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ABSTRACT

We introduce NeuralOS, a neural framework that simulates graphical user inter-
faces (GUIs) of operating systems by directly predicting screen frames in response
to user inputs such as mouse movements, clicks, and keyboard events. NeuralOS
combines a recurrent neural network (RNN), which tracks the computer state,
with a diffusion-based neural renderer that generates screen images. The model
is trained on a dataset of Ubuntu XFCE recordings, which include both randomly
generated interactions and realistic interactions produced by AI agents. Exper-
iments show that NeuralOS successfully renders realistic GUI sequences, accu-
rately captures mouse interactions, and reliably predicts state transitions like ap-
plication launches. Beyond reproducing existing systems, NeuralOS shows that
synthesized training data can teach the model to simulate applications that were
never installed, as illustrated by a Doom application, and suggests a path toward
learning user interfaces purely from synthetic demonstrations.

1 INTRODUCTION

“Chatting” with LLM feels like using an 80s computer terminal. The GUI hasn’t
been invented yet, but some properties of it can start to be predicted.

— Andrej Karpathy

Recent breakthroughs in generative models have transformed human-computer interaction, making
it increasingly adaptive, personalized, and intuitive. Historically, computing interfaces were rigid
and predefined, such as command-line terminals and static graphical menus (Engelbart, 1968). The
emergence of large language models (LLMs) and multimodal AI systems expanded this paradigm by
enabling interactions through natural language (Radford et al., 2019; Brown et al., 2020), images (Ho
et al., 2020; Lipman et al., 2022; Radford et al., 2021; Song et al., 2020b), and videos (OpenAI,
2024). Recently, generative models have even begun simulating dynamic visual environments (Ha
& Schmidhuber, 2018a; He et al., 2025), notably interactive video games (Alonso et al., 2024; Feng
et al., 2024; Oh et al., 2015; Valevski et al., 2024). These advancements suggest a future where
computing interfaces could become fully generative, dynamically adapting in real-time based on
user inputs, contexts, and intentions (Deka et al., 2017).

In this paper, we introduce NeuralOS, a first step toward realizing this vision. NeuralOS simulates
an operating system’s graphical interface entirely using deep neural networks. By modeling the OS
interface as a generative process, it directly predicts graphical frames from user input events, such
as mouse movements, clicks, and keyboard interactions, without manually programmed kernels
or applications. Figure 1 illustrates an example sequence generated by NeuralOS, demonstrating
realistic cursor movements and window interactions predicted solely from user inputs.

NeuralOS integrates two complementary neural architectures, analogous to the traditional separation
between OS kernels and desktop rendering programs: a recurrent neural network (RNN) (Hochreiter
& Schmidhuber, 1997) maintains internal computer states (such as open applications, hidden win-
dows, and recent actions), while a diffusion-based convolutional neural renderer generates screen
images. We train NeuralOS end-to-end on interaction sequences recorded from Ubuntu XFCE envi-
ronments, combining randomly generated and realistic AI-generated human-like interactions.

Developing NeuralOS posed several challenges. (1) Long-term state tracking was essential due to
delayed interface responses (e.g., opening Firefox could take up to 30 frames); we addressed this by
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(a) (b) (c)

(d) (e) (f)

Figure 1: Real image sequence predicted by NeuralOS, illustrating the model’s ability to simulate
realistic GUI interactions. The sequence shows key frames as a user (a–c) opens and closes the
“Home” folder, followed by (d–f) launches and closes a Doom application that was trained into the
model using synthetic demonstrations. Cursor positions are highlighted with red circles. Frames are
generated autoregressively, conditioned on previous frames and user inputs.

using an RNN-based state representation. (2) Precise cursor modeling required explicit positional
encodings within our diffusion model. (3) Without pretrained encoders for GUI interactions, we
developed a novel pretraining method in which the RNN outputs were pretrained via regression
losses and subsequently integrated into the diffusion model via finetuning. (4) Exposure bias during
inference was mitigated using scheduled sampling techniques (Bengio et al., 2015; Deng et al., 2023;
Ranzato et al., 2015). (5) Extensive engineering was necessary for scalable data collection and real-
time inference, leveraging parallel Docker environments and AI-generated user interactions.

Experiments show that NeuralOS can generate realistic screen sequences, accurately model mouse
interactions, and reliably simulate transitions such as application launches. While computational
constraints limit its ability to precisely model fine-grained keyboard inputs, NeuralOS represents a
step toward neural operating systems that adapt interfaces in real time, potentially enabling users to
interact through natural language or gestures rather than fixed menus.

Beyond mimicking an existing operating system, NeuralOS can in principle learn user interfaces
from demonstrations even if they are artificially constructed and do not exist in reality. As a proof
of concept, we created a Doom application by combining fabricated desktop interactions with Viz-
Doom gameplay recordings. NeuralOS learned to launch, play, and close Doom despite the ap-
plication never being installed in the underlying system. This illustrates the broader principle that
synthetic demonstrations, once distilled into a generative model, become usable user interfaces.

Our code, pretrained models, and an interactive demo are at https://neural-os.com.

2 GENERATIVE MODELING OF OPERATING SYSTEM INTERFACES

We formalize the task of simulating operating system (OS) graphical interfaces as an autoregressive
generative modeling problem. At each discrete timestep t, the model predicts the next graphical
frame xt based on the sequence of previously observed frames x<t = x0, x1, . . . , xt−1 and user
input events a≤t = a1, a2, . . . , at up to and including the current timestep.

Formally, each frame xt is represented as an image tensor xt ∈ RH×W×C , with H and W denoting
image height and width, and C the number of color or feature channels. The input event at at
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(a) High-level temporal architecture of NeuralOS.
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(b) RNN structure at step t.

Figure 2: NeuralOS Model Architecture. (a) High-level architecture of NeuralOS. At each
timestep, an RNN tracks the operating system’s internal state based on user inputs (cursor positions,
mouse clicks, keyboard events) and previously generated frames. This state is then passed as context
to a diffusion-based renderer (UNet) that generates the next graphical frame. (b) Detailed two-level
RNN structure at timestep t. The lower-level LSTM encodes user inputs, and then integrates visual
information from the previous frame using attention. Its output is passed to the upper-level LSTM,
which further processes these attention-informed representations. Feedback from the upper-level
LSTM to the lower-level LSTM (Ut−1) ensures that the lower-level LSTM maintains awareness of
upper-level state context and previous attention results. The combined outputs of both LSTMs, and
cursor position encoding, form the renderer context. This hierarchical structure maintains constant
computational complexity per timestep and supports continuous state updates during inference, es-
sential for real-time OS interface simulation.

timestep t includes cursor coordinates (x, y), binary indicators for mouse clicks (left or right), and
a binary vector indicating which keyboard keys are pressed or released.

The probability distribution of an OS graphical sequence given user inputs can be expressed as:

P (x1:T | a1:T ; θ) =
T∏

t=1

P (xt | x<t, a≤t; θ), (1)

where θ represents the parameters of the neural generative model.

Unlike standard video generation, OS simulation must respond instantly to unpredictable user inputs,
often causing abrupt changes in the interface, such as when a new application is launched. This
contrasts with the smooth, predictable transitions typical in video generation. As a result, the model
must maintain accurate and responsive state tracking. Next, we describe the NeuralOS architecture
and training strategies designed for these requirements.

3 NEURALOS ARCHITECTURE

NeuralOS adopts a modular architecture inspired by the functional separation in traditional operating
systems between kernel-level state management and graphical user interface (GUI) rendering. It
comprises two primary components: a recurrent neural network (RNN) responsible for maintaining
internal system states, and a diffusion-based renderer that generates graphical frames based on these
states (see Figure 2a).

Latent Diffusion Representation NeuralOS uses a latent diffusion framework (Rombach et al.,
2022). We train an autoencoder to compress high-resolution OS screen images into lower-
dimensional latent representations, reducing spatial dimensions by a scaling factor s. All modeling
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is performed within this latent space. At inference time, the generated latent frames are decoded
back into pixel-level images only for users.

Hierarchical RNN for State Tracking NeuralOS employs a hierarchical two-level RNN archi-
tecture to track the system state (see Figure 2b). Unlike transformers (Vaswani et al., 2017), whose
inference complexity increases with context length, the RNN maintains constant complexity per
timestep, which is crucial for continuous, long-horizon OS simulation.

At each timestep t, user inputs at are encoded into embeddings. Specifically, cursor coordinates
are discretized screen positions (axt , ayt ), mouse clicks are binary indicators, and keyboard keys are
binary press/release states. Each component is embedded separately and then concatenated:

embed(at) = concat(embed(axt ), embed(ayt ), embed(aL click
t )+embed(aR click

t )+
∑
key

embed(akey
t )).

These embeddings are processed by a lower-level LSTM, which also takes its previous hidden state
lt−1 and feedback from the previous upper-level LSTM state Ut−1 as inputs:

Lt, lt = LSTMlower(lt−1, concat(embed(at), Ut−1)),

where lt denotes the hidden state and Lt denotes the corresponding output at timestep t.

To handle inherent uncertainties in OS behaviors, such as unpredictable application response times,
the lower-level LSTM output Lt is used as a query vector to attend over the previous graphical frame
using multi-headed attention (Vaswani et al., 2017):

ct = MultiHeadedAttention(query = WqLt, keys/values = Wkxt−1 + Epos),

where Wq,Wk are learnable projections and Epos encodes positional information of the latent frame.

The attention output ct is then merged with the original lower-level LSTM output Lt:

Ct = Lt +Woct,

then processed by the upper-level LSTM:

Ut, ut = LSTMupper(ut−1, Ct).

To ensure that the lower-level LSTM maintains awareness of higher-level contexts, the upper-level
LSTM’s output Ut is fed back as an input to the lower-level LSTM in the next timestep.

Spatial Encoding of Cursor Positions Precise cursor localization is critical for realistic OS inter-
actions. NeuralOS explicitly encodes cursor positions using a Gaussian spatial map Epos = Mt ∈
RH×W . Instead of using a one-hot cursor position (which can lose precision due to latent resolution
constraints), we construct a Gaussian map centered at the cursor’s scaled coordinates:

Mt(i, j) = exp(− (i− axt /s)
2 + (j − ayt /s)

2

2
).

As demonstrated in Section 7, this spatial encoding is vital for accurate cursor rendering. This map
Mt, combined with LSTM outputs Lt, Ut, forms the renderer context Rt ∈ RH×W×C′

:

Rt = concat(WLLt,WUUt,Mt).

Diffusion-Based Renderer To render the screen image, a UNet-based diffusion renderer gener-
ates the latent graphical frames conditioned on the renderer context Rt (Ronneberger et al., 2015).

xt ∼ Pθ(· | Rt).

We concatenate the noisy image with Rt as input to the UNet, and then predict the clean image.

4 MULTI-STAGE TRAINING APPROACH

Training NeuralOS is challenging due to ineffective use of RNN outputs, error accumulation during
inference, and difficulties in capturing long-term dependencies due to computational constraints. To
address these challenges, we take a multi-stage training approach (Figure 3).
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Figure 3: Multi-stage training pipeline for NeuralOS. (1) RNN Pretraining: The RNN is pre-
trained to predict latent frames using a mean squared error (MSE) loss. (2) Joint Training: The
pretrained RNN and the diffusion-based renderer are jointly optimized using a standard diffusion
loss. (3) Scheduled Sampling: To mitigate error accumulation caused by exposure bias, the most
recent input frame is occasionally replaced by a previously generated frame. (4) Context Length
Extension: The input context is extended to enable the model to capture long-term dependencies.

Stage 1: RNN Pretraining Unlike text-to-image diffusion models (Rombach et al., 2022), which
use pretrained textual encoders, NeuralOS uses a customized RNN without pretrained checkpoints.
Our initial experiments show that direct joint training leads to the renderer ignoring RNN outputs,
as indicated by negligible gradient flow into the RNN. The diffusion-based renderer receives two
streams of inputs: noisy latent frames and the RNN output; and without proper initialization of the
RNN, it relies solely on the noisy image inputs, resulting in an under-trained RNN.

To address this, we first pretrain the RNN. We structure the RNN output Rt ∈ RH×W×C′
to match

the spatial dimensions of the latent frame xt ∈ RH×W×C , but with more channels (C ′ > C). The
RNN is pretrained to predict the latent frames xt using a mean squared error (MSE) loss:

LMSE = ∥Rt[:, :, : C]− xt∥22.

After pretraining, the RNN-generated frames alone tend to be blurry due to averaging multiple
plausible outcomes, but crucially provide a strong initialization for subsequent joint training.

Stage 2: Joint Training We jointly optimize the pretrained RNN and the diffusion-based renderer
with a standard diffusion loss. The meaningful latent representations learned in RNN pretraining
enable the renderer to use the RNN outputs, thus preventing the RNN outputs from being ignored.
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Stage 3: Scheduled Sampling During inference, errors accumulate over time and progressively
degrade the quality of the generated frames. This issue arises from exposure bias (Ranzato et al.,
2015): a model trained exclusively on ground-truth frames becomes overly reliant on perfect inputs
and struggles when forced to operate on its own imperfect predictions during inference.

To mitigate this, we introduce a scheduled sampling training stage (Ranzato et al., 2015; Deng
et al., 2023): during training, we replace the most recent input frame xt−1 with the model-generated
frame x̂t−1 with a small probability p. This method makes the model robust against input noise,
thus mitigating error accumulation and improving generation stability over extended interactions.

Stage 4: Context Length Extension Although NeuralOS can model sequences of arbitrary
length, hardware memory limits require shorter sequences during training, which limits exposure
to long-term dependencies. To address this, we introduce a final stage that extends training to longer
contexts, following initial training on short context windows for efficiency.

Curriculum Training on Challenging Transitions In our collected OS interaction dataset, a
substantial portion of frame transitions involve minor variations, such as slight cursor movements,
which exhibit limited learning signals. To prioritize learning of significant OS state changes (e.g.,
opening menus or launching applications), we first train NeuralOS exclusively on challenging transi-
tions. Specifically, we define challenging transitions as those frames whose pixel differences exceed
a specified threshold: ∥xt − xt−1∥22 > ϵ. Subsequently, we expand training to the full dataset. We
apply this curriculum strategy for Stage 1 (RNN Pretraining) and Stage 2 (Joint Training).

5 DATA COLLECTION

Agent-Based Demonstrations To collect realistic user interactions, we use Anthropic’s Claude-
3.5-Sonnet computer-use agent (Anthropic, 2024), which processes screenshots and invokes pro-
vided interaction functions. To maximize interaction diversity, we structure the agent’s exploration
process around a state-space search tree representing various OS states (see Figure 11 in Section H).

Specifically, we prompt the agent to identify all interactable GUI elements by moving the cursor to
each element’s center and reporting its bounding box (center, width, height). Each identified GUI
element becomes a node in a search tree rooted at the initial OS state. The agent is then guided
through this tree: for each node, it moves the cursor to the corresponding GUI element and performs
single or double clicks to transition to a new OS state, which then becomes a child node in the tree.
We iteratively expand the tree until reaching a predefined maximum depth.

Next, we initiate further interactions from each leaf node, allowing the agent to explore freely from
these distinct OS states for a fixed duration, thereby capturing diverse interaction sequences.

Random Exploration We find that relying exclusively on agent-generated demonstrations intro-
duces spurious correlations. For example, the model incorrectly associates cursor movement toward
a window’s close button with the action of closing, even in the absence of a click. To mitigate such
unintended associations, we supplement the dataset with random interaction data.

In generating these random interactions, we simulate mouse movements, clicks, and keyboard inputs
(key presses and releases) stochastically. To improve realism, we introduce several constraints and
heuristics iteratively developed through experimentation. Cursor movements are modeled using
Bezier curves to emulate natural mouse trajectories. Double-click events, rare under purely random
sampling, are explicitly generated.

6 EXPERIMENTAL SETUP

Data We collected data using 64 parallel Docker containers, each with Ubuntu 20.04 and XFCE
desktops at a resolution of 512 × 384. To simplify the environment, the desktop was limited to
four applications: Home, Trash, Terminal, and Firefox. Data consisted of 2K agent-based and 120K
random exploration demonstrations, each 30 seconds long at 15 fps, resulting in 12TB of latent data
after compression via an autoencoder. The autoencoder reduced the images by a factor of 8 to a
latent resolution of 64× 48 with 16 channels. Details of the autoencoder are in Section G.
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(a) (b) (c)

Figure 4: (a) Heatmap illustrating predicted vs. ground truth state transitions. Each cell represents
the percentage of predictions assigned to a particular predicted cluster (x-axis), given a ground-truth
cluster (y-axis). Only the top 16 clusters are displayed here; refer to Figure 9 for the complete
heatmap. (b) Comparison of cursor position errors for NeuralOS (with cursor position map), Neu-
ralOS without the cursor position map, and a random baseline. (c) Pixel RMSE of generated frames
of using versus not using stage 3 scheduled sampling training.

Model The hierarchical RNN has two LSTM modules (each with hidden size 4,096) and a multi-
headed attention module (8 heads, 1,024 total dimension). The RNN output is projected to 32
channels and concatenated with the noisy latent frame (16 channels). The UNet uses four resolution
levels with channel multipliers of [1, 2, 3, 5], two residual blocks per level, and attention layers at
resolutions 8, 4, and 2. It has a base model dimension of 192 and outputs 16 channels. The final
model contains 2.2B parameters for the RNN and 263M parameters for the UNet renderer.

Training and Inference NeuralOS was trained using our proposed multi-stage training approach.
See Section A for full details on hyperparameters. The total data processing and training took
approximately 4 months, requiring 17,000 GPU hours on a server with 8 NVIDIA H200 GPUs
(141GB memory per GPU) and an additional 6,000 GPU hours on a server with 8 NVIDIA H100
GPUs (80GB memory per GPU). At inference time, we used DDIM sampling (Song et al., 2020a)
with 2 steps, achieving an inference speed of 18 fps on a single NVIDIA H100 GPU.

7 EXPERIMENTS

Given the substantial computational resources required to train NeuralOS, our evaluation focused
on NeuralOS variants, ablations, and intermediate training phases. For all evaluations, we used a
subset of 730 examples from a reserved evaluation dataset, unless mentioned otherwise.1

Cursor Position Modeling We evaluated cursor-position accuracy by training a regression model
to detect cursor coordinates from the generated images. With the cursor position map, NeuralOS
achieved highly accurate cursor localization, with an average position error of ∆x = 1.6 and ∆y =
1.4 pixels (Figure 4b). Given the 512 × 384 resolution of the images, this corresponds to less
than 0.5% of the frame width or height, indicating that cursor locations in generated images are
very precise. This performance significantly outperformed a baseline without cursor position maps
(∆x = 130.0, ∆y = 95.8)2 and the random baseline (∆x = 175.4, ∆y = 126.9), confirming the
importance of explicit spatial encoding for accurate cursor localization.

State-Transition Modeling Most OS interactions involve only cursor movements without signif-
icant visual changes. To focus evaluation on the crucial moments where the interface undergoes
meaningful changes, such as opening or closing an application, we identified challenging frame

1This number was chosen because our clustering procedure (detailed later) identified 73 clusters of chal-
lenging frame transitions, and we selected 10 examples per cluster, resulting in a total of 730 examples.

2This baseline is an earlier model version trained for 700K steps under slightly different conditions.
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Figure 5: Doom interactions generated by NeuralOS. Doom was never installed in the underlying
operating system used for data collection; instead, the model learned to simulate the application
from synthesized training data, producing realistic walking and shooting behavior from user inputs.

Table 1: Accuracy (%) of identifying the real OS, averaged over 30 video comparisons.

Crop Setting 10s 20s 30s 40s 50s 60s
No crop 58.3 55.0 60.0 56.7 61.7 59.3
Bottom cropped (40px) 51.7 53.3 50.0 48.3 46.7 50.0

transitions from the evaluation set.3 These transitions were clustered into 73 categories using DB-
Scan. NeuralOS predictions were then matched against the nearest cluster labels and compared with
the ground truth. As shown in Figure 4a, NeuralOS achieved an accuracy of 37.7% (diagonal align-
ment), substantially outperforming majority voting (1.4%). Note that off-diagonal predictions may
still correspond to valid outcomes due to inherent timing variability in OS actions (see Section B).

Human Evaluation We conducted a human evaluation to test how indistinguishable NeuralOS
outputs are from a real operating system. Human raters were shown side-by-side video clips of
the same user interaction sequence, one generated by NeuralOS and one recorded from an Ubuntu
XFCE desktop, and asked to identify the real system. Each clip lasted 10–60 seconds (sampled at
10s intervals) and was drawn from real human interactions collected through our online demo.4

To control for artifacts such as fluctuating disk-space counters (a known issue in diffusion), evalua-
tion was performed under two conditions: (1) original videos and (2) videos with bottom 40 pixels
(10% of height) cropped. In each condition, participants judged 30 randomly ordered comparisons.

As shown in Table 1, participants performed only slightly better than chance on up to 20 seconds of
interactions, suggesting that NeuralOS is visually realistic for basic interactions.

Learning from Synthetic Demonstrations A benefit of an end-to-end learned user interface is
its ability to learn from demonstrations that do not correspond to real implementations. To illus-
trate this, we constructed a Doom application entirely from synthetic data, even though Doom was
never installed in the docker. Desktop screenshots were augmented with a Doom icon, synthetic
double-click actions were inserted to simulate launching the game, VizDoom gameplay segments
with corresponding input events were spliced in, and each sequence ended with an ESC action re-
turning to the desktop. Trained on these demonstrations, NeuralOS learned to launch, play, and
close Doom as if it was a native application (Figures 1 and 5).

Long-Term Memory We evaluated whether NeuralOS has long-term memory using a folder cre-
ation task. We navigated to Home → Documents, created a “New Folder” (via right-click → Create
Folder), closed the file manager, and later reopened Documents after a delay. During training, the
model saw only short delays: we included 500 examples where the file manager was reopened after
8 frames in the training set. At test time, we extended the delay to 64, 128, and 256 frames. As a
control, we also included 500 examples where no folder was created.

Folder presence was evaluated by checking the region where the folder icon should appear, compar-
ing it to the ground truth with an MSE threshold. Table 2 shows the model can mostly recall whether
a folder had been created even after 256 frames, which is far beyond both the 8-frame training delay

3These were those with mean pixel distance greater than 0.1 from the previous frame to the target frame.
4See Figure 19 in Section N for a screenshot of the human evaluation interface.
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(a)

(b)

Figure 6: Ablation studies. (a) shows the limitations of directly using RNN outputs. (b) shows error
accumulation without scheduled sampling, demonstrating its necessity for maintaining stability.

Table 2: Folder presence modeling accuracy after reopening file manager with increasing gaps.

Frame Gap Ground Truth Predicted
Has Folder No Folder

64 Folder Created 0.52 0.48
No Folder Created 0.03 0.97

128 Folder Created 0.60 0.40
No Folder Created 0.00 1.00

256 Folder Created 0.62 0.38
No Folder Created 0.02 0.98

and its maximum training context of 64 frames. This indicates that NeuralOS develops persistent
memory representations of application state that generalize well beyond its training horizon.

Ablations Without joint training (relying solely on the pretrained RNN), the predictions are blurry
(Figure 6a). This is caused by the MSE loss encouraging the model to predict averaged represen-
tations of multiple plausible outcomes rather than committing to a single clear target. Additionally,
cursor positions were absent, despite the model correctly capturing state transitions (e.g., opening
the home folder), indicating that the RNN still implicitly encoded cursor information.

Omitting scheduled sampling led to rapid deterioration in generated frame quality due to compound-
ing prediction errors (Figure 6b). In contrast, incorporating scheduled sampling greatly improved
the model’s robustness (Figure 1), which is also evident from quantitative evaluation in Figure 4c.

8 CONCLUSION AND FUTURE WORK

We introduced NeuralOS, a system that simulates OS graphical interfaces using generative mod-
els. Trained end-to-end on interaction sequences, NeuralOS produces realistic screen sequences,
accurately predicts mouse interactions, and captures transitions such as opening applications.

A benefit of end-to-end trained interfaces is their ability to learn from synthetic demonstrations.
Our Doom experiment illustrated this: the model simulated launching, playing, and closing Doom,
even though the application was never installed in the underlying operating system. This points to a
broader paradigm for future generative interfaces: if consistent demonstrations can be provided, even
if they are manually edited, stylized, or fabricated, they can be internalized into usable interfaces.

9
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9 REPRODUCIBILITY STATEMENT

We have made all code, model checkpoints, and data processing scripts available at https:
//anonymous.4open.science/r/neural-os. An interactive demo is also hosted on Hug-
gingFace Spaces, where both code and trained models are transparent and can be easily duplicated
and studied; we will add the link to our HuggingFace space in the final version if the paper is ac-
cepted. Details of training procedures and dataset construction are also provided in the Appendix.
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xt−2 xt−1 xt x̂t

Figure 7: Correct prediction examples by NeuralOS. Each row shows two past frames (columns 1–
2), ground-truth next frame (column 3), and NeuralOS’s prediction (column 4). Cursor positions
are marked one frame in advance with circles (red: move-only, blue: left-click, yellow: right-
click). NeuralOS correctly captures various GUI transitions, including opening menus and launching
applications.

Table 3: Detailed hyperparameters and dataset configurations used for each stage of NeuralOS’s
multi-stage training. “Challenging transitions” are where the target frame differs from the preceding
input frame by a mean pixel difference greater than 0.1. These challenging transitions constitute
approximately 2.8% of the full dataset.

Stage Dataset Batch Steps LR Context Sampling p

Stage 1: RNN Pretraining
Challenging transitions 2.8% subset 256 50K 8× 10−5 32 —
Full dataset 100% 256 200K 8× 10−5 32 —

Stage 2: Joint Training (RNN + Renderer)
Challenging transitions 2.8% subset 64 100K 8× 10−5 32 —
Full dataset 100% 64 1M 8× 10−5 32 —

Stage 3: Scheduled Sampling
Full dataset 100% 256 500K 8× 10−5 32 0.05
Full dataset (lr reduced) 100% 256 500K 2× 10−5 32 0.05

Stage 4: Context Length Extension
Full dataset 100% 128 100K 2× 10−5 64 0.05
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xt−2 xt−1 xt x̂t

Figure 8: Prediction examples where the generated frame does not match the ground truth frame.
The layout follows Figure 7. Note that not all mismatches represent errors. For example, the third
row illustrates a case where the screenshot tool window is closed in the ground truth frame but
remains open in the prediction. This discrepancy arises because the window-closing action (not
shown due to the limited context window) can have variable timing. Thus, both the predicted and
ground truth frames are valid outcomes in such scenarios.

A MULTI-STAGE TRAINING HYPERPARAMETERS

This section provides detailed hyperparameters and dataset configurations for each training stage of
NeuralOS, which is summarized in Table 3.

In Stage 1 (RNN Pretraining), the RNN was trained first on the subset of challenging transitions,
defined as examples whose target frame differs from the last input frame by an average pixel differ-
ence greater than 0.1. These challenging transitions constitute about 2.8% of the entire dataset. We
used a batch size of 256 and an initial learning rate of 8× 10−5, training for 50K steps. Afterwards,
the model was trained on the full dataset (100% of data) for an additional 200K steps, maintaining
the same batch size and learning rate. The context window length was fixed at 32 frames during this
stage.

In Stage 2 (Joint Training), the pretrained RNN and the renderer were jointly trained end-to-end,
first focusing on the challenging transitions (2.8% subset) for 100K steps, then extended to the full
dataset for an additional 1M steps. The learning rate remained at 8 × 10−5, with a reduced batch
size of 64 to stabilize diffusion training. The context length remained 32 frames, and no scheduled
sampling was applied in this stage.

In Stage 3 (Scheduled Sampling), we trained on the full dataset using scheduled sampling with
probability p = 0.05, where the most recent past frame was occasionally replaced by a model-
generated frame during training. Initially, training was conducted for 500K steps at a batch size

13
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of 256 and a learning rate of 8 × 10−5. The learning rate was subsequently reduced to 2 × 10−5,
followed by an additional 500K training steps. The context window remained 32 frames.

Finally, in Stage 4 (Context Length Extension), we increased the context window length from 32
to 64 frames to enable NeuralOS to better capture long-term dependencies. Scheduled sampling
probability was maintained at p = 0.05. We used a lower learning rate of 2 × 10−5, reduced the
batch size to 128 to fit GPU memory constraints, and finetuned the model for 100K additional steps.

B QUALITATIVE ANALYSIS

We further analyze NeuralOS qualitatively by examining successful and unsuccessful generation
examples, shown in Figure 7 and Figure 8, respectively. Each row illustrates two past frames, the
ground-truth next frame, and NeuralOS’s predicted frame. Cursor positions in past frames are anno-
tated with colored circles to indicate the cursor’s intended position at the next frame: red represents
cursor movement only, blue denotes left-click actions, and yellow signifies right-click actions. Addi-
tionally, keys pressed at each frame are displayed in red text. Note that cursor annotations are shifted
forward by one frame to clearly depict cursor positions expected in the immediate subsequent frame.

In Figure 7, NeuralOS accurately predicts various critical GUI transitions, such as launching appli-
cations and opening menus through both mouse clicks and keyboard inputs, demonstrating its ability
to capture spatial and functional dynamics.

However, as shown in Figure 8, NeuralOS exhibits limitations, particularly for subtle actions like
moving the cursor to a “Close Tab” button without clicking. Moreover, NeuralOS currently struggles
to accurately represent fine-grained keyboard inputs, such as specific characters typed in a terminal.

It is worth noting that not all mismatches between predictions and ground truth constitute errors;
some discrepancies arise from variable timing in GUI responses, exemplified in Figure 8.

C FULL STATE TRANSITION HEATMAP

Due to space constraints, the main text presents only a truncated version of the state transition
heatmap. In Figure 9, we provide the complete heatmap, showing NeuralOS’s predictions across all
identified clusters.

D INTERACTIVE WEB DEMO

To facilitate user interaction with NeuralOS, we developed a web-based frontend using FastAPI,
accessible at https://neural-os.com/. Due to input rates (user actions) typically exceeding
model inference speeds, we implemented a user-input queue. When the model finishes generating a
frame, the system prioritizes processing recent meaningful inputs (clicks and keyboard events), dis-
carding the redundant cursor movements if necessary. This approach maximizes the responsiveness
of interactions.

E TRANSFORMER VS RNN ENCODER

We initially implemented our system using a transformer-based encoder architecture. However, in
interactive OS simulation, inference sequences can be arbitrarily long, as each user action generates a
new frame that is appended to the model’s context unless explicitly truncated. For long or continuous
interactions, this results in a steady increase in transformer memory consumption during inference,
ultimately leading to out-of-memory (OOM) failures for sufficiently long sequences.

To address this, we replaced the transformer with a hierarchical recurrent neural network (RNN)
architecture. RNNs maintain a constant-size hidden state between steps, enabling inference-time
GPU memory usage that is independent of sequence length. Table 4 shows the memory requirements
of a RNN encoder vs a Transformer encoder. Moreover, computer state modeling is inherently
Markovian, making the RNN a suitable choice.
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Figure 9: Complete heatmap of NeuralOS state transitions. Each cell represents the percentage
of predictions corresponding to a predicted cluster (x-axis) given a ground-truth cluster (y-axis).
Diagonal entries indicate exact cluster matches.

Table 4: Inference-time GPU memory usage (GB) for transformer and RNN architectures of similar
parameter counts. The transformer encoder cannot accommodate 1024 frames on an L40 GPU.

Video Length (s) Transformer (GB) RNN (GB)
4 21.61 11.96
64 22.69 11.96
128 23.81 11.96
256 26.07 11.96
512 30.60 11.96
1024 >40 (OOM) 11.96

Table 5: Application open–close accuracy. We report RMSE and mean absolute error (L1) between
NeuralOS predictions and ground-truth frames, with pixel values normalized to [0, 1].

Application Action RMSE L1
Terminal Open 0.021 0.001
Firefox Open 0.048 0.006
Trash Open 0.017 0.001
Home Open 0.019 0.001
Terminal Close 0.015 0.001
Firefox Close 0.016 0.001
Trash Close 0.016 0.001
Home Close 0.016 0.001
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Figure 10: Examples of original images (top row) and their corresponding reconstructions (bottom
row) from the trained autoencoder. Despite significant spatial compression (8× downsampling), the
autoencoder preserves details.

F APPLICATION OPEN–CLOSE TRANSITIONS

We evaluated the accuracy of application open–close transitions in NeuralOS. Specifically, we con-
structed 150 sequences for four main applications (Terminal, Firefox, Trash, Home) by sampling
random cursor paths and click locations uniformly within the icon bounding boxes.

We compared the predicted and ground-truth frames at the end of each open and close event using
root mean squared error (RMSE) and mean absolute error (L1). To account for rendering latency, we
evaluated the frame after a fixed delay following each click: 40 frames after Firefox double-clicks,
10 frames after other application double-clicks, and 5 frames after single-click closing. These delays
were determined empirically to align with the frame at which the application’s visual state change
completes.

As shown in Table 5, the low RMSE and L1 scores confirm that NeuralOS accurately performs
application open and close transitions, consistent with observations from the interactive demo.

G AUTOENCODER DETAILS

We trained a Variational Autoencoder to compress high-dimensional OS screenshots into low-
dimensional latent representations suitable for efficient training of NeuralOS.

Model Architecture The architecture of the autoencoder is based on the model proposed by
(Rombach et al., 2022) with some custom adjustments to improve reconstruction quality. The en-
coder consisted of four convolutional downsampling blocks with 128 base channels. Each down-
sampling stage contained two residual blocks and no attention layers. The latent channel dimension
was set to 16.

Training The autoencoder was trained using a combined reconstruction and adversarial loss func-
tion. We trained the autoencoder using the Adam optimizer with a learning rate of 1e-6, a batch
size of 10, and a total of 2 million training steps on our dataset. Training was conducted on a single
NVIDIA H200 GPU.

After training, the encoder was able to compress each 512× 384 RGB frame into a latent represen-
tation of dimension 16×64×48 (downsampled by a factor of 8 in spatial dimensions), significantly
reducing memory requirements for subsequent NeuralOS model training.

Examples of original and reconstructed images are provided in Figure 10.
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Figure 11: Illustration of Search-Tree-Based Data Collection. We construct a search tree repre-
senting OS states, starting from the initial desktop screen (root node). Each node corresponds to a
distinct OS state, created by clicking or double-clicking interactable GUI elements identified by a
computer-use agent. For clarity, only first-level transitions (opening applications) and one deeper
exploration within Firefox are shown. This approach enables collecting diverse interaction data ef-
ficiently.

I need to generate some training data now. Please iteratively map out every application
icon/button on the desktop screen by moving your mouse to it. For each icon, move your
mouse EXACTLY to its center point. DO NOT click it though. Be thorough and identify every
button or icon on the screen from the top to the bottom.

{{suffix}}

Figure 12: Initial GUI Element Mapping (Root Node). Prompt instructing the agent to identify
interactable GUI elements on the initial desktop screen.

Now do a final check: Look carefully at every part of the screen for any unmapped buttons.
If you find any, map their exact centers like before. If you are absolutely certain ALL
buttons have been mapped, respond with ONLY the final coordinate list.

{{suffix}}

Figure 13: Final Verification of GUI Elements (Root Node). Prompt instructing the agent to
perform a final check for any missed interactable GUI elements on the initial desktop screen.

H COMPUTER-USE AGENT FOR DATA COLLECTION

To build the search tree illustrated in Figure 11, we used structured prompts to guide the computer-
use agent. Starting from the initial desktop screen (root node), we sequentially instructed the agent
to first map and then verify all interactable GUI elements (Figures 12 and 13). For subsequent GUI
states (non-root nodes), we initially prompted the agent to transition to each new state (Figure 14).
After transitioning, we issued follow-up prompts to map and verify any newly revealed GUI ele-
ments (Figures 15 to 17).

Each prompt included a standardized suffix, as shown in Figure 18, to ensure that the agent outputs
the coordinates and dimensions of mapped GUI elements in a consistent, structured format. This
allowed efficient parsing and automated processing of collected data.
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I need to generate some training data now. First, please click/open the object at {{x}},
{{y}}. Do not progress until it is open or clicked. Double click to open if necessary. Once
you confirmed it is open or clicked, stop here.

Figure 14: Transitioning to a New UI State (Non-Root Node). Prompt instructing the agent to
transition to the current state.

Now, iteratively map out all the buttons by moving your cursor to them. Focus on those
related to the object you click/open at {{x}}, {{y}} - especially new buttons. For each
button, move your mouse EXACTLY to its center point. DO NOT click it though.

{{suffix}}

Figure 15: Initial Mapping of Newly Revealed GUI Elements (Non-Root Node). Prompt instruct-
ing the agent to identify GUI elements newly revealed after transitioning to the current UI state.

Please continue mapping out buttons on the screen but DO NOT click anymore buttons. Again,
focus on mapping those related to the object you click/open at {{x}}, {{y}} - especially
any new ones. As you exhaust the new buttons, move farther out. For each button, move your
mouse EXACTLY to its center point. DO NOT click it though.

{{suffix}}

Figure 16: Continued Mapping of Remaining GUI Elements (Non-Root Node). Prompt instruct-
ing the agent to further map any remaining interactable GUI elements in the current UI state.

Now do a final check: Look carefully around the screen to see if there are any new unmapped
buttons related to the object you click/open at {{x}}, {{y}}. If you find any, map their
exact centers like before. DO NOT click more buttons though. If you are absolutely certain
ALL related buttons have been mapped, respond with ONLY the final coordinate list.

{{suffix}}

Figure 17: Final Verification of GUI Elements (Non-Root Node). Prompt instructing the agent to
perform a final check ensuring all interactable GUI elements have been identified at the current UI
state.

I CURSOR POSITION PREDICTION MODEL TRAINING

To quantitatively evaluate cursor position accuracy in the generated frames (Figure 4b), we trained a
regression model to predict cursor coordinates directly from screen images. The training procedure
is detailed below.

Model Architecture We used a ResNet-50 convolutional backbone pretrained on ImageNet, with
modifications for fine-grained spatial localization tasks. Specifically, we adjusted the stride and
dilation parameters in the final convolutional layers to reduce downsampling from 32× to 16×,
preserving more spatial resolution. The feature extractor output is passed through an additional in-
termediate convolutional layer followed by a fully-connected regression head, outputting continuous
cursor coordinates (x, y).

Training We used the Adam optimizer with an initial learning rate of 6× 10−5 and weight decay
set to 1× 10−5. We clipped gradients at a maximum norm of 1.0. We optimized an L1 loss between
predicted and ground-truth cursor positions. We trained with a batch size of 16 for a total of 2 epochs.
Input images were used directly from collected data at the original resolution (512 × 384 pixels),
normalized and rearranged to match the input format of ResNet-50. The training data consisted of
randomly sampled frames from the full dataset, each labeled with the ground truth cursor positions
captured during data collection. Training was performed on a single NVIDIA A6000 GPU. The test
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If you find a keyboard input box, use the type tool specifying its center coordinates and
input box type via text from the following possibilities: terminal, browser, or other, with
coordinates appended in the format x:y.

At the end of your response, provide a structured list of ALL buttons you mapped using this
exact format:

For each button provide two pairs of numbers:
1. Location (L): x˜y coordinates where you moved the mouse
2. Size (S): x:y dimensions of the button

Example format:
[

L100˜200 S50:30, // Button 1: Located at (100,200) with size 50x30
L300˜400 S60:40 // Button 2: Located at (300,400) with size 60x40

]

Important:
- Use EXACTLY this format: Lx˜y Sx:y
- Separate each button with commas
- Include ALL buttons you mapped
- Numbers only, no text or descriptions

Figure 18: Structured Output Suffix. A standardized suffix appended to all prompts, guiding the
agent to report mapped GUI elements using a consistent coordinate and dimension format.

error is 0.5 pixels for both x and y. Given that each image is 512×384 pixels, this reflects extremely
high localization precision. In other words, the regression model can predict the cursor location
from a screen image with an average deviation of less than a single pixel, making it highly sensitive
to small differences and suitable for evaluating fine-grained cursor accuracy in generated frames.

J USE OF LLMS

We used large language models (LLMs) in two ways. First, we used an LLM-based computer-use
agent (Claude-3.5-Sonnet) to generate interaction traces, which were incorporated into our train-
ing dataset alongside synthetic data. Second, we used an LLM-based writing assistant to polish
grammar. All ideas, analyses, experiments, and scientific claims are our own, and we take full
responsibility for the content of this work.

K SCHEDULED SAMPLING IMPLEMENTATION DETAILS

Scheduled sampling requires generating model-based frames during training, which incurs higher
computational costs compared to using only ground-truth frames. In a multi-GPU training setting,
naively performing scheduled sampling at random intervals could result in synchronization bottle-
necks, as some GPUs would have to wait for others to complete computationally expensive sam-
pling steps. To mitigate this issue, we implemented scheduled sampling at regular intervals across
all GPUs simultaneously. Specifically, for a scheduled sampling probability of p = 0.05, each GPU
(and all examples within each GPU’s batch) performs scheduled sampling exactly once every 20
steps. This synchronization approach ensures consistent training speed and prevents slowdown due
to inter-GPU blocking.

L RELATED WORK

NeuralOS is closely related to recent generative modeling approaches for simulating interactive
environments conditioned on user inputs. “World Models”(Ha & Schmidhuber, 2018b) intro-
duced latent-variable models for simulating reinforcement learning environments. GameGAN (Kim
et al., 2020) used generative adversarial networks (GANs) for interactive game imitation, and Ge-
nie (Bruce et al., 2024) generated playable 2D platformer worlds. More recently, diffusion-based
models have emerged as powerful real-time simulators: GameNGen (Valevski et al., 2024) simulated
the game DOOM, MarioVGG (Protocol, 2024) simulated Super Mario Bros, DIAMOND (Alonso
et al., 2024) simulated Atari and Counter-Strike, GameGen-X (Che et al., 2024) simulated open-
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world games, and Matrix (Feng et al., 2024) simulated AAA games. Beyond video games,
UniSim (Yang et al., 2023) developed simulators for real-world scenarios, and Pandora (Xiang et al.,
2024) introduced controllable video generation using natural-language prompts.

Compared to these prior works, NeuralOS addresses distinct challenges unique to OS simulation:
while most GUI frame transitions involve subtle changes, accurately modeling critical discrete
events, such as opening applications or menus, is essential. Additionally, precise cursor position
prediction is crucial for interactive usability. NeuralOS introduces targeted model and training in-
novations specifically addressing these challenges, paving the way toward fully generative OS sim-
ulations.

M LIMITATIONS

Our work represents an initial step toward a fully generative OS, but several limitations remain. De-
spite substantial training compute (17,000 H200 GPU hours and 6,000 H100 GPU hours), NeuralOS
is still far from replicating the capabilities of a real operating system: screen resolution remains low,
fine-grained keyboard interactions are not reliably supported (Section B). Additionally, many open
challenges remain, including enabling the generative OS to interact with external resources (e.g.,
internet), and introduce controllability beyond traditional OS boundaries.

N HUMAN EVALUATION

To evaluate how realistic NeuralOS appears to human observers, we conducted a perceptual study
modeled after GameNGen (Che et al., 2024). Participants were shown pairs of short video clips—
one generated by NeuralOS and one recorded from a real Ubuntu XFCE desktop—corresponding to
the same underlying sequence of user interactions. Their task was to identify which clip came from
the real operating system.

We evaluated six interaction durations: 10s, 20s, 30s, 40s, 50s, and 60s. To control for artifacts
that could reveal the model’s identity (such as flickering free-space counters, a known issue in dif-
fusion models), the study was conducted under two conditions: (1) full-frame videos and (2) videos
cropped to remove the bottom 40 pixels (10% of the height).

Each participant completed 30 randomized trials per condition. A screenshot of the evaluation in-
terface is provided in Figure 19, and quantitative results are reported in Table 1 (main text). In the
cropped condition, participants’ accuracy fell close to chance, suggesting that NeuralOS simulations
are visually convincing for short interaction sequences.
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Figure 19: Screenshot of the evaluation interface. Participants were shown side-by-side video clips
of the same user interaction sequence, one generated by NeuralOS and one recorded from a real
operating system, and asked to identify the real operating system.
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