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ABSTRACT

Enabling effective brain-computer interfaces needs understanding how the human
brain encodes stimuli across modalities such as visual, language (or text), etc.
Brain encoding aims at constructing fMRI brain activity given a stimulus. There
exists a plethora of neural encoding models which study brain encoding for sin-
gle mode stimuli: visual (pretrained CNNs) or text (pretrained language models).
Few recent papers have also obtained separate visual and text representation mod-
els and performed late-fusion using simple heuristics. However, previous work
has failed to explore: (a) the effectiveness of image Transformer models for en-
coding visual stimuli, and (b) co-attentive multi-modal modeling for visual and
text reasoning. Further, as pretrained image Transformers and multi-modal Trans-
formers have continued to evolve, it is important to understand if they are becom-
ing more brain-like and hence lead to improved brain encoding. In this paper, we
systematically explore the efficacy of image Transformers (ViT, DEiT, and BEiT)
and multi-modal Transformers (VisualBERT, LXMERT, ViLBERT, and CLIP) for
brain encoding. Extensive experiments on two popular datasets, BOLD5000 and
Pereira, provide the following insights. (1) To the best of our knowledge, we are
the first to investigate the effectiveness of image and multi-modal Transformers
for brain encoding. (2) Surprisingly, we observe a better encoding correlation be-
tween Transformer model layers and the levels of visual processing in the human
brain when compared to CNN architectures. (3) We find that multi-modal Trans-
formers significantly outperform previously proposed single-mode CNNs, image
Transformers as well as other previously proposed multi-modal models, thereby
establishing new state-of-the-art. The supremacy of visio-linguistic models raises
the question of whether the responses elicited in the visual regions are affected
implicitly by linguistic processing even when passively viewing images. Future
fMRI tasks can verify this computational insight in an appropriate experimental
setting. We make our code publicly availabl

1 INTRODUCTION

In the past decade, artificial neural networks have witnessed a remarkable performance in the compu-
tational neuroscience community in understanding how the brain effortlessly performs information
perception and processing given various forms of sensory inputs like visual processing in object
recognition tasks (Yamins et al.| [2014; |Cadieu et al., 2014} [Eickenberg et al.l [2017). This line of
work, namely brain encoding, aims at constructing neural fMRI (functional magnetic resonance
imaging) brain activity given an input stimulus. The two most studied forms of stimuli include
vision and language.

Since the discovery of the relationship between language/visual stimuli and functions of brain net-
works (Constable et al., 2004; [Thirion et al., 2006), researchers have been interested in understand-
ing how the neural encoding models predict the fMRI brain activity. Recently, several brain encoding
models have been developed to (i) understand the ventral stream in biological vision (Yamins et al.,
2014 |[Kietzmann et al., |2019; Bao et al [2020), and (ii) to study the higher-level cognition like
language processing (Gauthier & Levyl 2019; |Schrimpf et al., 2020a; [Schwartz et al., |2019). Pre-
vious work has mainly focused on independently understanding vision and text stimuli. However,
the biological systems perceive the world by simultaneously processing high-dimensional inputs

lhttps ://www.dropbox.com/s/gxvxahaknzigrds/Visio_linguistic_Brain_
Encoding.zip?dl=0
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from diverse modalities such as vision, auditory, touch, proprioception, etc. (Jaegle et al., 2021). In
particular, how the brain effectively processes and provides its visual understanding through natural
language and vice versa is still an open question in neuroscience.

There exist a plethora of neural encoding models which predict the fMRI brain activity using repre-
sentations of single-mode stimuli: visual or text. Convolutional neural networks (CNNs) have been
shown to encode semantics from visual stimuli effectively. Interestingly, intermediate layers in deep
CNNs trained on ImageNet (Deng et al. 2009) categorization task can partially account for how
neurons in intermediate layers of the visual system respond to any given image (Yamins et al., 2013;
20145 |Giclu & van Gerven, [2015; |Yamins & DiCarlo, [2016; |Wang et al.,[2019). However, the more
recent and deeper CNN's have not been shown to further improve on measures of brain-likeness, even
though their ImageNet performance has vastly increased (Russakovsky et al.||2015). Recently, Ku-
bilius et al.[(2019) proposed a shallow recurrent anatomical network, CORnet, which provided state-
of-the-art results on the Brain-score (Schrimpf et al.||2020b) benchmark. Similar to visual encoding
models, neural models like deep recurrent neural networks (RNNs), Transformer (Vaswani et al.
2017) based language models such as BERT (Devlin et al.,|2019), RoBERTa (Liu et al.,|2019), and
GPT-2 (Radford et al., [2019) have been leveraged to predict fMRI brain activity corresponding to
semantic vectors of linguistic items including words, phrases, sentences, and paragraphs (Gauthier
& Levy, 2019; [Schrimpf et al.| [2020a). However, these pieces of work suffer from the following
drawbacks: (1) Although these neural encoding models have demonstrated promising results of pro-
cessing in one of the two brain regions (visual cortex and pre-frontal cortex), they still need plenty
of efforts to improve on brain encoding for other parts of the brain. Brain encoding for more brain
regions is important since input stimuli elicit diverse and distributed representations in the brain, and
these activation responses could be repurposed for several novel tasks. (2) They manually choose
particular CNN layers whose activations are used for accurately predicting brain fMRIs specific to
the datasets they work with; thus, generalization to other datasets is unclear.

Unlike previous studies, which focus on single-modality (either visual or language stimuli), some
authors demonstrated that multi-modal models formed by combining text-based distributional in-
formation with visual representations provide a better proxy for human-like intelligence (Anderson
et al.L|2015;|Oota et al.|2019). However, these methods extract representations from each mode sep-
arately (image features from CNNs and text features from pretrained embeddings) and then perform
a simple late-fusion. Thus, they cannot exploit semantic correspondence across the two modes at
different levels effectively. Such late-fusion based multi-modal models are the closest to our work,
and our experiments show that our models outperform them.

Recently, image-based transformer models like ViT (Dosovitskiy et al.,2020), DEiT (Touvron et al.,
2021)), and BEiT (Bao et al.l |2021) have been shown to provide excellent results compared to tra-
ditional CNNs on image classification tasks. Also, multi-modal Transformers like VisualBERT (Li
et al.,|2019), LXMERT (Tan & Bansal,|[2019), VILBERT (Lu et al.,|2019) and CLIP (Radford et al.,
2021)) have shown awesome results on visio-linguistic tasks like visual question answering, visual
common-sense reasoning, etc. Inspired by the success of language, image, and multi-modal Trans-
formers, we build multi-modal transformer models to learn the joint representations of image content
and natural language and use them for brain encoding.

In this work, we investigate several fundamental questions: do vision Transformers act like the
human brain visual system? Does the hierarchy of Transformer layers match with the visual cortical
hierarchy? Do multi-modal Transformers act more or less brain-like (perceiving multi-modal inputs
simultaneously)? Moreover, can we use multi-modal Transformers to perform fMRI encoding on
the whole brain? In this paper, we study these questions, uncovering insights about the association
between fMRI voxels and representations of multi-modal/image Transformers and CNNs. Fig. [1]
illustrates our brain encoding methodology.

Specifically, we make the following contributions in this paper. (1) We present state-of-the-art en-
coding results using multi-modal Transformers. We also study the effectiveness of our models in
a cross-validated setting. (2) Our approach generalizes the use of Transformer-based architectures,
removing the need to manually select specific layers as in existing CNN-based fMRI encoding ar-
chitectures. (3) We observe a better encoding correlation between transformer layer activations and
the levels of visual processing in the brain compared to CNN layer activations.
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Figure 1: Brain encoding methodology. We use features from image/multi-modal Transformers
(like ViT, VisualBERT and ViLBERT/LXMERT) as input to the regression model to predict the
fMRI activations for different brain regions. Brain encoding results are evaluated by computing
2V?2 accuracy and Pearson correlation between actual and predicted activations. We also perform
layer-wise correlation analysis between transformer layers and brain regions.

2 BRAIN IMAGING DATASETS

The following datasets are popularly used in the literature for studying brain encoding: Vim-1 (Kay
et al., 2008), Harry Potter (Wehbe et al., [2014), |Pereira et al.| (2018), BOLD5000 (Chang et al.,
2019), Algonauts (Cichy et al., |2019) and SS-fMRI (Beliy et al., 2019). Vim-1 has only black and
white images and is only related to object recognition, and is subsumed by BOLD5000. SS-fMRI
is smaller and very similar to BOLD5000. Harry Potter dataset does not have images. Lastly,
fMRIs have not been made publicly available for the Algonauts dataset. Hence, we experiment with
BOLDS5000 and Pereira datasets in this work.

BOLD5000: BOLD5000 dataset was collected from four subjects where three subjects engaged in
5254 natural images (ImageNet: 2051, COCO: 2135, Scenes: 1068) while fMRIs were acquired.
The fourth subject was shown 3108 images only. Details of the visual stimuli and fMRI proto-
cols of the dataset have been discussed in (Chang et al. 2019). We only briefly summarize the
details of the dataset in Table [I]in the Appendix. The data covers ten visual areas in the human
visual cortex, i.e., early visual area (LHEarlyVis, RHEarlyVis); object-related areas such as the lat-
eral occipital complex (LHLOC, RHLOC); and scene related areas such as the occipital place area
(LHOPA, RHOPA), the parahippocampal place area (LHPPA, RHPPA), and the retrosplenial com-
plex (LHRSC, RHRSC). Each image also has corresponding text labels: ImageNet has a few out of
1000 possible tags per image, COCO has five captions per image, and Scenes has one out of 250
possible categories per image.

Pereira: For the Pereira dataset, participants were shown concept word along with a picture with
an aim to observe brain activation when participants retrieved relevant meaning using visual infor-
mation. Sixteen subjects were presented images (six per concept) corresponding to 180 concepts
(abstract + concrete), while fMRIs were acquired. Out of 180 concepts, 116 are concrete, and others
are abstract. Here, we augmented the image captions using the concept word associated with each
image in the picture view. As in (Pereira et al.,|2018)), we focused on nine brain regions correspond-
ing to four brain networks: Default Mode Network (DMN) (linked to the functionality of semantic
processing), Language Network (related to language processing, understanding, word meaning, and
sentence comprehension, Task Positive Network (related to attention, salience information), and Vi-
sual Network (related to the processing of visual objects, object recognition). We briefly summarize
the details of the dataset and the number of voxels corresponding to each region in Table 2] in the
Appendix.

3 TASK DESCRIPTIONS

For both the datasets, we train fMRI encoding models using Ridge regression on stimuli represen-
tations obtained using a variety of models as shown in Fig.[I] The main goal of each fMRI encoder
model is to predict fMRI voxel values for each brain region given a stimuli. In all cases, we train
a model per subject separately. Different brain regions are involved in the processing of stimuli in-
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volving objects and scenes. Similarly, some regions specialize in understanding vision inputs while
others interpret linguistic stimuli better. To understand the generalizability of our models across
these cognitive aspects (objects vs. scenes, language vs. vision), we conduct the following experi-
ments. Whenever we train and test on the same dataset, we follow K-fold (K=10) cross-validation.
All the data samples from K-1 folds were used for training, and the model was tested on samples of
the left-out fold.

Full dataset fMRI Encoding: For each dataset, we perform K-fold (K=10) cross-validation.

Cross-validated fMRI Encoding: In the BOLD5000 dataset, we have three sub-datasets: COCO,
ImageNet, and Scenes. For each of the three sub-datasets, we perform K-fold (K=10) cross-
validation within the sub-dataset.

ImageNet images mainly contain objects. Scenes images are about natural scenes, while COCO im-
ages relate to both objects and scenes. To evaluate the generalizability of our models across objects
vs. scenes understanding, we also perform cross-validated experiments where the train images be-
long to one sub-dataset while the test images belong to the other sub-dataset. Thus, for each subject,
we perform (1) three same-sub-dataset train-test experiments and (2) six cross-sub-dataset train-test
experiments.

Abstract vs Concrete Concept fMRI Encoding: Similarly, in the Pereira dataset, we have two sub-
datasets: abstract and concrete. Intuitively, concrete images can be interpreted mainly using visual
processing, while abstract images may require linguistic processing. Hence, we experiment with
two different settings for each subject: (train on abstract, test on concrete) and (train on concrete,
test on abstract).

4 METHODOLOGY

We trained a ridge regression based encoding model to predict the fMRI brain activity associated
with the stimuli representation for each brain region. Each voxel value is predicted using a separate
ridge regression model. Formally, we encode the stimuli as X € RY*® and brain region voxels
Y € RV*V where N denotes the number of training examples, D denotes the dimension of input
stimuli representation, and V' denotes the number of voxels in a particular region.

The input stimuli representation can be obtained using any of the following models: (i) pretrained
CNNgs, (ii) pretrained text Transformers (iii) image Transformers, (iv) late-fusion models, or (v)
multi-modal Transformers. The ridge regression objective function for the i*" example is given by

Eq.[1
F(X0) = minl|Y; — XW [ + AW % (1

Here, W are the learnable weight parameters, ||.||r denotes the Frobenius norm, and A > 0 is a
tunable hyper-parameter representing the regularization weight. A was tuned on a small disjoint
validation set obtained from the training part.

In the following text, we discuss different input stimuli representation methods. Pretrained CNNs
and Image Transformers encode image stimuli only, while Pretrained text Transformers encode text
stimuli only. Late fusion models and Multi-modal Transformers encode both text and image stimuli.

Pretrained CNNs: Inspired by the Algonauts challenge (Cichy et all |2019), we extract the
layer-wise features from different pretrained CNN models such as VGGNetl9 (Simonyan &
Zisserman, 2014) (MaxPooll, MaxPool2, MaxPool3, MaxPool4, MaxPool5, FC6, FC7, FC8),
ResNet50 (He et al., 2016) (Blockl, Block2, Block3, Block4, FC), InceptionV2ResNet (Szegedy
et al.,[2017) (Conv2D5, Conv2D50, Conv2D100, Conv2D150, Conv2D200, Conv2D_7b), and Effi-
cientNetB5 (Tan & Le, [2019) (Conv2D2, Conv2DS8, Conv2D16, Conv2D24, FC) use in predicting
fMRI brain activity. Here, we use adaptive average pooling on each layer to get feature representa-
tion for each image.

Pretrained text Transformers: RoBERTa (Liu et al.l [2019) builds on BERT’s language masking
strategy and has been shown to outperform several other text models on the popular GLUE NLP
benchmark. We use the average-pooled representatiorﬂ from RoBERTa to encode text stimuli.

% Average-pooled representation gave us better results compared to using the CLS representation.
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Image Transformers: We used three image Transformers: Vision Transformer (ViT), Data Effi-
cient Image Transformer (DEiT), and Bidirectional Encoder representation from Image Transformer
(BEiT). Given an image, image Transformers output two representations: pooled and patches. We
experiment with both representations.

Late-fusion models: In these models, the stimuli representation is obtained as a concatena-
tion of image stimuli encoding obtained from pretrained CNNs and text stimuli encoding ob-
tained from pretrained text Transformers. Thus, we experiment with these late-fusion mod-
els: VGGNet19+RoBERTa, ResNet50+RoBERTa, InceptionV2ResNet+RoBERTa and Efficient-
NetB5+RoBERTa. Previously proposed methods like StepEnCog (Oota et al.| [2019) is also a late-
fusion model. These models do not incorporate information fusion across modalities.

Multi-modal Transformers: We experimented with these multi-modal Transformer models: Con-
trastive Language-Image Pre-training (CLIP), Learning Cross-Modality Encoder Representations
from Transformers (LXMERT), Vision-and-Language BERT (ViLBERT), and VisualBERT. These
Transformers take both image and text stimuli as input and output a joint visio-linguistic repre-
sentation. Specifically, the image input for these models comprises of region proposals as well as
bounding box regression features extracted from Faster R-CNN (Ren et al., [2015)) as input features
as shown in Fig. |1} These models incorporate information fusion across modalities at different lev-
els of processing using co-attention and hence are expected to result in high quality visio-linguistic
representations.

Hyper-parameter Setting: We used sklearn’s ridge-regression with default parameters, 10-fold
cross-validation, Stochastic-Average-Gradient Descent Optimizer, Huggingface for Transformer
models, MSE loss function, and L2-decay (A\) as 1.0. We used Word-Piece tokenizer for the lin-
guistic Transformer input and Faster-RCNN (Ren et al., 2015) for extracting region proposals. All
experiments were conducted on a machine with 1 NVIDIA GEFORCE-GTX GPU with 16GB GPU
RAM. We make our code publicly availableﬂ

5 EXPERIMENTS

5.1 EVALUATION METRICS

We evaluate our models using popular brain encoding evaluation metrics described in the following.
Given a subject and a brain region, let N be the number of samples. Let {Y;}~ | and {¥;}Y | denote
the actual and predicted voxel value vectors for the i*" sample. Thus, Y € RV*V and Y € RNxV
where V' is the number of voxels in that region. Let {E‘Z}f\il denote the stimuli representation for
the i*" sample. Thus, £ € RV *® where R is the dimensionality of the encoded representation.

2V2 Accuracy is computed as shown in Eq.[2]

N—-1 N
2V2Acc = > > IeosD(Y;, Vi) + cosD(Y;,Y;) < cosD(Y;,Y;) + cosD(Y;, Vi) (2)
) j=i+1

where cosD is the cosine distance function. I[c] is an indicator function such that I[c] = 1 if cis
true, else it is 0. The higher the 2V2 accuracy, the better.

Pearson Correlation (PC) is computed as PC=+ 3" | corr[V;, Y;] where corr is the correlation
function.

Representation Similarity Analysis (RSA) is computed as RSA=corr(YY 7T, EET) where YY1
and EET are called Representation Similarity Matrices (RSMs).

5.2 DO MULTI-MODAL TRANSFORMERS OUTPERFORM OTHER MODELS?

Unfortunately, there is no previous work that uses image Transformers or multi-modal Transformers
for brain encoding. StepEnCog (Oota et al.l 2019) is a late-fusion method, but it has a different
setting where the model expects voxel values per brain slice rather than per brain region. Besides
performing extensive evaluation using a large variety of models, we also compare our results with
those obtained by two previously proposed baselines that leverage pretrained CNN models: (Blauch
et al.,|2019) and (Wang et al., |2019) which use VGGNet.
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Figure 2: BOLD5000 Results: 2V2 (top figure) and Pearson correlation coefficient (bottom fig-
ure) between predicted and true responses across different brain regions using a variety of models.
Results are averaged across all participants. VisualBERT, LXMERT, and CLIP perform the best.

We present the 2V2 accuracy and Pearson correlation results for models trained with different input
representations (features extracted from the best performing layer of every pretrained CNN model
and last output layer of transformer model) on the two datasets: BOLD5000 and Pereira in Figs. 2]
and[3] respectively. We also present the results using intermediate layer activations for all the models

in the Appendix (Please refer Figs. 0} [T0} [TT] and[12).

BOLD5000: We make the following observations from Fig.[2} (1) Multi-modal Transformers such
as VisualBERT, LXMERT, and CLIP show better performance than uni-modal image Transform-
ers, pretrained CNNs, late-fusion representations, and RoBERTa. (2) On both 2V2 accuracy and
Pearson correlation, VisualBERT is better across all the models. (3) Late visual areas such as OPA
(scene-related) and LOC (object-related) display a higher correlation with multi-modal Transform-
ers which is inline with the visual processing hierarchy. In general, a higher correlation with all
the visual brain ROIs with multi-modal Transformers demonstrates the power of jointly encoding
visual and language information. (4) The Patch representation of image Transformers shows an
improved 2V2 accuracy and Pearson correlation compared to the Pooled representation. (5) Both
InceptionV2ResNet and ResNet-50 have better performance among uni-modality models.

Pereira: We make the following observations from Fig. Et (1) Similar to BOLD5000, multi-modal
Transformers such as VisualBERT and LXMERT perform better. (2) Lateral visual areas such as
Vision_Object, Vision_Body, Vision_Face, and Vision areas display higher correlation with multi-
modal Transformers. A higher correlation with all the visual brain regions, Language regions, DMN,
and TP with multi-modal Transformers, demonstrate that the alignment of visual-language under-
standing helps.

Further, we show RSA analysis for both the datasets in Fig. ] On average, the VisualBERT (VB)
model has a high correlation across various brain regions. This is why VisualBERT leads to the
highest brain encoding accuracy across both datasets. In Fig.[5] we show the mean absolute error
(MAE) between the actual and predicted voxels across brain regions using VisualBERT. Comparing
with similar brain charts for other models (shown in Figs. [T3] and [T4] in the Appendix), we notice
that the error magnitudes are very small for the majority of the voxels. We also report the layer-wise
RSA scores for both the datasets using all the models in the Appendix (Please refer Figs. [T5|and[T6).
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Figure 3: Pereira Results: 2V2 (top figure) and Pearson correlation coefficient (bottom figure) be-
tween predicted and true responses across different brain regions using a variety of models. Results
are averaged across all participants. VisualBERT, LXMERT, and InceptionV2ResNet perform the
best.
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Figure 4: Representation Similarity Analysis: Pearson correlation between RSA matrices of model
activations and brain voxel values.

5.3 DO IMAGE TRANSFORMERS ACT LIKE HUMAN VISUAL SYSTEM?

Given the hierarchical processing of visual stimulus across the image-based Transformers (ViT,
DEiT, and BEiT), we further examine how these layer-wise representations correlate with voxel rep-
resentations of each brain region using RSA scores. We show the RSA scores for three models: best
for visio-linguistic Transformers (VisualBERT), best for image Transformers (DEiT), best for pre-
trained CNNs (InceptionV2ResNet) in Figs. [6|and[7 for BOLD5000 and Pereira resp. as a heatmap.
We observe clear differences between the internal representation structure between the three model
architectures in the BOLD5000 experiments: (1) VisualBERT shows a much more uniform sim-
ilarity structure from lower to intermediate layers (L1-L9) across the brain regions. (2) Higher
layers in DEIiT show much greater RSA similarity than lower layers except EarlyVisual areas. (3)
The early visual areas (LHEarlyVis and RHEarlyVis) show higher RSA scores with initial layers
across the three models. (4) The intermediate blocks of InceptionV2ResNet (Conv2D100/L3 and
Conv2D150/L4) have higher RSA with brain regions. (5) VisualBERT has higher RSA with every
brain region compared to DEiT and InceptionV2ResNet. Qualitatively similar findings are obtained
in the experiments with the Pereira dataset: (i) All three models have higher RSA scores for visual
areas (vision, object, face, and body), possibly indicating their ability to capture visual information
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Figure 5: MAE between actual and predicted voxels: (a) left figure is zoomed on V2 and V3 brain
areas for VisualBERT on BOLDS5000. Note that V1 and V2 are also called EarlyVis area, while V3
is also called LOC area. (b) the right figure is for VisualBERT on the Pereira dataset.
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Figure 6: Representation Similarity Analysis for BOLD5000: Pearson correlation between RSA
matrices of model activations and brain voxel values.

(i1) On the other hand, only VisualBERT shows additionally higher RSA scores in the Language
areas (Language _LH/RH) too, indicating the joint alignment between vision and language.

5.4 CROSS-VALIDATED FMRI ENCODING

Fig. [Bfa) illustrates Pearson correlation for cross-validated encoding on BOLD5000 using three
multi-modal Transformers (VisualBERT, LXMERT, and CLIP). We also show results for a base-
line method (Blauch et all, 2019). We observe that (1) multi-modal Transformers outperform the
baseline results across all the ten brain regions for all the cross-validated tasks. (2) The Pearson cor-
relation score is higher for train on COCO and test on ImageNet in the object-selective visual area
LOC (lateral occipital cortex), which makes sense since COCO has many objects. (3) Similarly, the
scene-selective brain areas such as RSC and OPA have a higher correlation for the COCO-Scenes,
ImageNet-Scenes, and Scenes-Scenes tasks. (4) EarlyVisual areas have a lower correlation com-
pared to other brain regions across the three tasks. (5) Overall, the models trained on COCO or
ImageNet report higher correlation rather than those trained on Scenes.

5.5 ABSTRACT-CONCRETE FMRI ENCODING

The results for the abstract-train-concrete-test and concrete-train-abstract-test encoder models
are presented across brain regions using two best multi-modal Transformers (VisualBERT and
LXMERT), and the best pretrained CNN model (InceptionV2ResNet) in Fig. [§(b). We observe that
the concrete-train-abstract-test model provides a better Pearson correlation compared to the abstract-
train-concrete-test model. This matches our expectation that our brain can learn much better from
concrete concepts than abstract concepts. The Pearson correlation analysis across brain regions
provides the following insights. (1) The visual brain areas such as Vision_Body, Vision_Face, Vi-
sion_Object, and Vision have superior performance for both concrete and abstract concepts; surpris-
ingly, this is not the case for the Vision_Scene area. (2) The language, DMN, and Task Positive (TP)
brain networks have a higher correlation in the concrete-train-abstract-test than the abstract-train-
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Figure 8: (a) Cross-Validated Results for BOLD5000 dataset. (b) Abstract-Concrete Results for
Pereira dataset. VB=VisualBERT, LX=LXMERT, CL=CLIP, B=Baseline (Blauch et all, 2019),
INC=InceptionV2ResNet. CC=Train and test on COCO, CI=Train on COCO and test on ImageNet,
CS=Train on COCO and test on Scenes, and so on.)

concrete-test model. (3) Overall, VisualBERT and InceptionV2ResNet report similar performance
with a slight edge over the LXMERT model.

6 COGNITIVE INSIGHTS: DOES LANGUAGE INFLUENCE VISION?

We discussed various insights in detail in Section[5] We summarize cognitive insights in the follow-
ing. BOLDS5000 dataset comprises brain responses from visual areas (early visual, scene-related,
and object-related) when visual stimuli are presented to the subjects. Although only visual infor-
mation is present in the stimuli, it is conceivable that participants implicitly invoke appropriate
linguistic representations that in turn influence visual processing (Lupyan et all, [2020). Thus, it
is not surprising that computational models such as multi-modal Transformers (VisualBERT, and
LXMERT) that learn joint representation of language and vision show superior performance on the
‘purely’ visual response data in BOLD5000 (see Figs. 2| [5(a) and [6). Further, the performance of
these models is naturally good in the case when text and image are shown to the participants, and
whole brain responses are captured as in the case of the Pereira dataset (see Figs. 3} [5[b) and [7).
Based on the intuition from the computational experiments, we make the following testable predic-
tion for future fMRI experiments. Instead of a passive viewing task, if participants were to perform
a naming task/decision-making task on the objects/scenes, we expect to see more pronounced and
focused activation in the visual areas with the explicit top-down influence of Language areas during
the language-based task as compared to passive viewing.

7 CONCLUSIONS

In this paper, we studied the effectiveness of multi-modal modeling for brain encoding. We found
that multi-modal visio-linguistic Transformers, which jointly encode text and visual input using
cross-modal attention at multiple levels, perform the best. Our experiments on BOLD5000 and
Pereira datasets lead to interesting cognitive insights. These insights indicate that fMRIs reveal
reliable responses in scenes and object selection visual brain areas, which shows that cross-view
translation tasks like image captioning or image tagging are practically possible with good accuracy.
We plan to explore this as part of future work.
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A DATASET STATISTICS

We show number of instances and voxel distribution across various brain regions for the BOLD5000
and Pereira datasets in Tables [1|and [2|respectively.

Number of Voxels in Each ROI

ROIs— PPA LOC [EarlyVis| OPA RSC

J Subjects | #Instances|[LH RH|LH RH|[LH RH|LH RH|LH RH
Subject-1 5254 131 200(152 190{210 285|101 187|86 143
Subject-2 | 5254|172 198|327 561|254 241|85 95 |59 278
Subject-3 | 5254 112 161|430 597|522 696|187 205|78 116
Subject-4 | 3108 | 157 187|455 417|408 356|279 335|51 142

Table 1: BOLDS5000 Dataset Statistics. LH=Left Hemisphere. RH - Right Hemisphere.
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Number of Voxels in Each ROI

ROIs— | Language Vision DMN | Task Positive
ISubj [ LH RH [Body Face Object Scene Vision| RH LH
PO1 5265 6172|3774 4963 8085 4141 12829 (17190 35120
MO1 5716 5561|3934 4246 7357 3606 12075 |17000 34582
MO02 4930 5861|3873 4782 7552 3173 11729|15070 30594
MO03 3616 4247|2838 3459 5956 2822 9074 |12555 24486
Mo4 5906 5401|3867 4803 7812 3602 1227818011 34024
MO5 4607 4837|2961 4023 6609 3135 1041714096 28642
MO06 4993 5099|3424 4374 7300 4058 11986 (16289 30109
MO7 5629 5001|4190 4993 8617 3721 1245417020 30408
MO8 5083 5062|2624 4082 6463 3503 10439 |14950 29972
M09 3513 3650|2876 3343 5992 2815 9003 |12469 25167
M10 5458 5581|3232 4844 7445 3474 11530 |16424 29400
M13 4963 4811|2675 4008 5809 3323 9848 |14489 30608
M15 5315 6141|4112 4941 8323 3496 12383 |15995 31610
Ml16 4726 5534|4141 4669 8060 4142 12503 (15104 31758
M17 5854 5698|4416 4801 8831 4521 13829 |16764 37463

Table 2: Pereira Dataset Statistics
B DO MULTI-MODAL TRANSFORMERS PERFORM BETTER ENCODING
COMPARED TO INTERMEDIATE LAYER REPRESENTATIONS FROM
PRETRAINED CNNS?

We present the 2V2 accuracy and Pearson correlation for models trained with representations ex-
tracted from the last layer of multi-modal Transformers and all the lower to higher-level repre-
sentations from pretrained CNNs on the two datasets: BOLD5000 and Pereira in Figs. [9] and
respectively.
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Figure 9: BOLD5000: 2V2 (top Fig.) and Pearson correlation coefficient (bottom Fig.) between
predicted and true responses across different brain regions using variety of models. Results are
averaged across all participants. Pretrained CNN results are shown for all layers while multi-modal
Transformer results are shown for last layers only.

We make the following observations from Fig. [9} (1) With respect to 2V2 and Pearson correlation,
the multi-modal Transformer, VisualBERT, performs better than all the internal representations of
pretrained CNNs. (2) In the pretrained CNNs, intermediate blocks have better correlation scores as
compared to lower or higher level layer representations. (3) Other multi-modal Transformers, CLIP,
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Figure 10: Pereira dataset: 2V2 (top Fig.) and Pearson correlation coefficient (bottom Fig.) between
predicted and true responses across different brain regions using variety of models. Results are
averaged across all participants. Pretrained CNN results are shown for all layers while multi-modal
Transformer results are shown for last layers only.

and LXMERT, have marginal improvements over all the models except intermediate blocks such as
Conv2D150 in InceptionV2ResNet.

We make the following observations from Fig.[T0} (1) With respect to 2V2 and Pearson correlation,
the multi-modal Transformer, VisualBERT, performs better than all the internal representations of
pretrained CNNs. (2) Similar to BOLDS5000, the intermediate blocks have better correlation scores
as compared to lower or higher level layer representations in the pretrained CNNss on Pereira Dataset.
(3) Other multi-modal Transformer, LXMERT, have equal performance with intermediate blocks of
each pretrained CNN model.

C DO MULTI-MODAL TRANSFORMERS PERFORM BETTER ENCODING IN
THEIR LAYERS?

Given the hierarchical processing of visual or visual-language information across the Transformer
layers, we further examine how these Transformer layers encode fMRI brain activity using image
and mulit-modal Transformers. We present the layer-wise encoding performance results on two
datasets: BOLD5000 and Pereira in Figs. [IT]and[T2] respectively.

We make the following observations from Fig. [T1} (i) The multi-modal Transformer, VisualBERT,
have consistent performance across the layers from 1 to 10. (ii) The LXMERT model have marginal
decreasing performance from intermediate layer (L7) to higher layers. (iii) The image Transformers
have higher Pearson correlation for early visual areas in the lower layers whereas higher visual areas
such as LOC, OPA, and PPA have an increasing correlation in higher layers. (iv) This is clearly
indicate that the hierarchy of processing of visual stimulus in the human brain is similar to image
Transformer layers.

We make the following observations from Fig. @ (i) The multi-modal Transformers, VisualBERT,
have consistent performance across the layers from 1 to 10. (ii) The LXMERT model have marginal
decreasing performance from lower to higher layers. (iii) The image Transformer, ViT, has higher
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Figure 11: BOLDS5000: 2V2 (left) and Pearson correlation coefficient (right) between predicted and
true responses across different brain regions using Transformer models. Results are averaged across
all participants. The results are shown for all layers of image and multi-modal Transformers.

Language LH Language RH . Vision_Body Vision_Face Vision_Object
oy '_”\ ‘\ 0.75 \ 0.85
8 0.65 0.8
H ~ 0.65] < 3 o : .
N 0.6 ———— | %7 7
o
s % oo e | oo '4-_\>‘= 075
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Vision_Scene Vision DMN TP
== | XMERT o [ — 0.65 0.62
—e— VisualBERT ¢ —_\ 0.8 “._\ ;_\\ 0.6 -—'\
5
vit g 0.65 0.6 0.58
—— DET 3 075
> 0.56 J
ol s N\ . ;\p —
06 0.7] 0.55 0.54)
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
co Language_LH Language RH Vision_Body Vision_Face Vision_Object
g 0.5 s ﬁ—\ 0.75] 0.8
0.45]
o
H 045 0 0.75]
@ 0.4] 0.75]
5 0.351 o4 0. 0.7]
2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
c Vision_Scene Vision DMN TP
== | XMERT s 0.8 0.55
—e— VisualBERT 3 *%° ~ T~ s ~. | os —
£ 0.75)
viT 8 0. 0.45 0.45]
—e— DEIT < ol
0.55] -
—— BEIT £ o7 04
K4 0.35

Figure 12: Pereira: 2V2 (left) and Pearson correlation coefficient (right) between predicted and true
responses across different brain regions using Transformer models. Results are averaged across all
participants. The results are shown for all layers of image and multi-modal Transformers.

Pearson correlation for early visual areas in the lower layers whereas higher visual areas such as
Vision_Body, Vision_Face, and Vision_Obj have an increasing correlation in higher layers.
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Figure 13: MAE between actual and predicted voxels zoomed on V2 and V3 brain areas for various
models. Note that V1 and V2 are also called EarlyVis area, while V3 is also called LOC area.

D BRAIN MAPS FOR VARIOUS MODELS FOR BOLDS5000 DATASET

Fig. [I3|shows mean absolute errors (MAE) between actual and predicted voxels for various models
on the BOLD5000 dataset. Notice that the magnitude of errors is much higher for a majority of
voxels, compared to that with the VisualBERT model as shown in Fig.[5(a). Also, the multi-modal
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Transformers, VisaulBERT (MAE range: 0 to 0.0181) and LXMERT (MAE range: 0 to 0.0188),
have lower MAE compared to both image Transformers (MAE range: O to 0.02) and pretrained
CNNs (MAE range: 0 to 0.0236).

E BRAIN MAPS FOR VARIOUS MODELS FOR PEREIRA DATASET

Fig.[T4]shows mean absolute errors (MAE) between actual and predicted voxels for various models
on the Pereira dataset. Notice that the magnitude of errors is much higher for a majority of vox-
els, compared to that with the VisualBERT model as shown in Fig.[I4{(a). Also, the multi-modal
Transformers, VisaulBERT and LXMERT, and InceptionV2ResNet+Conv2D150 have lower MAE
compared to both image Transformers and other pretrained CNNss.

F RSA FOR VARIOUS MODELS ON BOLDS5000 DATASET

In Fig. @ we show RSA for various models (like LXMERT, ViT, BEiT, EfficientNetB5, ResNet,
and VGGNet) on the BOLD5000 dataset. In Fig. we show RSA for the VisualBERT model on
the COCO, ImageNet and Scenes sub-datasets of the BOLD5000 dataset.

G RSA FOR VARIOUS MODELS ON PEREIRA DATASET

In Fig. @], we show RSA for various models (like LXMERT, ViT, BEiT, EfficientNetB5, ResNet,
and VGGNet) on the Pereira dataset.
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Figure 14: MAE between actual and predicted voxels zoomed on V2 and V3 brain areas for various
models. Note that V1 and V2 are also called EarlyVis area, while V3 is also called LOC area.
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Figure 15: Representation Similarity Analysis for BOLD5000:

Pearson correlation between RSA

matrices of different models activations and brain voxel values.
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Figure 16: Representation Similarity Analysis for Pereira: Pearson correlation between RSA matri-
ces of different models activations and brain voxel values.
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Figure 17: BOLDS5000: VisualBERT COCO vs ImageNet vs Scenes RSA
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