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Abstract: To successfully tackle challenging manipulation tasks, autonomous
agents must learn a diverse set of skills and how to combine them. Recently,
self-supervised agents that set their own abstract goals by exploiting the discov-
ered structure in the environment were shown to perform well on many different
tasks. In particular, some of them were applied to learn basic manipulation skills
in compositional multi-object environments. However, these methods learn skills
without taking the dependencies between objects into account. Thus, the learned
skills are difficult to combine in realistic environments. We propose a novel self-
supervised agent that estimates relations between environment components and
uses them to independently control different parts of the environment state. In ad-
dition, the estimated relations between objects can be used to decompose a com-
plex goal into a compatible sequence of subgoals. We show that, by using this
framework, an agent can efficiently and automatically learn manipulation tasks in
multi-object environments with different relations between objects.

Keywords: object-centric representations, relations, self-supervised reinforce-
ment learning

1 Introduction

Autonomous agents that need to solve manipulation tasks in environments with many objects have
to master a variety of skills. In addition, such agents should be able to properly combine these skills
to solve complex tasks. In modular environments, the agent must explore many different ways how
it can control the environment [1]. Self-supervised agents that imagine their own goals can automate
this process, and learn many skills without external reward signals [1, 2, 3, 4, 5, 6, 7]. One of the
main challenges for goal-based autonomous agents is the choice of a suitable goal space and the
corresponding reward function [8]. As this choice determines the difficulty of the learning, it is
crucial to exploit all available structure in the environment state for construction of the goal space.

One natural way to represent the state in modular environments is to use an object-centric repre-
sentation: the environment state is represented as a set of components, with each component corre-
sponding to the state of an individual object [9, 10, 11]. Such representations can be learned in an
unsupervised fashion from high-dimensional observations such as images [12, 13, 14, 9, 15, 16, 17].
Therefore, methods that use object-centric representations can be readily extended to take high-
dimensional data as input. A simple approach to use object-centric representations in autonomous
learning is to first learn how to control each object individually (using the objects’ representations
as subgoals), and then combine learned skills to control multiple objects [10]. However, in an envi-
ronment where different objects interact with each other, this method might learn an incompatible
sequence of skills, i.e. achieving one of the subgoals can destroy another previously achieved sub-
goal. For example, moving one object from a stack of objects may change the position of the others.

One line of work that aims at learning sequences of skills that are compatible is Hierarchical Rein-
forcement Learning (HRL) [18, 19, 20]. In principle, hierarchical agents should be able to transform
a task into a sequence of subtasks that they solve sequentially. However, to date, existing hierarchi-
cal agents have mostly been applied to learn navigation or reaching tasks where learned skills do
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Figure 1: Our SRICS method. First, the interaction graph is inferred from observed environment
dynamics containing links from cause to affected entity. This gives rise to subspaces that can be
independently controlled, corresponding to subgoals gi. Next, the subgoals gi are used to construct
a selectivity reward signal rsel. The selectivity reward rsel incentivizes the agent to only control the
main entity i towards sgoal,i within each subgoal gi without affecting entities outside the subgoal.
SRICS learns to solve an external goal sgoal by decomposing it into an ordered list of subgoals gi

and solving each using SAC [24] with a goal-conditioned policy πθ. As a result, the agent attempts
to solve all the discovered subgoals one-by-one, without destroying previously solved subgoals.

not interact with each other. It is unclear how sensitive hierarchical agents are to possible interac-
tions between learned skills. In this paper, we investigate another approach by reformulating the
agent’s subtasks and the corresponding reward signals. Similar to Thomas et al. [21], we train an
agent such that it is motivated to control a particular component of the environment state represen-
tation while minimally affecting other components. Such an agent can learn to control components
independently from other components, thus making the learned skills compatible with each other.

As the environment state representation is not necessarily disentangled as in Thomas et al. [21], our
method should additionally account for possible relations between components. We propose a novel
selectivity reward signal that uses an interaction graph to determine a set of components that can
be selectively controlled without interacting with the remaining scene. The interaction graph can be
inferred from observed objects dynamics collected by a random policy without supervision [22, 23].
Thus, we combine learning of such interaction graphs with a goal-conditional reinforcement learn-
ing (RL) method that operates on object-centric representations [10] and uses the selectivity reward
signal. During training (schematically depicted in Fig. 1), our SRICS agent (for Self-supervised
Relational RL with Independently Controllable Subgoals) learns how to efficiently achieve differ-
ent subgoals (and control the corresponding subspaces) while being incentivized to minimize its
effects on other parts of the environment.

Our main contributions are as follows:

• We show that the global interaction graph can be estimated from data using a recurrent graph
neural network (GNN) dynamical model combined with a sparsity prior.

• We propose a goal-directed selectivity reward function that allows an agent to learn how to
control environment components independently from one another.

• We develop SRICS, an algorithm that uses the inferred interaction graph to learn simple and
independently controllable subtasks and decompose a complex goal into a compatible sequence
of subgoals.

2



2 Modular Goal-conditional Reinforcement Learning

We are interested in an agent that can solve multiple tasks in an environment. In particular, we
consider goal-based task encodings where each task corresponds to an environment state the agent
has to reach, denoted as the goal state g. The task is then given to the agent by conditioning its policy
π(at | st,g) on the goal g, and the agent’s objective is to maximize the expected goal-conditional
return:

Eg∼P

[
T∑
t=1

Est∼ρπ,at∼π,st+1∼d [r(st+1,g)]

]
where d is an unknown dynamics distribution, ρπ is the state marginal distribution induced by the
agent’s policy π and P is some distribution over the space of goals G that the agent receives for
training. A common approach to define the reward function in this setting is the negative distance
of the current state to the goal: r(s,g) = −‖s − g‖. In general, however, the goal space G does
not need to be equal to the state space S, but can be any task embedding space with potentially
different dimensionality [1, 25]. As some tasks cannot be expressed as desired regions of the state
space, the goal g can parameterize a more general objective r(s,g) that the agent should maximize.
Many environments are modular, in the sense that an agent’s overall goal (e.g. manipulating many
objects) can be decomposed into different subgoals (e.g. manipulating individual objects) that can
be sequentially achieved.

2.1 Object-Centric Representations

We use object-centric representations for the state space S. That is, the state space S is a direct
product of all object subspaces, S=S1×. . .×SK , where each Sj corresponds to the state of an entity.
The state of an entity is encoded by its position sj,where and an identifier sj,what. The semantics behind
an entity are unknown to the agent, i.e. the state of both the agent and the objects to manipulate are
encoded identically. The agent has no information about which objects are controllable and how they
are related. Object-centric representations could be learned in an unsupervised way from sequential
image data [9, 12, 13] and learning them is an orthogonal line of research. In this work, we focus on
using object-centric representations for decomposing the goal to subgoals that are compatible with
each other and can be achieved sequentially to solve the original goal.

The choice of the goal space plays a crucial role in determining the difficulty of the learning task. If
the environment state consists of independent parts, it is easiest to learn to control these components
independently [10]. However, in the case of interactions between these components, learning to
achieve subgoals in such environments and combining learned skills could be harmful to achieving
the original compositional goal. For example, assume that the subgoals consist of moving objects to
different positions. By solving a single subgoal without taking the other subgoals into consideration,
the agent might unintentionally rearrange objects from previous subtasks, resulting in an overall
deterioration instead of an improvement. In the next section, we present a method that accounts
for such dependencies by learning an interaction graph to decompose a goal into independently
controllable subgoals and introduce a corresponding reward function.

3 Self-Supervised Relational RL with Independently Controllable Subgoals

In the setting we consider, at the training stage, the agent only receives a single compositional goal
from the environment. The agent could try to solve the goal using the usual negative distance to
the goal as a reward signal. However, achieving the compositional goal is quite a complex task by
itself. This challenge can be addressed by discovering simple skills and combining them to solve
the compositional goal. To achieve this, the agent needs to rely on self-supervision in the form
of splitting the goal into subgoals and internally constructing the reward signal connected to each
subgoal.

The agent uses data collected from the environment to discover how different parts of the environ-
ment are related, including the agent itself, and then uses the discovered relations for the construction
of subtasks that are solvable and can be easily combined. First, we describe how to use object-centric
representations to estimate a graph of relations between objects, and then show how to utilize the
learned graph during agent training, and for goal decomposition during evaluation.
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Figure 2: The dynamical model. For a given object j, the function dint computes each of the other
objects’ effect on the object j using the hidden states ht. The effects from all the other objects are
aggregated in the interaction effect vector hj,int

t . Next, the function dact computes the action’s effect
hj,act
t on the object j. Both effects are combined in the GRU. Finally, object’s state estimation ŝjt+1

is estimated from the hidden state hjt+1 using the prediction function dpred.

3.1 Estimation of the Latent Interaction Graph with a GNN Dynamical Model
Relational information in the environment can help the autonomous agent to gain control over dif-
ferent parts of the environment. For example, if some parts of the environment cannot be affected,
the agent will be more efficient by not trying to control them. Recently, several methods to estimate
this relational information in an unsupervised way were proposed [23, 26, 27, 28, 29]. Most of them
assume that the relations are static [23, 28, 30]. As this is not the case in many robotic manipulation
applications, we propose to use a similar approach suitable for constantly changing relations. For
this, we use a graph neural network (GNN) [22, 31] to model the forward dynamics of the objects.

Because states could be non-Markovian, we use a recurrent dynamical model. Specifically, we
incorporate recurrence in the GNN model by adding a Gated recurrent unit (GRU) [32] to the GNN
message passing operation (see Fig. 2a). We use the functions dint and dact to model the object-object
interaction effect and the action’s effect, respectively. Next, both effects are combined in the GRU.
More formally:

hj,int
t =

∑
i 6=j

dint

(
hit,h

j
t

)
, hj,act

t = dact

(
sjt ,at

)
, hjt+1 = GRU

([
hj,int
t ,hj,act

t

]
,hjt

)
, (1)

where hj,int
t and hj,act

t are vectors representing interaction and action effects, whereas hjt is the
hidden state for object j at time step t.

To model dynamics with sparse interactions between objects, we model dint as the product of an
interaction weight wijt ∈ {0, 1} and an interaction effect function dint-eff:

dint(h
i
t,h

j
t ) = wijt · dint-eff(h

i
t,h

j
t ). (2)

The interaction weightwijt represents the belief in the absence or presence of the interaction between
object i and object j at time step t. We model the weight’s distribution as

q
(
wijt | st

)
= softmax

(
dint-pres(h

i
t,h

j
t )
)
, (3)

where dint-pres is the interaction presence function. As we are interested in the estimation of the
connections that are necessary for predictions, we additionally encourage the interaction weights
distribution q

(
wijt | st

)
to be close to the sparsity prior pprior. In our case, the sparsity prior pprior is

the Bernoulli distribution with a large probability for zero (see App. G).

Finally, we use a function dpred to predict the change in coordinates (see Fig. 2b):

ŝj,where
t+1 = sj,where

t + dpred

(
hjt+1

)
. (4)

All functions in Eqs. 1–4 are modeled by small MLPs with parameters φ.
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Now, as we defined all the parts of the GNN dynamical model, we describe how to estimate the inter-
action graph using a variational approach. First, similar to [23], we train our model by minimizing
the negative ELBO loss:

L(φ) =
K∑
j=1

T−1∑
t=1

∥∥∥sj,where
t+1 − ŝj,where

t+1

∥∥∥2
2σ2

+DKL(q || pprior), (5)

where ŝj,where is the prediction of the position of object j, σ2 is a fixed variance parameter and DKL

denotes the Kullback-Leibler divergence. After training, we predict interaction weights wt for each
timestep independently, then we average them across the whole dataset. Next, we estimate the global
interaction graph by thresholding the average interaction weights to find the most active relations.
Finally, we identify which object is directly controlled by the actions by finding the node that is most
correlated with the action variable at. In the graph of our running example as in Figure 1, we denote
this node as ”arm” since in all experiments the identified node corresponds to a simulated robot arm.
We add the action node with index 0 and the corresponding edge to the most correlated object to the
graph (see App. G for the details and the graph learning results).

3.2 Learning to Independently Control Objects using the Interaction Graph

In this section, we show how the agent can use the learned interaction graph to solve composi-
tional goal sgoal that consists of goals for individual objects sgoal,i. The SRICS agent sequentially
gains control over the objects without affecting the previously moved objects. To achieve this,
the SRICS method first identifies a set of objects Pi that could be used to actively control ob-
ject i by analyzing the discovered relations in the interaction graph. For each node i, we find
the set Pi of all nodes that lie in a path from the action node 0 to object node i. These ances-
tral nodes Pi are the objects that could be used by the agent to control object i. All the other
nodes are not required and thus should not be affected during the manipulation of object i.

Arm2nd 
obj

3rd
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obj 3rd
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Interaction graph (left) and the indepen-
dently controllable subgoal gi for ob-
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Next, we introduce the reward signal that uses Pi to in-
centivize the agent to learn to control an object without
moving others (line 8 of Alg. 1). In order to achieve
this, we propose to replace the original subgoal sgoal,i by a
novel independently controllable subgoal gi that consists
of the subgoal sgoal,i and the ancestral nodes Pi:

gi =
(
sgoal,i,Pi

)
. (6)

In contrast to the original notion of a subgoal which only
specifies a state component sgoal,i that the agent should
reach, an independently controllable subgoal gi also in-
cludes information about which objects should not be in-
teracted with to reach the target state component.

We now formulate the goal-directed selectivity reward
signal that explicitly incentivizes the agent to leave all
objects except i and Pi untouched. As opposed to the usual reward signal, it depends on the inde-
pendently controllable subgoal gi and reads:

rsel,i
(
st, st−1,g

i
)
= −||sit − sgoal,i||+ α ·

(
seli(st, st−1,Pi)− 1

)
. (7)

The first term is the usual goal-based negative distance to the goal, which is needed to learn directed
control over object i. The second term includes the selectivity that we define as

seli
(
st, st−1,Pi

)
=


||sit−s

i
t−1||∑

j 6∈Pi ||s
j
t−s

j
t−1||

, if subgoal is not solved;

1−∑j 6∈Pi∪{i} ||s
j
t − sjt−1||, otherwise.

(8)

The selectivity seli incentivizes the agent to maximize its influence [33, 34, 35] on object i while
having a minimal effect on objects j ∈/ Pi (corresponding to non-ancestral nodes in graph G) until
the subgoal corresponding to the object i is solved. Selectivity reaches its maximum value of 1 when
the agent changes only the state of the object i without affecting any objects j ∈/ Pi. In App. F, we
show that selectivity naturally increases during learning to control the environment and that using it
as a reward signal increases efficiency and stability.
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3.3 SRICS Policy Architecture and Training

Similar to the SMORL agent [10], we use a goal-conditioned attention policy for achieving subgoals.
This kind of policy receives a set of object-centric representations as input together with the current
subgoal representation. The aforementioned approach allows us to learn several different skills
using only one policy. In addition, it is compatible with a different number of objects as inputs, thus
allowing to use the agent in novel situations with a different number of objects. For more details on
the goal-conditioned attention policy, we refer to App. E.

SRICS can be trained with any off-policy goal-conditioned RL algorithm. In particular, we use
Soft-Actor Critic (SAC) [24] with Hindsight Experience Replay (HER) [25] as a method to improve
sample efficiency. The training of SRICS is presented in Alg. 1.

3.4 Subgoal Ordering during Evaluation

After training, the agent can be applied to more complex tasks than the simple subtasks it was trained
on. During the evaluation stage (Fig. 13 in App. I), SRICS encodes the compositional goal given by
the environment into a set of independently controllable subgoals. Subsequently, it orders them by
the depth of the corresponding nodes in the interaction graphG. Due to this order, subgoals that have
a large number of dependencies are attempted first and subgoals that have only a few dependencies,
like the robotic arm itself, are attempted as the later subgoals. The order of the independently
controllable subgoals makes them compatible with each other. For example, the agent has to first
rearrange all objects that need to be manipulated and then try to “solve” the arm subgoal, without
destroying the already rearranged objects. More details can be found in App. I.

4 Related Work

In self-supervised reinforcement learning, self-supervision refers to the agent constructing its own
goals together with the corresponding reward signal and using them to learn to solve self-proposed
goals [1, 29, 36, 37, 2, 3, 6, 38, 39, 40, 41, 42, 4, 10]. Self-supervised agents can acquire a diverse
set of general-purpose robotic skills. In the case of complex tasks, it is often beneficial to discover
simpler subgoals and learn to solve them [20]. From this point of view, recent hierarchical RL (HRL)
agents [20, 19, 43, 44, 18, 45] that try to solve external tasks by proposing several levels of internal
subgoals are also self-supervised agents.

Levy et al. [20], Nachum et al. [19] and Wang et al. [43] propose to learn several goal-conditioned
policies. In the HIRO agent [19], lower-level controllers are supervised with goals that are learned
and proposed automatically by the higher-level controllers. In contrast, the HAC agent [20] trains
each level of the hierarchy independently of the lower levels. The I2HRL agent [43] additionally
allows bi-directional communication among HRL levels and influence-based exploration to make
training more stable and efficient. As such agents need to discover all the structure in the environ-
ment while learning on several levels, such approaches struggle to solve complex tasks in modular
environments [46]. Next, we review agents operating in environments where some structure is given.

The SMORL agent [10] exploits learned object-centric representations for gaining control over dif-
ferent objects in a self-supervised way and combines the learned skills for solving more complex
compositional tasks. However, Zadaianchuk et al. [10] assume independence of different objects,
restricting the use of the SMORL agent to settings where objects almost do not interact with each
other. CURIOUS [8] and CWYC [29] exploit the modular structure of the goal space for efficient
exploration in a given goal space. Colas et al. [8] use a policy that obtains the goal module identifier
together with the goal value. Blaes et al. [29] also learn a relational graph between tasks. Both
agents use a given modular structure for a learning curriculum [36], however, discovered subtasks
are evaluated independently.

In realistic applications, autonomous agents usually do not have any well-structured representation.
Nevertheless, agents can potentially infer it from data. We cover several directions that could be
useful for such structure discovery. The first line of works [13, 12, 9, 14, 16] learns object-centric
representations from images or videos. Such representations could be potentially used in combi-
nation with the SRICS agent. The second line [23, 27, 26, 28, 30] studies how object relations
can be discovered from data. The improvements in both of these lines could lead to more general
self-supervised agents that use a discovered structure for the generation of goals.
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Figure 3: Average distance of objects and arm to the goal positions, comparing SRICS to SMORL,
SAC+HER and HAC baselines. For all the experiments, results are averaged over 5 random seeds,
shaded regions indicate one standard deviation.

5 Experimental Results

In this section, we present our experiments that address the following questions:

• How does SRICS perform compared to prior goal-conditioned RL methods on multi-object
continuous control manipulation tasks?

• What is the performance gain obtained from the goal-directed selectivity reward and subgoal
ordering during evaluation?

• How does our agent perform in an environment with an unseen combination of objects?

We run SRICS and the baseline algorithms in the Multi-Object Rearrange from Zadaianchuk et al.
[10] and the novel Multi-Object Relational Rearrange environments. The latter environment incor-
porates additional physical connections between objects such as spring connections. Both environ-
ments are based on the multiworld package for continuous control tasks introduced by Nair et al.
[2] and use MuJoCo [47] as a realistic simulator. They contain a 7-DoF Sawyer arm where the agent
needs to manipulate a variable number of pucks on a table. In the first environment, the task is to
rearrange the objects from random starting positions to random target positions. In the second envi-
ronment, we add a spring connection between some of the objects and constrain other objects to be
static (see App. C). This makes the resulting interaction graph more challenging and thus provides
additional insights on the sensitivity of the agent to different interactions between objects. For both
environments, we measure the performance of the algorithms as the average distance of all objects
(including the robotic arm) to their goal positions (computed on the last step of the episode).

5.1 Comparative Analysis
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Figure 4: Subtask success rate for SRICS
and SMORL for each subtask individually
during evaluation in the Relational Rear-
range environment. Both methods can solve
Arm reaching subgoal, whereas on other sub-
tasks SRICS performs better than SMORL.

As manipulation tasks in compositional environ-
ments can be approached from different perspec-
tives, we provide a comparison with a state-of-the-
art method from each perspective. In terms of prob-
lem assumptions, our work is closest to that of
SMORL [10] which uses object-centric representa-
tions for subgoals and reward construction. In con-
trast to SRICS, SMORL executes subgoals in a ran-
dom order and thus can potentially destroy previ-
ously solved subgoals. In addition, the SMORL
agent does not have the incentive to influence the
subgoal object during training. Another approach
to learn goal-conditioned policy with coherent be-
havior is using Soft Actor-Critic (SAC) [24] with
Hindsight Experience Replay (HER) [25] relabeling.
This method tries to achieve the overall goal without
splitting it into subgoals. Finally, we consider the Hierarchical Actor-Critic (HAC) [20] method
that tries to solve compositional tasks on several levels and is state of the art on several continuous
control tasks.
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We show the results in Fig. 3 and Fig. 4. The performance of SRICS is significantly better than all
other algorithms in both environments. SMORL is able to partially rearrange pucks on a table in the
simpler Multi-Object Rearrange environment. However, its random subgoals ordering is inefficient
for arranging all the objects including the arm. In addition, even when evaluating only based on the
puck subtasks (see App. H), SRICS outperforms SMORL, which further demonstrates the benefits
of using a goal-directed selectivity reward signal. Moreover, in the more complex Multi-Object
Relational Rearrange environment, the gap between SRICS’s and SMORL’s performance is even
larger. Furthermore, in all environments SAC is only able to solve the Arm subtasks, whereas HAC
performance is close to that of a random agent. We present further comparison in more challenging
environments with 6 different objects and velocity-based state representations in App. D.

5.2 Ablative Analysis

Here, we study the importance of different ingredients of our method for the overall performance of
the agent. First, we ablate the selectivity term in our reward signal, using only the negative distance
between the object and the desired position as a reward signal. We then additionally ablate the order-
ing of subgoals described in Sec. 3.4, using instead a random ordering of all subgoals. The results
of the ablations are presented in Fig. 5. Both ablations significantly deteriorate the performance of
SRICS, showing the importance of both the goal-directed selectivity reward signal and the correct
ordering in the goal decomposition for object manipulation in multi-object environments.
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Figure 5: Average distance of objects and arm to the goal positions, comparing our method and two
ablated variants on 3 and 4 objects Rearrange environments.

5.3 Generalization to Unseen Object Combinations

As SRICS can be used with different sets of objects as inputs, we investigate its performance on un-
seen combinations of objects. We train SRICS on the Multi-Object Rearrange environment, where
4 different combinations of 3 objects are presented. We leave out one of the combinations for evalu-
ation and use the other 3 combinations for training. The performance on this modified environment
is indistinguishable from SRICS’s performance on Multi-Object Rearrange with 3 objects, showing
that SRICS can operate on novel combinations of objects (details in App. B).

6 Conclusion and Future Work

In this work, we introduce SRICS, a self-supervised RL method that learns the relational structure
of the environment and exploits this structure to learn a compatible sequence of skills to solve a dif-
ficult compositional goal. In a range of experiments in multi-object environments with robotic arm
manipulation tasks, we demonstrate that SRICS is effective at discovering the most active dynamic
relations between objects and can successfully rearrange multiple objects even in the presence of
object interactions.

There are several interesting directions for future work. First, one can extend SRICS to image-based
object-centric representations, making it more applicable to realistic robotic settings where only
high-dimensional sensory information is provided as input to the agent. Moreover, we expect that
SRICS can be combined with different modular curriculum learning and exploration strategies [8,
29]. Finally, we expect that active training of the dynamic interaction graph (i.e. when the data for
training is collected by the agent that actively explores the environment) could further improve the
discovery of important structures in the environment.
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