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ABSTRACT

Cover songs constitute a vital aspect of musical culture, preserving the core
melody of an original composition while reinterpreting it to infuse novel emo-
tional depth and thematic emphasis. Although prior research has explored the
reinterpretation of instrumental music through melody-conditioned text-to-music
models, the task of cover song generation remains largely unaddressed. In this
work, we reformulate our cover song generation as a conditional generation,
which simultaneously generates new vocals and accompaniment conditioned on
the original vocal melody and text prompts. To this end, we present SongE-
cho, which leverages Instance-Adaptive Element-wise Linear Modulation (IA-
EiLM), a framework that incorporates controllable generation by improving both
conditioning injection mechanism and conditional representation. To enhance
the conditioning injection mechanism, we extend Feature-wise Linear Modula-
tion (FiLM) to an Element-wise Linear Modulation (EiLM), to facilitate pre-
cise temporal alignment in melody control. For conditional representations, we
propose Instance-Adaptive Condition Refinement (IACR), which refines condi-
tioning features by interacting with the hidden states of the generative model,
yielding instance-adaptive conditioning. Additionally, to address the scarcity of
large-scale, open-source full-song datasets, we construct Suno70k, a high-quality
AI song dataset enriched with comprehensive annotations. Experimental results
across multiple datasets demonstrate that our approach generates superior cover
songs compared to existing methods, while requiring fewer than 30% of the train-
able parameters.

1 INTRODUCTION

If great melodies merit reinterpretation, then exceptional cover songs breathe new life into their orig-
inals. Cover songs play an essential role in musical culture, acting as conduits for cultural memory
and agents in the formation of a musical canon. Iconic examples, such as Whitney Houston’s trans-
formative rendition of Dolly Parton’s “I Will Always Love You”, reinterpret the style of the song,
evolving a gentle country ballad into a worldwide anthem of deep affection 1. Given the expressive
potential of musical reimagination and cultural significance, we think that cover song generation is
a field worthy of exploration.

Similar to Whitney Houston’s rendition, musicians creating cover songs may introduce flexible
adaptations in local musical elements, such as phoneme durations, vibrato, and note transitions,
yielding highly varied and personalized reinterpretations. In this work, we abstract a cover paradigm
applicable to arbitrary songs and reformulate our cover song generation as a conditional genera-
tion task that performs a global style transfer with text guidance while preserving the source vocal
melody contour and excluding local customized adaptations. Specifically, the task requires a model
to leverage the provided vocal melody as a foundation structure, while concurrently synthesizing vo-
cal and harmonious accompaniment that aligns with a given text prompt. Although text-to-song gen-
eration has advanced considerably, the task of cover song generation remains largely unaddressed.
The primary challenge lies in devising a model that can implicitly disentangle vocal components,

1https://www.youtube.com/shorts/PdE_dAkMDW4
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Figure 1: Differences between other condition injection mechanisms and our approach. EiLM
eliminates the need for separate learning of temporal alignment in (a) while offering more flexible
modulation than (b). “⊕” represents element-wise addition, and “⊙” represents element-wise mul-
tiplication.

ensure temporal melody control and lyric synchronization, and produce coherent accompaniment.
Neglecting these elements may result in misaligned lyrics, inconsistent melodies, or degraded audio
quality, thereby necessitating robust capabilities in collaborative generation and content control.

This task differs from Singing Voice Synthesis (Liu et al., 2022; Cui et al., 2024; Zhang et al.,
2024a) and Singing Voice Conversion (Ferreira et al., 2025; Jayashankar et al., 2023), which deal
with single-track vocals and focus on short audio segments (5-20s) that can be concatenated to
produce longer audio. In contrast, cover song generation simultaneously synthesizes vocals and
accompaniment, necessitating coherence of the accompaniment across the entire song.

Recent works (Wu et al., 2024; Ciranni et al., 2025; Tsai et al., 2025) have achieved melody control
in pretrained text-to-music models, demonstrating potential applicability to cover song generation.
The core difference among these methods lies in their melody condition injection mechanisms, em-
ploying either cross-attention (Tsai et al., 2025) or element-wise addition (Ciranni et al., 2025; Wu
et al., 2024) (see Figures 1(a) and 1(b)). Cross-attention mechanisms require extra modeling of
temporal alignments, which is inherently indirect and introduces computational redundancy across
potentially misaligned dimensions. Element-wise addition leverages the temporal correspondence
between sequences but limits modulation flexibility, acting as an affine transformation with a fixed
scaling factor. Beyond these limitations in condition injection mechanisms, existing methods inde-
pendently encode melody conditions, thereby failing to provide targeted adaptation to the generative
model’s hidden states. Consequently, incompatible condition vectors may distort the hidden states
during condition injection, resulting in unnatural and low-fidelity audio synthesis.

To address the aforementioned challenges, we present a novel framework, SongEcho, for cover
song generation built upon a text-to-song model (Gong et al., 2025). We propose Instance-Adaptive
Element-wise Linear Modulation (IA-EiLM), which comprises Element-wise Linear Modulation
(EiLM) and Instance-Adaptive Condition Refinement (IACR). These components enhance control-
lable generation by refining the condition injection mechanism and conditional representation. (1)
Injection Mechanism: Feature-wise Linear Modulation (FiLM) (Perez et al., 2018) has demonstrated
efficacy as a conditioning technique. Birnbaum et al. (2019) proposed TFiLM, which temporally ap-
plies FiLM by partitioning sequences into blocks and using an RNN (Elman, 1990; Graves, 2012) to
recurrently generate block-wise modulation parameters. In contrast, we extend FiLM to EiLM (see
Figure 1(c)), which generates modulation parameters matching the target dimensions in a single
operation without temporal dependency. This design enables element-wise modulation of hidden
states, ensuring the temporally aligned injection of melody. (2) Conditional Representation: We
introduce the IACR module to rectify the rigidity of traditional condition encoding. By enabling in-
teraction between hidden states and external conditions, IACR dynamically adapts conditions to the
hidden states, mitigating feature conflicts and audio quality degradation caused by static condition
injection.

Our contributions can be summarized as follows:

2
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• We introduce SongEcho, a parameter-efficient framework that enables cover song gener-
ation by leveraging a novel conditioning method that achieves fine-grained control of the
vocal melody.

• We propose Instance-Adaptive Element-wise Linear Modulation (IA-EiLM), which com-
prises the EiLM and Instance-Adaptive Condition Refinement (IACR), enhancing the con-
dition injection mechanism and conditional representation, respectively.

• To address the lack of open-source, high-quality, large-scale full-song datasets, we intro-
duce Suno70k, an open-source AI song dataset enriched with detailed annotations, includ-
ing enhanced tags and lyrics.

• Experimental results demonstrate that our method generates superior cover songs, outper-
forming state-of-the-art approaches across all metrics on multiple datasets.

2 RELATED WORK

Text-to-Song Generation. Jukebox (Dhariwal et al., 2020) pioneered song generation. In re-
cent years, industry tools such as Suno2, Udio3, Seed-Music (Bai et al., 2024), and Meruka4 have
shown promising results in this domain. Academic efforts have followed closely, with language
model-based song generation approaches, including Melodist (Hong et al., 2024), Melody (Li et al.,
2024a), Songcreator (Lei et al., 2024), YuE (Yuan et al., 2025), SongGen (Liu et al.), and LeVo (Lei
et al., 2025), which autoregressively generate song tokens but require significant inference time.
Diffusion-based methods, such as DiffRhythm (Ning et al., 2025) and ACE-Step (Gong et al., 2025),
have substantially reduced this latency. Notably, ACE-Step (Gong et al., 2025) improves upon
DiffRhythm (Ning et al., 2025) by incorporating song structure understanding. Although current
models generate high-quality songs and some support audio prompts (Yuan et al., 2025; Lei et al.,
2025), they lack the capability for precise temporal melody control. Considering both inference
speed and performance, we adopt ACE-Step as our base model.

Singing Voice Synthesis & Conversion. Extensive research in Singing Voice Synthesis
(SVS) (Zhang et al., 2023b; Liu et al., 2022; Zhang et al., 2024a; 2025) and Singing Voice Con-
version (SVC) (Lu et al., 2024; Chen et al., 2024; Ferreira et al., 2025; Shao et al., 2025) has led to
significant progress in generating high-quality, controllable single-track vocals. Nonetheless, these
approaches are inherently limited as they do not address the generation of instrumental accompani-
ment. This work, in contrast, tackles the more holistic problem of full-song generation, requiring
the simultaneous synthesis of a vocal track and its coherent accompaniment.

Controllable Music Generation. Recent work has advanced controllable music generation by in-
corporating temporal conditions into text-to-music models using various approaches, such as In-
attention (Lan et al., 2024), ControlNet-style addition (Wu et al., 2024; Ciranni et al., 2025; Hou
et al., 2025), and cross-attention (Tsai et al., 2025; Lin et al., 2024; Yang et al., 2025). However,
these dominant paradigms exhibit significant trade-offs: additive methods offer limited modula-
tion flexibility, while cross-attention is indirect and computationally redundant. Critically, all these
approaches encode the condition in isolation, lacking a mechanism to dynamically adapt the con-
ditional signal to the generator’s internal hidden states. In contrast, our approach addresses the
aforementioned issues by improving the condition injection mechanism and enhancing conditional
representations.

Conditional Normalization. Conditional Normalization methods are a powerful class of techniques
that inject information by learning the parameters for an affine transformation of a network’s inter-
mediate features. Unified by frameworks like FiLM (Perez et al., 2018), this approach has been
highly successful in a wide range of domains, including image style transfer (Dumoulin et al., 2017;
Huang & Belongie, 2017), semantic image synthesis (Park et al., 2019), speech recognition (Kim
et al., 2017), modern text-to-image models (Peebles & Xie, 2023), text classification (Birnbaum
et al., 2019), and black-box audio effect modelling Comunità et al. (2023). However, its application
to music remains unexplored, and our work investigates its potential in this domain.

2https://suno.com/blog/introducing-v4-5
3https://www.udio.com/blog/introducing-v1-5
4https://www.mureka.ai
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Figure 2: We employ a Diffusion Transformer (DiT) as the song generation backbone with a novel
conditioning method, “IA-EiLM”, for vocal melody control. A Pitch Extractor and Melody Encoder
extract melody features, denoted as “m”. The IA-EiLM module, integrated into each Transformer
block, comprises two components: IACR and EiLM. “IACR” facilitates interaction between “m”
and hidden states “hi”, refining melody condition, while “EiLM” modulates “hi” into “hm

i ” with
modulation parameters “γi” and “βi”, derived from the refined melody condition.

3 METHOD

We propose SongEcho, a parameter-efficient framework for our cover song generation, built upon
the full-song generation model ACE-Step (Gong et al., 2025) and leveraging the Instance-Adaptive
Element-wise Linear Modulation (IA-EiLM), as illustrated in Figure 2. We start by introducing
IA-EiLM and then describe our particular model for cover song generation.

3.1 ELEMENT-WISE LINEAR MODULATION (EILM)

Unlike prior temporally controllable music generation methods (Wu et al., 2024; Tsai et al., 2025;
Hou et al., 2025; Yang et al., 2025), which rely on cross-attention or element-wise addition, we
explore the application of FiLM (Perez et al., 2018) for melody injection and extend it to EiLM.

Let c ∈ RB×T×M denote a condition feature, where B is the batch size, T is the sequence length,
and M is the condition dimension. Let hi ∈ RB×T×Di represent the hidden states of the i-th
layer of the generative backbone, where Di is the number of feature dimensions in the layer. We
aim to learn a mapping function that modulates hi using c to generate a cover song. Feature-wise
Linear Modulation (FiLM) is an effective conditioning method that has not yet been applied to
controllable music generation. To enable precise temporal control, we propose Element-wise Linear
Modulation (EiLM) as an extension of Feature-wise Linear Modulation (FiLM). This conditional
modulation method dynamically adapts hidden states to melody conditions through a time-varying
affine transformation. The overall modulation is defined as:

hm
i = EiLM(hi|c) = γi ⊙ hi + βi, (1)

(γi, βi) = fi(c), (2)

where γi, βi ∈ RB×T×Di are the modulation parameters, derived from c via a linear projectorfi.
hm
i ∈ RB×T×Di is the modulated hidden states. Our EiLM generalizes FiLM (Perez et al., 2018)

by generating modulation parameters that precisely match the shape of the hidden states.

4
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3.2 INSTANCE-ADAPTIVE CONDITION REFINEMENT (IACR)

In addition to external improvements to the condition injection mechanism, we propose a con-
dition refinement strategy, termed Instance-Adaptive Condition Refinement (IACR), which adap-
tively refines the condition vector based on the hidden states of the generative backbone for im-
proving conditional representations. Our IACR module employs a gating mechanism adapted
from WaveNet (van den Oord et al., 2016), where we enable cross-modal interaction between two
branches. Beyond merely encoding the conditional input, our method ensures that the conditional
features dynamically adapt to the hidden states. Specifically, a vocal pitch sequence p ∈ RB×T 0×1

is first processed by a melody encoder to produce melody features m ∈ RB×T×M . m are then
interactively refined with the hidden states hi ∈ RB×T×Di via a gating mechanism (Van den Oord
et al., 2016), denoted as:

h′
i = Lhi(hi), m′

i = Lmi(m) (3)
ci = tanh(h′

i)⊙ tanh(m′
i), (4)

where Lhi
, Lmi

denote linear layers, h′
i ∈ RB×T×M , and m′

i ∈ RB×T×M . The refined condition
ci ∈ RB×T×M dynamically adapts to the current generative instance, enabling selective integration
and interpretation of the melodic features.

Why is IACR necessary? To the best of our knowledge, existing control injection methods de-
rive conditional features solely from the conditional input, overlooking their compatibility with the
generative model’s hidden state. We take our EiLM as an example to demonstrate the necessity of
IACR.

In text-to-song models, the hidden states are not a blank canvas. Formally, a hidden state h =
ϵθ(ttag, l, t) ∈ RB×T×D, conditioned on a text prompt ttag , lyrics l, and timestep t, already embeds
an intrinsic melodic structure Mh. The goal of conditioning is to modulate h with parameters (γ, β)
such that the melody of the output, Mc ≈ Em(γ ⊙ h + β), where Em is a hypothetical melody
encoder that extracts melody from the hidden states and the target melody Mc is derived from a
melody feature m.

A conventional static conditioning approach generates modulation parameters solely from the
melody feature m as follows:

(γm, βm) = F (m), (5)
where F denotes the conditional mapping function. The optimization problem can be formulated
as:

(γm, βm) = argmin
γ,β

∥Em(γ ⊙ h+ β)−Mc∥22. (6)

Given γm ̸= 0 in our task (γm = 0 loses timbre and lyrics), without access to the hidden states h or
their intrinsic melody Mh, the transformation network T must learn a universal mapping ∆Mh→Mc

across all possible h, causing Equation 6 to be underconstrained.

In contrast, our instance-adaptive conditioning approach, implemented in the IACR module, com-
putes the parameters based on both m and h as:

(γh,m, βh,m) = F (m,h). (7)

By providing the network F with direct access to h, the task is transformed into a one-to-one map-
ping problem. In this context, γh,m and βh,m, encoding both melodic conditions and hidden states,
expand the conditional representation space. Tailored to hidden states, these conditions enable seam-
less integration into the generative model, thereby improving melodic control and audio quality (see
in 5.4).

3.3 SONGECHO

Our proposed framework, SongEcho, extends the pre-trained text-to-song model, ACE-Step, by in-
corporating a melody encoder, E , and integrating an IA-EiLM module into each transformer block.
Given a vocal pitch sequence p ∈ RB×T 0×1, extracted at 100 Hz via RVMPE (Wei et al., 2023), E ,
comprising 1D convolutional layers, encodes features as:

m0 = E(p), m0 ∈ RB×T 0×M . (8)

5
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These are interpolated to align with the hidden states hi ∈ RB×T×Di , given by:

m = Interpolate(m0), m ∈ RB×T×M . (9)

The features m are then refined via State-Adaptive Condition Refinement (IACR) as follows:

ci = IACR(m,hi), m ∈ RB×T×M . (10)

Similar to Zhang et al. (2023a), to mitigate noise modulation in the hidden states caused by randomly
initialized parameters, we initialize fi with zeros to ensure training starts from the original model.
To incorporate zero initialization, we reformulate EiLM as follows:

EiLM-zero(hi|ci) = (γi + 1)⊙ hi + βi, (11)
(γi, βi) = fi(ci). (12)

Given that self-attention facilitates global information interaction across tokens, while the FFN layer
performs localized feature transformations, we insert the IA-EiLM module before the FFN layer
in each Transformer block to inject melody information and prevent its dilution within the global
attention mechanism, as illustrated in Figure 2.

Except for E and the IA-EiLM modules, all model parameters are frozen. The training objective is
defined as:

LFM = Ex0,z∼N (0,I),t∼U [0,1]

[
∥(ϵθ(xt, ttag, l, t, p) · (−σt) + xt)− x0∥22

]
, (13)

where x0 denote the latent representation, xt = (1−σt)x0+σtz. Since we do not update parameters
related to semantic alignment, we disable the semantic alignment loss based on self-supervised
learning models (Li et al., 2024c; Zanon Boito et al., 2024). Overall, our proposed method introduces
vocal melody control in a lightweight manner. A detailed comparison is provided in Table 1.

4 DATASET

Due to copyright constraints, the availability of publicly accessible song datasets (Hsu & Jang, 2009;
Bertin-Mahieux et al., 2011; Zhang et al., 2024b; Yao et al., 2025) remains significantly restricted
(see details in the Appendix A.5). To address these limitations, we introduce Suno70k, a high-
quality AI song dataset derived from the Suno.ai Music Generation dataset 5. This open-source
collection contains metadata, including song links, for 659,788 AI-generated songs, but the quality
varies widely. Our curation process involves several steps:

1. Data Filtering. We filter the dataset based on metadata, removing entries with incomplete infor-
mation (e.g., missing IDs, lyrics, or tags) and deduplicating by ID. We exclude purely instrumental
tracks and entries with unclear lyric structures, unrecognizable characters, or non-English lyrics. To
align with the 4-minute generation limit of the ACE-Step (Gong et al., 2025), we exclude all samples
with a duration exceeding this threshold.

2. Quality Assessment. We download the corresponding audio files and evaluate them with
SongEval (Yao et al., 2025) across five dimensions: overall coherence, memorability, naturalness
of vocal breathing and phrasing, clarity of song structure, and overall musicality. Samples scoring
below 3 (out of 5) in any dimension are excluded.

3. Enhanced Tagging. Observing that the tags from metadata are incomplete, we employ Qwen2-
audio (Chu et al., 2024) to generate comprehensive tags across the following aspects: genre, vocal
type, instruments, and mood. These are concatenated with the original tags, deduplicated, and
limited to 20 tags per song, separated by commas, consistent with the official examples of ACE-
Step (Gong et al., 2025).

In the end, we obtain a total of 69,469 songs, with 69,379 for training and 90 for testing, yielding a
total duration of approximately 3,000 hours.

5https://huggingface.co/datasets/nyuuzyou/suno
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5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

We employ our IA-EiLM on the open-source text-to-song model ACE-Step (Gong et al., 2025),
a Linear Diffusion Transformer (DiT) (Xie et al., 2025) capable of generating high-quality songs
efficiently. We freeze the parameters of the Linear DiT, lyric encoder, and text encoder, training
only the IA-EiLM and Melody Encoder parameters. The learning rate is set to 1e-4 with a linear
warm-up over 1,000 steps. We utilize the AdamW optimizer with β1 = 0.9, β2 = 0.95, and a
weight decay of 0.01. The maximum duration for music generation is set to 240 seconds, consistent
with ACE-Step. Experiments are conducted on three NVIDIA A100 GPUs for 30,000 steps with a
batch size of 12 (1 per GPU with a gradient accumulation factor of 4).

5.2 EVALUATION METRICS

We develop a comprehensive evaluation protocol that includes the following metrics. For melody
control, we extract melodies from ground-truth and generated songs and compute three metrics us-
ing the mir eval library (Raffel et al., 2014): Raw Pitch Accuracy (RPA), the fraction of melody
frames with pitch within half a semitone of the reference; Raw Chroma Accuracy (RCA), pitch ac-
curacy ignoring octave; and Overall Accuracy (OA), the fraction of all frames correctly estimated,
including pitch and voicing (melody vs. non-melody) alignment. Additionally, we adopt the open-
source code6 to calculate FDopenl3 (Cramer et al., 2019), KLpasst (Koutini et al., 2022), and CLAP
score (Wu et al., 2023). We use FDopenl3 and KLpasst to assess differences between the generated
music and the ground-truth distribution. The CLAP score evaluates consistency between the gen-
erated songs and their corresponding text tags. Furthermore, we compute the Phoneme Error Rate
(PER) using Whisper (Radford et al., 2023) to evaluate the vocal content of the generated songs.

5.3 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our method with two state-of-the-art melody-guided music generation approaches: Sta-
ble Audio (SA) ControlNet (Hou et al., 2025) and MuseControlLite (Tsai et al., 2025). The former
integrates ControlNet (Zhang et al., 2023a) into the DiT-based music generation model Stable Au-
dio (Evans et al., 2024), while the latter employs the IP-adapter concept to enable melody control for
Stable Audio. As both methods support only instrumental music generation, we apply them to the
same base model, ACE-Step, used in our approach, and ensure consistency in the melody encoder.
Since integrating ControlNet with ACE-Step requires over 80 GB of GPU memory at a batch size of
1, we adopt LoRA (Hu et al., 2022) fine-tuning for a subset of the copied branches, maximizing train-
able parameters with a rank of 512. For reference, we also evaluate the performance of the original
model. The number of trainable parameters for the three methods is shown in Table 1. Our method
significantly reduces the trainable parameters, accounting for only 3.07% of ACE-Step+SA Con-
trolNet, 14.8% of ACE-Step+SA ControlNet+LoRA and 26.0% of ACE-Step+MuseControlLite’s
parameters. Additional aesthetics evaluation of the comparison results is provided in Appendix C.3.

Table 1: Quantitative evaluation results on Suno70k test set. “TP” represents trainable parame-
ters. The best results are in highlighted bold and the second best ones are underlined (same in the
following tables).

RPA ↑ RCA ↑ OA ↑ CLAP ↑ FD ↓ KL ↓ PER ↓ TP ↓
ACE-Step (Gong et al., 2025) - - - 0.2930 73.53 0.2670 0.4168 -

ACE-Step+SA ControlNet (Hou et al., 2025) 0.6209 0.6440 0.6858 0.2875 105.95 0.2019 0.3714 1.6B
ACE-Step+SA ControlNet+LoRA (Hou et al., 2025) 0.6214 0.6431 0.6833 0.2892 99.19 0.1850 0.3734 331M

ACE-Step+MuseControlLite (Tsai et al., 2025) 0.5205 0.5346 0.5940 0.2977 72.04 0.2151 0.4194 189M
SongEcho (Ours) 0.7080 0.7339 0.6952 0.3243 42.06 0.1123 0.2951 49.1M

6https://github.com/Stability-AI/stable-audio-metrics?spm=5d4b8e0.
56c16f66.0.0.310b73e8StYpFt
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5.3.1 QUANTITATIVE EVALUATION

Objective Evaluation. The performance of our method on the Suno70k test set is shown in Ta-
ble 1. Our approach achieves superior results compared with the baselines. Notably, it demon-
strates a clear advantage in Raw Pitch Accuracy (RPA) and Raw Chroma Accuracy (RCA). For the
FDopenl3 metric, our method achieves reductions of 57.6% and 41.6% compared to ACE-Step+SA
ControlNet+LoRA and ACE-Step+MuseControlLite, respectively, highlighting its effectiveness in
optimizing music quality while achieving melody control.

Table 2: Quantitative evaluation results on Suno70k test set with swapped tags.
RPA ↑ RCA ↑ OA ↑ CLAP ↑ FD ↓ KL ↓ PER ↓

ACE-Step ( Gong et al. (2025)) - - - 0.2800 70.54 0.3478 0.3899
ACE-Step+SA ControlNet (Hou et al., 2025) 0.6078 0.6336 0.6759 0.2477 110.73 0.2479 0.3874

ACE-Step+SA ControlNet+LoRA ( Hou et al. (2025)) 0.6143 0.6361 0.6741 0.2536 97.60 0.2407 0.4114
ACE-Step+MuseControlLite ( Tsai et al. (2025)) 0.5164 0.5275 0.6025 0.2462 68.73 0.2764 0.4758

SongEcho (Ours) 0.7066 0.7333 0.7001 0.2674 40.37 0.2117 0.3091

In addition, we conduct an experiment involving random swapping of text tags in the test set, with
results shown in Table 2. Our method consistently outperforms the other two approaches, with
melody-related metrics remaining comparable to those before tag swapping. The CLAP score of
our method is 0.0126 lower than that of the original model, which is reasonable since the melody of
a song implicitly encodes certain stylistic attributes. This also explains why our method outperforms
the original model in terms of CLAP score in Table 1.

Table 3: Quantitative evaluation results on SongEval (Yao et al., 2025).
RPA ↑ RCA ↑ OA ↑ CLAP ↑ FD ↓ KL ↓ PER ↓

ACE-Step ( Gong et al. (2025)) - - - 0.2590 71.56 0.3305 0.4510
ACE-Step+SA ControlNet (Hou et al., 2025) 0.6463 0.6600 0.6934 0.2666 114.18 0.4069 0.5234

ACE-Step+SA ControlNet+LoRA ( Hou et al. (2025)) 0.6335 0.6465 0.6837 0.2583 104.76 0.3112 0.5901
ACE-Step+MuseControlLite ( Tsai et al. (2025)) 0.5421 0.5498 0.6208 0.2600 90.19 0.3913 0.5760

SongEcho (Ours) 0.7164 0.7326 0.7097 0.2824 51.98 0.1933 0.4487

We enhance the annotation of the publicly available SongEval (Yao et al., 2025) benchmark and
compare our method with other approaches on this dataset. SongEval comprises 2,399 complete
AI-generated songs used to train a song aesthetic evaluation model, exhibiting significant variability
in audio quality and lacking lyrics or tag annotations. We select the top 100 English songs with
the highest aesthetic scores for testing. Corresponding music tags are generated using Qwen2-
audio (Chu et al., 2024). Lyrics transcription files are obtained using Whisper (Radford et al., 2023)
combined with All-in-One (Kim & Nam, 2023). Six songs yield text unrecognizable by ACE-Step,
resulting in a final test set of 94 songs. The evaluation results, as shown in Table 3, demonstrate
that our method achieves superior performance compared with the baselines. The observed decline
in PER may result from punctuation errors (e.g., run-on sentences and incorrect sentence breaks) in
transcribed lyrics, disrupting their inherent alignment with the melody (see details in Appendix C.2).

Table 4: Mean opinion scores (1–5) comparing melody fidelity (MF), text adherence (TA), Audio
Quality (AQ) and overall preference (OP).

w/ Music Background w/o Music Background
MF ↑ TA ↑ AQ ↑ OP ↑ MF ↑ TA ↑ AQ ↑ OP ↑

ACE-Step+SA ControlNet+LoRA (Hou et al., 2025) 3.056 3.285 3.085 3.104 3.133 3.636 3.182 3.160
ACE-Step+MuseControlLite (Tsai et al., 2025) 2.630 3.026 2.581 2.622 2.689 3.333 2.591 2.622

SongEcho (Ours) 3.644 3.800 3.756 3.819 3.884 4.160 3.916 3.942

Subjective Evaluation. For the subjective evaluation, we conduct a Mean Opinion Score (MOS)
listening test. Specifically, we randomly select 15 groups, totaling 45 songs, as our evaluation set,
each accompanied by the original song and the text prompts for the cover songs. Participants are
asked to rate the songs on a scale from 1 to 5 across four dimensions: Melody Fidelity (MF),
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Text Adherence (TA), Audio Quality (AQ), and Overall Preference (OP). A total of 33 participants,
comprising 15 with a music-related background and 18 without, take part in the evaluation. The
average scores for each method are shown in Table 4. Our approach achieves the highest scores
across all four aspects in both groups, demonstrating superior alignment with human perception
compared to baselines.

5.3.2 QUALITATIVE EVALUATION

The comparison results of our method and other approaches are available at https://
vvanonymousvv.github.io/SongEcho_updated/. Our model achieves high-quality
cover song generation under precise vocal melody control. Overall, the other two methods (Hou
et al., 2025; Tsai et al., 2025) can leverage the text control capabilities of ACE-Step to achieve some
extent of adaptation, but their audio quality is noticeably inferior to ours. In terms of melody control,
ACE-Step+MuseControlLite (Tsai et al., 2025) exhibits noticeable noise and melody drift, along
with misalignment between vocals and the original audio, likely due to the cross-attention mech-
anism’s failure to establish precise temporal alignment. ACE-Step+SA ControlNet+LoRA (Hou
et al., 2025) achieves decent melody control, but alignment between vocals and melody occasion-
ally falters, and the integration of vocal tracks with the accompaniment lacks coherence. We also
provide results on Tag-Melody Conflict, Inpainting & Outpainting, and Global Tempo & Key Con-
trol on the demo page. We observe that the model prioritizes the source melody when the provided
style tags conflict with the melody condition. Our method supports inpainting and outpainting via
a simple masking strategy. Additionally, our method allows direct control over global tempo and
key by performing simple post-processing on the extracted vocal melody (F0) sequence. Arbitrary
tempo changes are achieved via time-stretching, while key transposition is realized through pitch
shifting.

Table 5: Ablation study of our method. “w/ EA” represents replace EiLM with element-wise ad-
dition, and “IA-EiLM→Self-Attn” indicates that we insert our IA-EiLM module before the self-
attention layer in each Transformer block.

RPA ↑ RCA ↑ OA ↑ CLAP ↑ FD ↓ KL ↓ PER ↓
w/ EA, w/o IACR 0.6336 0.6476 0.6683 0.3014 73.83 0.1689 0.3276

w/ EiLM, w/o IACR 0.6799 0.7000 0.6793 0.2999 75.28 0.1569 0.3166
IA-EiLM→Self-Attn 0.6190 0.6429 0.6303 0.3195 47.34 0.1434 0.3462
100 Training Samples 0.4677 0.4889 0.4812 0.2854 71.85 0.1402 0.4159

1000 Training Samples 0.6505 0.6775 0.6559 0.3115 48.59 0.1135 0.2871
SongEcho (Ours) 0.7080 0.7339 0.6952 0.3243 42.06 0.1123 0.2951

5.4 ABLATION STUDY

We conduct a series of ablation experiments to demonstrate the effectiveness of our method. First,
we replace our EiLM module with element-wise addition and remove the IACR Module. The results,
presented in the 1st and 2nd rows of Table 5, show that the EiLM module improves melody metrics
while maintaining comparable performance on other metrics. Building on the 2nd row, incorporating
the IACR module yields our final version. The results indicate that the IACR module not only
enhances melody metrics but also substantially improves audio quality metrics, underscoring the
critical role of adaptively adjusting melody features based on the hidden states of the generative
model for harmonious integration of melody conditions.

In our final version, the IA-EiLM module is integrated before the Feed-Forward Network (FFN)
layer in each Transformer block. Compared to integrating it before the Self-Attention layer, this
placement results in better melody metrics. This is likely because Self-Attention performs global in-
formation interaction, which may disrupt melody preservation, whereas the FFN layer only conducts
local transformations, preserving the injected melody features.

We also investigate the impact of training data scale. Training with only 100 samples proves insuf-
ficient for effective melody control. However, increasing the training sample size to 1,000 markedly
improves performance, with some metrics approaching those achieved with our full dataset. This
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indicates that our method is highly data-efficient and demonstrates strong potential for application
in limited-data scenarios.

5.5 DISCUSSION AND LIMITATIONS

Although our method effectively enables song reinterpretation while preserving vocal melodies,
the inherent limitations of ACE-Step’s text control capabilities (Gong et al., 2025) restrict fine-
grained control over vocal timbre, supporting only gender-based adjustments and limiting nuanced
voice manipulation. This constraint limits the flexibility of cover song generation, which future
advancements in song generation foundation models may address. Alternatively, we plan to integrate
a speaker encoder in the future, such as those used in Singing Voice Conversion (SVC), to enable
more nuanced and expressive cover song generation.

In this work, we exclude the song-specific, local adaptations (e.g., variations in phoneme durations,
vibrato, and note transitions) that musicians may introduce when creating covers. One promising
avenue toward Whitney Houston-style expressive covers is to combine our method with melody
editing tools or human creators. Local creative modifications can be introduced via external editing
or live performance, after which our model generates a global reinterpretation of the revised melody
contour. Additionally, AI-generated songs lack the expressive subtlety of human singing and fine-
grained vocal technique annotations, preventing our model from achieving the micro-level expres-
siveness typical of professional covers. Future research could incorporate such fine-grained control
by developing song generation models capable of understanding time-aligned musical prompts for
precise adaptation control. More ideally, by constructing real paired original-cover datasets, mod-
els could learn to autonomously reinterpret an incomplete melody, employing both global and local
adaptations to convey distinct emotions and styles.

6 CONCLUSION

We introduce a lightweight framework for our cover song generation built upon a text-to-song model.
To achieve precise melodic control and harmonious integration, we propose a novel conditioning
method, IA-EiLM, which enhances the conditional injection mechanism and conditional represen-
tation. The EiLM facilitates temporally aligned modulation of the generative hidden states based on
conditioning inputs, while the IACR module employs adaptive refinement, leveraging hidden states
to enhance the integration of conditional features into the generative model. Experiments demon-
strate that our approach outperforms state-of-the-art melody-controllable music generation methods
while requiring significantly fewer trainable parameters. IA-EiLM significantly improves the gener-
ation quality and melody preservation for cover songs. Theoretically, IA-EiLM shows potential for
application in various conditional tasks beyond controllable music generation. The curated Suno70k
dataset helps mitigate copyright issues in song-related AI tasks, supporting advancements in AI mu-
sic research.

ETHICS STATEMENT

In exploring cover song generation, we have given full consideration to the ethics of copyright. To
mitigate these issues, our model was trained exclusively on AI-generated music. All outputs are
strictly for non-commercial academic demonstration, and we are committed to the responsible use
of this technology.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we provide a detailed description of the dataset pro-
cessing pipeline in Section 4. Comprehensive details of computational resources, parameter settings,
and evaluation protocols are included in Section 5. Additionally, the source code and datasets used
in this study will be made publicly available to support reproducibility.
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A RELATED WORK

A.1 TEXT-TO-SONG GENERATION

Jukebox (Dhariwal et al., 2020) pioneered the generation of song, utilizing a multiscale Vector Quan-
tized Variational Autoencoder (VQ-VAE) to compress raw audio into discrete codes, which are sub-
sequently modeled using autoregressive Transformers. In recent years, several industry tools, such
as Suno7, Udio8), Seed-Music (Bai et al., 2024)), Meruka9), have demonstrated promising results in
song generation. This progress has spurred researchers to focus on developing open-source text-to-
song models, which are increasingly competitive with their closed-source counterparts.

Melodist (Hong et al., 2024) and Melody (Li et al., 2024a) employ a two-stage generation process,
sequentially producing vocals and accompaniment to create the final song. Songcreator (Lei et al.,

7https://suno.com/blog/introducing-v4-5
8https://www.udio.com/blog/introducing-v1-5
9https://www.mureka.ai
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2024)) integrates a dual-sequence language model with a diffusion model to achieve lyrics-to-song
generation. Meanwhile, YuE (Yuan et al., 2025)) and SongGen (Liu et al.)) explore the potential of
separating vocal and accompaniment tokens in song generation. Building on this, LeVo (Lei et al.,
2025) introduces mixed-token generation and leverages Direct Preference Optimization (DPO) to
enhance the musicality and instruction-following capabilities of generated songs. A notable limita-
tion of autoregressive model-based approaches is their prolonged inference times. Diffusion-based
methods, such as DiffRhythm (Ning et al., 2025) and AceStep (Gong et al., 2025), have signif-
icantly mitigated this issue. AceStep (Gong et al., 2025)) further addresses the shortcomings of
DiffRhythm (Ning et al., 2025) by adding the understanding of song structure. Although current
models generate high-quality songs and some support audio prompts, precise temporal melody con-
trol remains challenging. To optimize inference speed and performance, we adopt AceStep as our
base model.

A.2 SING VOICE SYNTHESIS & CONVERSION

Singing Voice Synthesis (SVS) aims to generate single-track vocals consistent with given lyrics and
musical scores. Previous GAN-based approaches (Huang et al., 2022; Chunhui et al., 2023) suffer
from over-smoothing and unstable training, respectively, compromising the naturalness of synthe-
sized singing. Some methods (Zhang et al., 2022b; 2023b; Cui et al., 2024)) leverage the VITS text-
to-speech framework for end-to-end SVS. Choi et al. (Choi & Nam, 2022)) propose an SVS method
that only needs audio-and-lyrics-pairs, eliminating the need for duration labels. DiffSinger (Liu
et al., 2022)) pioneers the use of diffusion models in SVS, significantly enhancing voice quality.
While MuSE-SVS (Kim et al., 2023)) introduces singer and emotion control, TCsinger (Zhang et al.,
2024a)) and TCsinger2 (Zhang et al., 2025)) further explore zero-shot style-controllable SVS. Sing
Voice Conversion (VC) seeks to transform the timbre and singing techniques of a source singer into
those of a target singer while preserving song content and melody. DiffSVC (Liu et al., 2021) ap-
plies diffusion models to SVC, improving generation quality, while CoMoSVC (Lu et al., 2024) and
LCM-SVC (Chen et al., 2024) focus on accelerating diffusion inference. Additionally, So-VITS-
SVC 10), FreeSVC (Ferreira et al., 2025)), and KNN-SVC (Shao et al., 2025)) achieve zero-shot
SVC. While these works delve into melodic control, they remain limited to single-track, short-
duration vocal synthesis. In contrast, our task targets the simultaneous generation of full-length
accompaniment and vocals.

A.3 CONTROLLABLE MUSIC GENERATION

Controllable music generation enhances text-to-music generation by integrating temporal con-
trol. AirGen (Lin et al., 2024) employs parameter-efficient fine-tuning (PEFT) based on MUSIC-
GEN (Copet et al., 2024) for content-based music generation and editing. Li et al. (Li et al., 2024b))
adapt textual inversion (Gal et al., 2023)) into time-varying textual inversion with a bias-reduced
stylization technique for example-based style transfer. MusiConGen (Lan et al., 2024)) introduces
an in-attention mechanism and efficient fine-tuning to control rhythm and chords. Music Control-
Net (Wu et al., 2024) applies ControlNet (Zhang et al., 2023a) to a diffusion model for text-to-
music generation, enabling precise temporal control. Ciranni et al. (Ciranni et al., 2025)) and Hou
et al. (Hou et al., 2025)) augment Stable Audio (Evans et al., 2024)), a DiT-based model, with a
ControlNet-inspired control branch. However, their reliance on element-wise addition limits control
flexibility due to its inherent simplicity. MuseControlLite (Tsai et al., 2025)), inspired by IP-adapter,
designs a lightweight adapter for controllable music generation. SongEditor (Yang et al., 2025) uses
cross-attention to inject audio conditions, achieving complete vocal or accompaniment tracks when
given the rest. However, these cross-attention-based methods require the model to implicitly learn
the temporal alignment between the condition and the music tokens. This approach is not only
indirect but also incurs significant computational redundancy. Furthermore, existing methods lack
adaptive modulation of conditions with original hidden states.

A.4 CONDITIONAL NORMALIZATION

Conditional Normalization methods leverage a learned function of conditioning information to de-
rive modulation parameters for affine transformations of target features, proving highly effective

10https://github.com/svc-develop-team/so-vits-svc
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across various domains. Conditional Instance Normalization (Dumoulin et al., 2017)) and Adaptive
Instance Normalization (AdaIN) (Huang & Belongie, 2017) excel in image style transfer. Con-
ditional Batch Normalization (Anderson et al., 2018) supports general visual question answering,
while Dynamic Layer Normalization (Kim et al., 2017) enhances speech recognition. (Perez et al.,
2018)) unify these methods with Feature-wise Linear Modulation (FiLM). SPADE (Park et al.,
2019)) injects semantic segmentation maps for image translation, and similarly, we propose EiLM
for temporally adaptive melody-conditioned control. Temporal FiLM (TFiLM) Birnbaum et al.
(2019); Comunità et al. (2023) applies FiLM sequentially within an RNN Elman (1990) frame-
work to capture long-range dependencies, demonstrating robust performance in text classification
and black-box audio effect modeling. Recent work DiT (Peebles & Xie, 2023) incorporates condi-
tional information in text-to-image models via the AdaLN-zero module. Despite these advances, the
application of conditional normalization in music remains underexplored.

A.5 SONG DATASET

Some of the song datasets for Music Information Retrieval (MIR), such as MIR-1K (Hsu & Jang,
2009), MIR-ST500 (Wang & Jang, 2021), and Cmedia11, include audio files with rich annota-
tions but are limited to small scales, typically comprising only hundreds of samples. Large-scale
song datasets, including WASABI Song Corpus (Buffa et al., 2021), Million Song Dataset (Bertin-
Mahieux et al., 2011), and SongCompose-PT (Ding et al., 2024), primarily provide metadata and
analytical features but lack raw audio. Datasets designed for singing voice synthesis, such as
OpenSinger (Huang et al., 2021), M4singer (Zhang et al., 2022a), and GTsinger (Zhang et al.,
2024b), consist of short, single-track vocal segments, making them incompatible with the require-
ments of Cover Song Generation. Recently, SongEval (Yao et al., 2025) introduced a benchmark
dataset of 2,399 AI-generated full songs, but its inconsistent quality limits its applicability.

B METHOD DETAILS

B.1 NOTE-LYRICS ALIGNMENT

We condition on the RVMPE-extracted F0 sequence, which is preprocessed by normalizing only its
voiced components (50-900Hz) and concatenating the result with a derived binary voiced/unvoiced
flag (uv flag) to form the final melody feature. Our method achieves lyric-to-note alignment with-
out explicit duration modeling or external aligners. The uv flag accurately delineates voiced re-
gions, and visualization (see Figure 3) shows that phoneme transitions consistently align with inflec-
tion points in the F0 curve. By jointly optimizing melody (F0) and linguistic content (phonemes)
during source song reconstruction, the model leverages the strong phoneme-note dependencies cap-
tured by its pretrained backbone to implicitly construct a phoneme layout along the F0 timeline.

B.2 VALIDITY OF EQUATION 6 REGARDING AUDIO COPYING

Given Eq. 6:
(γm, βm) = argmin

γ,β
∥Em(γ ⊙ h+ β)−Mc∥22, (14)

where both γ and β are static (i.e., independent of the hidden states h).

Well-constrained case (γm = 0). The objective simplifies to minβ ∥Em(β) −Mc∥22, which has a
unique solution for any h.

Underconstrained case (γm ̸= 0). A static (γ, β) must satisfy Em(γ⊙h+β) = Mc simultaneously
for all possible hidden states h. This is impossible unless h degenerates to a constant vector.

Why γm = 0 works for full-audio conditioning . When the condition m is the full target audio
(i.e., the modeling objective effectively becomes reconstructing m via γ ⊙ h+ β = m), the optimal

11https://www.music-ir.org/mirex/wiki/2020:Singing Transcription from Polyphonic Music
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Figure 3: We visualize the F0 contour extracted from the song, along with the word-level and
phoneme-level timestamps produced by the Montreal Forced Aligner (MFA) (McAuliffe et al.,
2017). The full lyrics used in the example are: “I had a horse named Hair, we weren’t going
nowhere.”

solution to Eq. 6 is
γm ≈ 0, βm ≈ m, (15)

which completely suppresses the hidden state h and directly copies the condition. This is exactly
what MuseControlLite does, as confirmed by its diagonal attention pattern under full audio condi-
tioning (see Fig. 2 in the MuseControlLite Tsai et al. (2025) appendix or Fig. 5 in our appendix).
When the attention matrix is always diagonal, the query degenerates into a pure positional index and
suppresses h. The output of the attention layer then becomes:

Output = Softmax

(
QhK

⊤
c√

d

)
Vc ≈ I · Vc = Vc, (16)

where Qh denotes the query from hidden state h, and Kc, Vc are derived from the audio condition
m. This process directly duplicates Vc rather than generating new content.

Why γm = 0 fails for melody control In our task, the condition m corresponds to a compressed
melody rather than the target latent. Setting γm = 0 causes the modulated hidden states to contain
only melody information. They lose essential attributes of the target song (e.g., timbre and lyrics),
making it impossible to generate the target song. This establishes that γm ̸= 0 is necessary for
our task. However, when γm ̸= 0, with γ and β fixed across all hidden states h, Eq. 6 becomes
underconstrained for arbitrary h. Our proposed IACR strategy is introduced specifically to make the
objective well-constrained again.

In summary, Audio copying succeeds with static conditioning only because it can exploit the de-
generate γm = 0 solution—a shortcut not available for melody control. Our IACR resolves the
underconstrained problem by making (γ, β) dependent on both m and h (Eq. 7), yielding obvious
improvement when ablated (Table 5, Row 2 vs. Row 6).

C ADDITIONAL EXPERIMENTAL DETAILS
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Sample 1# [Verse 1]
I don't need you no more I don't want you to love me no more
No more
Say that you love me Turn around and backstab me
All the pain of forgiveness, even time couldn't fix this
...
Sample 2# [Verse 1]
Said, I'll double this ten and kiss my dead goodbye
But the dealer's got 21 she's
stuck with five now she's betting the keys hope to stay alive marlene 
marlene put down the slot
...

[Verse]
In shadows where monsters play
Echoes of our darkest day
But we won't fade to gray
We'll rise up come what may

[Verse 2]
Through fire and icy tears
Confronting all our deepest fears
The whispers turn to cheers
The strength in all we hear
...

(a) Sample of lyrics transcribed for the SongEval (b) Sample of lyrics from Suno70k 

Figure 4: Lyrics transcribed by Whisper (Radford et al., 2023) with All-in-One (Yao et al., 2025)
for SongEval (Yao et al., 2025) exhibit punctuation errors, including run-on sentences (orange),
multiple clauses per line (blue), and incorrect sentence breaks (green), whereas Suno70k’s native
lyrics ensure each phrase is on a separate line.

C.1 DETAILS OF BASELINES

ACE-Step+SA ControlNet (Hou et al., 2025; Gong et al., 2025). We follow the architecture
of SA-ControlNet, while replacing its generative backbone with the pre-trained ACE-Step model.
Specifically, we clone half of the pre-trained Diffusion Transformer (DiT) blocks to create a control
branch consisting of 12 Transformer blocks in total, while keeping the melody encoder exactly the
same as in our proposed method. The model is trained with the same training settings as our model
(AdamW, β1=0.9, β2=0.95, weight decay=0.01, lr=10−4, 1,000-step linear warm-up). Training
lasts for 32,000 steps with a batch size of 12 (vs. 30,000 steps for our model). During inference, we
directly adopt the original classifier-free guidance (CFG) sampler of ACE-Step with guidance scale
λ = 15.0.

Table 6: Quantitative evaluation results of three inference guidance strategies for the ACE-
Step+MuseControlLite baseline (Tsai et al., 2025).

RPA ↑ RCA ↑ OA ↑ CLAP ↑ FD ↓ KL ↓ PER ↓

Suno70k
λ = 15.0 0.5205 0.5346 0.5940 0.2977 72.04 0.2151 0.4194

λtext = 15.0, λmelody = 7.0 0.4896 0.5042 0.5557 0.3159 55.82 0.1820 0.4837
λtext = 7.0, λmelody = 15.0 0.5536 0.5653 0.6351 0.2942 73.59 0.2763 0.6159

Suno70k+Swapped Tags
λ = 15.0 0.5164 0.5275 0.6025 0.2462 68.73 0.2764 0.4758

λtext = 15.0, λmelody = 7.0 0.4798 0.4924 0.5669 0.2704 54.11 0.3087 0.5446
λtext = 7.0, λmelody = 15.0 0.5578 0.5682 0.6459 0.2290 74.39 0.3445 0.6387

SongEval
λ = 15.0 0.5421 0.5498 0.6208 0.2600 90.19 0.3913 0.5760

λtext = 15.0, λmelody = 7.0 0.5040 0.5115 0.5800 0.2699 77.36 0.3205 0.6333
λtext = 7.0, λmelody = 15.0 0.5880 0.5954 0.6614 0.2567 97.44 0.4593 0.7179

ACE-Step+MuseControlLite (Tsai et al., 2025; Gong et al., 2025). We follow the architec-
ture of MuseControlLite, while replacing its generative backbone with the pre-trained ACE-Step
model. Specifically, we adopt its decoupled cross-attention mechanism equipped with Rotary Posi-
tion Embedding (RoPE), while keeping the melody encoder identical to that used in our proposed
method. The model is trained with the same training settings as our model (AdamW, β1=0.9,
β2=0.95, weight decay=0.01, lr=10−4, 1,000-step linear warm-up). Training is performed for
36,000 steps with a batch size of 12 (vs. 30,000 steps for our model). During inference, we evaluate
three guidance strategies: (1) the original ACE-Step classifier-free guidance (CFG) with guidance
scale λ=15.0; (2) MuseControlLite-style Multiple Classifier-Free Guidance with λtext=15.0 and
λmelody=7.5; (3) Multiple Classifier-Free Guidance with λtext=7.5 and λmelody=15.0. The first strat-
egy (ACE-Step’s native CFG, λ=15.0) yields the best overall performance. Results for the three
variants are summarized in Table 6. The first version achieves the best overall performance and is
reported in our main text.
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Table 7: Comparison of SongEval (Yao et al., 2025) Aesthetics Metrics Across Methods.
Dataset Suno70k SongEval

Metrics Coherence ↑ Musicality ↑ Memorability ↑ Clarity ↑ Naturalness ↑ Coherence ↑ Musicality ↑ Memorability ↑ Clarity ↑ Naturalness ↑
ACE-Step 3.144 2.873 2.991 2.957 2.817 3.389 3.149 3.254 3.180 3.059

SA ControlNet 3.237 2.958 3.058 3.018 2.909 3.317 3.061 3.131 3.072 2.953
MuseControlLite 2.871 2.591 2.667 2.607 2.592 2.914 2.686 2.705 2.648 2.617
SongEcho (Ours) 3.776 3.485 3.644 3.534 3.440 3.941 3.698 3.834 3.680 3.590

C.2 COMPARISON OF LYRICS FROM SONGEVAL AND SUNO70K

Lyrics transcribed by Whisper (Radford et al., 2023) with All-in-One (Yao et al., 2025) for
SongEval (Yao et al., 2025) exhibit punctuation errors, including run-on sentences, multiple clauses
per line, and incorrect sentence breaks, due to inaccurate segment splitting by Whisper. In contrast,
Suno70k’s native lyrics ensure each phrase occupies a separate line (See Fig. 4). During training,
this implicitly fosters alignment between lyrics and melody, with each melodic phrase correspond-
ing to one lyric line. However, transcribed lyrics disrupt this alignment, leading to increased PER
in the SongEval dataset evaluation. The lesser impact on the original model stems from its lack of
melody control, as it generates lyrics sequentially without requiring lyric-melody alignment, thus
relying less on accurate sentence segmentation.

C.3 AESTHETIC EVALUATION

We perform an aesthetic evaluation of the results from two datasets using SongEval (Yao et al.,
2025), as shown in Table 7. Each song is evaluated across five dimensions: overall coherence,
memorability, naturalness of vocal breathing and phrasing, clarity of song structure, and overall
musicality. Our method exhibits a clear advantage over other approaches across all metrics, further
validating the harmonious integration of melody control and the generative model, thereby generat-
ing high-aesthetic cover songs.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) as a general-purpose writing assistant to polish the text
of this paper. Specifically, LLMs were employed to correct grammar, improve clarity, and refine
phrasing in certain sentences. The models did not contribute to the research design, problem formu-
lation, method development, experimentation, interpretation of results, or overall scientific contri-
butions. Their role was limited solely to surface-level editing and presentation improvements of the
manuscript.
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Figure 5: Attention map visualization of MuseControlLite (Tsai et al., 2025) under full-audio con-
ditioning. The clear diagonal pattern indicates that the post-softmax attention matrix approximates
an identity matrix.
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