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ABSTRACT

As increasingly complex AI systems are introduced into our daily lives, it
becomes important for such systems to be capable of explaining the rationale
for their decisions and allowing users to contest these decisions. A significant
hurdle to allowing for such explanatory dialogue could be the vocabulary
mismatch between the user and the AI system. This paper introduces methods
for providing contrastive explanations in terms of user-specified concepts for
sequential decision-making settings where the system’s model of the task may
be best represented as a blackbox simulator. We do this by building partial
symbolic models of a local approximation of the task that can be leveraged to
answer the user queries. We empirically test these methods on a popular Atari
game (Montezuma’s Revenge) and modified versions of Sokoban (a well known
planning benchmark) and report the results of user studies to evaluate whether
people find explanations generated in this form useful.

1 INTRODUCTION

For AI systems to be truly effective in the real world, they need to not only be capable of coming
up with near-optimal decisions but also be capable of working effectively with their end users. One
of the key requirements for such collaboration would be to allow users to raise explanatory queries
wherein they can contest the system’s decisions. An obstacle to providing explanations to such
questions is the fact that the systems may not have a shared vocabulary with its end users or have an
explicit interpretable model of the task. More often than not, the system may be reasoning about the
task in a high-dimensional space that is opaque to even the developers of the system, let alone a lay
user.

While there is a growing consensus within the explainable AI community that end-user explanations
need to be framed in terms of user understandable concepts, the focus generally has been on intro-
ducing such methods for explaining one-shot decisions such as in the case of classifiers (c.f. Kim
et al. (2018); Ribeiro et al. (2016)). This is unfortunate as explaining sequential decision-making
problems presents many challenges that are absent from the one-shot decision-making scenarios. In
such problems, we not only have to deal with possible interrelationship between the actions in the
sequence, but may also need to explain conditions for the executability of actions and the cost of
executing certain action sequences. Effectively, this means that explaining a plan or policy to a user
would require the system to explain the details of the domain (or at least the agent’s belief of it).

In this paper, we propose methods that are able to field some of the most fundamental explanatory
queries identified in the literature, namely contrastive queries, i.e., questions of the form ‘why P
(the decision proposed by the system) and not Q (the alternative proposed by the user or the foil)?’
(Miller, 2018), in user-understandable terms. Our methods achieve this by building partial and ab-
stract symbolic models (Section 2) expressed in terms of the user’s vocabulary that approximates
task details relevant to the specific query raised by the user. To the best of our knowledge, we are the
first work to propose learning of symbolic local approximations of the problem dynamics and cost
function for explanations in sequential decision-making scenarios. Specifically, we will focus on
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deterministic tasks where the system has access to a task simulator and we will identify (a) missing
preconditions to explain scenarios where the foil raised by the user results in an execution failure of
action and (b) cost function approximations to explain cases where the foil is executable but subop-
timal (Section 3). We learn such models by interacting with the simulator (on randomly sampled
states) while using learned classifiers that detect the presence of user-specified concepts in the sim-
ulator states. Figure 1 presents the overall flow of this process with illustrative explanations in the
context of a slightly updated version of Montezuma’s Revenge (Wikipedia contributors, 2019). Our
methods also allow for the calculation of confidence over the explanations and explicitly take into
account the fact that learned classifiers for user-specified concepts may be noisy. This ability to
quantify its belief about the correctness of explanation is an important capability for any post-hoc
explanation system that may influence the user’s decisions. We evaluate the system on two popu-
lar sequential decision-making domains, Montezuma’s Revenge and modified versions of Sokoban
(Botea et al., 2002) (a game involving players pushing boxes to specified targets). We present user
study results that show the effectiveness of explanations studied in this paper (Section 5).

2 BACKGROUND

Our focus here is to address cases where a user is trying to make sense of agent behavior
that may in fact be optimal in the agent’s model of the task but is confusing to the user ow-
ing to a differing understanding of the task (or them overlooking some facts about the task).

Figure 1: Explanatory dialogue starts when
the user presenting a specific alternate plan
(foil). We consider two foils, one that is in-
valid and another that is costlier than the
plan. System explains the invalid plan by
pointing out an action precondition that was
not met in the plan, while it explains the foil
suboptimality by informing the user about
cost function. These model information are
expressed in terms of concepts specified by
the user which we operationalize by learn-
ing classifiers for each concept.

Thus our focus isn’t on how the agent came up with the
specific decisions, but only on why this action sequence
was chosen instead of an alternative that the user ex-
pected. We assume agent has access to a deterministic
simulator of the form Msim = 〈S,A, T, C〉, where S
represents the set of possible world states, A the set
of actions and T the transition function that specifies
the task dynamics. The transition function is defined as
T : S×A→ S∪{⊥}, where⊥ corresponds to an invalid
absorber-state generated by the execution of an infeasible
action. Invalid state could be used to capture failure states
that could occur when the agent violates hard constraints
like safety constraints. Finally, C : S × A → R captures
the cost function of executing an action at a particular
state (with the cost of an infeasible action taken to be
infinite). We will overload the transition function and
cost functions to also take in a sequence of actions
(which in the case of the transition function returns the
final state resulting from executing the action sequence
and for cost function the cost of executing the sequence
actions). We will consider goal-directed agents that are
trying to drive the state of the world to one of the goal
states. Where the tuple Πsim = 〈I,G,Msim〉 represents
the agent’s decision making problem (I is the initial state
and G the set of goal states). The agent comes up with a
plan (a sequence of actions) π such that T (I, π) ∈ G and
the plan is said to be optimal if there exists no cheaper plan that achieves the goal.
We will use symbolic action models with preconditions and cost functions (similar to STRIPS
models (Geffner & Bonet, 2013)) as a way to approximate the problem for explanations. Such
a model can be represented by the tuple MS = 〈FS , AS , IS , GS , CS〉, where FS is a set of
propositional fluents defining the state space, AS is the set of actions, IS is the initial state, GS is
the goal specification. Each valid problem state in the problem is uniquely identified by the subset
of fluents that are true in that state (so for any state s ∈ SMS , where SMS is the set of states
for MS , s ⊆ FS ). Each action a ∈ AS is further described in terms of the preconditions preca
(specification of states in which a is executable) and the effects of executing the action. We will
denote the state formed by executing action a in a state s as a(s). We will focus on models where
the preconditions are represented as a conjunction of state factors. If the action is executed in a
state with missing preconditions, then the execution results in the invalid state (⊥). Unlike standard
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STRIPS models, where the cost of executing action is independent of states, we will be using a
state dependent cost function of the form CS : 2F × AS → R to capture the cost of valid action
executions. Internally, such state models may be represented using conditional cost models of the
type discussed in (Geißer et al., 2016). In this paper, we won’t try to reconstruct the exact cost
function but will rather try to estimate an abstract version of the cost function.

3 CONTRASTIVE EXPLANATIONS

The specific explanatory setting, illustrated in Figure 1, that we are interested in studying involves a
decision-making problem specified by the tuple Πsim = 〈I,G,Msim〉 for which the system identi-
fies a plan π. When presented with the plan, the user of the system may either accept it or responds
by raising an alternative plan πf (the foil) that they believe should be followed instead. Now the
system would need to provide an explanation as to why the plan π may be preferred over the foil πf ,
by showing that the foil is invalid or it is costlier than the plan.1 More formally,

Definition 1 The plan π is said to be preferred over a foil πf for a problem Πsim = 〈I,G,Msim〉,
if either of the following conditions are met, i.e., (1) πf is invalid, if (a) T (I, πf ) 6∈ G, i.e the action
sequence doesn’t lead to a possible goal state, or (b) the execution of the plan leads to an invalid
state, i.e., T (I, πf ) = ⊥. (2) Or πf is costlier than π, i.e., C(I, π) < C(I, πf )

To concretize this interaction, consider the modified version of Montezuma’s revenge (Figure 1).
The agent starts from the highest platform, and the goal is to get to the key. The specified plan π
may require the agent to make its way to the lowest level, jump over the skull, and then go to the key
with a total cost of 20. Now the user raises two possible foils that are quite similar to π, but, (a) in
the first foil, instead of jumping the agent just moves left (as in it tries to move through the skull) and
(b) in the second, instead of jumping over the skull, the agent performs the attack action (not part
of the original game, but added here for illustrative purposes) and then moves on to the key. Using
the simulator, the system could tell that in the first case, moving left would lead to an invalid state,
and in the second case, the foil is costlier. Though it may struggle to explain what particular aspects
of the state or state sequence lead to the invalidity or suboptimality. Even if it could identify parts
of its own internal state representation as an explanation, it would not necessarily be meaningful to
the end-user. This scenario thus necessitates the use of methods that are able to express possible
explanations in terms that the user may understand.
Concept maps: In this setting, the system would need a mapping from its internal state represen-
tation to a set of high-level concepts that are known to the user (for Montezuma this could involve
concepts like agent being on a ladder, holding onto the key, being next to the skull, etc.). We will as-
sume each concept corresponds to a propositional fact that the user associates with the task’s states
and believes that the dynamics of the task are determined by these concepts (the specifics of the
representational assumptions made by this paper can be found in the appendix). This means that
as per the user, for each given state, a subset of these concepts may be either present or absent.
We will assume access to binary classifiers for each of these concepts. These classifiers provide
us with a way to convert simulator states to a factored representation. Such techniques have not
only been used in explanation (c.f. Kim et al. (2018); Hayes & Shah (2017)) but also in works
that have looked at learning high-level representations for continuous state-space problems (c.f.
Konidaris et al. (2018)). Let C be the set of classifiers corresponding to the high-level concepts. For
state s ∈ S, we will overload the notation C and specify the concepts that are true as C(s), i.e.,
C(s) = {ci|ci ∈ C ∧ ci(s) = 1} (where ci is the classifier corresponding to the ith concept and we
overload the notation to also stand for the label of the ith concept). The user could specify the set
of concepts by identifying positive and negative example states for each concept. These examples
could then be used to learn the required classifiers by using algorithms best suited for the internal
simulator state representation. Thus the system should have some method of exposing simulator
states to the user. A common way to satisfy this requirement would be by having access to visual
representations for the states. The simulator state itself doesn’t need to be an image as long as we
have a way to visualize it (for example in Atari games where the states can be represented by the
RAM state of the game controller but we can still visualize them).
Explanation using concepts: To explain why a given foil is not preferred over the specified plan,
we will present information about the symbolic model expressed in user’s vocabulary, MC

S =

1If the foil is as good as the original plan, then the system could switch to foil without loss of optimality.
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〈C, AC
S ,C(I),C(G), CCS 〉. Where C(G) =

⋂
sg∈G C(sg) and AC

S contains a definition for each
action a ∈ A. The model is said to be a local symbolic approximation for the simulator for regions
of interest Ŝ ⊆ S ifMC

S is a sound abstraction of the simulatorMsim = 〈S,A, T, C〉 for Ŝ. That
is ∀s ∈ Ŝ and ∀a ∈ A, we have an equivalent action aC ∈ AC

S , such that aC(C(s)) = C(T (s, a))
(assuming C(⊥) = ⊥) and CCS (C(s), a) = C(s, a). Note that establishing the preference of plan
does not require informing the users about the entire model, but rather only the relevant parts. For
conciseness, we will use ai for both the simulator action and the corresponding abstract action in
the symbolic model as long as the context allows it to be distinguished.
To establish invalidity of πf , we just need to focus on explaining the failure of the first failing action
ai, i.e., the last action in the shortest prefix that would lead to an invalid state (move-left action in
the state presented in Figure 1 for the first foil). We can do so by informing the user that the action
has an unmet precondition, as per the symbolic model, in the failing state. Formally

Definition 2 For a failing action ai for the foil πf = 〈a1, .., ai, .., an〉, ci ∈ C is considered an
explanation for failure if ci ∈ precai \ C(si), where si is the state where ai is meant to be executed
(i.e si = T (I, 〈a1, .., ai−1〉)).

In the example invalid foil, the explanation would inform the user that move-left can only be exe-
cuted in states for which the concept skull-not-on-left is true; and the concept is false in the given
state. This formulation is enough to capture both conditions for foil invalidity by appending an ad-
ditional goal action at the end of each sequence. The goal action causes the state to transition to an
end state and it fails for all states except the ones in G. Our approach to identifying the minimal
explanation for specific query follows from studies in social sciences that have shown that selectivity
or minimality is an essential property of effective explanations Miller (2018).
For explaining suboptimality, we have to inform the user about CCS . To ensure minimality of expla-
nations, rather than provide the entire cost function or even the individual conditional components
of the function, we will instead try to learn and provide an abstraction of the cost function Cabss

Definition 3 For the symbolic modelMC
S = 〈C, AC

S ,C(I),C(G), CCS〉, an abstract cost function CabsS :
2C ×AC

S → R is specified as follows CabsS ({c1, .., ck}, a) = min{CCS(s, a)|s ∈ SMC
S
∧ {c1, .., ck} ⊆ s}.

Intuitively, CabsS ({c1, .., ck}, a) = k can be understood as stating that executing the action a, in the
presence of concepts {c1, .., ck} costs at least k. We can use CabsS in an explanation of the form

Definition 4 For a valid foil πf = 〈a1, .., ak〉, a plan π and a problem Πsim, the sequence of
concept sets of the form Cπf

= 〈Ĉ1, ..., Ĉk〉 along with Cabss is considered a valid explanation for
relative suboptimality of the foil (denoted as CabsS (Cπf , πf ) > C(I, π)), if ∀Ĉi ∈ Cπf , Ĉi is a subset
of concepts presents in the corresponding state (where state is I for i = 1 and T (I, 〈a1, ..., ai−1〉) for
i > 1) and Σi={1..k}CabsS (Ĉi, ai) > C(I, π)

In the earlier example, the explanation would include the fact that executing the action attack in the
presence of the concept skull-on-left, will cost at least 500 (as opposed to original plan cost of 20).

4 IDENTIFYING EXPLANATIONS THROUGH SAMPLE-BASED TRIALS

For identifying the model parts for explanatory query, we will rely on the agent’s ability to interact
with the simulator to build estimates. Given the fact that we can separate the two cases at the
simulator level, we will keep the discussion of identifying each explanation type separate and only
focus on identifying the model parts once we know the failure type.
Identifying failing precondition: To identify the missing preconditions, we will rely on the simple
intuition that while successful execution of an action a in the state sj with a concept Ci doesn’t
necessarily establish that Ci is a precondition, we can guarantee that any concept false in that state
can not be a precondition of that action. This is a common line of reasoning exploited by many of
the model learning methods (c.f Carbonell & Gil (1990); Stern & Juba (2017)). We start with the
set of concepts that are absent in the the state (sfail) where the failing action (afail) was executed, i.e.,
poss prec set = C\C(sfail). We then randomly sample for states where afail is executable. Each new
sampled state si where the action is executable can then be used to update the possible precondition
set as poss prec set = poss prec set ∩ C(si). That is, if a state is identified where the action is
executable but a concept is absent then it can’t be part of the precondition. We will keep repeating
this sampling step until the sampling budget is exhausted or if one of the following exit conditions
is met. (a) In cases where we are guaranteed that the concept list is exhaustive, we can quit as soon
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as the set of possibilities reduce to one (since there has to be a missing precondition at the failure
state). (b) The search results in an empty list. The list of concepts left at the end of exhausting the
sampling budget represents the most likely candidates for preconditions. An empty list here signifies
the fact that whatever concept is required to differentiate the failure state from the executable one is
not present in the initial concept list (C). This can be taken as evidence to query the user for more
task-related concepts. All locality considerations for sampled states, say focusing on states close to
the plan/foil, can be baked into the sampler. The exact algorithm is provided in the appendix.
Identifying cost function: We will employ a similar sampling based method to identify the cost
function abstraction. Unlike the precondition failure case, there is no single action we can choose
but rather we need to choose a level of abstraction for each action in the foil (though it may be
possible in many cases to explain the suboptimality of foil by only referring to a subset of actions in
the foil). Our approach here would be to find the most abstract representation of the cost function at
each step such that of the total cost of the foil becomes greater than that of the specified plan. Thus
for a foil πf = 〈a1, ..., ak〉 our objective become

minĈ1,...,Ĉk
Σi=1..k‖Ĉi‖ subject to Cabss (Cπf , πf ) > C(I, π)

For any given Ĉi, Cabss (Ĉi, ai) can be approximated by sampling states randomly and finding the
minimum cost of executing the action ai in states containing the concepts Ĉi. We can again rely
on a sampling budget to decide how many samples to check and enforce required locality within
sampler. Similar to the previous case, we can identify the insufficiency of the concept set by the fact
that we aren’t able to identify a valid explanation. The algorithm can be found in the appendix.
Confidence over explanations: Though the methods discussed above are guaranteed to iden-
tify the exact model in the limit, the accuracy of the methods is still limited by practical sam-
pling budgets we can employ. For example in the case of precondition failure, at the end
of sampling we are not guaranteed that the concept we end up choosing is in fact the true
precondition or if generating more samples would have eliminated it. So this means it is
important that we are able to establish some level of confidence in the solutions identified.

Figure 2: A simplified probabilis-
tic graphical models for explanation
inference, Subfigure (A) and (B) as-
sumes classifiers to be completely cor-
rect, while (C) and (D) presents cases
with noisy classifier.

To assess confidence, we will follow the probabilistic relation-
ship between the random variables as captured by Figure 2
(A) for precondition identification and Figure 2 (B) for cost
calculation. Where the various random variables captures the
following facts: Osa - indicates that action a can be executed
in state s, ci ∈ pa - concept ci is a precondition of a, Osci -
the concept ci is present in state s, Cabss ({ci}, a) ≥ k - the
abstract cost function is guaranteed to be higher than or equal
to k and finally OC(s,a)≥k - stands for the fact that the action
execution in the state resulted in cost higher than or equal to
k. We will allow for inference over these models, by relying
on the following simplifying assumptions - (1) the distribution
of concepts over the state space is independent of each other,
(2) the distribution of all non-precondition concepts in states
where the action is executable is the same as their overall dis-
tribution across the problem states (which can be empirically
estimated), (3) cost distribution of an action over states corre-
sponding to a concept that does not affect the cost function is identical to the overall distribution of
cost for the action (which can again be empirically estimated). The second assumption implies that
the likelihood of seeing a non-precondition concept in a sampled state is equal to the likelihood of it
appearing in any sampled state (this distribution is denoted as pci ). While the third one implies that
for a concept that has no bearing on the cost function for an action, the likelihood that executing the
action in a state where the concept is present will result in a cost greater than k will be the same as
that of the action execution resulting in a cost greater than k for a randomly sampled state (pC(.,a)≥k).
For a single sample, the posterior probability of explanations for each case can be expressed as fol-
lows: For precondition estimation, updated posterior probability for a positive observation can be
computed as P (ci ∈ pa|Osci ∧O

s
a) = (1− P (ci 6∈ pa|Osci ∧O

s
a)), where

P (ci 6∈ pa|Osci ∧O
s
a) =

pci ∗ P (ci 6∈ pa)

P (Osci |Osa)

and for the case of cost function approximation

P (Cabss ({ci}, a) ≥ k|Osci ∧OC(s,a)≥k) =
P (Cabss ({ci}, a) ≥ k)

P (Cabss ({ci}, a) ≥ k)) + pC(.,a)≥k ∗ P (¬Cabss ({ci}, a) ≥ k))

Full derivation of above formulas can be found in the appendix. The distribution used in the cost
explanation, can either be limited to distribution over states where action ai is executable or allow
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for the cost of executing an action in a state where it is not executable to be infinite.
Using noisy concept classifiers: Given how unlikely it is to have access to a perfect classifier for
any concept, a more practical assumption to adopt could be that we have access to a noisy classifier.
However, we assume that we also have access to a probabilistic model for its prediction. That is,
we have access to a function PC : C → [0, 1] that gives the probability that the concept predicted
by the classifier is present in the state. Such distributions could be learned from the test set used
for learning the classifier. Allowing for noisy observation generally has a more significant impact
on the precondition calculation since we can no longer use a single failure (execution of an action
in a state where the concept is absent) as evidence for discarding the concept. Though we can still
use it as an evidence to update the probability of the given concept being a precondition. We can
remove a particular possible precondition from consideration once the probability of it not being
a precondition crosses a specified threshold. To see how we can incorporate these probabilistic
observations into our confidence calculation, consider the updated relationships presented in Figure
2 (C) and (D) for precondition and cost function approximation respectively. Note that in previous
sections, we made no distinction between the concept being part of the state and actually observing
the concept. Now we will differentiate between the classifier saying that a concept is present (Osci )
from the fact that the concept is part of the state (ci ∈ C(S)). Now we can use this updated model
for calculating the confidence. We can update the posterior of a concept not being a precondition
given a negative observation (Os¬ci ) using the formula

P (ci 6∈ pa|Os¬ci ∧O
s
a) =

P (Os¬ci |ci 6∈ pa ∧O
s
a) ∗ P (ci 6∈ pa|Osa)

P (O¬ci |Osa)

Similarly we can modify the update for a positive observation to include the observation model and
also do the same for the cost explanation. This can either be empirically calculated from samples
with true label or we can assume that this value is going to be approximately equal to the overall
distribution of the cost for the action. The derivations for all of the above expressions and formulas
for the other cases can be found in appendix. Note all the experiments reported in this paper were
performed using this noisy classifier formulation. In fact, for Montezuma’s revenge we saw that the
original formulation couldn’t in fact identify the correct concepts.

5 EVALUATION

We tested the approach on the open-AI gym’s deterministic implementation of Montezuma’s
Revenge (Brockman et al., 2016) for precondition identification and two modified versions of
the gym implementation of Sokoban (Schrader, 2018) for both precondition and cost function
identification. Appendix contains the images for all the foils, plans used for each domain.
Montezuma’s Revenge: We used RAM-based state representation for Montezuma. To add richer
preconditions to the settings, we added a wrapper over the original simulators for all the games
to render any non-noop action that fails to change the current agent state as an action failure. We
selected four invalid foils (generated by the authors by playing the game), three from screen 1 and
one from screen 4 of the game. We specified ten concepts for each screen and collected positive
and negative examples for each concept by sampling through the state space. We used AdaBoost
Classifier (Freund et al., 1999) for concept and had an average accuracy of 99.72%.
Sokoban Variants: We used an image-based representation for these domains and had two
variations on the standard Sokoban game. One that requires a switch the player could turn
on before pushing the box (we will refer to this version as Sokoban-switch) and the second
version (Sokoban-cells) included particular cells from which it is costlier to push the box. For
Sokoban-switch, we had two variations one in which turning on the switch was a precondition
for the action and another one in which it merely reduced the cost of pushing the box. The plan
and foil were generated by the authors by playing the game. Additionally, we made sure the plan
was part of the optimal policy. We used a survey to collect the set of concepts for these variants.
The survey allowed participants to interact with the game through a web interface (the cost based
version for Sokoban-switch and Sokoban-cell), and at the end, they were asked to specify game
concepts that they thought were relevant for particular actions. We received 25 unique concepts
from six participants for Sokoban-switch and 38 unique concepts from seven participants for
Sokoban-cell. We converted the user descriptions of concepts to scripts for sampling positive and
negative instances. Consequently, we focused on 18 concepts and 32 concepts for Sokoban-switch
and Sokoban-cell respectively based on the frequency with which they appear in game states and
used Convolutional Neural Networks (CNNs) for the classifier. The classifiers had an average
accuracy of 99.46% for Sokoban-switch and 99.34% for Sokoban-cell.The exact filtering conditions
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provided used along with the network details and hyperparameters are provided in the appendix.
Explanation identification: We ran the search for identifying preconditions for Montezuma’s foils
and Sokoban-switch and cost function identification on both Sokoban. From the collected list of
concepts, we doubled the final concept list used by including negations of each concept (so 20 each
for Montezuma and 36 and 64 for Sokoban variants). The probabilistic models for each classifier
were calculated from the corresponding test sets. For precondition identification, the search was run
with a sampling budget of 500 and a cutoff probability of 0.01 for each concept. The search was
able to identify the expected explanation for each foil. For Montezuma, the explanations had mean
confidence of 0.5044 for foils in screen 1 and a confidence value of 0.8604 for the foil in screen 4.
The ones in screen 1 had lower probabilities since they were based on more common concepts and
thus their presence in the executable states was not strong evidence for them being a precondition.
For Sokoban-switch the confidence was 0.7279. For cost function identification, the search was
run with a sampling budget of 750, and all the calculations, including both computing the concept
distribution and updating the probability of explanation, were limited to states where the action was
executable. Again the search was able to find the expected explanation. We had average confidence
of 0.9996 for the Sokoban-switch and 0.998 for the Sokoban-cell.
User study: With the basic explanation generation methods in place, we were interested in
evaluating if users would find such an explanation helpful. All studies were performed while
following local IRB protocols. Screenshots of interface used for the study along with additional
details can be found in the appendix. Specifically, the hypotheses we tested were
Hypothesis 1: Missing precondition information is a useful explanation for action failures.
Hypothesis 2: Abstract cost functions are a useful explanation for foil suboptimality.
Hypothesis 3: Concept based precondition explanations help users understand the task better than
saliency map based ones.
For H1 and H2, we went with a within-subject study design where the participants were shown an
explanation generated by our method along with a simple baseline. For precondition case (H1),
the baseline involved pointing out just the failing action and the state it was executed. For the cost
case (H2), it involved pointing out the exact cost of executing each action in the foil. The users
were asked to choose the one they believed was more useful (the choice ordering was randomized
to ensure the results were counterbalanced) and were also asked to report on a Likert scale the
completeness of the chosen explanation. For each foil, we took the explanation generated by the
search and converted it into text by hand. For H1, we collected 20 replies in total (five per foil) and
19 out of the 20 participants selected precondition based explanation as the choice. On the question
of whether the explanation was complete, we had an average score of 3.47 out of 5 on the Likert
scale (1 being not at all complete and 5 being complete). For H2, we again collected 20 replies
in total (ten per foil) and found 14 out of 20 participants selected the concept-based explanation
over the simple one. The concept explanations had on average a completeness score of 3.21 out of
5. The results seems to suggest that in both cases people did prefer the concept-based explanation
over the simple alternative. The completeness results suggest that people may like, at least in some
cases, to receive more information about the model.
H3 is particularly interesting in the case of precondition failures because under specific settings a
Saliency map based explanation could highlight areas corresponding to failed precondition concepts
(especially when concepts corresponds to local regions within the image). Though even in such
cases the user has to still figure out what concepts these highlighted regions may correspond to
and from the highlighted concepts figuring out the one that might be the actual precondition. We
measured the user’s understanding of the task by their ability to solve the task themselves. Here we
went with a between-subject study design. Each participant was allowed to play the precondition
variant of the sokoban-switch game. They were asked to finish the game within 3 minutes and
were told there would be bonuses for people who finish the game in the shortest time. During
the game, if the participant performs an action whose preconditions are not met, then the current
episode ends and they have to restart the game. Whenever such an invalid action is executed, then
the users are shown an explanation for why the action might fail. One group of users were provided
the precondition explanations generated through our method, while the rest were presented with a
saliency map generated by using a variant of state of the art saliency-map based explanation method
(Greydanus et al. (2018)) and were told that these would be the parts of the state an AI agent would
focus on if it was acting in that state. In all the saliency map explanations one of the parts of the
state that was highlighted was the switch. The details of the Saliency generation method along with
the explanation images shown are provided in the appendix. In total we collected 30 responses,
but had to discard six responses because five participants had reported in their submission of not
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seeing an explanation and one response was discarded as they refreshed the game in the middle.
Out of the remaining 24 responses, 11 corresponded to concept explanations and 13 to saliency
based explanations. Participants who got concept based explanation were able to solve the game
on average 34.56 steps and 53.56 secs, as opposed to the group who received saliency explanations
who took on average 52.92 steps and 71.85 secs. This is in accordance with H3, though we can’t
establish a statistically significant difference based on confidence intervals (reported in A.6).

6 RELATED WORK

There is an increasing number of works investigating the use of high-level concepts to provide
meaningful post-hoc explanations to the end-users. The representative works in this direction
include works like Bau et al. (2017), TCAV (Kim et al., 2018) and its various offshoots like
(Luss et al., 2019) that have focused on one-shot decisions. Most works in explaining sequential
decision-making problems have used a model specified in a shared vocabulary as a starting point
for explanation or focus on saliency-based explanations (c.f. (Chakraborti et al., 2020)), with very
few exceptions. Authors of (Hayes & Shah, 2017) have looked at the use of high-level concepts
for policy summaries. They use logical formulas to concisely characterize various policy choices,
including states where a specific action may be selected (or not). Unlike our work, they are not
trying to answer why the policy ends up choosing a specific action (or not). (Waa et al., 2018)
looks at addressing the suboptimality of foils while supporting interpretable features, but it requires
the domain developer to specifically encode positive and negative outcomes to each action. In
addition to not addressing possible vocabulary differences between a system developer and the
end-user, it is also unclear when it is possible to attach negative and positive outcomes to individual
actions. Another related work is the approach studied in (Madumal et al., 2020). Here, they are also
trying to characterize dynamics in terms of high-level concepts, but assume that the full structural
relationship between the various variables is provided upfront. The explanations discussed in this
paper can also be seen as a special case of Model Reconciliation explanation (c.f (Chakraborti
et al., 2017)), where the human model is considered to be empty. The usefulness of preconditions
as explanations has also been studied by works like (Winikoff, 2017; Broekens et al., 2010). Our
effort to associate action cost to concepts could also be contrasted to efforts in (Juozapaitis et al.,
2019) and (Anderson et al., 2019) which leverage interpretable reward components. Their methods
rely on having access to reward functions represented using interpretable components.

7 CONCLUSION

We view the approaches introduced in the paper as the first step towards designing more general
symbolic explanatory methods for sequential decision-making problems that operate on inscrutable
representations. The current methods facilitate generation of explanations in user-specified terms for
sequential decisions by allowing users to query the system about alternative plans. We implemented
these method in multiple domains and evaluated the effectiveness of the explanation using user
studies. While contrastive explanations are answers to questions of the form “Why P and not Q?”,
we have mostly focused on refuting the foil (the “not Q?” part). This is because, in the presence
of a simulator, it is easier to show why the plan is valid by simulating the plan. We can further
augment such traces with the various concepts that are valid at each step of the trace. Also, note
that the methods discussed in this paper can still be used if the user’s questions are specified in
term of temporal abstraction over the agent’s action space. As long as the system can simulate
the foils raised by the user, we can directly use the methods discussed in the paper. While most
of the discussions in the paper has been focused on deterministic domains, these ideas also carry
over to stochastic domains. The way we are identifying preconditions and estimating cost functions
remain the same in stochastic domains. The only difference would be the estimation of the value
or the failure point of the foil. One way to easily adapt them to our method would be to compare
against the worst case execution cost of the foil or the failure point under one of the execution traces
corresponding to the foil. Also while we mostly focused on propositional concepts, our framework
is also completely compatible with scenarios where the user may be more comfortable providing
relational concepts, since those could be compiled down into propositonal ones. Another avenue of
future work could be to see how one could automatically acquire the required concepts, similar for
example to the work done by (Ghorbani et al., 2019) in the context of single-shot decisions.
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A APPENDIX

A.1 APPENDIX OVERVIEW

This appendix contains the following information; (1) the representational assumptions used by the
method, (2) pseudo-code for the algorithms used, (3) the derivation of the formulas for confidence
calculation (4) the derivation of the formulas for using a noisy classifier and finally (5) the details
on the experiment that are not included in the main paper (6) screenshot of the various interfaces.

A.2 REPRESENTATIONAL ASSUMPTIONS

The central representational assumption we are making is that it is possible to approximate the
applicability of actions and cost functions in terms of high-level concepts. Apart from the intuitive
appeal of such models (many of these models have their origin in models from folk psychology),
these representation schemes have been widely used to model real-world sequential decision-making
problems from a variety of domains and have a clear real-world utility (Benton et al., 2019). We
agree that there may be problems where it may not be directly applicable, but we believe that this
is a sound initial step and is applicable to many domains where currently Reinforcement Learning
(RL) based decision-making systems are being successfully used, including robotics and games.

Apart from this basic assumption, we make one additional representational assumption, namely, that
the precondition can be expressed as a conjunction of positive concepts. Note that the assumption
doesn’t restricts the applicability of the methods discussed here. Our framework can still cover cases
where the action may require non-conjunctive preconditions. To see why, consider a case where the
precondition of action a is expressed as an arbitrary propositional formula, φ(C). In this case,
we can express it in its conjunctive normal form φ′(C). Now each clause in φ′(C) can be treated
as a new compound positive concept. Thus we can cover such arbitrary propositional formulas by
expanding our concept list with compound concepts (including negations and disjuncts) whose value
is determined from the classifiers for the corresponding atomic concepts.

A.3 ALGORITHM

This algorithm for identifying the precondition is specified as Algorithm 1. The algorithm takes

Algorithm 1 Algorithm for Finding Missing Precondition

1: procedure PRECONDITION-SEARCH

2: Input: sfail, afail, Sampler,Msim,C, `
3: Output: Missing precondition Cprec

4: Procedure:
5: poss precondition set = C \ C(sfail)
6: sample count = 0
7: while sample count < ` do
8: s ∼ Sampler

9: if T (s, afail) 6= ⊥ then
10: poss prec set = poss prec set ∩ C(s)

11: if end condition is met then return Ci ∈poss prec set
12: sample count += 1

return Any concept Ci ∈poss prec set

as input the failed action (afail), the simulator, the state at which it was supposed to be executed as
per the foil (sfail), a random sampler that returns valid states of the problem (Sampler), the set of
all concepts (C) and an upper bound on the number of samples to be explored (`). Any locality
assumptions we want to enforce (like sampling around the plan/foil) can be baked into the sampler,
and a simple way to generate such samplers could be by leveraging random walk either from the
initial state or states from the foil or the proposed plan. The algorithm starts by initializing the set of
possible missing preconditions to all concepts missing from the failure state (sfail). Then we start
sampling other possible problem states, and we use each new state where the action is executable
to reduce our possible precondition list further (since any concept not part of this state can’t be a
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Algorithm 2 Algorithm for Finding Cost Function

1: procedure COST-FUNCTION-SEARCH

2: Input: πf , Cπ, Sampler,Msim,C, `
3: Output: Cπf

4: Procedure:
5: for conc limit in 1 to |C| do
6: current foil cost = 0
7: conc list = []
8: for i in 1 to k (the length of the foil) do
9: Ĉi, min cost = find min conc set(C(T (s, 〈a1, ...ai−1〉)), ai, conc limit, `)

10: current foil cost += min cost
11: conc list.push(Ĉi, min cost)
12: if current foil cost > Cπ then return conc list

return Signal that the concept list is incomplete

possible precondition). If we know that all concepts required to characterize the preconditions are
given upfront, then whenever the set of remaining concepts drops to one, we can exit the loop and
return the remaining concept. This is because, as per our setting, there must be at least one missing
precondition in the sfail. Unfortunately, if there are multiple preconditions that are missing in the
original failure state or we are not sure whether the given concept set is complete, then we will have
to wait until we exhaust the sampling budget.

An algorithm for cost function search is provided in Algorithm 2. The algorithm takes as its in-
put, the foil, the cost of the original plan Cπ , the problem simulator, the sampler, the concept set C
and the sampling budget `. The procedure find min conc set, takes the current concept represen-
tation of state i in the foil and searches for the subset Ĉi of the state with the maximum value for
CabsS (Ĉi, ai), where the value is approximated through sampling (with budget `), and the subset size
is upperbounded by conc limit. Note that this is only a satisficing algorithm and not an optimal one;
but we found it to be effective enough for the scenarios we tested.

A.4 CONFIDENCE CALCULATION

For confidence calculation, we will be relying on the relationship between the random variables
as captured by Figure 2 (A) for precondition identification and Figure 2 (B) for cost calculation.
Where the various random variables captures the following facts: Osa - indicates that action a can
be executed in state s, ci ∈ pa - concept ci is a precondition of a, Osci - the concept ci is present in
state s, Cabss ({ci}, a) ≥ k - the abstract cost function is guaranteed to be higher than or equal to k
and finallyOC(s,a)>k - stands for the fact that the action execution in the state resulted in cost higher
than or equal to k.

We will allow for inference over these models by relying on the following simplifying assumptions -
(1) the distribution of concepts over the state space is independent of each other, (2) the distribution
of all non-precondition concepts in states where the action is executable is the same as their overall
distribution across the problem states (which can be empirically estimated) and (3) cost distribution
for an action over states corresponding to a concept that does not affect the cost function is identical
to the overall distribution of cost for that action (which can again be empirically estimated). The
second assumption implies that you are as likely to see a non-precondition concept in a sampled state
where the action is executable as the concept was likely to appear at any sampled state (denoted as
pci ). While the third one implies that for a concept that has no bearing on the cost function for an
action, the likelihood that executing the action in a state where the concept is present will result in a
cost greater than k will be the same as that of the action execution resulting in a cost greater than or
equal to k for any randomly sampled state (pC(.,a)≥k).

For a single sample, the posterior probability of explanations for each case can be expressed as
follows: For precondition estimation, updated posterior probability for a positive observation can be
computed as P (ci ∈ pa|Osci ∧O

s
a) = (1− P (ci 6∈ pa|Osci ∧O

s
a)), where
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Figure 3: A simplified probabilistic graphical models for explanation inference, Subfigure (A) and (B) assumes
classifiers to be completely correct, while (C) and (D) presents cases where the classifier may be noisy.

P (ci 6∈ pa|Osci ∧O
s
a)

=
P (Osci |ci 6∈ pa ∧O

s
a) ∗ P (ci 6∈ pa|Osa)

P (Osci |Osa)

Given ci 6∈ pa is independent of Osa and expanding the denominator we get

=
P (Osci |ci 6∈ pa ∧O

s
a) ∗ P (ci 6∈ pa)

P (Osci |ci 6∈ pa ∧O
s
a) ∗ P (ci 6∈ pa)+

P (Osci |ci ∈ pa ∧O
s
a) ∗ P (ci ∈ pa)

From our assumption, we know P (Osci |ci 6∈ pa∧O
s
a) is same as the distribution ci over the problem

states (pci ) and P (Osci |ci ∈ pa ∧O
s
a) must be one.

=
pci ∗ P (ci 6∈ pa)

pci ∗ P (ci 6∈ pa) + P (ci ∈ pa)

For cost calculation, we have

P (Cabss ({ci}, a) ≥ k|Osci ∧OC(s,a)≥k) =
P (OC(s,a)≥k|Osci ∧ C

abs
s ({ci}, a) ≥ k) ∗ P (Cabss ({ci}, a) ≥ k|Osci)
P (OC(s,a)≥k|Osci)

Where P (OC(s,a)≥k|Osci , C
abs
s ({ci}, a) ≥ k) should be 1 and Cabss ({ci}, a) ≥ k independent of

Osci . Which gives

=
P (Cabss ({ci}, a) ≥ k)

P (OC(s,a)≥k|Osci)

=
P (Cabss ({ci}, a) ≥ k)

P (OC(s,a)≥k|Osci , C
abs
s ({ci}, a) ≥ k)) ∗ P (Cabss ({ci}, a) ≥ k))+

P (OC(s,a)≥k|Osci ∧ ¬C
abs
s ({ci}, a) ≥ k)) ∗ P (¬Cabss ({ci}, a) ≥ k))

From our assumptions, we have P (OC(s,a)≥k|Osci ∧ ¬C
abs
s ({ci}, a) ≥ k)) = pC(.,a)≥k

=
P (Cabss ({ci}, a) ≥ k)

P (Cabss ({ci}, a) ≥ k)) + pC(.,a)≥k ∗ P (¬Cabss ({ci}, a) ≥ k))

13



Under review as a conference paper at ICLR 2021

A.5 USING NOISY CONCEPT CLASSIFIERS

Note that in previous sections, we made no distinction between the concept being part of the state
and actually observing the concept. Now we will differentiate between the classifier saying that a
concept is present (Osci ) is a state from the fact that the concept is part of the state (ci ∈ C(S)). The
relationship between the random variables can be found in Figure 3 (C) and (D). We will assume that
the probability of the classifier returning the concept being present is given by the probabilistic con-
fidence provided by the classifier. Of course, this still assumes the classifier’s model of its prediction
is accurate. However, since it is the only measure we have access to, we will treat it as being correct.
Now we can use this updated model for calculating the confidence. For the precondition estimation,
we can update the posterior of a concept being a precondition given a negative observation (Os¬ci )
using the formula

P (ci 6∈ pa|Os¬ci ∧O
s
a) =

P (Os¬ci |ci 6∈ pa ∧O
s
a) ∗ P (ci 6∈ pa|Osa)

P (Os¬ci |Osa)

Where P (ci 6∈ pa|Osa) = P (ci 6∈ pa) and we can expand P (Os¬Ci
|ci 6∈ pa ∧Osa) as follows

P (O¬ci |ci 6∈ pa ∧O
s
a) =

P (O¬ci |ci ∈ C(s)) ∗ P (Ci ∈ C(s)|ci 6∈ pa ∧Osa)+

P (O¬ci |ci 6∈ C(s)) ∗ P (ci 6∈ C(s)|ci 6∈ pa ∧Osa)

Where as defined earlier P (ci 6∈ C(s)|ci 6∈ pa ∧ Osa) and P (ci ∈ C(s)|Ci 6∈ pa ∧ Osa) would
correspond to (1− pci) and pci . The denominator also needs to be marginalized over ci 6∈ C(s).

Similarly for posterior calculation for positive observations, we have

P (Osci |ci 6∈ pa ∧O
s
a) =

P (Oci |ci ∈ C(s)) ∗ P (ci ∈ C(s)|ci 6∈ pa ∧Osa)+

P (Oci |ci 6∈ C(s)) ∗ P (ci 6∈ C(s)|ci 6∈ pa ∧Osa)

Now for the cost, we can similarly incorporate the observation model as follows.

P (Cabss ({ci}, a) ≥ k|Osci ∧OC(s,a)>=k) =

P (OC(s,a)≥k, O
s
ci |C

abs
s ({ci}, a) ≥ k)

∗ P (Cabss ({ci}, a) ≥ k)

P (OC(s,a)≥k, Osci)

=

(P (OC(s,a)≥k, O
s
ci |ci ∈ C(s), Cabss ({ci}, a) ≥ k) ∗ P (ci ∈ C(s))+

P (OC(s,a)>k, O
s
ci |ci 6∈ C(s), Cabss ({ci}, a) ≥ k) ∗ P (ci 6∈ C(s))) ∗ P (Cabss ({ci}, a) ≥ k)

P (OC(s,a)≥k, Osci)

Given their parents, OC(s,a)≥k and Osci are conditionally independent, and given its parent Osci is
independent of Cabss ({ci}, a) ≥ k), there by giving

=

(P (OC(s,a)≥k|ci ∈ C(s), Cabss ({ci}, a) ≥ k) ∗ P (Osci |ci ∈ C(s)) ∗ P (ci ∈ C(s))+

P (OC(s,a)≥k|ci 6∈ C(s), Cabss ({ci}, a) ≥ k) ∗ P (Osci |ci 6∈ C(s)) ∗ P (ci 6∈ C(s))) ∗ P (Cabss ({ci}, a) ≥ k)

P (OC(s,a)≥k, Osci)

Now P (OC(s,a)≥k|ci ∈ C(s), Cabss ({ci}, a) ≥ k) = 1 and P (OC(s,a)≥k|ci 6∈ C(s), Cabss ({ci}, a) ≥
k) can either be empirically estimated from true labels or we can make the assumption that is equal
to pC(.,a)≥k (which we made use of in our experiments), which would take us to

=

(P (Osci |ci ∈ C(s))P (ci ∈ C(s))+

pC(.,a)≥k ∗ P (Osci |ci 6∈ C(s)) ∗ P (ci 6∈ C(s))) ∗ P (Cabss ({ci}, a) ≥ k)

P (OC(s,a)≥k, Osci)
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Figure 4: Montezuma Foils: Left Image shows foils for level 1, (A) Move right instead of Jump Right (B) Go
left over the edge instead of using ladder (C) Go left instead of jumping over the skull. Right Image shows foil
for level 4, (D) Move Down instead of waiting.

Figure 5: Sokoban Foils: Left Image shows foils for Sokoban-switch, note that the green cell will turn pink
once the agent passes it. Right Image shows foil for Sokoban-cell.

A.6 EXPERIMENT DETAILS

For validating the soundness of the methods discussed before, we tested the approach on the open-
AI gym implementation of Montezuma’s Revenge Brockman et al. (2016) and variants of Sokoban
Schrader (2018). Most of the search experiments were run on an Ubuntu 14.0.4 machine with 64
GB RAM.

For Montezuma, we used the deterministic version of the game with the RAM-based state repre-
sentation (the game state is represented by the RAM value of the game controller, represented by
256-byte array). We considered executing an action in the simulator that leads to the agent’s death
(falling down a ledge, running into an enemy) or a non-NOOP (NOOP action is a specific agent
action that is designed to leave agent’s state unchanged) action that doesn’t alter the agent position
(trying to move left on a ladder) as action failures. We selected four possible foils for the game
(illustrated in Figure 4), three from level 1 and one from level 4. The base plan in level 1 involves
the agent reaching the key, while level 4 required the agent to cross the level.

For Sokoban, we considered two variants with a single box and a single target. Both variants allow
for 8 actions and a NOOP action. Four of those actions are related to the agent’s movements in
the four directions and four to pushing in specific directions. We restricted the move actions only
to be able to move the agent if the cell is empty, i.e., it won’t move if there is a box or a wall in
that direction. The push action also moves the agent in the direction of push if there is a box in
that direction, and the agent will occupy the cell previously occupied by the box (provided there
are no walls to prevent the box from moving). Similar to Montezuma, we consider any action that
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doesn’t change the agent position to be a failure. The first version of Sokoban included a switch
the player could turn on to push the box (we will refer to this version as Sokoban-switch), and the
second version (Sokoban-cells) included particular cells from which it is costlier to push the box.
We considered two versions of Sokoban-switch, one in which turning on the switch only affected
the cost of pushing the box and another one in which it was a precondition. For the cost case of
Sokoban-switch, while the switch is on (i.e. the cell is pink), all actions have unit cost, while when
the switch is off, the cost of pushing actions is 10. The cell can be switched on by visiting it, and
any future visit will cause it to turn off. For the precondition-version, pushing of the box while the
switch is off causes the episode to end with high cost (100). Since we also trained an RL agent
for this version for generating the saliency map. We also added a small penalty for not pushing the
switch and a penalty proportional to the distance between the box and the target. In Sokoban-cells,
the cost of all actions except pushing boxes in the pink region is one, while that of pushing boxes in
the pink region is 10. We selected one foil per variation, and the original plan and the foil are shown
in Figure 5.

Concept Learning For Montezuma, we came up with ten base concepts for each level that ap-
proximates the problem dynamics at the level, including the foil failure. We additionally created
ten more concepts by considering the negations of them. All state samples (used to generate the
samples for the classifier and the algorithm) were created by randomly selecting one of the states
from the original plan and then performing random walks from the selected state. For the classifiers,
we used game-specific logic and RAM byte values to identify each positive instance and then ran-
domly selected a set of negative examples. We used around 600 positive examples (except for the
concepts skull on right and skull on left in level 1, which had 563 and 546 examples, respec-
tively) and twice as many negative examples for each concept. These RAM state examples were
fed to a binary AdaBoost Classifier Freund et al. (1999) (Scikit-learn implementation Pedregosa
et al. (2011) version 0.22.1, with default parameters), with 70% of samples used as train set and
the rest as the test set, for each concept. Finally, we obtained a test accuracy range of 98.57% to
100%, with an average of 99.72% overall concepts of both the levels. All the samples used for the
classifier were collected from 5000 sampling episodes for level 1 and 4000 sampling episodes for
level 4. During the search, We used a threshold of 0.55 on classifiers for concepts of level 1, such
that a given state has a given concept when the classifier probability is greater than 0.55, to reduce
false positives. The code for sampling and training the classifiers can be found in the directory
PRECOND BLACKBOX/sampler and conceptTrain inside the code directory.

For the Sokoban variants, we wanted to collect at least the list of concepts from people. We used sur-
veys to collect the set of concepts. The survey allowed participants to interact with the game through
a web interface, and at the end, they were asked to specify game concepts that they thought were
relevant for particular actions. Each user was asked to specify a set of concepts that they thought
were relevant for four actions in the game. They were introduced to the idea of concepts and their
effect on the action by using PACMAN as an example and presenting three example concepts. The
exact instructions and screenshots of the interface used for Sokoban-cell can be found in the file
Sokoban cell survey.pdf in the directory Study Website Pdfs, which is part of the supplementary
file zip. For Sokoban-switch, we collected data from six participants, four of whom were asked to
specify concepts for push actions and two people for move actions. For Sokoban-cell, we collected
data from seven participants, six of whom were asked to specify concepts for push actions, and
one was asked to specify concepts for move action. We went through the submitted concepts and
clustered them into unique concepts using their description. We skipped ones where they just listed
strategies rather than concepts describing the state. We removed two concepts from the Sokoban-cell
list and two from Sokoban-switch because we couldn’t make sense of the concept being described
there. For Sokoban-switch, we received 25 unique concepts, and for Sokoban-cell, we collected 38
unique concepts. We wrote scripts for each of the concepts and used it to sample example states.
We ran the sampler for 1000 episodes to collect the examples for the concepts. We trained classi-
fiers for each of the concepts that generated more than 10 positive examples for the concepts. For
sokoban-switch, we removed two additional concepts because their training set didn’t contain any
positive examples. We had, on average, 178.46 positive examples for Sokoban-cell per concept and
215.55 for Sokoban-switch. We used all the other samples as negative examples. We again used
70% of samples for training and the remaining for testing. We used Convolutional Neural Networks
(CNNs) based classifiers for the Sokoban variants. The CNN architecture involved four convolu-
tional layers, followed by three fully connected layers that give a binary classification output. The
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average accuracy of the Sokoban-switch was 99.46%, and Sokoban-cell was 99.34%. The code used
for sampling and training for each domain can be found under the folder COST TRAINER (inside
the directory BLACKBOX CODE). The classifier network is specified in the file CNNnetwork.py.
The details on how to run them are provided in the README file in the root code directory.

Explanation Identification: For Montezuma, the concept distribution was generated using 4000
episodes, and the probability distribution of concepts ranged from 0.0005 to 0.206. For some of
the less accurate models, we did observe false negatives resulting in the elimination of the accurate
preconditions and empty possible precondition set. So we made use of the probabilistic version of
the search with observation probabilities calculated from the test set. We applied a concept cutoff
probability of 0.01, and in all cases, the precondition set reduced to one element (which was the
expected precondition) in under the 500 step sampling budget (with the mean probability of 0.5044
for foils A, B & C. Foil D, in level 4, gave a confidence value of 0.8604). The ones in level 1 had
lower probabilities since they were based on more common concepts, and thus, their presence in the
executable states was not strong evidence for them being a precondition.

For each Sokoban variant, we ran another 1000 episode sampler, which used random restarts from
the foil states to collect samples that we used for the explanation generation. During the generation
of the samples, we used the previously learned classifiers to precompute the mapping from concepts
to states.

We used a variant of Algorithm 2, where we sped up the search by allowing for memoization.
Specifically, when sampling is done for an action and a specific conc limit for the first time, then
we precompute the min-cost for all possible concept subset of that size. Then for every step that
uses that action, we look up the min value for the subset that appears in the state. The search was
run with a sampling budget of 750. For calculating the confidence, all required distributions were
calculated only on the states where the action was executable. Again the search was able to find the
expected explanation. We had average confidence of 0.9996 for the Sokoban-switch and 0.998 for
the Sokoban-cell. The exact observation models values used can be found in constant.py under the
directory COST BLACKBOX/src, and the file cost explainer.py in the same directory contains the
code for the exact search we used.

User study: With the basic explanation generation method in place, we were interested in evalu-
ating if users would find such an explanation helpful. Specifically, the hypotheses we tested were
Hypothesis 1: Missing precondition information is a useful explanation for action failures.

Hypothesis 2: Abstract cost functions are a useful explanation for foil suboptimality.

Hypothesis 3: Concept based-explanation (at least precondition ones) help users understand the
task better than Saliency map based ones.

To evaluate this, we performed a user study with all the foils used along with the generated explana-
tion and a simple baseline. In the study, each participant was presented with a random subset of the
concept we used for the study (around five) and then was shown the plan and a possible foil. Then
the participant was shown two possible explanations for the foil (the generated one and the baseline)
and asked to choose between them. There were additional questions at the end asking them to spec-
ify what they believed was the completeness of the selected explanation, on a Likert scale from 1 to
5 (1 being least complete and 5 being the most). They were also provided a free text field to provide
any additional information they felt would be useful.

For H1, the options showed to the user includes one that showed the state at which the foil failed
along with the information that the action cannot be executed in that state and the other one re-
ported that the action failed because a specific concept was missing (the order of the options was
randomized). In total, we collected data from 20 participants, where 7 were women, the average age
was 25, and 10 people had taken an AI class. We found that 19 out of the 20 participants selected
precondition based explanation as a choice. On the question of whether the explanation was com-
plete, we had an average score of 3.476 out of 5 on the Likert scale (1 being not at all complete and
5 being fully complete). The results seem to suggest that information about missing precondition
are useful explanations though these may not be complete. While not a lot of participants provided
information on what other information would have been useful, the few examples we had generally
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Figure 6: Saliency map based explanation shown to users as part of H3

pointed to providing more information about the model (for example, information like what actions
would have been possible in the failed state).

For H2, the baseline involved pointed out the exact cost of executing each action in the foil, and
concept-explanation showed how certain concepts affected the action costs. In the second case, all
action costs were expressed using the abstract cost function semantics in that they were expressed as
the ‘action costing at least X’ even though in our case, the cost was the same as the abstract cost. For
H2, again, we collected 20 replies in total (ten per foil) and found 14 out of 20 participants selected
the concept-based explanation over the simple one. The concept explanations had, on average, a
completeness score of 3.214 out of 5. The average age of the participants was 24.15, 10 had AI
knowledge out of 20 people, 11 were masters students (rest were undergrad), and we had 14 males,
5 females, and one participant did not specify.

For H3, as mentioned the baseline was a saliency map based explanation. For generating the saliency
map, we trained the RL agent using DQN with prioritized experience replay (Schaul et al., 2015)2.
The agent was trained for 420k epochs. The Saliency map itself was generated for four states,
with the agent placed on the four sides of the box. The saliency map itself was generated using
Greydanus et al. (2018), where we used only the procedure for generating the map for the critic
network3. Figure 6 shows the saliency map generated for one of the images. This was shown when
the user tried push up action and fails. At the beginning of the study, both groups of the users
were made to familiarize themselves with five concepts that were randomly ordered (the concepts
themselves remained the same) and had to take a quiz matching new states to those concepts, before
moving on to play the game. Out of the 24 responses we considered, six identified as female and
16 identified as men. Nine of the participants reported they had some previous knowledge of AI,
but only one participant reported having any planning knowledge. For H3, the Participants who
got concept based explanation were able to solve the game on average 34.56 steps and 53.56 secs
(with a 95% confidence interval of ±12.56 and ±23.21 respectively), as opposed to the group who
received saliency explanations took on average 52.92 (±16.01) steps and 71.85 (±28.65) secs. Note
that given the overlap between the confidence intervals we can’t establish a statistically significant
difference between the conditions using the intervals.

PDF files showing the screenshots of the user study website for a scenario for the precondition ex-
planation test and one from cost explanation can be found in User-study-precondition.pdf and User-
study-cost.pdf in the directory Study Website Pdfs. The actual data collected from the user studies
and the concept survey can be found in the directory USER STUDY FEEDBACK. But below, we
have included some screenshots of the interface

2For exact agent, we followed the approach described in https://github.com/higgsfield/
RL-Adventure/blob/master/4.prioritized%20dqn.ipynb

3We made use of the code available at https://github.com/greydanus/visualize_atari
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Action Concept with Max Absolute Average Difference
Max difference Difference in Estimates in Estimates

push up empty above 0.018 0.004
push down empty below 0.0154 0.0033
push left empty below 0.0163 0.0037

push right empty below 0.0172 0.0046
move up empty left 0.002 0.0009

move down wall left 0.0017 0.0007
move left empty right 0.0032 0.0009

move right empty right 0.0045 0.0008

Figure 7: Results from Sokoban-switch on the distribution of non-precondition concepts for each
action. For each action the table reports the concept with the maximum difference between the distri-
bution of concept for that specific version, versus the overall distribution and the average difference
in estimates across concepts.

A.7 ANALYSIS OF ASSUMPTIONS MADE FOR CONFIDENCE CALCULATIONS

In this section we present results from additional tests we ran to verify some of the assumptions
made in the confidence calculations on the Sokoban variants. We mainly focused on Sokoban vari-
ants since the concepts were collected directly from users and we tested the assumptions - (1) the
distribution of all non-precondition concepts in states where the action is executable is the same as
their overall distribution across the problem states (which can be empirically estimated) and (2) cost
distribution of an action over states corresponding to a concept that does not affect the cost function
is identical to the overall distribution of cost for the action (which can again be empirically esti-
mated). We didn’t run a separate test on the independence of concepts as we saw that many of the
concepts listed by the users were in fact correlated and were denoting similar or even the same phe-
nomena. All concepts were assumed to be distributed according to a Bernoulli distribution, whose
MLE estimates were calculated by running the sampler for ten thousand episode, where we used
states from the original successful/optimal plan as the initial state for the random walk (ensuring the
distributions are generated from state space local to the plan of interest). For first assumption, we
compared the distribution of concept for states where the action was executed against the distribution
of the concept over all the sampled states. For the second assumption, we compared the distribution
of the states with the high cost (>=10) where the concept is present versus the distribution of high
cost for the action.

Table 7, summarizes the results from testing the first assumption for Sokoban-switch. For each ac-
tion the table reports the non-precondition concept which had the maximum difference in estimates
(the reported difference in the table). In this domain, the only precondition concept is switch on for
the push actions. As we can see for the domain, the differences are pretty small and we expect the
differences to further reduce once we start accounting the correlation between concepts.

Table 8 presents the results for the second assumption. In the cases of Sokoban-switch, we again
skipped the switch on concept and for Sokoban-Cell we skipped the concepts related to the pink cells
since they are all highly correlated to central concept controlling the cost function (on pink cell).
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Domain Action Concept with Max Absolute Average Difference
Max difference Difference in Estimates in Estimates

Sokoban-Switch

push up wall left below of box 0.1132 0.0461
push down wall left below of box 0.1107 0.0473
push left above switch 0.1135 0.0461

push right wall left below of box 0.111 0.0479

Sokoban-Cell

push up box on right 0.0956 0.0411
push down box on right 0.1098 0.0476
push left box on right 0.1012 0.0486

push right wall on left 0.0889 0.0433

Figure 8: Results from Sokoban-switch and Sokoban-Cell on the distribution of action cost across
different concepts. Here we report only the cost for push actions, since only those actions result in
higher cost.
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A.8 STUDY INTERFACE SCREENSHOTS

Figure 9: Screenshot from the survey done to collect sokoban concepts.

Figure 10: Screenshot from the study interface for H1.
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Figure 11: Screenshot from the study interface for H2.
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Figure 12: Screenshot from the study interface for H2.
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