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Abstract

Despite their consistent performance improvements, cross-modal retrieval models
(e.g., CLIP) show degraded performances with retrieving keys composed of fused
image-text modality (e.g., Wikipedia pages with both images and text). To address
this critical challenge, multimodal retrieval has been recently explored to develop a
unified single retrieval model capable of retrieving keys across diverse modality
combinations. A common approach involves constructing new composed sets
of image-text triplets (e.g., retrieving a pair of image and text given a query
image). However, such an approach requires careful curation to ensure the dataset
quality and fails to generalize to unseen modality combinations. To overcome
these limitations, this paper proposes Generalized Contrastive Learning (GCL), a
novel loss formulation that improves multimodal retrieval performance without
the burdensome need for new dataset curation. Specifically, GCL operates by
enforcing contrastive learning across all modalities within a mini-batch, utilizing
existing image-caption paired datasets to learn a unified representation space.
We demonstrate the effectiveness of GCL by showing consistent performance
improvements on off-the-shelf multimodal retrieval models (e.g.VISTA, CLIP, and
TinyCLIP) using the M-BEIR, MMEB, and CoVR benchmarks.

1 Introduction

With the growing availability of multimodal data, the ability to retrieve relevant keys across different
modalities has become increasingly important. While cross-modal retrieval, retrieving images with
given text or vice versa, has garnered significant attention and progress [1, 2, 3, 4, 5, 6, 7, 8],
performing retrieval with fused image-text modality still remains a challenge [9, 10]. Consider, for
instance, the task of finding a Wikipedia page composed of both images and text (e.g., the Eiffel
Tower paired with its history) in response to a query (e.g., “What is the history of the Eiffel Tower?”).
For such real-world multimodal retrieval scenarios, existing approaches deliver limited performance.

This performance drop stems primarily from the pervasive modality gap [11, 12, 13, 14, 15, 16, 17], a
critical barrier in retrieval systems. The modality gap arises when semantically similar samples across
different modalities (e.g., an image and its caption) exhibit low similarity in the embedding space,
while semantically dissimilar samples within the same modality appear misleadingly close [18]. For
example, although an image of teddy bears is paired with the annotated caption ‘a photo of teddy
bears’, it may be embedded closer to images of other animals in the representation space, rather
than to its corresponding caption. This misalignment becomes especially acute when retrieval keys -
spanning text-only, image-only, or fused text-image formats - are stored in a unified database [9, 10].
For example, a search query might ideally match a Wikipedia page with both images and text.
However, without a shared representation space to bridge the three different modalities, models
struggle to pinpoint the most relevant candidate, which undermines their effectiveness.
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Figure 1: Overview of GCL. Given an embedding model pretrained for cross-modal alignment,
previous studies (e.g., VISTA [19]) constructed new triplet datasets to simulate specific multimodal
retrieval scenarios. However, this approach limits generalization to unseen retrieval scenarios (white
squares). In contrast, GCL improves retrieval performance across diverse scenarios (black squares).
Specifically, by utilizing off-the-shelf image-caption datasets, GCL enables the learning of retrieval
tasks involving nine different modality combinations.

To tackle this issue, recent research has extensively studied multimodal retrieval, which extends
cross-modal retrieval by allowing searches across various modality combinations, including data
samples that contain both images and text [19, 20, 9, 21, 22, 23, 24, 25, 10, 26]. As demonstrated in
Fig. 1, previous studies have attempted to improve multimodal retrieval performance by generating
specialized datasets tailored to specific retrieval scenarios [19, 20]. For example, VISTA [19]
finetuned a pretrained cross-modal retrieval model with newly generated datasets composed of
triplets: 1) IT2I dataset which includes queries of image-text pairs with candidate images and 2) T2IT
dataset which includes query text with candidates of image-text pairs. While this approach can be
effective for the targeted retrieval scenarios, it requires meticulous curation to ensure the quality of
the generated samples (e.g., verifying that the generated images accurately represent the intended
content). Moreover, models trained on these composed datasets may fail to generalize to unseen
modality combinations beyond those encountered in the training sets (e.g., retrieving fused text-image
samples when provided with corresponding text-image queries). Fig. 1 shows that the model only
learns the retrieval scenarios included in the datasets (black squares), leaving the other combinations
(white squares) unlearned during the finetuning phase. While such studies resort to generating new
datasets for learning specific retrieval scenarios, little has been explored to fully utilize off-the-shelf
image-caption paired datasets for improving multimodal retrieval performances.

To this end, we propose Generalized Contrastive Learning (GCL), a simple yet effective loss function
that enhances multimodal retrieval performance by leveraging existing image-caption paired datasets,
sidestepping the need for costly dataset construction. Specifically, GCL integrates three types of
embeddings - text embeddings, image embeddings, and fused text-image embeddings - and applies
contrastive loss across all modalities within a mini-batch to learn a unified representation space. As
shown in Fig. 1, GCL encourages positive pairs from different modalities to be pulled closer together
while pushing apart all negative pairs, regardless of modalities. This training process enables the
retrieval model to learn retrieval between all combinations of modalities, which was limited to certain
pairs in the previous methods that generated specific triplets. Despite its simplicity, GCL consistently
improves multimodal retrieval performances across diverse tasks and datasets and outperforms a
model trained with newly composed triplet datasets. The key advantage of GCL is that it does not
require expensive dataset curation and can generalize well to various multimodal retrieval scenarios.

The major contributions of this paper are:

• We propose Generalized Contrastive Learning (GCL), a novel contrastive learning approach
that improves multimodal retrieval by integrating different modalities (text, image, and fused
text-image) within a mini-batch for building a unified representation space.

• Unlike previous methods that rely on expensive and manually curated composed datasets,
GCL effectively leverages existing image-caption paired datasets, making it a cost-efficient
and scalable solution for multimodal retrieval.

• We show that GCL significantly enhances multimodal retrieval performance on diverse
benchmarks (e.g., M-BEIR [9], MMEB [27], and CoVR [28]) and retrieval models (e.g.,
VISTA [19], CLIP [1], and TinyCLIP [4]), showing its broad applicability and effectiveness.
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Figure 2: PCA visualization of representation spaces using ei, et, and eit. We use MSCOCO for ei
(red) and et (blue) and WebQA for eit (green). We sampled 2K samples from each modality, using
6K samples in total. e indicates the average embedding vector of each modality.

2 Related Work
2.1 Cross-modal Retrieval and Contrastive Learning
Cross-modal retrieval has been widely studied to enable searches across different modalities, such
as retrieving images based on text queries or vice versa [1, 11, 2, 4, 3, 6, 12, 13, 8]. By leveraging
contrastive learning with large-scale image-text pairs, both image and text embeddings are mapped
into a shared representation space [1]. However, retrieval models trained in this manner still suffer
from the modality gap, a discrepancy between image and text embeddings even with the same
semantics [12, 13, 15, 16, 17, 18].

To address this issue, recent studies have proposed diverse techniques to reduce the modality gap [12,
11]. For instance, AlignCLIP introduces an intra-modality separation loss, which pushes apart
samples within the same modality to improve cross-modal alignment [11]. While this approach helps
mitigate the modality gap, it is mainly designed for cross-modal retrieval and does not explicitly
handle data samples that contain both images and text (e.g., social media pages with both images and
text descriptions). As a result, its effectiveness in multimodal retrieval scenarios remains limited.

2.2 Multimodal Retrieval
Multimodal retrieval builds upon cross-modal retrieval by supporting searches across different
combinations of modalities, including samples that incorporate both images and text [19, 20, 9, 29,
30, 31, 21, 22, 23, 32, 33]. UniIR demonstrates that adding image and text embeddings is effective for
fusing representations for CLIP-based models, termed score-fusion (SF) [9]. The fused embeddings
enable the retrieval of data samples that contain both images and text.

As mentioned previously, one common approach for multimodal retrieval is generating composed
datasets containing paired image and text samples tailored for specific retrieval scenarios. For example,
by using image generation models, VISTA generated the IT2T dataset, which consists of image and
text queries with text-based keys, and T2IT dataset, which includes text queries with both image and
text keys [19]. Similarly, MegaPairs constructed triplets consisting of two images and a descriptive
text capturing the relationship between them, which are generated with multimodal large language
models [20]. While dataset generation through large generative models can be effective under certain
scenarios, it requires careful curation to ensure data quality, making the process labor-intensive and
computationally expensive. Additionally, the retrieval model trained with such generated datasets
may fail to generalize to scenarios unseen during the training phase. Therefore, a more efficient
and scalable approach is needed to enhance multimodal retrieval performance without relying on
expensive dataset generation.

3 Method
3.1 Problem Setup

In this paper, we define (xi, xt) as a pair of image and text used to train a retrieval model θ, which
consists of an image encoder θi and a text encoder θt. The extracted embeddings of images and
text are denoted as ei = θi(xi) and et = θt(xt), respectively. During inference, the model retrieves
candidate samples c when given a query q.

In cross-modal retrieval, the model retrieves text candidates ct for an image query qi (qi→ct) and
vice versa (qt→ci). The multimodal retrieval task generalizes this setting by incorporating samples
that contain both images and text, denoted as xit. This results in more complex retrieval scenarios,
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Figure 3: Training process of GCL. Given a dataset composed of image-caption pairs, we extract ei,
et, and eit. For eit, we follow the extraction method used by the retrieval model (e.g., VISTA and
CLIP-SF). Then, we integrate samples of the three different modalities into a single mini-batch for
contrastive learning. We mask out the supervision on the positive samples with identical modalities.

where candidates of arbitrary modalities are retrieved based on queries of arbitrary modalities, such
as qt→cit, qit→ci, and qit→cit. Following UniIR [9] we consider two different retrieval settings:
(1) global setting, retrieving candidates from a shared database regardless of modalities and tasks,
and (2) local setting, retrieving candidates from a task-specific database with the same modality. We
conduct experiments on both settings in this paper.

Figure 2 clearly illustrates the challenge addressed in this work. The left side of Figure 2 presents
a PCA [34] visualization of the embedding spaces learned by VISTA and VISTA fine-tuned with
our proposed loss function, Generalized Contrastive Learning (GCL). For this visualization, we
use ci and ct from MSCOCO and cit from WebQA. As shown, VISTA fails to construct a unified
embedding space for the three different modalities. The main reason is that retrieval models trained
on image-caption paired datasets 2 fail to learn a shared embedding space that incorporates eit.

The table on the right further supports this observation. By using the same samples from the
visualization, we compute the average embeddings of images, text, and image-text pairs, denoted as
ei, et, and eit, respectively. We then calculate the cosine similarity between the average embedding
vectors of each modality. As demonstrated in the table, VISTA exhibits low cosine similarity across
modalities, indicating a significant modality gap. Our goal is to mitigate this gap, as evidenced by the
more intermixed scatter plots in the PCA visualization and the increased cosine similarities between
modalities after finetuning with GCL.

3.2 Generalized Contrastive Learning

Using N samples per mini-batch, the standard contrastive learning loss is formulated as:

LCL = − 1

2N

N∑
j=1

∑
(a,b)∈S

log
exp[(eja · e

j
b)/τ ]∑N

k=1 exp[(e
j
a · ekb )/τ ]

, (1)

where j and k denote the sample indices, τ is the temperature scaling parameter, and S denotes the
set of modality pairs {(i, t), (t, i)}. While this loss function has been effective in constructing a
unified cross-modal representation space, multimodal retrieval performance remains limited within
this embedding space. The main limitation arises because models are not explicitly trained with
embeddings that represent data samples containing both images and text (e.g., news articles with
both pictures and textual explanations). As mentioned earlier, previous studies created new datasets
consisting of triplets to simulate specific retrieval scenarios for addressing such a limitation [19, 20].
In contrast, our proposed method does not rely on these new triplet-based datasets.

Fig. 3 describes our method well. Generally, multimodal retrieval models are obtained by finetuning
cross-modal retrieval models, which are pretrained with image-caption paired datasets. Instead of
finetuning the cross-modal retrieval models with newly constructed triplet-based datasets, we finetune
them using off-the-shelf image-caption paired datasets with our proposed Generalized Contrastive
Learning (GCL) loss function. In GCL loss, negative samples are constructed from all possible
combinations of embeddings (pink squares), including 1) image embeddings ei, 2) text embeddings
et, and 3) fused embeddings of images and text eit. To obtain the fused embeddings of samples with
both images and text, we follow the extraction method used in the retrieval model. For example,
we either (1) use a specialized architecture pretrained for extracting fused embeddings for VISTA

2For the experiment, we use the checkpoint of VISTA prior to training with newly generated composed sets.
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(e.g., appending visual tokens alongside text tokens as input to a text encoder [19]), or (2) sum the
individual image and text embeddings, eit = ei + et for CLIP-based models following UniIR [9].
The positive pairs are then defined as samples with different modalities from the same pair (green
squares). Positive pairs with the same modality correspond to the sample itself, so they are masked
out during training (gray squares). Using the image embedding query as an example, the positive pair
can be either the corresponding text embedding or the fused image-text embedding. GCL loss can be
formulated as:

LGCL = − 1

6N

N∑
j=1

∑
(a,b)∈P

log
exp[(eja · e

j
b)/τ ]∑

m∈M

∑N
k=1 exp[(e

j
a · ekm)/τ ]

, (2)

where M represents the set of modalities {i, t, it} and P denotes the set of positive modality pairs
{(i, t), (i, it), (t, i), (t, it), (it, t), (it, i)}. The factor 6N normalizes the total loss across all six
modality combinations in P , with each combination contributing losses from N training samples.

Although AlignCLIP [11] recently introduced an intra-modality separation loss to push negative
image samples away from a given image query in order to reduce the modality gap, it does not
incorporate contrastive learning across all possible combinations, particularly those involving fused
embeddings eit. In contrast, our GCL loss provides a more generalized contrastive learning framework
by seamlessly integrating different modalities into a unified representation space within a single
mini-batch, leading to improved multimodal retrieval performances across diverse scenarios and tasks
(results shown in Table 5).

4 Experiments
4.1 Experimental Settings

Benchmarks We evaluate the effectiveness of our proposed GCL using standard multimodal retrieval
benchmarks: M-BEIR[9], MMEB[27], and CoVR [28] 3. While images are used as input for M-BEIR
and MMEB, CoVR handles video input. For M-BEIR, we conduct evaluations on 10 datasets under
both local and global evaluation settings. For MMEB, we perform experiments on 12 sub-datasets
included in the retrieval benchmark. Regarding CoVR, following the original evaluation setting of
CoVR, we sample 15 frames for each target video and average the embeddings of each frame to
obtain a single visual embedding for a given video. For the image-caption paired dataset used during
finetuning, we use the LLaVA Visual Instruct Pretrain LCS-558K dataset [35], in which personal
information has been blurred for data sanitization. Note that our experiments are conducted in a
zero-shot setting, meaning the model is not fine-tuned on the training set of the evaluation benchmark.

Models We apply the GCL loss to recent multimodal retrieval models, VISTA [19], CLIP [1], and
TinyCLIP [4] 4. For VISTA, we use the checkpoint before the second stage, the one trained without
the generated dataset to demonstrate that our method can enhance multimodal retrieval performance
even without newly composed triplet datasets. Throughout the paper, we refer to this checkpoint
as VISTA. Following UniIR [9], we adopt score-level fusion for fused embeddings when using
CLIP-based models, referred to as CLIP-SF and TinyCLIP-SF for CLIP and TinyCLIP, respectively.

Baselines We compare the effectiveness of GCL with that of pretrained model and standard contrastive
learning. For VISTA, we also compare ours with VISTA finetuned using the generated datasets
composed of triplets (i.e., IT2I and T2IT) used in the original paper, which we denoted as CL+Triplet.

Metrics Following prior work [9, 27], we adopt the standard retrieval evaluation metric, Recall@K.
Following UniIR, we set K=5 for the local setting, except for Fashion200K and FashionIQ, where we
use K=10, and set K=50 for the global setting. We set K=1 for MMEB and K=1, 5, 10, and 50 for
CoVR, following the previous work [27, 28]. Further details are provided in the Supplementary.

4.2 Quantitative Evaluation
Table 1 demonstrates that applying GCL consistently improves multimodal retrieval performance in
the global setting of M-BEIR across various tasks and models. Notably, the performance improvement
is particularly significant for tasks involving qit or cit. Even without generating new data samples
composed of it, GCL loss improves tasks related to it with off-the-shelf image-caption paired datasets.
While VISTA trained with generated datasets (i.e., IT2I and T2IT) shows the best performance for

3M-BEIR and CoVR datasets are under the MIT license, and MMEB is under the Apache-2.0 license.
4VISTA, CLIP, and TinyCLIP are all under the MIT license.
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Table 1: Comparisons on global setting of M-BEIR using Recall@50. CL and GCL indicates standard
contrastive learning and our generalized contrastive learning, respectively. Triplet and Pairwise refers
to training with newly composed triplet dataset and original image-text paired dataset, respectively.

Task Dataset
VISTA [19] CLIP-SF [9]

Pretrained CL
+Triplet

CL
+Pairwise

GCL (Ours)
+Pairwise Pretrained CL

+Pairwise
GCL (Ours)

+Pairwise

1. qt → ci
VisualNews [36] 5.36 1.64 9.29 16.64 0.08 0.00 6.70
MSCOCO [37] 2.72 5.60 14.42 38.85 0.00 0.00 3.25

Fashion200K [38] 0.00 0.00 0.00 4.25 0.00 0.00 0.00

2. qt → ct WebQA [39] 97.07 96.90 96.86 96.25 60.29 88.55 60.24

3. qt → (ci, ct)
EDIS [40] 25.15 44.37 36.90 49.06 23.39 34.19 54.43

WebQA [39] 14.22 80.88 31.74 64.00 19.87 68.42 40.62

4. qi → ct
VisualNews [36] 1.35 0.08 1.18 4.71 0.00 0.00 2.48
MSCOCO [37] 12.90 0.50 26.82 60.32 0.00 0.00 24.84

Fashion200K [38] 0.02 0.00 0.00 0.72 0.00 0.00 0.16

5. qi → ci NIGHTS [41] 76.60 83.07 79.39 82.50 81.65 88.07 85.09

6. (qi, qt) → ct
OVEN [42] 5.06 1.78 3.10 8.72 0.00 0.00 3.63

InfoSeek [43] 2.94 4.80 1.70 9.07 0.00 0.00 1.86

7. (qi, qt) → ci
FashionIQ [44] 6.66 16.41 6.10 10.88 11.61 0.00 4.25

CIRR [45] 23.62 43.81 24.27 31.13 18.06 0.43 21.25

8. (qi, qt) → (ci, ct)
OVEN [42] 34.31 9.67 32.83 32.92 11.04 0.58 19.47

InfoSeek [43] 30.95 14.94 29.82 34.97 12.73 0.00 21.89

Avg. 21.18 25.28 24.65 34.06 14.92 17.52 21.89

Table 2: Comparisons on MMEB dataset using Recall@1, following VLM2Vec [27]. Abbreviations
as in Table 1.

Task Dataset
VISTA [19] CLIP-SF [9]

Pretrained CL
+Triplet

CL
+Pairwise

GCL (Ours)
+Pairwise Pretrained CL

+Pairwise
GCL (Ours)

+Pairwise

1. qt → ci

VisDial [46] 10.1 17.3 17.2 16.6 22.5 27.2 31.1
VisualNews [36] 51.7 38.4 50.7 50.5 72.4 41.1 70.5
MSCOCO [37] 32.8 44.8 46.8 48.7 54.9 60.7 61.5

Wiki-SS-NQ [47] 16.3 12.4 14.7 16.7 50.7 34.1 46.5

2. qt → cit
WebQA [39] 65.9 83.9 73.3 79.5 61.1 73.7 62.8

EDIS [40] 78.0 64.6 78.2 78.5 79.2 45.4 85.4

3. qi → ct
VisualNews [36] 54.6 25.7 52.7 54.2 1.5 0.2 10.9
MSCOCO [37] 44.0 32.9 55.3 52.8 2.0 0.1 23.1

4. qi → ci NIGHTS [41] 64.7 64.1 65.7 65.4 60.1 9.1 66.4

5. qit → ci
CIRR [45] 8.1 14.1 9.0 11.2 10.9 46 11.6

FashionIQ [44] 3.3 9.0 3.1 7.7 9.9 16.5 6.2

6. qit → cit OVEN [42] 54.3 45.4 53.6 57.3 46.1 4.7 53.8

Avg. 40.3 37.7 43.4 44.9 39.3 29.9 44.2

tasks qit→ci and qt→cit, it shows limited performance gain or performance drop with other tasks.
That is, finetuning retrieval models with generated samples under certain scenarios may show
promising performance for the targeted scenarios, but they may fail to generalize to the tasks unseen
during the finetuning phase. It also shows degraded performance on cross-modal tasks (qi→ct
and qt→ci) compared to the pretrained VISTA. We conjecture that further finetuning VISTA with
composed sets targeting specific retrieval scenarios may degrade its original performance on cross-
modal tasks due to forgetting its initial cross-modal alignment. We want to emphasize that our goal is
to perform well across a wide range of tasks and datasets, not just to excel at a specific task or dataset.

Tables 2 and 3 compare the multimodal retrieval performances under the local setting. Again,
finetuning retrieval models with GCL brings further performance improvements even under the local
setting. Along with the global setting, we believe that performing well in the local setting is also
important since we may need databases separately divided for each task depending on the use cases
we pursue in the real-world applications. Although there may exist a slight performance drop in
scenario-specific retrieval tasks (e.g.CIRR and FashionIQ), this can largely be attributed to the nature
of the fine-tuning dataset used. The LCS-558K dataset is designed for general-purpose fine-tuning,
which may not fully capture the nuances of domain-specific tasks. To achieve optimal performance
in these specialized applications, we believe GCL serves as an effective initial training stage, and
performance can be further improved through additional fine-tuning with task-specific data.

Table 4 demonstrates that applying GCL also improves the video retrieval performance. When
deploying retrieval models in real-world scenarios, visual content may be stored in video formats
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Table 3: Comparisons on local setting of M-BEIR. We report the results using Recall@5 for the
local setting except using Recall@10 for Fashion200K and FashionIQ, following UniIR [9, 44].
Abbreviations as in Table 1.

Task Dataset
VISTA [19] CLIP-SF [9]

Pretrained CL
+Triplet

CL
+Pairwise

GCL (Ours)
+Pairwise Pretrained CL

+Pairwise
GCL (Ours)

+Pairwise

1. qt → ci
VisualNews [36] 16.04 10.01 15.78 15.42 44.34 20.97 36.71
MSCOCO [37] 50.65 58.40 61.34 61.09 61.09 71.94 67.69

Fashion200K [38] 9.31 8.03 9.83 9.54 6.57 8.84 7.04

2. qt → ct WebQA [39] 91.20 91.20 90.43 89.37 40.61 70.35 40.61

3. qt → (ci, ct)
EDIS [40] 36.69 40.98 35.76 45.88 43.29 34.56 48.97

WebQA [39] 33.49 74.51 36.16 62.49 45.48 69.97 44.01

4. qi → ct
VisualNews [36] 14.03 4.42 13.35 13.70 41.78 20.18 30.53
MSCOCO [37] 61.66 60.44 71.98 72.56 79.00 85.78 79.04

Fashion200K [38] 9.63 6.71 9.29 9.31 7.71 8.65 8.55

5. qi → ci NIGHTS [41] 26.32 26.32 28.21 28.35 26.13 30.94 30.99

6. (qi, qt) → ct
OVEN [42] 30.39 25.93 29.91 31.82 0.31 0.23 8.93

InfoSeek [43] 29.87 23.16 28.47 34.26 0.29 0.00 6.78

7. (qi, qt) → ci
FashionIQ [44] 2.43 9.03 2.25 5.00 6.95 11.48 5.28

CIRR [45] 10.60 21.82 11.34 14.27 13.19 37.84 15.85

8. (qi, qt) → (ci, ct)
OVEN [42] 37.45 31.11 35.84 40.60 19.94 0.37 31.40

InfoSeek [43] 23.08 28.34 23.94 35.32 19.40 0.13 24.28

Avg. 30.18 32.53 31.49 35.56 28.51 29.51 30.42

Table 4: Comparisons on CoVR Benchmark. Following CoVR, we use the frame of middle index for
the query video, while averaging 15 uniformly sampled frames for the target video. Abbreviations as
in Table 1.

Rank
VISTA [19] CLIP-SF [9]

Pretrained CL
+Pairwise

GCL (Ours)
+Pairwise Pretrained CL

+Pairwise
GCL (Ours)

+Pairwise

R@1 31.22 33.76 37.52 37.32 19.68 37.60
R@5 58.37 59.74 63.46 62.60 40.30 65.69

R@10 68.15 69.52 72.81 71.99 50.67 75.78
R@50 88.50 88.50 91.12 88.18 74.92 92.92

(e.g., detecting unexpected actions in CCTV), making video retrieval an important task due to its
practicality. Consistent performance improvements in multimodal retrieval tasks even including video
retrieval demonstrates that GCL is a robust and versatile approach for enhancing retrieval models
across diverse scenarios.

5 Further Analysis
5.1 Ablation Studies
Table 5 compares GCL with the intra-modality separation loss proposed in AlignCLIP [11] while
dissecting the contributions of the individual loss components of GCL. La2b indicates the loss
function of GCL using a as the query modality and b as the target modality from a given positive pair.
Regarding intra-modality separation loss, we added the loss term in addition to standard contrastive
learning during training. For the ablation study of GCL, we excluded each of the following key loss
functions: 1) cross-modal alignment terms (Li2t and Lt2i), 2) it-candidate learning terms (Li2it

and Lt2it), and 3) it-query learning terms (Lit2i and Lit2i). For the comparisons, we use the global
setting of M-BEIR. Results on the local setting of M-BEIR and performance variance of multiple
runs are included in our Supplementary.

As shown, adding the intra-modality separation loss indeed improves the multimodal retrieval
performance compared to training with standard contrastive learning. However, we observe that
the performance gain is limited for tasks involving retrieval with identical modalities (e.g., qi→ci
and qt→ct) or queries with it modality (e.g., qit→ci and qit→ct) compared to our GCL loss. This
indicates that intra-modality separation loss mitigates the modality gap but it fails to consider diverse
multimodal retrieval scenarios, which are effectively addressed by GCL.

Regarding the ablation study, we observe a performance drop on the task that each module of
GCL loss is responsible for. To be more specific, by excluding Li2t and Lt2i, the performance
on cross-modal tasks are degraded significantly. Also, the performances on tasks of qt→cit are
degraded after excluding Li2it and Lt2it. We want to emphasize that we did not perform an extensive
hyperparameter search for finding the optimal weighing values for each loss function in GCL. While
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Table 5: Ablation studies on loss functions and comparisons with intra-modality separation loss [11]
using global setting of M-BEIR.

Task Dataset CL Intra-modality
Separation [11]

GCL w/o
Li2t, Lt2i

GCL w/o
Li2it, Lt2it

GCL w/o
Lit2i, Lit2t

GCL

1. qt → ci
VisualNews [36] 9.29 14.36 2.91 18.26 17.07 16.64
MSCOCO [37] 14.42 36.67 9.77 39.43 38.99 38.85

Fashion200K [38] 0.00 3.84 0.41 3.90 4.54 4.25

2. qt → ct WebQA [39] 96.86 96.17 97.68 96.13 96.21 96.25

3. qt → (ci, ct)
EDIS [40] 36.90 49.74 45.23 37.15 49.18 49.06

WebQA [39] 31.74 47.59 69.53 52.93 61.65 64.00

4. qi → ct
VisualNews [36] 1.18 2.78 0.59 5.50 4.63 4.71
MSCOCO [37] 26.82 48.64 13.4 63.06 58.60 60.32

Fashion200K [38] 0.00 0.61 0.08 0.76 0.63 0.72

5. qi → ci NIGHTS [41] 79.39 78.02 79.15 83.21 82.83 82.50

6. (qi, qt) → ct
OVEN [42] 3.10 5.23 6.92 9.77 7.95 8.72

InfoSeek [43] 1.70 3.72 9.10 10.96 7.79 9.07

7. (qi, qt) → ci
FashionIQ [44] 6.10 6.33 9.48 11.76 10.61 10.88

CIRR [45] 24.27 23.57 32.52 31.82 30.50 31.13

8. (qi, qt) → (ci, ct)
OVEN [42] 32.83 35.74 36.75 29.20 31.22 32.92

InfoSeek [43] 29.82 34.26 40.26 33.31 32.27 34.97

Avg. 24.65 30.45 28.36 32.95 33.42 34.06

Table 6: Performance improvements on M-BEIR under global setting with TinyCLIP.
Metric VISTA CLIP-SF TinyCLIP-SF TinyCLIP-SF + GCL

Model Params. 196M 427M 120M 120M
Avg. Inference (ms) 26.06 21.58 14.67 14.67

M-BEIR 21.18 14.92 17.36 22.71

this may improve performance on certain tasks, it may accompany performance drops on other tasks.
Since the main goal of this paper is to design a loss function that generally works well for diverse
retrieval scenarios, we simply added the loss functions with identical weights. Depending on the use
cases, each loss function in GCL may be weighed differently.

5.2 Empowering Lightweight Models
Deploying lightweight models for retrieval is essential for enabling fast and efficient inference in
real-time or resource-constrained environments, such as mobile or edge devices (e.g., retrieving
personal data on mobile phones). Table 6 illustrates that applying GCL improves the retrieval
performance of TinyCLIP compared to pretrained retrieval models, including VISTA and CLIP-SF,
despite having fewer parameters and a lower average inference speed (ms). This result indicates
that fine-tuning a small and lightweight retrieval model with GCL is a viable solution for improving
retrieval performance.

5.3 Ranks of Ground Truth Candidates
Figure 4 compares the ranks of ground truth candidates between VISTA and VISTA trained with
GCL. The x-axis denotes the ranks, and the y-axis indicates its frequency. For this analysis, we use
qt from MSCOCO and a candidate pool composed of ct and ci from MSCOCO, where the task is
to retrieve the ground truth ci given qt. The numbers of queries and candidates are 2.5K and 29K,
respectively. We visualize only candidates ranked within the top 10K.

Our findings show that when VISTA is trained with GCL, most ground truth candidates achieve
high ranks, with the majority ranked within the top 500. In contrast, VISTA without GCL exhibits a
non-trivial number of ground truth candidates that are ranked significantly lower. This highlights the
challenge of retrieving ground truth ct from a shared database of mixed modalities when the modality
gap is not effectively reduced. GCL successfully mitigated the modality gap, as demonstrated by the
high ranks of ground truth candidates.

5.4 Cosine Similarity with Candidates
Ground truth candidates Figure 5 (a) visualizes the cosine similarity between the embeddings of
queries and their corresponding ground truth candidates. For this analysis, we selected one dataset
from each task in M-BEIR. As shown, applying GCL to VISTA consistently increases the cosine
similarities across diverse tasks and datasets, indicating improved alignment between query and
ground truth representations. By improving the representation space, GCL ensures that relevant
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pool composed of ci and ct from MSCOCO.
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Figure 5: (a) Cosine similarity between query and ground truth candidates. X-axis and y-axis
indicates the dataset and cosine similarity, respectively. VisualN. refers to VisualNews. (b) Cosine
similarity between queries and top-ranked candidates. We use MSCOCO for the task of qi→ct.

multimodal pairs - whether text, image, or fused - are positioned closer in the embedding space,
leading to more accurate retrieval.

Top-ranked candidates Figure 5 (b) further examines the cosine similarity between queries and
their top-ranked retrieved candidates to evaluate the retrieval consistency. Using MSCOCO (qi→ct),
we analyze how cosine similarity trends change across different ranks. As shown, VISTA exhibits
a significant drop in similarity with lower ranks, suggesting that lower-ranked candidates are less
semantically relevant. In contrast, applying GCL helps maintain high cosine similarity even with
lower ranks, demonstrating that relevant candidates are still retrieved even with lower ranks.

This stability across ranks highlights the ability of GCL to build a unified representation space more
effectively, ensuring that even when the top candidate is not a perfect match, subsequent retrieved
items remain semantically meaningful. Such improvements are crucial for real-world multimodal
retrieval applications where retrieving a set of relevant candidates would be a viable solution, rather
than retrieving the single best match.

6 Conclusion
In this paper, we introduced Generalized Contrastive Learning (GCL), a simple yet effective loss
function designed to enhance multimodal retrieval performance without the need for generating
triplet datasets simulating certain retrieval scenarios. By integrating text, image, and fused text-image
embeddings into the contrastive learning framework, GCL mitigates the modality gap and improves
multimodal retrieval performance across diverse tasks and datasets. Although not discussed in this
work, one promising future work direction is integrating GCL with multimodal large language models
(MLLMs) to further enhance retrieval capabilities in generative and reasoning-based tasks [23, 21, 22,
48, 49, 50]. As MLLMs continue to advance, utilizing retrieved information to generate responses
would be promising, especially with databases containing mixed-modalities. By eliminating the need
for labor-intensive dataset curation while improving retrieval across arbitrary modality combinations,
GCL presents a scalable and effective solution for multimodal retrieval. We hope this work paves
the way for future research in leveraging contrastive learning for more generalizable and robust
multimodal retrieval.
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and the introduction. For example, we summarized the contributions with bulletin points in
the introduction.
Guidelines:
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made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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Answer: [Yes]
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We are currently refactoring and cleaning the codes. We are planning to release
the codes after internal review of the codes is finalized.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, we specified the training and test details in our implementation details of
Section 4.1 of the main paper and Supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Since we conducted extensive experiments, it was challenging to report results
of multiple runs for all experiments. However, we reported error bars for the ablation study
on each loss term of GCL in our Supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We described the computing resources including the type of GPU and memory
consumed for the experiments in our Supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We confirmed and conformed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed both potential positive societal impacts and negative societal
impacts in our Supplementary.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: In Section 4.1 of the main paper, we mentioned that we blurred the facial
images included in the train set for the sanitization of data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In the main paper, we denoted the licenses of each dataset in the footnotes.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

18

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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