
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURALOS: TOWARDS SIMULATING OPERATING
SYSTEMS VIA NEURAL GENERATIVE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce NeuralOS, a neural framework that simulates graphical user inter-
faces (GUIs) of operating systems by directly predicting screen frames in response
to user inputs such as mouse movements, clicks, and keyboard events. NeuralOS
combines a recurrent neural network (RNN), which tracks the computer state,
with a diffusion-based neural renderer that generates screen images. The model
is trained on a dataset of Ubuntu XFCE recordings, which include both randomly
generated interactions and realistic interactions produced by AI agents. Exper-
iments show that NeuralOS successfully renders realistic GUI sequences, accu-
rately captures mouse interactions, and reliably predicts state transitions like ap-
plication launches. Beyond reproducing existing systems, NeuralOS shows that
synthesized training data can teach the model to simulate applications that were
never installed, as illustrated by a Doom application, and suggests a path toward
learning user interfaces purely from synthetic demonstrations.

1 INTRODUCTION

“Chatting” with LLM feels like using an 80s computer terminal. The GUI hasn’t
been invented yet, but some properties of it can start to be predicted.

— Andrej Karpathy

Recent breakthroughs in generative models have transformed human-computer interaction, making
it increasingly adaptive, personalized, and intuitive. Historically, computing interfaces were rigid
and predefined, such as command-line terminals and static graphical menus (Engelbart, 1968). The
emergence of large language models (LLMs) and multimodal AI systems expanded this paradigm by
enabling interactions through natural language (Radford et al., 2019; Brown et al., 2020), images (Ho
et al., 2020; Lipman et al., 2022; Radford et al., 2021; Song et al., 2020b), and videos (OpenAI,
2024). Recently, generative models have even begun simulating dynamic visual environments (Ha
& Schmidhuber, 2018a; He et al., 2025), notably interactive video games (Alonso et al., 2024; Feng
et al., 2024; Oh et al., 2015; Valevski et al., 2024). These advancements suggest a future where
computing interfaces could become fully generative, dynamically adapting in real-time based on
user inputs, contexts, and intentions (Deka et al., 2017).

In this paper, we introduce NeuralOS, a first step toward realizing this vision. NeuralOS simulates
an operating system’s graphical interface entirely using deep neural networks. By modeling the OS
interface as a generative process, it directly predicts graphical frames from user input events, such
as mouse movements, clicks, and keyboard interactions, without manually programmed kernels
or applications. Figure 1 illustrates an example sequence generated by NeuralOS, demonstrating
realistic cursor movements and window interactions predicted solely from user inputs.

NeuralOS integrates two complementary neural architectures, analogous to the traditional separation
between OS kernels and desktop rendering programs: a recurrent neural network (RNN) (Hochreiter
& Schmidhuber, 1997) maintains internal computer states (such as open applications, hidden win-
dows, and recent actions), while a diffusion-based convolutional neural renderer generates screen
images. We train NeuralOS end-to-end on interaction sequences recorded from Ubuntu XFCE envi-
ronments, combining randomly generated and realistic AI-generated human-like interactions.

Developing NeuralOS posed several challenges. (1) Long-term state tracking was essential due to
delayed interface responses (e.g., opening Firefox could take up to 30 frames); we addressed this by

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) (b) (c)

(d) (e) (f)

Figure 1: Real image sequence predicted by NeuralOS, illustrating the model’s ability to simulate
realistic GUI interactions. The sequence shows key frames as a user (a–c) opens and closes the
“Home” folder, followed by (d–f) launches and closes a Doom application that was trained into the
model using synthetic demonstrations. Cursor positions are highlighted with red circles. Frames are
generated autoregressively, conditioned on previous frames and user inputs.

using an RNN-based state representation. (2) Precise cursor modeling required explicit positional
encodings within our diffusion model. (3) Without pretrained encoders for GUI interactions, we
developed a novel pretraining method in which the RNN outputs were pretrained via regression
losses and subsequently integrated into the diffusion model via finetuning. (4) Exposure bias during
inference was mitigated using scheduled sampling techniques (Bengio et al., 2015; Deng et al., 2023;
Ranzato et al., 2015). (5) Extensive engineering was necessary for scalable data collection and real-
time inference, leveraging parallel Docker environments and AI-generated user interactions.

Experiments show that NeuralOS can generate realistic screen sequences, accurately model mouse
interactions, and reliably simulate transitions such as application launches. While computational
constraints limit its ability to precisely model fine-grained keyboard inputs, NeuralOS represents a
step toward neural operating systems that adapt interfaces in real time, potentially enabling users to
interact through natural language or gestures rather than fixed menus.

Beyond mimicking an existing operating system, NeuralOS can in principle learn user interfaces
from demonstrations even if they are artificially constructed and do not exist in reality. As a proof
of concept, we created a Doom application by combining fabricated desktop interactions with Viz-
Doom gameplay recordings. NeuralOS learned to launch, play, and close Doom despite the ap-
plication never being installed in the underlying system. This illustrates the broader principle that
synthetic demonstrations, once distilled into a generative model, become usable user interfaces.

Our code, pretrained models, and an interactive demo are at https://neural-os.com.

2 GENERATIVE MODELING OF OPERATING SYSTEM INTERFACES

We formalize the task of simulating operating system (OS) graphical interfaces as an autoregressive
generative modeling problem. At each discrete timestep t, the model predicts the next graphical
frame xt based on the sequence of previously observed frames x<t = x0, x1, . . . , xt−1 and user
input events a≤t = a1, a2, . . . , at up to and including the current timestep.

Formally, each frame xt is represented as an image tensor xt ∈ RH×W×C , with H and W denoting
image height and width, and C the number of color or feature channels. The input event at at

2

https://neural-os.com


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Time Step 1 Time Step 2 Time Step t

Frame x1

Renderer

Renderer
Context

RNN

Frame x2

Renderer

Renderer
Context

RNN

· · ·

Frame xt

Renderer

Renderer
Context

RNN

(a) High-level temporal architecture of NeuralOS.

Input Embeddings
Ut−1

Lower LSTM

Frame xt−1 Attention

Ut

Upper LSTM

Cursor
Position Map +

Renderer
Context

(b) RNN structure at step t.

Figure 2: NeuralOS Model Architecture. (a) High-level architecture of NeuralOS. At each
timestep, an RNN tracks the operating system’s internal state based on user inputs (cursor positions,
mouse clicks, keyboard events) and previously generated frames. This state is then passed as context
to a diffusion-based renderer (UNet) that generates the next graphical frame. (b) Detailed two-level
RNN structure at timestep t. The lower-level LSTM encodes user inputs, and then integrates visual
information from the previous frame using attention. Its output is passed to the upper-level LSTM,
which further processes these attention-informed representations. Feedback from the upper-level
LSTM to the lower-level LSTM (Ut−1) ensures that the lower-level LSTM maintains awareness of
upper-level state context and previous attention results. The combined outputs of both LSTMs, and
cursor position encoding, form the renderer context. This hierarchical structure maintains constant
computational complexity per timestep and supports continuous state updates during inference, es-
sential for real-time OS interface simulation.

timestep t includes cursor coordinates (x, y), binary indicators for mouse clicks (left or right), and
a binary vector indicating which keyboard keys are pressed or released.

The probability distribution of an OS graphical sequence given user inputs can be expressed as:

P (x1:T | a1:T ; θ) =
T∏

t=1

P (xt | x<t, a≤t; θ), (1)

where θ represents the parameters of the neural generative model.

Unlike standard video generation, OS simulation must respond instantly to unpredictable user inputs,
often causing abrupt changes in the interface, such as when a new application is launched. This
contrasts with the smooth, predictable transitions typical in video generation. As a result, the model
must maintain accurate and responsive state tracking. Next, we describe the NeuralOS architecture
and training strategies designed for these requirements.

3 NEURALOS ARCHITECTURE

NeuralOS adopts a modular architecture inspired by the functional separation in traditional operating
systems between kernel-level state management and graphical user interface (GUI) rendering. It
comprises two primary components: a recurrent neural network (RNN) responsible for maintaining
internal system states, and a diffusion-based renderer that generates graphical frames based on these
states (see Figure 2a).

Latent Diffusion Representation NeuralOS uses a latent diffusion framework (Rombach et al.,
2022). We train an autoencoder to compress high-resolution OS screen images into lower-
dimensional latent representations, reducing spatial dimensions by a scaling factor s. All modeling

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

is performed within this latent space. At inference time, the generated latent frames are decoded
back into pixel-level images only for users.

Hierarchical RNN for State Tracking NeuralOS employs a hierarchical two-level RNN archi-
tecture to track the system state (see Figure 2b). Unlike transformers (Vaswani et al., 2017), whose
inference complexity increases with context length, the RNN maintains constant complexity per
timestep, which is crucial for continuous, long-horizon OS simulation.

At each timestep t, user inputs at are encoded into embeddings. Specifically, cursor coordinates
are discretized screen positions (axt , ayt ), mouse clicks are binary indicators, and keyboard keys are
binary press/release states. Each component is embedded separately and then concatenated:

embed(at) = concat(embed(axt ), embed(ayt ), embed(aL click
t )+embed(aR click

t )+
∑
key

embed(akey
t )).

These embeddings are processed by a lower-level LSTM, which also takes its previous hidden state
lt−1 and feedback from the previous upper-level LSTM state Ut−1 as inputs:

Lt, lt = LSTMlower(lt−1, concat(embed(at), Ut−1)),

where lt denotes the hidden state and Lt denotes the corresponding output at timestep t.

To handle inherent uncertainties in OS behaviors, such as unpredictable application response times,
the lower-level LSTM output Lt is used as a query vector to attend over the previous graphical frame
using multi-headed attention (Vaswani et al., 2017):

ct = MultiHeadedAttention(query = WqLt, keys/values = Wkxt−1 + Epos),

where Wq,Wk are learnable projections and Epos encodes positional information of the latent frame.

The attention output ct is then merged with the original lower-level LSTM output Lt:

Ct = Lt +Woct,

then processed by the upper-level LSTM:

Ut, ut = LSTMupper(ut−1, Ct).

To ensure that the lower-level LSTM maintains awareness of higher-level contexts, the upper-level
LSTM’s output Ut is fed back as an input to the lower-level LSTM in the next timestep.

Spatial Encoding of Cursor Positions Precise cursor localization is critical for realistic OS inter-
actions. NeuralOS explicitly encodes cursor positions using a Gaussian spatial map Epos = Mt ∈
RH×W . Instead of using a one-hot cursor position (which can lose precision due to latent resolution
constraints), we construct a Gaussian map centered at the cursor’s scaled coordinates:

Mt(i, j) = exp(− (i− axt /s)
2 + (j − ayt /s)

2

2
).

As demonstrated in Section 7, this spatial encoding is vital for accurate cursor rendering. This map
Mt, combined with LSTM outputs Lt, Ut, forms the renderer context Rt ∈ RH×W×C′

:

Rt = concat(WLLt,WUUt,Mt).

Diffusion-Based Renderer To render the screen image, a UNet-based diffusion renderer gener-
ates the latent graphical frames conditioned on the renderer context Rt (Ronneberger et al., 2015).

xt ∼ Pθ(· | Rt).

We concatenate the noisy image with Rt as input to the UNet, and then predict the clean image.

4 MULTI-STAGE TRAINING APPROACH

Training NeuralOS is challenging due to ineffective use of RNN outputs, error accumulation during
inference, and difficulties in capturing long-term dependencies due to computational constraints. To
address these challenges, we take a multi-stage training approach (Figure 3).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Stage 1: RNN Pretraining

RNN . . . RNN

x̂t

xt

MSE

xt−N

at−N+1

xt−1

at

Stage 2: Joint Training

RNN . . . RNN

Renderer

x̂t

xt

Diffusion Loss

xt−N

at−N+1

xt−1

at

Stage 3: Scheduled Sampling

RNN . . . RNN RNN

Renderer Renderer

x̂t−1 x̂t

xt

Diffusion Loss

xt−N

at−N+1

xt−2

at−1

x̂t−1

at

Stage 4: Context Length Extension

xt−N′

at−N′+1

xt−N−1

at−N

xt−1

at

RNN . . . RNN . . . RNN

Renderer

x̂t

xt

Diffusion Loss

Extended Context

Figure 3: Multi-stage training pipeline for NeuralOS. (1) RNN Pretraining: The RNN is pre-
trained to predict latent frames using a mean squared error (MSE) loss. (2) Joint Training: The
pretrained RNN and the diffusion-based renderer are jointly optimized using a standard diffusion
loss. (3) Scheduled Sampling: To mitigate error accumulation caused by exposure bias, the most
recent input frame is occasionally replaced by a previously generated frame. (4) Context Length
Extension: The input context is extended to enable the model to capture long-term dependencies.

Stage 1: RNN Pretraining Unlike text-to-image diffusion models (Rombach et al., 2022), which
use pretrained textual encoders, NeuralOS uses a customized RNN without pretrained checkpoints.
Our initial experiments show that direct joint training leads to the renderer ignoring RNN outputs,
as indicated by negligible gradient flow into the RNN. The diffusion-based renderer receives two
streams of inputs: noisy latent frames and the RNN output; and without proper initialization of the
RNN, it relies solely on the noisy image inputs, resulting in an under-trained RNN.

To address this, we first pretrain the RNN. We structure the RNN output Rt ∈ RH×W×C′
to match

the spatial dimensions of the latent frame xt ∈ RH×W×C , but with more channels (C ′ > C). The
RNN is pretrained to predict the latent frames xt using a mean squared error (MSE) loss:

LMSE = ∥Rt[:, :, : C]− xt∥22.

After pretraining, the RNN-generated frames alone tend to be blurry due to averaging multiple
plausible outcomes, but crucially provide a strong initialization for subsequent joint training.

Stage 2: Joint Training We jointly optimize the pretrained RNN and the diffusion-based renderer
with a standard diffusion loss. The meaningful latent representations learned in RNN pretraining
enable the renderer to use the RNN outputs, thus preventing the RNN outputs from being ignored.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Stage 3: Scheduled Sampling During inference, errors accumulate over time and progressively
degrade the quality of the generated frames. This issue arises from exposure bias (Ranzato et al.,
2015): a model trained exclusively on ground-truth frames becomes overly reliant on perfect inputs
and struggles when forced to operate on its own imperfect predictions during inference.

To mitigate this, we introduce a scheduled sampling training stage (Ranzato et al., 2015; Deng
et al., 2023): during training, we replace the most recent input frame xt−1 with the model-generated
frame x̂t−1 with a small probability p. This method makes the model robust against input noise,
thus mitigating error accumulation and improving generation stability over extended interactions.

Stage 4: Context Length Extension Although NeuralOS can model sequences of arbitrary
length, hardware memory limits require shorter sequences during training, which limits exposure
to long-term dependencies. To address this, we introduce a final stage that extends training to longer
contexts, following initial training on short context windows for efficiency.

Curriculum Training on Challenging Transitions In our collected OS interaction dataset, a
substantial portion of frame transitions involve minor variations, such as slight cursor movements,
which exhibit limited learning signals. To prioritize learning of significant OS state changes (e.g.,
opening menus or launching applications), we first train NeuralOS exclusively on challenging transi-
tions. Specifically, we define challenging transitions as those frames whose pixel differences exceed
a specified threshold: ∥xt − xt−1∥22 > ϵ. Subsequently, we expand training to the full dataset. We
apply this curriculum strategy for Stage 1 (RNN Pretraining) and Stage 2 (Joint Training).

5 DATA COLLECTION

Agent-Based Demonstrations To collect realistic user interactions, we use Anthropic’s Claude-
3.5-Sonnet computer-use agent (Anthropic, 2024), which processes screenshots and invokes pro-
vided interaction functions. To maximize interaction diversity, we structure the agent’s exploration
process around a state-space search tree representing various OS states (see Figure 11 in Section H).

Specifically, we prompt the agent to identify all interactable GUI elements by moving the cursor to
each element’s center and reporting its bounding box (center, width, height). Each identified GUI
element becomes a node in a search tree rooted at the initial OS state. The agent is then guided
through this tree: for each node, it moves the cursor to the corresponding GUI element and performs
single or double clicks to transition to a new OS state, which then becomes a child node in the tree.
We iteratively expand the tree until reaching a predefined maximum depth.

Next, we initiate further interactions from each leaf node, allowing the agent to explore freely from
these distinct OS states for a fixed duration, thereby capturing diverse interaction sequences.

Random Exploration We find that relying exclusively on agent-generated demonstrations intro-
duces spurious correlations. For example, the model incorrectly associates cursor movement toward
a window’s close button with the action of closing, even in the absence of a click. To mitigate such
unintended associations, we supplement the dataset with random interaction data.

In generating these random interactions, we simulate mouse movements, clicks, and keyboard inputs
(key presses and releases) stochastically. To improve realism, we introduce several constraints and
heuristics iteratively developed through experimentation. Cursor movements are modeled using
Bezier curves to emulate natural mouse trajectories. Double-click events, rare under purely random
sampling, are explicitly generated.

6 EXPERIMENTAL SETUP

Data We collected data using 64 parallel Docker containers, each with Ubuntu 20.04 and XFCE
desktops at a resolution of 512 × 384. To simplify the environment, the desktop was limited to
four applications: Home, Trash, Terminal, and Firefox. Data consisted of 2K agent-based and 120K
random exploration demonstrations, each 30 seconds long at 15 fps, resulting in 12TB of latent data
after compression via an autoencoder. The autoencoder reduced the images by a factor of 8 to a
latent resolution of 64× 48 with 16 channels. Details of the autoencoder are in Section G.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) (b) (c)

Figure 4: (a) Heatmap illustrating predicted vs. ground truth state transitions. Each cell represents
the percentage of predictions assigned to a particular predicted cluster (x-axis), given a ground-truth
cluster (y-axis). Only the top 16 clusters are displayed here; refer to Figure 9 for the complete
heatmap. (b) Comparison of cursor position errors for NeuralOS (with cursor position map), Neu-
ralOS without the cursor position map, and a random baseline. (c) Pixel RMSE of generated frames
of using versus not using stage 3 scheduled sampling training.

Model The hierarchical RNN has two LSTM modules (each with hidden size 4,096) and a multi-
headed attention module (8 heads, 1,024 total dimension). The RNN output is projected to 32
channels and concatenated with the noisy latent frame (16 channels). The UNet uses four resolution
levels with channel multipliers of [1, 2, 3, 5], two residual blocks per level, and attention layers at
resolutions 8, 4, and 2. It has a base model dimension of 192 and outputs 16 channels. The final
model contains 2.2B parameters for the RNN and 263M parameters for the UNet renderer.

Training and Inference NeuralOS was trained using our proposed multi-stage training approach.
See Section A for full details on hyperparameters. The total data processing and training took
approximately 4 months, requiring 17,000 GPU hours on a server with 8 NVIDIA H200 GPUs
(141GB memory per GPU) and an additional 6,000 GPU hours on a server with 8 NVIDIA H100
GPUs (80GB memory per GPU). At inference time, we used DDIM sampling (Song et al., 2020a)
with 2 steps, achieving an inference speed of 18 fps on a single NVIDIA H100 GPU.

7 EXPERIMENTS

Given the substantial computational resources required to train NeuralOS, our evaluation focused
on NeuralOS variants, ablations, and intermediate training phases. For all evaluations, we used a
subset of 730 examples from a reserved evaluation dataset, unless mentioned otherwise.1

Cursor Position Modeling We evaluated cursor-position accuracy by training a regression model
to detect cursor coordinates from the generated images. With the cursor position map, NeuralOS
achieved highly accurate cursor localization, with an average position error of ∆x = 1.6 and ∆y =
1.4 pixels (Figure 4b). Given the 512 × 384 resolution of the images, this corresponds to less
than 0.5% of the frame width or height, indicating that cursor locations in generated images are
very precise. This performance significantly outperformed a baseline without cursor position maps
(∆x = 130.0, ∆y = 95.8)2 and the random baseline (∆x = 175.4, ∆y = 126.9), confirming the
importance of explicit spatial encoding for accurate cursor localization.

State-Transition Modeling Most OS interactions involve only cursor movements without signif-
icant visual changes. To focus evaluation on the crucial moments where the interface undergoes
meaningful changes, such as opening or closing an application, we identified challenging frame

1This number was chosen because our clustering procedure (detailed later) identified 73 clusters of chal-
lenging frame transitions, and we selected 10 examples per cluster, resulting in a total of 730 examples.

2This baseline is an earlier model version trained for 700K steps under slightly different conditions.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: Doom interactions generated by NeuralOS. Doom was never installed in the underlying
operating system used for data collection; instead, the model learned to simulate the application
from synthesized training data, producing realistic walking and shooting behavior from user inputs.

Table 1: Accuracy (%) of identifying the real OS, averaged over 30 video comparisons.

Crop Setting 10s 20s 30s 40s 50s 60s
No crop 58.3 55.0 60.0 56.7 61.7 59.3
Bottom cropped (40px) 51.7 53.3 50.0 48.3 46.7 50.0

transitions from the evaluation set.3 These transitions were clustered into 73 categories using DB-
Scan. NeuralOS predictions were then matched against the nearest cluster labels and compared with
the ground truth. As shown in Figure 4a, NeuralOS achieved an accuracy of 37.7% (diagonal align-
ment), substantially outperforming majority voting (1.4%). Note that off-diagonal predictions may
still correspond to valid outcomes due to inherent timing variability in OS actions (see Section B).

Human Evaluation We conducted a human evaluation to test how indistinguishable NeuralOS
outputs are from a real operating system. Human raters were shown side-by-side video clips of
the same user interaction sequence, one generated by NeuralOS and one recorded from an Ubuntu
XFCE desktop, and asked to identify the real system. Each clip lasted 10–60 seconds (sampled at
10s intervals) and was drawn from real human interactions collected through our online demo.4

To control for artifacts such as fluctuating disk-space counters (a known issue in diffusion), evalua-
tion was performed under two conditions: (1) original videos and (2) videos with bottom 40 pixels
(10% of height) cropped. In each condition, participants judged 30 randomly ordered comparisons.

As shown in Table 1, participants performed only slightly better than chance on up to 20 seconds of
interactions, suggesting that NeuralOS is visually realistic for basic interactions.

Learning from Synthetic Demonstrations A benefit of an end-to-end learned user interface is
its ability to learn from demonstrations that do not correspond to real implementations. To illus-
trate this, we constructed a Doom application entirely from synthetic data, even though Doom was
never installed in the docker. Desktop screenshots were augmented with a Doom icon, synthetic
double-click actions were inserted to simulate launching the game, VizDoom gameplay segments
with corresponding input events were spliced in, and each sequence ended with an ESC action re-
turning to the desktop. Trained on these demonstrations, NeuralOS learned to launch, play, and
close Doom as if it was a native application (Figures 1 and 5).

Long-Term Memory We evaluated whether NeuralOS has long-term memory using a folder cre-
ation task. We navigated to Home → Documents, created a “New Folder” (via right-click → Create
Folder), closed the file manager, and later reopened Documents after a delay. During training, the
model saw only short delays: we included 500 examples where the file manager was reopened after
8 frames in the training set. At test time, we extended the delay to 64, 128, and 256 frames. As a
control, we also included 500 examples where no folder was created.

Folder presence was evaluated by checking the region where the folder icon should appear, compar-
ing it to the ground truth with an MSE threshold. Table 2 shows the model can mostly recall whether
a folder had been created even after 256 frames, which is far beyond both the 8-frame training delay

3These were those with mean pixel distance greater than 0.1 from the previous frame to the target frame.
4See Figure 19 in Section N for a screenshot of the human evaluation interface.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a)

(b)

Figure 6: Ablation studies. (a) shows the limitations of directly using RNN outputs. (b) shows error
accumulation without scheduled sampling, demonstrating its necessity for maintaining stability.

Table 2: Folder presence modeling accuracy after reopening file manager with increasing gaps.

Frame Gap Ground Truth Predicted
Has Folder No Folder

64 Folder Created 0.52 0.48
No Folder Created 0.03 0.97

128 Folder Created 0.60 0.40
No Folder Created 0.00 1.00

256 Folder Created 0.62 0.38
No Folder Created 0.02 0.98

and its maximum training context of 64 frames. This indicates that NeuralOS develops persistent
memory representations of application state that generalize well beyond its training horizon.

Ablations Without joint training (relying solely on the pretrained RNN), the predictions are blurry
(Figure 6a). This is caused by the MSE loss encouraging the model to predict averaged represen-
tations of multiple plausible outcomes rather than committing to a single clear target. Additionally,
cursor positions were absent, despite the model correctly capturing state transitions (e.g., opening
the home folder), indicating that the RNN still implicitly encoded cursor information.

Omitting scheduled sampling led to rapid deterioration in generated frame quality due to compound-
ing prediction errors (Figure 6b). In contrast, incorporating scheduled sampling greatly improved
the model’s robustness (Figure 1), which is also evident from quantitative evaluation in Figure 4c.

8 CONCLUSION AND FUTURE WORK

We introduced NeuralOS, a system that simulates OS graphical interfaces using generative mod-
els. Trained end-to-end on interaction sequences, NeuralOS produces realistic screen sequences,
accurately predicts mouse interactions, and captures transitions such as opening applications.

A benefit of end-to-end trained interfaces is their ability to learn from synthetic demonstrations.
Our Doom experiment illustrated this: the model simulated launching, playing, and closing Doom,
even though the application was never installed in the underlying operating system. This points to a
broader paradigm for future generative interfaces: if consistent demonstrations can be provided, even
if they are manually edited, stylized, or fabricated, they can be internalized into usable interfaces.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

9 REPRODUCIBILITY STATEMENT

We have made all code, model checkpoints, and data processing scripts available at https:
//anonymous.4open.science/r/neural-os. An interactive demo is also hosted on Hug-
gingFace Spaces, where both code and trained models are transparent and can be easily duplicated
and studied; we will add the link to our HuggingFace space in the final version if the paper is ac-
cepted. Details of training procedures and dataset construction are also provided in the Appendix.

REFERENCES

Eloi Alonso, Adam Jelley, Vincent Micheli, Anssi Kanervisto, Amos J Storkey, Tim Pearce, and
François Fleuret. Diffusion for world modeling: Visual details matter in atari. Advances in
Neural Information Processing Systems, 37:58757–58791, 2024.

Anthropic. Introducing computer use, a new claude 3.5 sonnet, and claude 3.5 haiku, October 2024.
URL https://www.anthropic.com/news/3-5-models-and-computer-use.
Accessed: 2025-05-14.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. Advances in neural information processing systems,
28, 2015.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative inter-
active environments. In Forty-first International Conference on Machine Learning, 2024.

Haoxuan Che, Xuanhua He, Quande Liu, Cheng Jin, and Hao Chen. Gamegen-x: Interactive open-
world game video generation. arXiv preprint arXiv:2411.00769, 2024.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey
Nichols, and Ranjitha Kumar. Rico: A mobile app dataset for building data-driven design ap-
plications. In Proceedings of the 30th annual ACM symposium on user interface software and
technology, pp. 845–854, 2017.

Yuntian Deng, Noriyuki Kojima, and Alexander M Rush. Markup-to-image diffusion models with
scheduled sampling. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=81VJDmOE2ol.

Douglas C. Engelbart. The mother of all demos. https://www.youtube.com/watch?v=
fhEh3tEL1V4, 1968. Demonstration at the Fall Joint Computer Conference, San Francisco,
CA.

Ruili Feng, Han Zhang, Zhantao Yang, Jie Xiao, Zhilei Shu, Zhiheng Liu, Andy Zheng, Yukun
Huang, Yu Liu, and Hongyang Zhang. The matrix: Infinite-horizon world generation with real-
time moving control. arXiv preprint arXiv:2412.03568, 2024.

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. Advances
in neural information processing systems, 31, 2018a.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018b.

Haoran He, Yang Zhang, Liang Lin, Zhongwen Xu, and Ling Pan. Pre-trained video generative
models as world simulators. arXiv preprint arXiv:2502.07825, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

10

https://anonymous.4open.science/r/neural-os
https://anonymous.4open.science/r/neural-os
https://www.anthropic.com/news/3-5-models-and-computer-use
https://openreview.net/forum?id=81VJDmOE2ol
https://www.youtube.com/watch?v=fhEh3tEL1V4
https://www.youtube.com/watch?v=fhEh3tEL1V4


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Torralba, and Sanja Fidler. Learning to
simulate dynamic environments with gamegan. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1231–1240, 2020.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-conditional
video prediction using deep networks in atari games. Advances in neural information processing
systems, 28, 2015.

OpenAI. Introducing Sora: OpenAI’s Text-to-Video Model. https://openai.com/index/
sora, February 2024. Accessed: 2025-04-22.

Virtuals Protocol. Video game generation: A practical study using mario, 2024.
URL https://github.com/Virtual-Protocol/mario-videogamegen/blob/
main/static/pdfs/VideoGameGen.pdf. Preprint.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level train-
ing with recurrent neural networks. arXiv preprint arXiv:1511.06732, 2015.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time
game engines. arXiv preprint arXiv:2408.14837, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jiannan Xiang, Guangyi Liu, Yi Gu, Qiyue Gao, Yuting Ning, Yuheng Zha, Zeyu Feng, Tianhua
Tao, Shibo Hao, Yemin Shi, et al. Pandora: Towards general world model with natural language
actions and video states. arXiv preprint arXiv:2406.09455, 2024.

Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and Pieter
Abbeel. Learning interactive real-world simulators. arXiv preprint arXiv:2310.06114, 1(2):6,
2023.

11

https://openai.com/index/sora
https://openai.com/index/sora
https://github.com/Virtual-Protocol/mario-videogamegen/blob/main/static/pdfs/VideoGameGen.pdf
https://github.com/Virtual-Protocol/mario-videogamegen/blob/main/static/pdfs/VideoGameGen.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

xt−2 xt−1 xt x̂t

Figure 7: Correct prediction examples by NeuralOS. Each row shows two past frames (columns 1–
2), ground-truth next frame (column 3), and NeuralOS’s prediction (column 4). Cursor positions
are marked one frame in advance with circles (red: move-only, blue: left-click, yellow: right-
click). NeuralOS correctly captures various GUI transitions, including opening menus and launching
applications.

Table 3: Detailed hyperparameters and dataset configurations used for each stage of NeuralOS’s
multi-stage training. “Challenging transitions” are where the target frame differs from the preceding
input frame by a mean pixel difference greater than 0.1. These challenging transitions constitute
approximately 2.8% of the full dataset.

Stage Dataset Batch Steps LR Context Sampling p

Stage 1: RNN Pretraining
Challenging transitions 2.8% subset 256 50K 8× 10−5 32 —
Full dataset 100% 256 200K 8× 10−5 32 —

Stage 2: Joint Training (RNN + Renderer)
Challenging transitions 2.8% subset 64 100K 8× 10−5 32 —
Full dataset 100% 64 1M 8× 10−5 32 —

Stage 3: Scheduled Sampling
Full dataset 100% 256 500K 8× 10−5 32 0.05
Full dataset (lr reduced) 100% 256 500K 2× 10−5 32 0.05

Stage 4: Context Length Extension
Full dataset 100% 128 100K 2× 10−5 64 0.05

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

xt−2 xt−1 xt x̂t

Figure 8: Prediction examples where the generated frame does not match the ground truth frame.
The layout follows Figure 7. Note that not all mismatches represent errors. For example, the third
row illustrates a case where the screenshot tool window is closed in the ground truth frame but
remains open in the prediction. This discrepancy arises because the window-closing action (not
shown due to the limited context window) can have variable timing. Thus, both the predicted and
ground truth frames are valid outcomes in such scenarios.

A MULTI-STAGE TRAINING HYPERPARAMETERS

This section provides detailed hyperparameters and dataset configurations for each training stage of
NeuralOS, which is summarized in Table 3.

In Stage 1 (RNN Pretraining), the RNN was trained first on the subset of challenging transitions,
defined as examples whose target frame differs from the last input frame by an average pixel differ-
ence greater than 0.1. These challenging transitions constitute about 2.8% of the entire dataset. We
used a batch size of 256 and an initial learning rate of 8× 10−5, training for 50K steps. Afterwards,
the model was trained on the full dataset (100% of data) for an additional 200K steps, maintaining
the same batch size and learning rate. The context window length was fixed at 32 frames during this
stage.

In Stage 2 (Joint Training), the pretrained RNN and the renderer were jointly trained end-to-end,
first focusing on the challenging transitions (2.8% subset) for 100K steps, then extended to the full
dataset for an additional 1M steps. The learning rate remained at 8 × 10−5, with a reduced batch
size of 64 to stabilize diffusion training. The context length remained 32 frames, and no scheduled
sampling was applied in this stage.

In Stage 3 (Scheduled Sampling), we trained on the full dataset using scheduled sampling with
probability p = 0.05, where the most recent past frame was occasionally replaced by a model-
generated frame during training. Initially, training was conducted for 500K steps at a batch size

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

of 256 and a learning rate of 8 × 10−5. The learning rate was subsequently reduced to 2 × 10−5,
followed by an additional 500K training steps. The context window remained 32 frames.

Finally, in Stage 4 (Context Length Extension), we increased the context window length from 32
to 64 frames to enable NeuralOS to better capture long-term dependencies. Scheduled sampling
probability was maintained at p = 0.05. We used a lower learning rate of 2 × 10−5, reduced the
batch size to 128 to fit GPU memory constraints, and finetuned the model for 100K additional steps.

B QUALITATIVE ANALYSIS

We further analyze NeuralOS qualitatively by examining successful and unsuccessful generation
examples, shown in Figure 7 and Figure 8, respectively. Each row illustrates two past frames, the
ground-truth next frame, and NeuralOS’s predicted frame. Cursor positions in past frames are anno-
tated with colored circles to indicate the cursor’s intended position at the next frame: red represents
cursor movement only, blue denotes left-click actions, and yellow signifies right-click actions. Addi-
tionally, keys pressed at each frame are displayed in red text. Note that cursor annotations are shifted
forward by one frame to clearly depict cursor positions expected in the immediate subsequent frame.

In Figure 7, NeuralOS accurately predicts various critical GUI transitions, such as launching appli-
cations and opening menus through both mouse clicks and keyboard inputs, demonstrating its ability
to capture spatial and functional dynamics.

However, as shown in Figure 8, NeuralOS exhibits limitations, particularly for subtle actions like
moving the cursor to a “Close Tab” button without clicking. Moreover, NeuralOS currently struggles
to accurately represent fine-grained keyboard inputs, such as specific characters typed in a terminal.

It is worth noting that not all mismatches between predictions and ground truth constitute errors;
some discrepancies arise from variable timing in GUI responses, exemplified in Figure 8.

C FULL STATE TRANSITION HEATMAP

Due to space constraints, the main text presents only a truncated version of the state transition
heatmap. In Figure 9, we provide the complete heatmap, showing NeuralOS’s predictions across all
identified clusters.

D INTERACTIVE WEB DEMO

To facilitate user interaction with NeuralOS, we developed a web-based frontend using FastAPI,
accessible at https://neural-os.com/. Due to input rates (user actions) typically exceeding
model inference speeds, we implemented a user-input queue. When the model finishes generating a
frame, the system prioritizes processing recent meaningful inputs (clicks and keyboard events), dis-
carding the redundant cursor movements if necessary. This approach maximizes the responsiveness
of interactions.

E TRANSFORMER VS RNN ENCODER

We initially implemented our system using a transformer-based encoder architecture. However, in
interactive OS simulation, inference sequences can be arbitrarily long, as each user action generates a
new frame that is appended to the model’s context unless explicitly truncated. For long or continuous
interactions, this results in a steady increase in transformer memory consumption during inference,
ultimately leading to out-of-memory (OOM) failures for sufficiently long sequences.

To address this, we replaced the transformer with a hierarchical recurrent neural network (RNN)
architecture. RNNs maintain a constant-size hidden state between steps, enabling inference-time
GPU memory usage that is independent of sequence length. Table 4 shows the memory requirements
of a RNN encoder vs a Transformer encoder. Moreover, computer state modeling is inherently
Markovian, making the RNN a suitable choice.

14

https://neural-os.com/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 9: Complete heatmap of NeuralOS state transitions. Each cell represents the percentage
of predictions corresponding to a predicted cluster (x-axis) given a ground-truth cluster (y-axis).
Diagonal entries indicate exact cluster matches.

Table 4: Inference-time GPU memory usage (GB) for transformer and RNN architectures of similar
parameter counts. The transformer encoder cannot accommodate 1024 frames on an L40 GPU.

Video Length (s) Transformer (GB) RNN (GB)
4 21.61 11.96
64 22.69 11.96
128 23.81 11.96
256 26.07 11.96
512 30.60 11.96
1024 >40 (OOM) 11.96

Table 5: Application open–close accuracy. We report RMSE and mean absolute error (L1) between
NeuralOS predictions and ground-truth frames, with pixel values normalized to [0, 1].

Application Action RMSE L1
Terminal Open 0.021 0.001
Firefox Open 0.048 0.006
Trash Open 0.017 0.001
Home Open 0.019 0.001
Terminal Close 0.015 0.001
Firefox Close 0.016 0.001
Trash Close 0.016 0.001
Home Close 0.016 0.001

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 10: Examples of original images (top row) and their corresponding reconstructions (bottom
row) from the trained autoencoder. Despite significant spatial compression (8× downsampling), the
autoencoder preserves details.

F APPLICATION OPEN–CLOSE TRANSITIONS

We evaluated the accuracy of application open–close transitions in NeuralOS. Specifically, we con-
structed 150 sequences for four main applications (Terminal, Firefox, Trash, Home) by sampling
random cursor paths and click locations uniformly within the icon bounding boxes.

We compared the predicted and ground-truth frames at the end of each open and close event using
root mean squared error (RMSE) and mean absolute error (L1). To account for rendering latency, we
evaluated the frame after a fixed delay following each click: 40 frames after Firefox double-clicks,
10 frames after other application double-clicks, and 5 frames after single-click closing. These delays
were determined empirically to align with the frame at which the application’s visual state change
completes.

As shown in Table 5, the low RMSE and L1 scores confirm that NeuralOS accurately performs
application open and close transitions, consistent with observations from the interactive demo.

G AUTOENCODER DETAILS

We trained a Variational Autoencoder to compress high-dimensional OS screenshots into low-
dimensional latent representations suitable for efficient training of NeuralOS.

Model Architecture The architecture of the autoencoder is based on the model proposed by
(Rombach et al., 2022) with some custom adjustments to improve reconstruction quality. The en-
coder consisted of four convolutional downsampling blocks with 128 base channels. Each down-
sampling stage contained two residual blocks and no attention layers. The latent channel dimension
was set to 16.

Training The autoencoder was trained using a combined reconstruction and adversarial loss func-
tion. We trained the autoencoder using the Adam optimizer with a learning rate of 1e-6, a batch
size of 10, and a total of 2 million training steps on our dataset. Training was conducted on a single
NVIDIA H200 GPU.

After training, the encoder was able to compress each 512× 384 RGB frame into a latent represen-
tation of dimension 16×64×48 (downsampled by a factor of 8 in spatial dimensions), significantly
reducing memory requirements for subsequent NeuralOS model training.

Examples of original and reconstructed images are provided in Figure 10.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 11: Illustration of Search-Tree-Based Data Collection. We construct a search tree repre-
senting OS states, starting from the initial desktop screen (root node). Each node corresponds to a
distinct OS state, created by clicking or double-clicking interactable GUI elements identified by a
computer-use agent. For clarity, only first-level transitions (opening applications) and one deeper
exploration within Firefox are shown. This approach enables collecting diverse interaction data ef-
ficiently.

I need to generate some training data now. Please iteratively map out every application
icon/button on the desktop screen by moving your mouse to it. For each icon, move your
mouse EXACTLY to its center point. DO NOT click it though. Be thorough and identify every
button or icon on the screen from the top to the bottom.

{{suffix}}

Figure 12: Initial GUI Element Mapping (Root Node). Prompt instructing the agent to identify
interactable GUI elements on the initial desktop screen.

Now do a final check: Look carefully at every part of the screen for any unmapped buttons.
If you find any, map their exact centers like before. If you are absolutely certain ALL
buttons have been mapped, respond with ONLY the final coordinate list.

{{suffix}}

Figure 13: Final Verification of GUI Elements (Root Node). Prompt instructing the agent to
perform a final check for any missed interactable GUI elements on the initial desktop screen.

H COMPUTER-USE AGENT FOR DATA COLLECTION

To build the search tree illustrated in Figure 11, we used structured prompts to guide the computer-
use agent. Starting from the initial desktop screen (root node), we sequentially instructed the agent
to first map and then verify all interactable GUI elements (Figures 12 and 13). For subsequent GUI
states (non-root nodes), we initially prompted the agent to transition to each new state (Figure 14).
After transitioning, we issued follow-up prompts to map and verify any newly revealed GUI ele-
ments (Figures 15 to 17).

Each prompt included a standardized suffix, as shown in Figure 18, to ensure that the agent outputs
the coordinates and dimensions of mapped GUI elements in a consistent, structured format. This
allowed efficient parsing and automated processing of collected data.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

I need to generate some training data now. First, please click/open the object at {{x}},
{{y}}. Do not progress until it is open or clicked. Double click to open if necessary. Once
you confirmed it is open or clicked, stop here.

Figure 14: Transitioning to a New UI State (Non-Root Node). Prompt instructing the agent to
transition to the current state.

Now, iteratively map out all the buttons by moving your cursor to them. Focus on those
related to the object you click/open at {{x}}, {{y}} - especially new buttons. For each
button, move your mouse EXACTLY to its center point. DO NOT click it though.

{{suffix}}

Figure 15: Initial Mapping of Newly Revealed GUI Elements (Non-Root Node). Prompt instruct-
ing the agent to identify GUI elements newly revealed after transitioning to the current UI state.

Please continue mapping out buttons on the screen but DO NOT click anymore buttons. Again,
focus on mapping those related to the object you click/open at {{x}}, {{y}} - especially
any new ones. As you exhaust the new buttons, move farther out. For each button, move your
mouse EXACTLY to its center point. DO NOT click it though.

{{suffix}}

Figure 16: Continued Mapping of Remaining GUI Elements (Non-Root Node). Prompt instruct-
ing the agent to further map any remaining interactable GUI elements in the current UI state.

Now do a final check: Look carefully around the screen to see if there are any new unmapped
buttons related to the object you click/open at {{x}}, {{y}}. If you find any, map their
exact centers like before. DO NOT click more buttons though. If you are absolutely certain
ALL related buttons have been mapped, respond with ONLY the final coordinate list.

{{suffix}}

Figure 17: Final Verification of GUI Elements (Non-Root Node). Prompt instructing the agent to
perform a final check ensuring all interactable GUI elements have been identified at the current UI
state.

I CURSOR POSITION PREDICTION MODEL TRAINING

To quantitatively evaluate cursor position accuracy in the generated frames (Figure 4b), we trained a
regression model to predict cursor coordinates directly from screen images. The training procedure
is detailed below.

Model Architecture We used a ResNet-50 convolutional backbone pretrained on ImageNet, with
modifications for fine-grained spatial localization tasks. Specifically, we adjusted the stride and
dilation parameters in the final convolutional layers to reduce downsampling from 32× to 16×,
preserving more spatial resolution. The feature extractor output is passed through an additional in-
termediate convolutional layer followed by a fully-connected regression head, outputting continuous
cursor coordinates (x, y).

Training We used the Adam optimizer with an initial learning rate of 6× 10−5 and weight decay
set to 1× 10−5. We clipped gradients at a maximum norm of 1.0. We optimized an L1 loss between
predicted and ground-truth cursor positions. We trained with a batch size of 16 for a total of 2 epochs.
Input images were used directly from collected data at the original resolution (512 × 384 pixels),
normalized and rearranged to match the input format of ResNet-50. The training data consisted of
randomly sampled frames from the full dataset, each labeled with the ground truth cursor positions
captured during data collection. Training was performed on a single NVIDIA A6000 GPU. The test

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

If you find a keyboard input box, use the type tool specifying its center coordinates and
input box type via text from the following possibilities: terminal, browser, or other, with
coordinates appended in the format x:y.

At the end of your response, provide a structured list of ALL buttons you mapped using this
exact format:

For each button provide two pairs of numbers:
1. Location (L): x˜y coordinates where you moved the mouse
2. Size (S): x:y dimensions of the button

Example format:
[

L100˜200 S50:30, // Button 1: Located at (100,200) with size 50x30
L300˜400 S60:40 // Button 2: Located at (300,400) with size 60x40

]

Important:
- Use EXACTLY this format: Lx˜y Sx:y
- Separate each button with commas
- Include ALL buttons you mapped
- Numbers only, no text or descriptions

Figure 18: Structured Output Suffix. A standardized suffix appended to all prompts, guiding the
agent to report mapped GUI elements using a consistent coordinate and dimension format.

error is 0.5 pixels for both x and y. Given that each image is 512×384 pixels, this reflects extremely
high localization precision. In other words, the regression model can predict the cursor location
from a screen image with an average deviation of less than a single pixel, making it highly sensitive
to small differences and suitable for evaluating fine-grained cursor accuracy in generated frames.

J USE OF LLMS

We used large language models (LLMs) in two ways. First, we used an LLM-based computer-use
agent (Claude-3.5-Sonnet) to generate interaction traces, which were incorporated into our train-
ing dataset alongside synthetic data. Second, we used an LLM-based writing assistant to polish
grammar. All ideas, analyses, experiments, and scientific claims are our own, and we take full
responsibility for the content of this work.

K SCHEDULED SAMPLING IMPLEMENTATION DETAILS

Scheduled sampling requires generating model-based frames during training, which incurs higher
computational costs compared to using only ground-truth frames. In a multi-GPU training setting,
naively performing scheduled sampling at random intervals could result in synchronization bottle-
necks, as some GPUs would have to wait for others to complete computationally expensive sam-
pling steps. To mitigate this issue, we implemented scheduled sampling at regular intervals across
all GPUs simultaneously. Specifically, for a scheduled sampling probability of p = 0.05, each GPU
(and all examples within each GPU’s batch) performs scheduled sampling exactly once every 20
steps. This synchronization approach ensures consistent training speed and prevents slowdown due
to inter-GPU blocking.

L RELATED WORK

NeuralOS is closely related to recent generative modeling approaches for simulating interactive
environments conditioned on user inputs. “World Models”(Ha & Schmidhuber, 2018b) intro-
duced latent-variable models for simulating reinforcement learning environments. GameGAN (Kim
et al., 2020) used generative adversarial networks (GANs) for interactive game imitation, and Ge-
nie (Bruce et al., 2024) generated playable 2D platformer worlds. More recently, diffusion-based
models have emerged as powerful real-time simulators: GameNGen (Valevski et al., 2024) simulated
the game DOOM, MarioVGG (Protocol, 2024) simulated Super Mario Bros, DIAMOND (Alonso
et al., 2024) simulated Atari and Counter-Strike, GameGen-X (Che et al., 2024) simulated open-

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

world games, and Matrix (Feng et al., 2024) simulated AAA games. Beyond video games,
UniSim (Yang et al., 2023) developed simulators for real-world scenarios, and Pandora (Xiang et al.,
2024) introduced controllable video generation using natural-language prompts.

Compared to these prior works, NeuralOS addresses distinct challenges unique to OS simulation:
while most GUI frame transitions involve subtle changes, accurately modeling critical discrete
events, such as opening applications or menus, is essential. Additionally, precise cursor position
prediction is crucial for interactive usability. NeuralOS introduces targeted model and training in-
novations specifically addressing these challenges, paving the way toward fully generative OS sim-
ulations.

M LIMITATIONS

Our work represents an initial step toward a fully generative OS, but several limitations remain. De-
spite substantial training compute (17,000 H200 GPU hours and 6,000 H100 GPU hours), NeuralOS
is still far from replicating the capabilities of a real operating system: screen resolution remains low,
fine-grained keyboard interactions are not reliably supported (Section B). Additionally, many open
challenges remain, including enabling the generative OS to interact with external resources (e.g.,
internet), and introduce controllability beyond traditional OS boundaries.

N HUMAN EVALUATION

To evaluate how realistic NeuralOS appears to human observers, we conducted a perceptual study
modeled after GameNGen (Che et al., 2024). Participants were shown pairs of short video clips—
one generated by NeuralOS and one recorded from a real Ubuntu XFCE desktop—corresponding to
the same underlying sequence of user interactions. Their task was to identify which clip came from
the real operating system.

We evaluated six interaction durations: 10s, 20s, 30s, 40s, 50s, and 60s. To control for artifacts
that could reveal the model’s identity (such as flickering free-space counters, a known issue in dif-
fusion models), the study was conducted under two conditions: (1) full-frame videos and (2) videos
cropped to remove the bottom 40 pixels (10% of the height).

Each participant completed 30 randomized trials per condition. A screenshot of the evaluation in-
terface is provided in Figure 19, and quantitative results are reported in Table 1 (main text). In the
cropped condition, participants’ accuracy fell close to chance, suggesting that NeuralOS simulations
are visually convincing for short interaction sequences.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 19: Screenshot of the evaluation interface. Participants were shown side-by-side video clips
of the same user interaction sequence, one generated by NeuralOS and one recorded from a real
operating system, and asked to identify the real operating system.

21


	Introduction
	Generative Modeling of Operating System Interfaces
	NeuralOS Architecture
	Multi-Stage Training Approach
	Data Collection
	Experimental Setup
	Experiments
	Conclusion and Future Work
	Reproducibility Statement
	Multi-Stage Training Hyperparameters
	Qualitative Analysis
	Full State Transition Heatmap
	Interactive Web Demo
	Transformer vs RNN Encoder
	Application Open–Close Transitions
	Autoencoder Details
	Computer-Use Agent for Data Collection
	Cursor Position Prediction Model Training
	Use of LLMs
	Scheduled Sampling Implementation Details
	Related Work
	Limitations
	Human Evaluation

