 98.7 99.4
VLM2VEC (LLaVA-1.6) 80.3 95.0 97.4 94.6 99.5 99.8
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