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Abstract

Self-supervised learning (SSL) plays a central role in molecular representation learning. Yet,
many recent innovations in masking-based pretraining are introduced as heuristics and lack
principled evaluation, obscuring which design choices are genuinely effective. This work
cast the entire pretrain—finetune workflow into a unified probabilistic framework, enabling
a transparent comparison and deeper understanding of masking strategies. Building on this
formalism, we conduct a controlled study of three core design dimensions: masking dis-
tribution, prediction target, and encoder architecture, under rigorously controlled settings.
We further employ information-theoretic measures to assess the informativeness of pretrain-
ing signals and connect them to empirically benchmarked downstream performance. Our
findings reveal a surprising insight: sophisticated masking distributions offer no consistent
benefit over uniform sampling for common node-level prediction tasks. Instead, the choice of
prediction target and its synergy with the encoder architecture are far more critical. Specif-
ically, shifting to semantically richer targets yields substantial downstream improvements,
particularly when paired with expressive Graph Transformer encoders. These insights offer
practical guidance for developing more effective SSL methods for molecular graphs.

1 Introduction

Graph neural networks (GNNs) have gained significant traction in chemistry due to their intrinsic compati-
bility with molecular graph structures (Duvenaud et all 2015 |Gilmer et al., [2017). A key challenge in this
domain is that obtaining molecular property labels often requires specialized and costly experimental proce-
dures (Ramakrishnan et al., [2014; [Wu et al., |2018)), which inherently limits the scale of empirically labeled
datasets and hinders the rapid exploration of the vast chemical space. Powerful computational models are es-
sential for exploring vast chemical spaces and accurately predicting molecular properties at scale. To reduce
the need for extensive experimental labeling, researchers have increasingly adopted self-supervised learning
(SSL) (Dara et al., 2022). SSL leverages supervisory signals from abundant unlabeled molecular data to
pre-train models that can learn generalizable representations. These SSL methods for molecular GNNs are
broadly categorized into two paradigms: masking-based pretraining (Hu et all 2019; [Hou et al., |2022)) and
contrastive learning (You et al.l |2020; [Liu et al [2021a)). The former involves masking attributes of sampled
nodes or edges within a molecular graph and training the model to recover this hidden information, often
using the original atom or bond properties as supervisory signals. The latter employs graph augmentations
to generate positive and negative molecular pairs for contrastive learning. Both approaches aim to maximize
the extraction of chemically relevant information from molecular structures, thereby improving the inductive
bias of GNNs for downstream tasks such as molecular screening and drug discovery, where labeled data is
scarce.

This work focuses on the masking-based pretraining paradigm. A seminal work in this direction is [Hu
et al.| (2019)), which pioneered the use of graph neural networks (GNNs) with a masked prediction objective
for molecular representation learning, demonstrating the effectiveness of reconstructing masked node or
edge features. This work laid the foundation for subsequent studies. Over the years, various modifications
have been introduced. These innovations can be broadly categorized along three main axes: (1) model
architectures, such as adopting alternative GNN encoders or reconfiguring the overall learning framework
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(Rong et al., |2020; Hou et al.l 2022; [Liu et al.| 2023a); (2) masking distributions, involving novel strategies
for selecting which parts of the graph to mask (Liu et al.| [2024; Inae et al.,|2024)); and (3) prediction targets,
which alter the nature of the information the model aims to reconstruct during pretraining (Xia et al., [2023;
Yang et al., |2024).

While new studies often claim to surpass prior methods on benchmark datasets, our comprehensive eval-
uations demonstrated that many modifications to masking strategies do not yield significant performance
gains when evaluated under more rigorously controlled settings. For instance, we find that replacing simple
uniform sampling with more sophisticated distributions offers no consistent advantage. Furthermore, as
noted by |Koo & Kwon| (2025), methodical comparisons that isolate the efficacy of specific masking strategies
from other confounding factors remain limited. This makes it challenging to ascertain which design choices
are genuinely effective. To address these ambiguities and provide a clearer understanding of masking-based
SSL in molecular graphs, our contributions are as follows:

1. We formalize the masking-based pretraining pipeline for molecular graphs, factoring it into key
design dimensions: masking distribution, prediction target, and encoder architecture. This enables
a structured categorization and comparison of existing and novel approaches.

2. We conduct a rigorous comparative study by meticulously controlling experimental variables across
these dimensions and hyperparameters, thereby isolating the true impact of different masking strate-
gies and architectural choices on downstream task performance.

3. We introduce a model-agnostic information-theoretic analysis, using mutual information and Jensen-
Shannon Divergence, to quantify the alignment between pretraining proxy tasks and downstream
molecular property prediction. This analysis provides deeper insights into the underlying mecha-
nisms driving observed performance differences.

2 Related Works

Self-supervised learning (SSL) has become a pivotal paradigm for learning general-purpose representations
from large-scale unlabeled data (Jing & Tianl |2020; |Wu et al., |2020; [Liu et al., [2021b)). In the graph domain,
SSL methods are broadly categorized into two main paradigms. Contrastive learning (CL) learns discrim-
inative representations by maximizing the agreement between different augmented views of a graph (You
et all 2020; [Liu et all [2021a; Wang et al., [2022). In parallel, a generative approach, often termed Masked
Graph Modeling (MGM), learns by corrupting parts of the input graph and training a model to reconstruct
the original information.

The underlying principle of MGM, learning representations by reconstructing masked portions of the input,
was first popularized in natural language processing by models like BERT (Devlin et al.,|2019). This powerful
self-supervised paradigm was subsequently and concurrently adapted to other domains, including computer
vision with Masked Image Modeling (He et al. |2022) and, central to this paper, the molecular domain.
Here, the masking principle has been applied across diverse data modalities of molecules. For instance,
SMILES-BERT (Wang et al., |2019) treats molecules as 1D SMILES sequences and apply BERT-style token
masking, directly leveraging advancements from NLP. In the 2D visual domain, MaskMol (Cheng et al.| {2024)
explores 2D molecular images, performing knowledge-guided pixel masking on atoms or functional groups
to address specific challenges like activity cliffs. Furthermore, EMPP (An et al.l |2025), physics-informed
direction operates on 3D geometric structures, proposing to mask atomic positions and train equivariant
GNNs to predict them, thereby learning about intramolecular forces. While each modality offers unique
research directions, our work focuses on a principled analysis of masking design choices specifically within
the prevalent 2D molecular graph paradigm.

2.1 Evolving Designs in Masked Modeling for 2D Molecular Graphs

The central architectural component for processing 2D molecular graphs is the Graph Neural Network
(GNN), which serves as a powerful encoder that learns representations by operating directly on the graph
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topology and features. Applying masked modeling to these GNN-based systems began with the founda-
tional framework of AttrMask (Hu et al.l [2019), which masks atom or bond attributes and uses a simple
MLP for reconstruction. Subsequent research has evolved this paradigm in multiple directions. Archi-
tecturally, GraphMAE (Hou et al., 2022), uses more expressive decoder and introducing mechanisms like
re-masking in the latent space. Concurrently, more powerful encoder backbones like Graph Transformers
were also leveraged to better model long-range dependencies (Rong et al., 2020; [Liu et al., |2023b; [Yang et al.|
2024)). Beyond standard homogeneous graphs, some works have even explored fundamentally different input
representations, such as the heterogeneous atom-bond graphs in MGMAE (Feng et al., [2022).

Innovation has also occurred in the masking strategy itself. Research has moved from simple uniform random
masking to adaptive distributions based on graph heuristics or learnable scorers to identify structurally
important nodes (Liu et all [2024). The masking granularity has also been a focus, with a clear trend
towards higher-level semantic units, such as masking entire chemically meaningful motifs (subgraphs) instead
of individual nodes (Zhang et al., |2021; 'Wu et al.l |2023; Inae et al., 2024)).

Another active research direction involves designing more semantically rich prediction targets. These in-
clude predicting a discrete index from a vocabulary representing structural subgraphs (Ma et al., [2024)
or learned codebooks (Xia et al., 2023), as well as predicting pre-defined motif labels (Yang et al., 2024).
Other approaches have also explored predicting high-dimensional continuous vector representations of local
neighborhoods (Liu et al., 2023b).

2.2 Current Challenges and The Need for Systematic Investigation

Despite the rapid proliferation of MGM methods on molecules, most studies focus on proposing a novel model
and demonstrating its superiority on specific benchmarks, leading to several challenges: a lack of systematic
analysis of the interplay between different design choices, a scarcity of controlled comparisons, and a limited
understanding of the mechanisms behind observed performance differences. This is exacerbated by the trend
of creating complex, hybrid frameworks that combine different SSL paradigms. For instance, works like
GCMAE (Wang et all [2024) and UGMAE (Tian et al., 2024) explicitly combine multiple SSL paradigms
and introduce numerous components and loss terms. While powerful, the complexity of such models makes
it increasingly difficult to attribute performance gains to specific design choices.

This highlights the urgent need for systematic investigation. Some prior work has started this process.
The study by Koo & Kwon| (2025) provided a comprehensive analysis of several lower-level masking design
aspects, such as the masking phase (pretraining vs. fine-tuning), granularity (e.g., node vs. subgraph),
location (feature vs. embedding), and key hyperparameters like masking ratio. While valuable, their analysis
was conducted within a single architectural framework and did not cover higher-level design choices. Other
works, like that of Wang et al| (2023); |Cintas et al.| (2023)), have proposed new evaluation methodologies to
characterize pre-trained representations beyond simple downstream task performance. These efforts reveal a
core challenge: a more fundamental understanding of the causal links between pretraining design choices and
the properties of the learned representations is required. Our work aims to address this gap by proposing a
formal probabilistic framework, conducting rigorously controlled experiments, and employing information-
theoretic measures to provide deeper, more principled insights and practical guidance for the field.

3 Methodology

This section details the methodology for our systematic investigation. We begin by casting the pretrain-
finetune pipeline into a unifying probabilistic framework (Sec. 7 allowing us to deconstruct and
systematically compare masking strategies (Sec. . All molecular graphs are treated as undirected, non-
singleton graphs.

3.1 Analysis Dimensions

While many existing works highlight the goal of pretraining as capturing the intrinsic chemical information
embedded in molecular structures, they often lack a formal account of how the pretraining task relates to
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downstream property prediction. To provide a clearer perspective, we adopt a probabilistic model to describe
the two-step pipeline commonly used in evaluating mask prediction approaches.

We consider the pretrain-finetune setting as applied to classification tasks. Formally, we define X, a random
variable representing a label from a label space £ that is assigned to a specific structural unit sampled from
a space of possible units S(G) within a given graph G = (V, E):

X:SG) =L (1)

This general formulation is flexible and powerful. For instance, in simple node-level tasks, the space of
structural units S is simply the set of nodes V. For higher-level tasks, S can be a family of subgraphs (e.g.,
chemical motifs).

Meanwhile, the graph-level (global) property used for downstream prediction is denoted as
Y:G—{0,1} (2)

where G is the space of all molecular graphs in a given downstream dataset.

Let M denote a specific masking strategy. This strategy defines how to sample masking indices M C
{0,1,...,|S|—1} for a graph G. The application of mask M to G from the dataset Gqata yields the prediction
target, the vector of true labels X (Sys), and the model’s input, the masked graph G ;. Conventionally, G s
is obtained by replacing the fundamental elements of G, such as node or edge features, to a fixed, non-existent
vector m of the same dimension. Using this notation, we can frame the entire pipeline in the following way.

1. In the pretraining stage, the objective is to learn an optimal encoder—decoder pair (fy, g4). Within
the scope of our study, fs is a GNN, and the decoder g, is typically an MLP or another GNN. The
objective is to minimize the expected loss for masked label prediction

r(r;ien EGaGaua M~Pri(1G) [L (96(fo(Gar)), X (Sm))] (3)

)

We define the overall loss L for a masked set V), as the mean of a loss function ¢ (e.g., cross-entropy)
over all nodes in that set:

L(96(fo(Gar))s X(Sa1)) = ot 32 (90 (fo(Gar))us X (u))

|SM| uESM

2. At test time, the pretrained encoder fj is then used to initialize the backbone of the downstream
classification model, which is further finetuned by minimizing;:

rfbngl Ecy)~p(, [E(hy(fo(G)), Y] @

to improve prediction performance on unseen molecular graphs. Here P(-,-) represents the joint
distribution of graph G and graph-level label Y in the downstream dataset, and h, denotes the
MLP classifier of graph-level properties.
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Figure 1: An Example of the Pretrain-Finetune Pipeline: Node Attribute Recovery

Based on this formulation, it becomes clear that design choices made during the mask prediction pretraining
stage (Eq. [3) can be broadly factored into three main categories, as described below.

3.1.1 Masking Distribution

This first design dimension concerns the choice of the masking strategy, M. Different strategies define
different distribution to sample the masked nodes, which is why we refer this dimension as the masking
distribution. Formally, the choice of M directly determines the marginal distribution, Py((X|G), of the
predicted labels X.

e Uniform masking: The sampling distribution is uniform over the set of nodes V', where each node
is selected for masking with an equal and independent probability.

e Heuristic masking: The sampling distribution is determined by pre-defined heuristics based on
graph structure.

e Learnable masking: The sampling distribution is dynamically learned during pretraining. This
typically involves dedicated neural modules, that predict node importance scores, which are then
used to parameterize the sampling probabilities.

The development of the heuristic and learnable methods described above is predicated on a central hypoth-
esis: that an optimal, non-uniform masking strategy M exists. Such a strategy would induce a masking
distribution, Py(X|G), that is more informative for predicting the downstream task label, Y, than the
uniform distribution. In our formulation, this hypothesis implies that: if a non-uniform strategy M is in-
deed more effective, the information provided to Y given X ~ Pp(:|G) should be higher than that given
X ~ Puniform('|G)~

3.1.2 Prediction Target

Another key design axis is to redefine the prediction target X itself. Previously, we adopted the formulation
X :V = {1,2,...,n}, representing a random variable mapping from nodes to discrete label values. This
formulation can be altered in several ways, for instance, changing the sample space V', modifying the label
range, or redefining the correspondence between the two.

One important example of such an alteration is to define X as a mapping from subsets of nodes,

X :FV)—={12,...,m}



Under review as submission to TMLR

where F (V) denotes a family of node subsets. This allows us to incorporate higher-level semantic labels,
such as subgraph-level supervision.

In our experiments, we compare several classes of prediction targets. The specific methods corresponding to
these classes will be detailed in Section 3.3}

e Atomic Attribute Prediction: The target is to reconstruct the original, low-level attributes of
individual masked atoms, such as atom type or formal charge. This represents the most direct form
of feature recovery.

e Learned Node-level Token Prediction: The target is a discrete token representing a learned,
abstract representation of an atom. These tokens are typically derived from a separate, pretrained
model like a vector-quantized encoder.

e Structural Motif Prediction: The target is a label corresponding to a higher-level, chemically
meaningful substructure (i.e., a motif/subgraph) to which the masked atoms belong. This shifts the
prediction from local atomic properties to broader structural semantics.

The motivation for designing these varied prediction targets is rooted in a central premise: that the semantic
richness of the pretraining task directly influences the quality of the learned representations. In the context
of our study, this suggests that shifting the prediction target X from simple, low-level atomic attributes to
learned or higher-level structural labels should provide a more potent self-supervised signal. This leads to a
clear direction that we will investigate: the altered targets X should exhibit a stronger statistical dependence
on the downstream property Y.

3.1.3 Encoder Architecture

The final design dimension we investigate is the choice of the encoder architecture, fy. The encoder’s
capacity to model different types of structural dependencies is crucial, as it is the component responsible
for generating transferable representations. Our study focuses on comparing two dominant paradigms for
graph-based molecular encoding:

o Message Passing Neural Networks (MPNNs): This class of models iteratively updates node
representations by aggregating information from their local neighborhoods. Due to their strong
inductive bias for graph-structured data and computational efficiency, MPNNs have become the
standard backbone for a wide range of molecular property prediction tasks.

e Graph Transformers: These architectures enhance message passing networks by incorporating
global attention mechanisms, allowing every node to attend to every other node in the graph. This
enables the direct modeling of long-range dependencies, which is challenging for standard MPNNs.
While more expressive in principle, whether this increased capacity translates to better performance
in masking-based pretraining remains an open question evaluated in our study.

Other Components Beyond the three core design dimensions, a complete pretraining pipeline involves
choices about several auxiliary components. These often include the specific architecture of the decoder
(e.g., a simple MLP versus a GNN-based decoder), the formulation of the loss function (e.g., standard
cross-entropy versus a scaled cosine error), and other techniques such as applying a re-masking step to the
latent representations before decoding (Hou et all [2022). When comparing the main design dimensions in
our study, we adopt a consistent configuration for these auxiliary components to ensure a fair comparison.
Results from additional ablations on these components are provided in Appendix for completeness.

3.2 Principled Criteria for Signal Informativeness

The preceding sections establish two core hypotheses: an effective pretraining signal can be engineered by
either optimizing the masking distribution (via strategy M) or by enriching the prediction target X. Both
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hypotheses converge on the same underlying principle—that the goal is to strengthen the statistical
dependence between the local pretraining signal X and the global downstream property Y. To
formally test these hypotheses and compare the informativeness of different design choices in a principled,
model-agnostic way, we require quantitative measures of this dependence.

3.2.1 Mutual Information

To this end, we propose using the mutual information (MI) between X and Y as an information-theoretic
measure of alignment. Formally, the mutual information I(X;Y) quantifies how much information about
the global label Y we can obtain by knowing the local label X, and is defined as:

P(x,y)

P(e)P(y) )

I(X;Y) =Y P(x,y)log

z,y

where x ranges over node or motif labels, and y is the graph-level label. A higher value of I(X;Y) indicates
that the sampled local label variable X used during pretraining contains more information about the down-
stream property Y, and thus provides a more meaningful self-supervised signal. This formulation allows
us to compare the potential informativeness of different prediction targets and masking distributions in a
model-agnostic manner, independent of encoder architecture.

3.2.2 Analysis of Conditional Distributions for Low-Frequency Labels

While MI provides a holistic measure of dependence, its averaging nature can obscure important details.
Specifically, the influence of highly discriminative but infrequent local labels might be diluted by more
common ones. This is a particularly relevant concern when comparing prediction targets of different semantic
levels (e.g., common atoms vs. rare functional groups).

To probe the discriminative power of local labels beyond this average effect, our analysis leverages the
Jensen-Shannon Divergence (JSD). The JSD allows for a direct comparison of the conditional label
distributions, P(X|Y = 1) and P(X|Y = 0). Based on the hypothesis that impactful local labels are often
infrequent, we focus our JSD analysis on a subset of low-frequency labels, S, defined as:

Sr={xeX|P(x) <7} (6)

where X is the set of all unique local labels, P(z) is the empirical probability of label z, and T € (0,1] is a
probability threshold. We then estimate the conditional probability distributions restricted to this subset,
P(X|Y =y,S;), as follows:

NX =zY =y)

P(X =z|Y =y,5,) = Y es. NX =2,Y =)

(7)

where N(X = z,Y = y) is the count of occurrences of label x in graphs of class y. The JSD is then computed
between P(X|Y = 1,5;) and P(X|Y = 0,5;) to evaluate how the distinguishability of rare labels varies
across different prediction target types.

3.3 Instantiating the Design Dimensions

To ground our theoretical framework in practice, this section maps a set of reproduced pretraining methods
to the design dimensions outlined in Section [3| Instead of a simple chronological review, we organize this
section to mirror our framework’s structure. We first introduce AttrMask as the foundational baseline in
detail. Subsequent subsections then explore how various methods have innovated upon this baseline along
each of the three primary axes: masking distribution, prediction target, and architectural components.
This approach allows for a clear, dimension-wise comparison while presenting each method in a logical,
dependency-aware order. A complete overview of all method configurations is provided in Appendix
see Table
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AttrMask. The pioneering work of [Hu et al. (2019) introduced Attribute Masking (AttrMask), which
serves as the foundational baseline in our study. Within our probabilistic framework, AttrMask can be
precisely defined by instantiating each core component. The prediction target

Xigpe : V = {0,1,2,...,118}

is the original atomic attribute (e.g., atom typeE[), where the space of structural units S(G) for each graph
G is the set of nodes V. The masking distribution P, is a uniform distribution over these nodes, from
which a subset V,,, C V is sampled. To create the corrupted graph Gy, the feature vectors x, of these
selected nodes are replaced with a special mask token m of the same dimension. Finally, an encoder fy,
typically an MPNN, processes G'as to produce node embeddings, and a simple MLP acts as the decoder g4
to predict the original attributes X (v) for v € V,,, by minimizing a cross-entropy loss. See Figure

GraphMAE. Building on the AttrMask framework, GraphMAE (Hou et al.| [2022) introduces key archi-
tectural innovations to reformulate the task as a more complete masked graph auto-encoder. It retains the
same uniform masking distribution and atomic attribute prediction target as AttrMask, but enhances the
architecture, primarily in the decoding process. Its key contributions are:

(1) A Re-masking step, where the embeddings of masked nodes are again replaced by a special token
before being passed to the decoder.

(2) A GNN-based decoder, where another GNN layer is used as part of the decoder g4 to further
process latent codes before a final MLP predicts the node attributes.

Additionally, GraphMAE proposes using a scaled-cosine error (SCE) loss, shown in Equation [8] instead
of cross-entropy to down-weight easy-to-predict examples.

c L (1 ik )7 >1 (8)
SCE — - = y V2
Vinl [l ]| - 112l

3.3.1 Innovations in Masking Distribution

The methods discussed so far, AttrMask and GraphMAE, both rely on a simple uniform distribution for
selecting nodes to mask. However, the hypothesis that non-uniform, structure-aware masking distributions
(Prm) could provide a more effective pretraining signal has also been explored, with StructMAE (Liu et al.
2024) being a representative example. This approach builds upon the GraphMAE framework to introduce
heuristic and learnable masking strategies.

StructMAE. StructMAE (Liu et al., [2024]) extends the GraphMAE framework by modifying the way
masked nodes are selected during pretraining. While using the same architecture as GraphMAE;, it replaces
the uniform sampling scheme with alternative distributions that incorporate structural information from the
input graph. Specifically, the authors designed two variants: PageRank-based and learnable masking.

(1) StructMAE-P: The sampling distribution is based on the PageRank scores of nodes in the graph.
For a graph with adjacency matrix A and degree matrix D, the PageRank vector z € AlVI=1 is iteratively
computed as:

2D = oD Az® + (1 —a)p

= (aD7'A+ (1 —a)p1”) z® 9)
=: Rz(t),
until convergence ||z(*+1) — z(®)|| < ¢, where p is typically uniform, and a € (0,1) is a damping factor.

Due to the stochastic, irreducible nature of the transition matrix R, {x(t)} converges to a unique stationary
distribution, which is used to rank node importance. However, always selecting the highest-ranked nodes for

1In the range of Xatom, O stands for the element class of unknown atoms.
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masking risks overfitting to a fixed substructure. To alleviate this, StructMAE-P incorporates randomness
into the sampling process, using a perturbed top-k selection scheme with dynamic adjustment over training
epochs. The full procedure is outlined in Algorithm

Algorithm 1: Perturbed PageRank-Based Masking (StructMAE-P)

Input: Graph G = (V, E); mask rate ~; training epoch ¢ (> 1), max epoch E; perturbation strength g
Output: Mask nodes V3 C V

Compute PageRank scores p[v] for all v € V' ;

Adjust mask rate v; < v - /i/E ;

Let C; <= TopK, v (p[v], Vi) ; // Important nodes (candidates)
Sample random scores s[v] ~ U(0,1) for all v ;

Add perturbation: s[v] < s[v] + S for v € C; ;

Select final masked nodes: Vi <= TopK, oy (s[v],7) ;

return Vj,

Here, [ is a pre-defined constant for perturbation. In our implementation, we follow the original setting that
£ =0.25.

(2) StructMAE-L: In addition to predefined heuristics, the authors also propose a more flexible approach
by learning a node-wise masking distribution jointly with the auto-encoding architecture. This learnable
variant, StructMAE-L, introduces a score generator, which consists of an MLP and a shallow GNN. The
score generator takes the node features as input and outputs a scalar importance score for each node:

Algorithm 2: Perturbed Learnable Masking (StructMAE-L)

Input: Graph G = (V, E); GNN and MLP scorers gnn_scr and mlp_scr; mask rate 7, training epoch 4
Output: Mask nodes Vi C V, score s € RIVI

Compute learned score [[v] = gnn_scr(v) + A -mlp_scr(v), forallv € V

Adjust mask rate v; < v - /i/E ;

Let C; <= TopK, v (1[v], %) 3 // Important nodes (candidates)
Sample random scores s[v] ~ U(0,1) for all v ;

Add perturbation: s[v] < s[v] + f for v € C; ;

Select final masked nodes: Vas < TopK, oy (s[v], ) ;

return V), s

Here, 5 = 0.5, and the scaling factor A = 1 by default. Note that the differentiability of the scorer module
relies on passing gradients through the unmasked node embeddings of the encoder, which are multiplied
by the learned scores s[Uuynmask] before being passed to the GNN-based decoder.

MoAMa. Motif-aware Attribute Masking strategy (MoAMa) (Inae et al., 2024) partitions a molecular
graph into multiple connected subgraphs, or motifs, using the BRICS decomposition (Degen et al., |2008).
Rather than uniformly sampling individual nodes, MoAMa samples at the motif level. It employs a non-
adjacent motif selection policy. Specifically, this algorithm iteratively samples a motif from the pool of
available candidates and then removes its direct neighbors from the pool for subsequent selections within the
same graph. This principle is likely intended to prevent the creation of large, contiguous masked regions,
which could sever information pathways for local message-passing encoders.

It is worth noting that the original MoAMa framework additionally incorporates a molecular fingerprint-
based contrastive loss. However, since our study focuses solely on the masking strategy, for a fair comparison,
we exclude the auxiliary loss from our implementation.

3.3.2 Innovations in Prediction Target

We now turn to the second major axis of design: the prediction target X itself. The following methods move
beyond reconstructing simple atomic attributes, as done in the previously discussed methods, by proposing
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semantically richer targets. These include approaches that predict learned, abstract node representations or
explicit, chemically-meaningful substructures.

MAM. Inspired by VQ-VAE (Van Den Oord et al., |2017), [Xia et al| (2023)) introduced Masked Atom
Modeling (MAM) as an alternative to AttrMask, aiming to expand the prediction space beyond atomic
types as part of their Mole-BERT framework. Specifically, it relies on a GNN tokenizer, denoted as T;,, and
a learned VQ codebook, @y, whose parameters are fixed after a separate pretraining phase (see Figure .

In our study, we consider two instantiations of MAM based on how node labels are assigned. These variants
differ in whether the pretrained VQ codebook is explicitly used during masking prediction.

(1) MAM-A (Argmax labeling): A discrete pseudo-label is generated by applying an arg max operation
to the output of the GNN tokenizer T,:

Xa:V —{0,1,...,511}
v argmax{ﬂ,(v)i o
This variant does not rely on the VQ codebook Qy.
(2) MAM-VQ (Codebook labeling)EI: Node labels are assigned by finding the index of the nearest entry
in the VQ codebook Qy to the output of the tokenizer T,:
Xvg:V —{0,1,...,511}
v e argmin{]| T, (v) — Quli, I1}725

The pretraining and subsequent use of the VQ codebook in MAM-V(Q involves a nuanced two-stage process.
For a detailed explanation, please refer to Appendix

MotifPred. Based on the idea of motif-level supervision in ReaCTMask (Yang et al.| 2024), we propose a
simplified motif prediction task, denoted as MotifPred. Specifically, we train the model to predict a unique
pre-assigned label for each motif:

Xmotif : f(G) — »Cmotif

2We implemented MAM-VQ based on the original paper’s description, as only the MAM-A variant is available in the official
codebase.

10
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where F(G) is the set of all motifs in G. To generate a prediction for a given motif, the final node repre-
sentations of all atoms within that motif are first aggregated (e.g., via sum pooling) into a single motif-level
representation. This aggregated vector is then used by the decoder to predict the corresponding motif label.

To create a manageable set of labels £, we follow [Yang et al.| (2024) and pre-compute the motif decomposition
using the refined BRICS algorithm (Zhang et al., [2021]). This pre-computation not only helps decrease the
vocabulary size |£|, but also enables a more efficient sampling mechanism compared to MoAMa’s on-the-fly
approach. In contrast to MoAMa, MotifPred also masks only a subset of atoms within a selected motif
rather than the entire substructure. This setting simplifies the original ReaCTMask, which was performed
within a disjoint union of molecular graphs in a chemical equation. To ensure a controlled comparison across
different design dimensions, we implement MotifPred using both GraphGPS (Rampasek et al.| 2022)) and
message passing networks.

3.3.3 Encoder Architecture

The final design dimension in our framework is the choice of the encoder fy, which dictates how structural
information is processed and aggregated within the graph. Our study compares two GNN backbones used
in the previous works, representing local and global information flow, respectively.

Message Passing Neural Networks (MPNNs) The architectural backbone employed by most dis-
cussed methods in this study, is the Graph Isomorphism Network with Edge features (GINE) (Xu et al.l
2019; Hu et al.| [2019), a Message Passing Neural Network. The GINE layer updates a node’s representation
h, by aggregating features from its neighborhood N '(v) according to the following rule for layer k:

W = MLP®) [ (14 é®)h0D 4 3 ReLU (D e, (10)
uwEN (v)

where hgk_l) is the representation of node v from the previous layer, e, , is the feature of the edge connecting
nodes u and v. This iterative, local aggregation provides a strong inductive bias for graph topology but
inherently limits the model’s receptive field.

Graph Transformers To capture dependencies beyond local neighborhoods, we also employ a more
expressive Graph Transformer, specifically GraphGPS (Rampasek et al., 2022|). These architectures augment
the message-passing framework with a global attention mechanism, enabling any node in the graph to directly
attend to any other node. A conceptual representation of a GraphGPS layer’s update for a node v is:

A = p=1 4 FEN® (LocalMP(k)(h(k_l))v + GlobalAttention(k)(h(k_l))v) (11)

This capacity for modeling long-range dependencies makes them, in theory, better suited for pretraining
tasks that require a global understanding of the graph. Indeed, this principle is demonstrated by ReaCT-
Mask (Yang et all [2024)), which employs this transformer-based GNN encoder to enable information flow
between the disconnected components (i.e., reactants and products) of a reaction graph. The empirical
comparison of these two encoder types in Section [5]is therefore a key component of our investigation.

4 Experimental Protocol

To ensure a consistent and fair comparison across different masking strategies and design choices, we adopt
a two-stage training protocol:

1. Self-supervised pretraining is conducted on a set of 2 million molecules sampled from the ZINC15
database, following the setup of [Hu et al.| (2019)).

2. Fine-tuning and evaluation are performed on a suite of downstream tasks. Our primary evaluation
is conducted on 11 datasets from the widely-used MoleculeNet benchmark (Wu et al., 2018). To
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address concerns about the reliability of some of these tasks and to validate our findings on more
stringently curated data, we also report supplementary results on two benchmarks from the recent
Polaris platform (Wognum et al., [2024). The detailed results for the Polaris datasets are presented

in Appendix [ATH]

We standardize model architecture and training hyperparameters within each stage, as summarized in Table[T]
(pretraining) and Table [2| (fine-tuning).

Pretraining Configuration. Our pretraining experiments primarily adopt two encoder variants: GIN and
GraphGPS. Most methods are implemented with GIN, while a subset are additionally ported to GraphGPS
for backbone comparison. In Section [5} methods implemented with the GraphGPS backbone are marked
with a (T) suffix. Importantly, both backbones use a variant of the GIN layer known as GINE (GIN with
edge features) (Hu et al., 2019), which incorporates edge information into the message passing process.

For MotifPred, we decompose molecules into motifs, using the refined BRICS algorithm (Zhang et al.l |2021)).
We collect all motifs from the pretraining dataset to build a fixed vocabulary. During pretraining, a subset
of motifs is randomly selected and partially masked based on this vocabulary.

Hyperparameter settings generally follow the original designs, with adjustments where noted. All AttrMask
variants use a node mask rate of 0.15 from Hu et al.| (2019). For GraphMAE, we follow the original 0.25
setting (Hou et al., 2022)). StructMAE originally used a higher mask rate of 0.5, which we reduce to 0.25 for
consistency. MotifPred adopts a 0.30 motif mask rate (Yang et al.| 2024), and within each selected motif,
50% of atoms are masked.

For GraphMAE and StructMAE, the decoder consists of a PReLLU activation, a linear layer that preserves
the hidden dimension, and a single GIN convolutional layer for node attribute reconstruction. For other

methods, the decoder is a single-layer MLLP whose output dimension matches the number of possible labels.
See for more details.

Table 1: Pretraining configuration of two backbone models.

Component ‘ GIN GraphGPS
Encoder layers 5 GIN layers 5 GPS blocks
Hidden dimension 300 300
Dropout 0.0 0.0
Attention heads - 8
Optimizer Adam

Learning rate 1x1073

Batch size 256 256
Dropout rate 0.0 0.0 (GIN) 0.5 (Attn)
Epochs 100 100

Fine-tuning Configuration. For downstream tasks, we append a single linear layer to the pretrained
encoder. Following prior work (Hu et all 2019} [Liu et al. [2021al), we adopt the batch size and dropout
settings reported in Table [2} for regression tasks, we additionally restrict inputs to two atomic attributes
to ensure informational consistency. To mitigate variability, all experiments are repeated with 5 different
random seeds. Scaffold-based splitting (8:1:1) is used to construct training, validation, and test sets, ensuring
that molecules across splits are more structurally different.

Method-specific Components. We further document any method-specific architectural additions—such

as vector quantizers or attention-based masking scorers—in Table [3| This allows each method to be inter-
preted as a combination of standard backbone, general setup, and optional modules.

12
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Table 2: Fine-tuning configuration across task types.

Parameter ‘ Classification Regression
Prediction head | Linear layer (input dim = 300)
Optimizer Adam

Learning rate 1x1073

Epochs 100 100
Dropout rate 0.5 0.2
Batch size 32 256

Table 3: Additional components used by specific pretraining methods.

Method ‘ Component ‘ Key Configuration
MAM Vector Quantizer Qy Codebook size 512, token dim 300, commitment
cost 0.25.
Tokenizer T, 5-layer GIN with hidden dim 300; trained jointly

with VQ codebook for 60 epochs.

StructMAE-L | Node Importance Scorer | 2-layer MLP and 1-layer GIN (each with in-
put/output dim 300); their outputs are aggre-
gated and pooled to produce scalar node scores.

5 Experimental Results

5.1 Masking Distribution

We begin our analysis by examining the effect of different masking distribution strategies on downstream
performance. In particular, we compared uniform sampling (e.g. GraphMAE) with heuristic and learnable
distributions (StructMAE-P, StructMAE-L), across both classification and regression tasks.

In addition to the original PageRank-based masking used in Struct MAE-P (see Algorithm, we implemented
analogous variants for MotifPred, AttrMask (T), and MotifPred (T). For MotifPred, the PageRank scores
are computed on a coarsened version of the molecular graph, where each node represents a motif.

Recall that the original StructMAE-L enables training for its learnable masking scorer by propagating
gradients through the encoder’s unmasked node embeddings. However, for architectures with a simple
linear decoder with only masked node embedding being used, this strategy is not applicable. We thus adapt
the learning mechanism to each setting as follows:

o AttrMask-L (T): With a linear decoder, we enable gradient flow by attaching the learned scores
directly to the masked node embeddings from the encoder.

o MotifPred-L (T): We design a motif-level mask scorer trained via a minimax-style objective: it
maximizes the prediction loss while keeping the encoder frozen. To ensure differentiability, we attach
Gumbel-softmax-based scores to the masked motif embeddings before loss computation.

These adaptations ensure that gradients can flow properly under different model architectures.

5.1.1 Discrete Molecular Properties

Figure [3] summarizes the downstream performance across these masking strategies. Each group of bars
corresponds to a specific pretraining configuration, defined by the choice of prediction target and encoder
architecture, under which we vary only the masking distribution (uniform, PageRank-based, and learnable).
Each bar represents the average ROC-AUC over seven classification tasks from MoleculeNet. We observe
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Figure 3: Effect of Masking Distribution on MoleculeNet Classification.

that within each group, neither PageRank-based nor learnable masking consistently outperforms uniform
masking. To further interpret this result, we next examine the mutual information between the masked label
variable and the downstream task label under each sampling strategy.

Bace BBBP HIV MUV
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Figure 4: MI Between Sampled Atom Labels and Property Labels Across Different Masking Strategies

Mutual Information Analysis We compute the mutual information between the masked label variable
X and the downstream label Y under each sampling strategy. The MI scores reported in this section are
computed from the empirical distribution of X, with X defined as the sampled atom type label while
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varying the sampling distributions over V. For each distribution, we sampled |V| nodes on every graph G,
and pair each sampled node label x with the corresponding graph-level property label y to estimate the joint
distribution of X and Y. The mutual information is computed separately for each classification dataset.

For multi-task datasets with multiple graph-level labels (e.g., Sider, ToxCast), we compute mutual informa-
tion with respect to a single representative task to ensure tractability.

Each bar in Figure [4 reports the average MI across five random seeds of sampling as described above,
with error bars indicating the standard deviation. We observe that the MI scores under different masking
strategies are largely similar across datasets, with no consistent increase under PageRank-based or learnable
masking.

This suggests that the two alternative structure-guided masking strategies examined have limited effect on the
mutual dependence between the sampled atom label X and the downstream property label Y. Importantly,
this analysis is entirely model-agnostic and complements the controlled comparisons in Figure 3] where each
group fixes both the prediction target and the encoder architecture. The consistently small variation in
mutual information across masking strategies helps explain why downstream performance remains stable
within each group despite modifications to the sampling distribution.

5.1.2 Continuous Molecular Properties

Table [ reports the RMSE on four datasets with regression tasks. Unlike the classification tasks, where
label variables are discrete, these regression tasks involve continuous-valued graph-level properties and thus
fall outside the scope of our mutual information analysis. We therefore focus on evaluating performance
differences across masking distributions.

ESOL Lipophilicity Malaria CEP Average RMSE

# of data 1,128 4,200 9,999 29,978 -

SupLearn ‘ 1.387 (0.087) 0.796 (0.019) 1.105 (0.011) 1.341 (0.010) ‘ 1.157
GraphMAE 1.195 (0.024) 0.781 (0.011) 1.116 (0.002) 1.384 (0.016) 1.119
StructMAE-P 1.195 (0.021) 0.762 (0.011) 1.119 (0.009) 1.385 (0.016) 1.115
StructMAE-L 1.310 (0.029) 0.756 (0.015) 1.111 (0.015) 1.357 (0.007) 1.134
SupLearn (T) ‘ 1.036 (0.084) 0.744 (0.039) 1.130 (0.007) 1.689 (0.064) ‘ 1.150
AttrMask (T) 1.194 (0.073) 0.747 (0.015) 1.105 (0.013) 1.260 (0.027) 1.077
AttrMask-P (T) | 1.010 (0.043) 0.693 (0.023) 1.127 (0.016) 1.482 (0.047) 1.078
AttrMask-L (T) | 1.166 (0.031) 0.770 (0.018) 1.127 (0.014) 1.263 (0.043) 1.082

Table 4: MoleculeNet: Regression Tasks (RMSE) over Different Masking Distribution

Across all evaluated models—including GraphMAE variants, and AttrMask (Transformer) variants—we
observe no consistent benefit from using structure-aware masking strategies. In all cases, performance
remains comparable across sampling methods, with variations falling within the expected range of random
training noise.

The results on continuous molecular property prediction reinforce our conclusion that modifying the masking
distribution yields limited benefits. In particular, on Malaria, none of the pretrained variants outperform
the supervised baseline trained from scratch. On CEP, while the Transformer-based methods show bet-
ter performance than the supervised baselines, the benefit appears orthogonal to the choice of masking
distribution.

Finally, beyond downstream performance and information-theoretic alignment, we also note the practical
implications of computational cost. As quantified in our pre-training time comparison (see Appendix
for details), sophisticated heuristic and learnable masking strategies introduce significant computational
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overhead, with some methods being 2-4x slower than the simple uniform baseline. This cost, combined with

their lack of performance benefits, reinforces the practicality of uniform sampling.

5.2 Prediction Target

In this section, we investigate how the choice of prediction targets X affects the effectiveness of pretraining.

Table |5l summarizes the four types of X used in our experiments.

Table 5: Formal definitions of prediction targets used in pretraining.

Target Type ‘ Definition ‘ Used In

Atom Type Xiype : V —{0,1,...,118} (Element class)

Argmax Label | X : V —{0,1,...,511},v — argmax; {7, (v); } 21§

VQ Code Xvq:V —=1{0,1,...,511}, v — arg min;{|| T, (v) — Qyli, ]| }314
Motif Label Kmotir : F(V) = {1,...,m} (Motif class)

AttrMask
MAM-A
MAM-VQ
MotifPred

Recall that 7, and Qy refer to the pretrained tokenizer and VQ codebook (see Table , respectively, both

of which are frozen during the mask prediction pretraining in MAM-A and MAM-VQ.

5.2.1 Impact on Downstream Performance

Table [§ presents the downstream performance of different pretraining targets across both classification and
regression tasks. Full results with standard deviations are provided in Appendix [A.1] Among all objectives,

motif label prediction achieves the highest average performance.

Table 6: Downstream performance of different pretraining targets with GIN and GraphGPS encoders.
Classification tasks use ROC-AUC (1); regression tasks use RMSE (]). Best results per row are in bold.

(a) GIN Encoder (b) GraphGPS Encoder (T)

Dataset Sup AM MA vQ MP Dataset Sup AM MA vQ MP

Tox21 73.9 75.8  74.9 75.7 76.6 Tox21 69.6 747 75.0 738 76.5
ToxCast  63.6 64.3  61.7 63.3 64.5 ToxCast 59.1 64.7 645 639 67.1
Sider 57.7 60.2  58.2 59.4 60.5 Sider 57.9 59.1 60.5 60.0 57.7

MUV 73.1 72.3 7T7.8 76.0 76.8 MUV 69.1 754 755 754 T77.3
HIV 74.3 76.5 76.8 76.9 76.8 HIV 68.8 769 76.0 759 78.9
BBBP 67.7 634 654 64.6 64.7 BBBP 59.8 68.1 67.6 658 68.2
Bace 68.8 78.0 80.9 781 79.3 Bace 70.3 812 799 80.5 84.3
Average 68.4 70.1 70.8 70.6 71.3 Average  64.9 714 71.3 70.8 72.9
ESOL 1.387 1.195 1.386 1.187 1.151 ESOL 1.036 1.194 1.356 1.297 0.984
Lipo 0.796 0.781 0.768 0.759 0.726 Lipo 0.744 0.747 0.862 0.793 0.688
Malaria  1.105 1.116 1.143 1.145 1.110 Malaria  1.130 1.105 1.123 1.115 1.084
CEP 1.341 1.384 1.367 1.334 1.338 CEP 1.689 1.260 1.408 1.337 1.139
Average  1.157 1119 1.166 1.106 1.081 Average 1.150 1.077 1.187 1.136 0.974

Interestingly, we only observe minor differences in downstream performance among the three node-level tar-
gets, while the method using motif labels prediction has the best performance. Notably, with the GraphGPS
backbone, MotifPred even significantly outperforms the remaining methods. To better understand why
certain pretraining targets offer greater downstream benefits, we again utilize the previous formulation to

quantify how well the local labels align with the graph-level tasks.
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Mutual Information Analysis To isolate the effect of the sampling distribution, our MI computation
here does not rely on random sampling to estimate the probability mass function Pa(X|G). Instead, we
adopt the uniform probability measure over V' (or F(V)) to directly compute the exact distribution of X.

For all three node-level labels, it is naturally guaranteed that the atoms in the downstream datasets come
from the same element set as those in the pretraining data. However, for motif-level labels, such consistency
is not inherently ensured, since downstream molecules may contain motifs that were not observed during
pretraining. To ensure the validity of this analysis also applied for motif labels, we evaluated the coverage
of downstream motifs within the pretraining motif vocabulary. On average, 64.3% of motifs appearing in
each downstream dataset are found in the pretraining vocabulary, demonstrating substantial overlaﬁﬂ
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Figure 5: MI between local labels and graph label (per dataset)

From Figure 5] we observe a consistent pattern across datasets: the MI between motif-level labels and
graph-level labels is higher than that of the other three node-level label types.

Analysis of Conditional Label Distributions While the mutual information analysis indicates that
motif labels are the most informative overall, it also reveals a potential discrepancy. As shown in Figure []
both VQ and Argmax labels yield significantly higher MI values than atomic attributes, yet this does not
translate into correspondingly large gains in downstream performance in Table [ This suggests that the
average MI score may not fully capture the source of performance differences.

To investigate this further, we turn to the JSD analysis defined in our methodology (recall Eq. |§| 7|Z| in Sec.
3.2.2)), which is designed specifically to test our hypothesis about the importance of low-frequency labels.

As shown in Figure [6] we observe a consistent trend across both datasets: motif labels yield substantially
higher JSD values than node-level labels when the threshold 7 decreases, i.e., when we focus on increasingly
rare local labels. Additional results for other labels from these datasets are provided in Appendix

This trend becomes especially pronounced at lower frequency thresholds (e.g., 7 < 0.1) where the divergence
between P(X|Y =1,5;) and P(X|Y =0, 5,) for motif labels sharply increases, whereas the JSD values for
node-level labels remain relatively flat. These results empirically support our hypothesis that low-frequency
motifs carry more discriminative information with respect to molecular properties, likely because such motifs
correspond to functional groups or structural patterns with specific bioactivity or chemical relevance.

These findings collectively indicate that motif labels provide more informative supervision signals than node-
level alternatives. Mutual information analysis shows a stronger statistical dependence between motif labels

3Per-dataset statistics are provided in Appendix
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Figure 6: Jensen-Shannon Divergence (JSD) between conditional local label distributions P(X|Y = 1, 5;)
and P(X|Y =0,5;) for two representative datasets: (a) Bace and (b) HIV.

and graph-level properties, while the Jensen-Shannon Divergence further highlights that rare motifs are
especially discriminative between molecular classes. This supports the intuition that functional substruc-
tures encode richer and more task-relevant chemical semantics than individual atoms, making them a more
meaningful target for pretraining.

5.3 Encoder Architecture

This section investigates how the choice of encoder architecture influences the effectiveness of different
pretraining targets. In addition to previously discussed objectives, we include MoAMa, which employs
motif-level masking while predicting node-level targets. This mismatch in semantic granularity offers a
valuable case study for understanding encoder-target alignment.

5.3.1 Performance Comparison Across Encoders

| == GIN 1.6 e GIN
vawi GraphGPS 72.9 a4 GraphGPS

1.4

ROC-AUC (%)
RMSE

Suplearn AttrMask MoAMa MotifPred Suplearn AttrMask MoAMa MotifPred

(a) Average ROC-AUC (1) of Classification Tasks (b) Average RMSE ({) of Regression Tasks

Figure 7: Comparison of downstream performance across encoder architectures (GIN vs. GraphGPS) for
different masking designs.

Figure [7] summarizes the downstream performance of key pretraining strategies when implemented with
GIN versus GraphGPS encoders. Several key observations emerge from the data. Firstly, for Motif Label
prediction, switching from GIN to GraphGPS yields a notable improvement in average ROC-AUC (e.g.,
from 71.3% to 72.9%). This suggests that predicting higher-level semantic units benefits significantly from
the enhanced expressive power and global receptive field of the GraphGPS architecture.
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In contrast, for the simpler AttrMask task, the GraphGPS encoder leads to only modest performance gains
over GIN. This hints that predominantly local prediction tasks may not fully leverage the long-range modeling
capabilities of a Transformer.

This hypothesis is further substantiated by examining methods that use a sophisticated, motif-level masking
strategy but retain a simple, atom-level prediction target (e.g., MoAMa or our MotifPred-A variant in
Appendix . As shown in Figure [7] these methods also see only marginal improvements when moving
to the more powerful GraphGPS encoder. This finding is critical: it suggests that the complexity of the
pretraining task is defined more by the semantic richness of the prediction target than by the structure
of the input masking. Even with a structured, motif-aware input perturbation, if the model’s objective is
simply to reconstruct local atomic information, the task remains fundamentally local and does not fully
harness the capabilities of a Transformer.

This comparison also echoes previous analysis on masking distribution. MoAMa, as described in employs
another complex, structure-aware sampling heuristic—a ‘non-adjacent’ motif selection policy. This intricate
on-the-fly strategy, however, proved to be both computationally expensive (increasing pretraining time by
approximately 220%) and empirically ineffective. Our results show it offers no performance advantage over
simple uniform sampling and can even perform slightly worse on its native GIN backbone. The case of
MoAMa provides strong evidence for our central conclusion: merely engineering a more complex masking
distribution Ppq, without elevating the semantic richness of the prediction target X, is an unpromising
direction for improving pre-trained graph models.

5.3.2 Encoder-Target Compatibility

The performance variations highlight that the choice of encoder architecture is not independent of the
pretraining target’s nature. We hypothesize that optimal performance is achieved when the architectural
biases of the encoder align with the type of information the pretraining task aims to capture.

Our results suggest that pretraining objectives focused on local, node-level information (such as predicting
atomic attributes) are inherently well-suited to MPNNs like GIN. While GraphGPS can also capture this
local information, its additional complexity and global attention mechanism provide limited returns for tasks
that do not require long-range reasoning.

The case of MoAMa is particularly illustrative of this principle. These methods create a mismatch between
the input perturbation’s scale (masking entire motifs) and the objective’s semantic level (predicting individual
atoms). Our results show this setup is insufficient to compel a powerful encoder like GraphGPS to engage its
global reasoning capabilities. Essentially, the pretraining task, despite its sophisticated masking, remains too
eagy in its objective. The model can solve it adequately by relying on the local message-passing components
of the GraphGPS architecture, leading to only marginal gains over a standard GIN.

Conversely, the Motif Label prediction task, which requires understanding the collective semantics of an
entire subgraph to predict a single class, is a genuinely non-local task. It is this alignment, a challenging,
non-local objective paired with an encoder capable of global reasoning, that unlocks significant performance
improvements. This demonstrates that a powerful encoder’s potential is only realized when it is matched
with a pretraining task of commensurate complexity and semantic richness.

6 Discussion

6.1 A Formal Framework for Principled Comparison

A primary contribution of this work is the introduction of a formal probabilistic framework to deconstruct
and analyze the design space of masking-based SSL on molecular graphs. By modeling the pretraining task
as a process of fitting a random variable X : §(G) — £ from structural units to a label space, we can move
beyond ad-hoc comparisons and systematically investigate the distinct roles of its core components: the
masking distribution (Pu), the prediction target (X), and the encoder architecture (fy). This
principled formulation guides our entire investigation and enables us to isolate the impact of each design
choice.

19



Under review as submission to TMLR

6.2 The Prediction Target Outweighs the Masking Distribution

Our systematic investigation reveals a clear hierarchy of importance among the design dimensions. The cen-
tral finding of this work is that the choice of what to predict (the prediction target) is substantially
more pivotal than the choice of where to mask (the masking distribution). Our probabilis-
tic framework allows us to make the underlying hypothesis for sophisticated masking strategies explicit:
that an optimal, non-uniform distribution Py should make the pre-training signal X more informative for
the downstream task Y, which would manifest as a higher mutual information, I(X;Y’). However, our
information-theoretic analysis of several representative heuristic and learnable strategies (Sec. finds no
evidence to support this hypothesis. This lack of a more informative signal, combined with their significant
computational overhead (Appendix , explains their failure to outperform simple uniform sampling in
our experiments.

While this does not entirely preclude the existence of a more effective distribution, our work proposes a more
resource-efficient methodology for future explorations. Rather than relying solely on expensive downstream
evaluations, researchers can first leverage our framework as a low-cost litmus test: if a novel distribution
demonstrably increases I(X;Y), it warrants further investigation. Otherwise, our findings suggest that
efforts are more fruitfully directed towards designing richer prediction targets.

6.3 The Critical Synergy Between Encoder and Target

A second key insight is the critical role of synergy between the encoder architecture and the pre-
diction target. Our results consistently show that while standard MPNNs like GIN are well-suited for
local, atom-level reconstruction tasks, their strong local inductive bias limits their ability to fully capitalize
on semantically richer, non-local targets. In contrast, expressive Graph Transformer architectures, with
their global attention mechanism, unlock significant performance gains when paired with motif-level predic-
tion. This highlights that the benefits of a more powerful encoder are not universal but are contingent on
being paired with a pretraining task that requires its advanced capabilities, such as modeling long-range
dependencies to understand the semantics of a larger substructure.

6.4 Implications for Future Research: The Quest for Semantically Rich Targets

Our findings strongly advocate for shifting focus towards semantically richer prediction targets. This natu-
rally raises the question: what constitutes semantic richness in the context of molecular SSL? Our work pro-
vides a comparative answer. While learned discrete tokens from methods like MAM represent a data-driven
form of semantics, they appear less effective than human-curated chemical concepts like BRICS-defined
motifs. Our information-theoretic analysis corroborates this, showing that motif labels have a stronger sta-
tistical dependence on downstream properties. This suggests that, at least for now, pretraining targets X
whose label space L is defined by explicit, chemically-aware structural knowledge provide a more
potent supervisory signal than purely abstract, learned representations. An exciting avenue for future work
could be the development of hybrid targets that combine the best of both worlds—learning to discover novel,
meaningful substructures that go beyond traditional, human-defined motifs.

7 Conclusion

By formalizing the molecular graph masking pipeline within a probabilistic framework and leveraging
information-theoretic measures to assess task alignment, we conducted a systematic investigation into the
core design dimensions of self-supervised learning. Our investigation concludes that the various design di-
mensions do not hold equal weight: the choice of a semantically rich prediction target is the most critical
driver of performance, whose full potential is only realized through a strong synergy with an expressive
encoder architecture. In contrast, sophisticated masking distributions offer limited performance gains at a
higher computational cost. These insights, derived from a principled and reproducible methodology, pro-
vide a clearer and more resource-efficient roadmap for developing the next generation of SSL methods for
molecular property prediction.
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A Appendix

A.1 Complete Results

This appendix contains the comprehensive results of our downstream evaluation. For clarity and easy
reference, we first present Table [} which summarizes the design choices for every method implemented in
this study. The subsequent tables then provide the full, unabridged performance metrics (ROC-AUC for
classification and RMSE for regression) for all variants of AttrMask across all MoleculeNetlﬂ benchmark tasks
discussed in the main paper. Results for the variants of GraphMAE are presented in latter sections.

Table 7: A comprehensive overview of the configurations for all implemented pre-training methods and their
variants, categorized by their primary design choices. Checkmarks (v') indicate the utilized components for
each method.

Method Distribution Prediction Target Loss GNN Decoder Re-mask
Uni. Heu. Learn Atom Type Bond Type Learned Token Motif Label
Baselines based on AttrMask

AttrMask v v CE

AttrMask-B v v v CE

Variants with Learned/Structured Targets

MAM-A v v CE

MAM-VQ v v CE

MAM-A-B v v v CE

MoAMa v v CE

MotifPred v v CE

MotifPred-A v v CE

Auto-Encoding Variants (GraphMAE & StructMAE)

GraphMAE v v SCE v

GraphMAE-R v v SCE v v
GraphMAE-CE v v CE v v
StructMAE-P v v SCE v
StructMAE-P-R v v SCE v v
StructMAE-P-CE v v CE v

StructMAE-L v v SCE v
StructMAE-L-R v v SCE v v
StructMAE-L-CE v v CE v v

4We exclude the Clintox dataset from our evaluation due to its severe class imbalance and known data quality issues, which
can lead to misleading performance metrics.
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A.1.1 MoleculeNet

Tox21 ToxCast Sider MUV HIV BBBP Bace Average

# of data 7831 8577 1427 93087 41127 2039 1513 -

SupLearn 73.9 (0.7) 63.6 (0.6) 57.7(1.4) 73.1(1.7) 743 (1.4) 67.7(2.5) 68.8(3.4) 68.4
SupLearn (T) 69.6 (0.6) 59.1 (1.3) 57.9 (1.7) 69.1 (0.9) 68.8 (3.7) 59.8 (3.4) 70.3 (5.8) 64.9
AttrMask 75.8 (0.5) 64.3 (0.2) 60.2 (1.1) 72.3(2.0) 76.5(1.6) 63.4(2.3) 78.0 (1.0) 70.1
AttrMask-B 76.1 (0.7) 63.9 (0.5) 59.3 (0.6) 72.7(1.5) 77.6(0.3) 65.6(1.8) 77.1(1.2) 70.3
MAM-A 74.9 (0.8) 61.7 (0.5) 58.2(0.3) 77.8(2.3) 76.8(1.8) 65.4 (1.4) 80.9 (1.1) 70.8
MAM-A-B 76.0 (0.3) 63.8 (0.3) 59.3(0.8) 74.3(2.0) 76.5(1.0) 64.2(2.7) 77.8(1.2) 70.3
MAM-VQ 75.7 (0.4) 63.3(0.3) 59.4(0.7) 76.0(1.3) 76.9 (1.1) 64.6 (1.8) 78.1 (1.2) 70.6
MotifPred-A 76.3 (0.3) 64.2 (0.9) 57.6 (0.7) 75.1(1.3) 76.9 (1.5) 67.0 (0.9) 80.1 (0.6) 71.0
MotifPred 76.6 (0.6) 64.5 (0.5) 60.5 (0.7) 76.8 (1.7) 76.8 (0.4) 64.7 (2.0) 79.3 (5.0) 71.3
MotifPred-P 75.6 (0.4) 634 (04) 59.2(0.9) 752 (3.1) 77.3(0.7) 64.4(2.1) 76.1 (4.3) 70.2
MotifPred-L 77.0 (0.3) 644 (0.2) 60.3 (0.7) 77.6(1.4) 77.1(1.5) 64.1(1.2) 80.7 (1.6) 71.6
AttrMask (T) 74.7 (0.4)  64.7 (0.8) 59.1 (0.9) 75.4 (1.9) 76.9 (1.3) 68.1 (0.8) 81.2(2.5) 714
AttrMask-P (T) | 75.4 (1.0) 65.6 (1.2) 53.5(1.3) 76.8 (2.5) 76.7(2.1) 70.4(2.0) 825 (1.3) 71.6
AttrMask-L (T) | 75.3 (1.1) 64.9 (0.7) 56.1 (0.9) 77.3(1.6) 754 (1.7) 67.6 (1.3) 83.2(0.5) 71.4
MAM-A (T) 75.0 (1.1) 64.5 (0.8) 60.5(1.2) 75.5(1.6) 76.0(1.3) 67.6(0.2) 79.9 (24) 71.3
MAM-VQ (T) 73.8 (1.0) 63.9 (0.4) 60.0 (1.6) 75.4(0.9) 75.9 (1.8) 65.8(3.8) 80.5 (2.0) 70.8
MotifPred-A (T) | 75.3 (1.1) 64.9 (0.6) 56.8 (2.0) 74.6 (2.6) 74.2 (1.2) 69.7 (0.9) 83.0(1.3) 71.2
MotifPred (T) 76.5 (0.4) 67.1(0.9) 57.7(1.6) 77.3(2.0) 789 (1.1) 68.2(1.5) 84.3(2.2) 72.9
MotifPred-P (T) | 76.4 (0.6) 66.4 (0.6) 584 (1.6) 76.4(2.2) 75.9(0.1) 64.7 (1.6) 83.8(2.0) 1.7
MotifPred-L (T) | 76.6 (0.8) 65.4 (0.6) 57.7 (0.6) 78.1(1.2) 76.8(0.7) 69.8 (0.7) 85.2(1.1) 72.8

Table 8: Comparison among AttrMask-based approaches with modified objectives (with standard deviation)

ESOL Lipophilicity Malaria CEP Average RMSE

# of data 1,128 4,200 9,999 29,978 -

SupLearn 1.387 (0.087) 0.796 (0.019) 1.105 (0.011) 1.341 (0.010) 1.157
SupLearn (T) | 1.036 (0.084) 0.744 (0.039) 1.130 (0.007) 1.689 (0.064) 1.150
AttrMask 1.195 (0.024) 0.781 (0.011) 1.116 (0.002) 1.384 (0.016) 1.119
AttrMask-B 1.191 (0.028) 0.759 (0.010)  1.124 (0.02)  1.343 (0.025) 1.104
MoAMa 1.212 (0.022) 0.773 (0.006) 1.125 (0.009) 1.344 (0.014) 1.114
MAM-A 1.386 (0.020) 0.768 (0.014) 1.143 (0.023) 1.367 (0.013) 1.166
MAM-A-B 1.191 (0.038) 0.759 (0.017) 1.121 (0.012) 1.340 (0.005) 1.103
MAM-VQ 1.187 (0.025) 0.759 (0.009) 1.145 (0.008) 1.334 (0.015) 1.106
MotifPred 1.151 (0.027) 0.726 (0.008) 1.110 (0.009) 1.338 (0.035) 1.081
AttrMask (T) | 1.194 (0.073) 0.747 (0.015) 1.105 (0.013) 1.260 (0.027) 1.077
MoAMa (T) 1.041 (0.051) 0.777 (0.018) 1(0.013)  1.279 (0.048) 1.049
MAM-A (T) 1.356 (0.077) 0.862 (0.034) 1.123 (0.006) 1.408 (0.028) 1.187
MAM-VQ (T) | 1.297 (0.029) 0.793 (0.020) 1.115 (0.010) 1.337 (0.032) 1.136
MotifPred (T) | 0.984 (0.025) 0.688 (0.007) 1.084 (0.010) 1.139 (0.010) 0.974

Table 9: MoleculeNet: Regression Tasks (RMSE)
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A.2 Mask Ratio
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Figure 8: Mask Ratio Sensitivity Analysis

The sensitivity analysis on the mask ratio, presented in Figure 8] reveals several nuanced insights.

First, and most importantly, it confirms that the MotifPred(T) strategy is capable of achieving a higher
peak performance (72.9% at a 0.15 ratio) than any AttrMask variant (peak at 71.9%). This supports our
main conclusion about the superior potential of using semantically rich prediction targets with expressive
encoders.

Second, the results highlight that the effectiveness of a pretraining strategy is sensitive to the mask ratio.
The crossing lines indicate that a sub-optimally chosen mask ratio (e.g., 0.40 for MotifPred(T)) can cause a
theoretically superior method to underperform a simpler one.

Finally, the optimal mask ratio appears to be dependent on the specific combination of encoder and prediction
target. For instance, the transformer-based models in our analysis tend to favor lower mask ratios (0.10-
0.15) to achieve their peak performance, while the GIN-based models show a preference for higher ratios.
This underscores the complex interplay between all three design dimensions and reinforces the importance
of proper hyperparameter tuning in comparative studies.

A.3 Pretraining Time Comparison

All models were pre-trained for 100 epochs on 2 million molecules from ZINC15 using a single NVIDIA
A6000 GPU. For data loading, we utilized 8 parallel workers. The relative slowdown is calculated against
the AttrMask (GIN) baseline.

Note that the training for GraphMAE is more efficient than AttrMask due to its pre-computation of one-hot
vectors of atom attributes for training loss computation.

Table 10: Comparison of pretraining time for key model configurations.

Method Key Design Choice Pretraining Time (Hours) Relative Slowdown
AttrMask (GIN) Uniform Masking, Atom Target (Baseline) 11.7 1.0x
AttrMask (T) Uniform Masking, Transformer Encoder 18.3 1.6x
MoAMa (GIN) Motif Masking (On-the-fly) 37.2 3.2x
MoAMa (T) Motif Masking, Transformer Encoder 49.2 4.2x
GraphMAE (GIN) Uniform Masking 7.8 0.7x
StructMAE-P (GIN) PageRank Masking (PageRank) 24.4 2.1x
StructMAE-L (GIN)  Learnable Masking 27.5 2.4x
MotifPred (GIN) Motif Target (Pre-computed) 18.6 1.6x
MotifPred (T) Motif Target, Transformer Encoder 23.5 2.0x
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A.4 Ablation Studies on Auxiliary Components

In this section, we conduct ablation studies on several auxiliary components proposed in the reproduced
works to assess their impact on downstream performance.

Tox21 ToxCast Sider MUV HIV BBBP Bace Average

# of data 7831 8577 1427 93087 41127 2039 1513 -

GraphMAE 75.3 (0.6) 64.1 (0.5) 584 (0.5) 74.9 (1.5) 76.5 (1.6) 67.2(2.7) 80.7 (2.5) 71.0
GraphMAE-R 75.2 (0.4) 63.9 (0.5) 59.0 (0.9) 74.2(2.2) 77.1(1.3) 64.1(1.3) 80.8(1.4) 70.6
GraphMAE-CE 76.3 (0.4) 64.0 (0.4) 58.2 (0.7) 74.9 (3.4) 76.0(1.2) 64.0(1.9) 82.1(1.0) 70.8
StructMAE-P 75.5 (0.6) 63.6 (0.3) 58.6 (0.8) 73.7(2.7) 76.9(0.9) 67.6(3.5) 82.0(1.1) 71.1
StructMAE-P-R | 75.6 (0.3) 64.0 (0.2) 59.2 (0.8) 75.4 (1.0) 76.5(1.8) 64.3 (1.9) 81.7 (1.2) 71.0
StructMAE-P-CE | 75.1 (0.4) 64.2 (0.4) 59.9 (0.9) 74.6 (2.0) 76.3 (1.2) 68.4 (2.0) 83.2 (1.4) 1.7
StructMAE-L 75.4 (0.6) 63.9 (0.4) 59.6 (0.9) 73.6 (1.1) 76.7 (1.5) 65.2 (2.7) 79.9 (0.7) 70.6
StructMAE-L-R 75.2 (0.2) 63.3 (0.5) 59.6 (0.8) 75.8 (1.1) 76.0 (1.3) 61.3(2.0) 78.1(4.7) 69.9
StructMAE-L-CE | 76.3 (0.4) 64.0 (0.4) 58.2 (0.7) 74.9 (3.4) 76.0(1.2) 64.0(1.9) 82.1(1.0) 70.8

Table 11: Comparison among GraphMAE-based approaches

A.4.1 Edge Masking

Our investigation also included edge attribute masking, where the model is pre-trained to predict the type
of masked bonds. Similar to our findings on masking distributions, this strategy did not yield significant
performance advantages (see Table |8 and E[) We attribute this to two primary factors. First, predicting a
bond’s type is a fundamentally local task, as the surrounding, unmasked atoms often provide sufficient context
for reconstruction. Second, the semantic information encoded in standard bond types (e.g., single, double)
is inherently limited. Consequently, the supervisory signal generated from this task appears insufficient to
drive the learning of powerful representations needed for complex graph-level properties.

A.4.2 Decoder Architecture

To investigate the impact of the decoder’s expressiveness, we compare AttrMask, which uses a simple MLP
decoder, against GraphMAE-CE, which employs a more powerful GNN-based decoder. Both methods use a
uniform masking distribution and predict atomic attributes. As shown in Table [8§|and Table [I1] at a default
mask ratio of 0.15, GraphMAE-CE (70.8%) shows a slight improvement over AttrMask (70.1%). However,
this advantage is not absolute. Our sensitivity analysis on the mask ratio (see reveals that a well-tuned
AttrMask can achieve comparable or even superior performance. This suggests that while a more expressive
decoder can be beneficial, its impact is secondary to proper hyperparameter tuning of the core pretraining
setup.

A.4.3 Loss Function

We compare the standard Cross-Entropy (CE) loss with the Scaled Cosine Error (SCE) loss, which was
proposed by GraphMAE to down-weight easy examples. The comparison is made across three different
masking distributions. As shown in Table [TI] we consistently observe that models trained with the CE loss
(e.g., StructMAE-P-CE at 71.7%) outperform their counterparts trained with SCE (e.g., StructMAE-P-R
at 71.0%). This suggests that for these atomic attribute reconstruction tasks, the standard CE loss remains
a more effective and robust choice.

A.4.4 Re-masking

The re-masking technique, introduced by GraphMAE, involves masking the latent representations of already-
masked nodes before feeding them to the decoder. We evaluated this trick across the GraphMAE,
StructMAE-P, and StructMAE-L frameworks. The results in Table show no clear benefit from this
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technique. In all three pairs, the model with re-masking (denoted by the (-R) suffix) performs either com-
parably to or slightly worse than the model without it (e.g., GraphMAE: 71.0% vs. GraphMAE-R: 70.6%).
We, therefore, conclude that the re-masking step, at least within our experimental setup, does not provide
a consistent advantage and adds unnecessary complexity to the pretraining pipeline.

A.5 Polaris Benchmarks

A.5.1 A Case Study on a Low-Data Regime: The Polaris PKIS Benchmark

Our experiments on the Polaris PKIS (Elkins et al.,[2016) benchmark largely reinforced the main conclusions
from our broader study. As shown in FigureEl, we again found that sophisticated masking distributions (e.g.,
PageRank-based vs. Uniform) and variations among different node-level prediction targets (e.g., Atom Type
vs. Argmax) offered no significant advantage over their simplest counterparts.
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Figure 9: Average ROC-AUC (%) =+ std on PKIS Classification over 5 Runs

However, this benchmark revealed one notable exception. In a direct reversal of the trend observed on
larger datasets, the simpler AttrMask(T) model empirically outperformed the more powerful MotifPred(T).
This phenomenon does not contradict our core findings. Instead, we attribute this performance inversion
primarily to overfitting. Indeed, the PKIS dataset contains only 640 molecule. As illustrated in Figure
this is reflected in the training curves: MotifPred(T) converges significantly faster and to a near-perfect
ROC-AUC on the training set, which indicates that its pre-trained features are indeed more powerfully
aligned with the task.
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Figure 10: On PKIS, MotifPred(T) converges faster than AttrMask(T)

This result serves as a crucial case study highlighting that in data-scarce downstream applications, a model’s
robustness to overfitting can be a more decisive factor than the theoretical richness of its pretraining signal.
The simpler AttrMask task may inadvertently act as a regularizer, leading to a less powerful but ultimately
more generalizable model for this specific application.

A.5.2 Additional Regression Results: The Polaris ADME Benchmark

adme-microsomal adme-sol adme-ppb adme-perm  Average

# of data 3,049 2,173 115 2,642 -

SupLearn 0.561 (0.018) 0.58 (0.010)  0.969 (0.174) 0.668 (0.044) 0.695
SupLearn (T) 0.534 (0.015) 0.556 (0.017)  0.771 (0.03)  0.558 (0.021) 0.605
AttrMask 0.536 (0.004) 0.645 (0.021) 0.706 (0.018) 0.665 (0.016) 0.638
AttrMask-B 0.534 (0.005) 0.595 (0.010) 0.593 (0.082) 0.672 (0.014) 0.599
MAM-A 0.567 (0.008) 0.594 (0.010) 0.622 (0.057) 0.656 (0.021) 0.610
MAM-A-B 0.545 (0.003) 0.621 (0.012) 0.521 (0.055) 0.657 (0.026) 0.586
MoAMA 0.579 (0.004) 0.598 (0.007) 0.570 (0.024) 0.642 (0.009) 0.597
MotifPred 0.582 (0.006) 0.599 (0.008) 0.621 (0.045) 0.665 (0.006) 0.617
MotifPred-A 0.558 (0.002) 0.589 (0.010) 0.672 (0.013) 0.630 (0.007) 0.612
GraphMAE 0.559 (0.014) 0.608 (0.021) 0.573 (0.078) 0.631 (0.011) 0.593
GraphMAE-R 0.557 (0.005) 0.601 (0.012) 0.567 (0.036) 0.637 (0.006) 0.591
GraphMAE-CE 0.562 (0.005) 0.609 (0.011) 0.626 (0.033) 0.661 (0.009) 0.615
StructMAE-P 0.559 (0.006) 0.596 (0.004) 0.546 (0.037) 0.635 (0.010) 0.584
StructMAE-P-R 0.587 (0.005) 0.605 (0.008) 0.599 (0.072) 0.655 (0.010) 0.611
StructMAE-P-CE 0.563 (0.011) 0.599 (0.006) 0.485 (0.027) 0.651 (0.013) 0.575
StructMAE-L 0.540 (0.009) 0.598 (0.016) 0.480 (0.033) 0.638 (0.005) 0.564
StructMAE-L-R 0.544 (0.004) 0.610 (0.010) 0.534 (0.093) 0.631 (0.015) 0.580
StructMAE-L-CE 0.541 (0.003) 0.592 (0.011) 0.610 (0.075) 0.645 (0.005) 0.597
AttrMask (T) 0.545 (0.015) 0.588 (0.014) 0.601 (0.044) 0.596 (0.006) 0.583
MotifPred (T) 0.506 (0.009) 0.592 (0.017) 0.615 (0.017) 0.542 (0.012)  0.564

Table 12: Results on ADME (RMSE)
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A.6 JSD for Conditional Distribution Comparison: All Classification Datasets

Figure 11: Jensen-Shannon Divergence (JSD) between conditional local label distributions P(X|Y =1, 5;)
and P(X|Y =0,5;) for all evaluated classification datasets. The x-axis represents the maximum frequency
threshold (7) for including labels in the analysis, and the y-axis represents the JSD value.

Jensen-Shannon Divergence

Jensen-Shannon Divergence

Jensen-Shannon Divergence

JSD between positive and negative samples across label types for BBBP dataset

0.351 X+ VQ Code
~m- Atom Type
—&- Argmax Label
0.301 —&— Motif Label
0.251
0.201
0.151
0.104
0.05 4
W --g--E--E--E--R
0.00 = T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Max Frequency Threshold (t)
(a) BBBP Dataset
JSD between positive and negative samples across label types for SIDER dataset
- VQ Code
~l - Atom Type
0.204 —&- Argmax Label
—&— Motif Label
0.151
0.104
0.05 4
-
0.00 1
0.0 0.2 0.4 0.6 0.8 1.0
Max Frequency Threshold (t)
(c) Sider Dataset
JSD between positive and negative samples across label types for TOX21 dataset
| - VQ Code
~m- Atom Type
—&- Argmax Label
0.201 —&— Motif Label
0.151
0.104
n
\
\
\\\
0.051 \‘\\x””xxxxxxxxxxxxxxxx
.;r-'r\-k-—.m—qs.\
- R A e TR T A Ak —A— ke —A
0.004 i ST NS PR P P ]
0.0 0.2 0.4 0.8 1.0

0.6
Max Frequency Threshold (1)

(e) Tox21 Dataset

Jensen-Shannon Divergence

Jensen-Shannon Divergence

Jensen-Shannon Divergence

JSD between positive and negative samples across label types for MUV dataset

0.5

- VQ Code
~m- Atom Type
—&- Argmax Label
—e— Motif Label

| Sot Suk S et et lub Dt Dl it ot ntet ST SR

0.0 0.2 0.4 0.6 0.8 1.0

Max Frequency Threshold (1)

(b) MUV Dataset

JSD between positive and negative samples across label types for TOXCAST dataset

0.16 4

0.14 1

o o o o
s o & &
8 8 &8 &

<%+ VQ Code
-m- Atom Type
—& - Argmax Label
—&— Motif Label

0.04 4
| i B R FR AR
0.02 1 A A kA kA kA A — A A — A A
R o ot |
0.00 +— - T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Max Frequency Threshold (t)
(d) ToxCast Dataset
JSD between positive and negative samples across label types for PKIS dataset
40 4
- VQ Code
~m- Atom Type
0.351

0.30 1

o o o o
= = N N
o 7] =) ]

—&- Argmax Label
—e— Motif Label

0.054
<t g
000 | M- E-E-py g gy - -E-8-E-g
0.0 0.2 0.4 0.8 1.0

0.
Max Frequency Threshold (1)

(f) PKIS Dataset




Under review as submission to TMLR

A.7 More Configuration

Decoder Output Dimensions In our implementation, decoder modules are configured to predict masked
node, edge or motif labels. For each prediction task, the decoder’s output dimension is set to match the
number of possible categorical labels in the dataset. The following table summarizes the label dimensions
for node-, edge- and motif-level reconstruction:

Table 13: Decoder output dimensions used for different level of prediction tasks.

Prediction Target | Label Type | Output Dimension

Node attribute Atom type 119
Edge attribute Bond type 4
Motif attribute Motif label 35,082

A.8 Motif Statistics

Here we list the percentage of overlapping motif in the vocabularies of the pretraining set and the downstream
sets used for analysis in Section

Table 14: Statistics of Motif Vocabularies

‘TOX21 ToxCast Sider MUV HIV BBBP Bace PKIS ZINC

Vocab size 1,261 1,367 752 4,989 6,985 801 407 278 35,082
Intersection size 971 956 444 4,080 3,035 928 216 184 -
Overlap ratio (%) | 77.0 69.9 59.0 81.8 435 65.9 53.1  66.2 -

The overlap ratio is computed as the percentage of motifs in each downstream dataset that also appear in
|Vdown N Vpretrain | )

Vo] . This reflects how well the pretrained motif space covers

the pretraining vocabulary (i.e.,
the downstream distributions.

A.9 Implementation Details of MAM-VQ

As mentioned in Section [3.3.2] the label generation for MAM-VQ involves a nuanced two-stage process
centered on its vector quantization (VQ) codebook.

Stage 1: Tokenizer and Codebook Pretraining. The VQ codebook and its corresponding GNN
tokenizer are first jointly pretrained using a group V@ strategy. In this stage, the codebook is partitioned
into four sub-codebooks based on atom type: one each for Carbon, Nitrogen, and Oxygen, and a fourth for
all other elements. The search for the nearest codebook vector is constrained to the relevant partition (as
illustrated in Figure .

Stage 2: Main Encoder Pretraining. However, for the main pretraining of the GNN encoder—the stage
evaluated in our study—a different approach is taken. The pretrained VQ codebook is frozen, and the group
constraint is removed. The prediction target for a masked atom is determined by a global search for the
nearest vector across the entire codebook. While the original paper does not elaborate on this design choice,
it is presumably intended to create a more challenging and effective reconstruction task for the main encoder.
Our evaluation faithfully implements this two-stage procedure to ensure a fair comparison.
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