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Abstract

Segmentation of medical images plays a critical role in various clinical applications, facilitat-
ing precise diagnosis, treatment planning, and disease monitoring. However, the scarcity
of annotated data poses a significant challenge for training deep learning models in the
medical imaging domain. In this paper, we propose a novel approach for minimally-guided
zero-shot segmentation of medical images using the Segment Anything Model (SAM), orig-
inally trained on natural images. The method leverages SAM’s ability to segment arbitrary
objects in natural scenes and adapts it to the medical domain without the need for labeled
medical data, except for a few foreground and background points on the test image it-
self. To this end, we introduce a two-stage process, involving the extraction of an initial
mask from self-similarity maps and test-time fine-tuning of SAM. We run experiments on
diverse medical imaging datasets, including AMOS22, MoNuSeg and the Gland segmen-
tation (GlaS) challenge, and demonstrate the effectiveness of our approach. Our code is
publicly available at https://github.com/talshaharabany/ZeroShotSAM

1. Introduction

Manual segmentation of regions of interest in medical images by experts is time-consuming
and prone to inter-observer variability. Therefore, the development of automated segmen-
tation algorithms has become increasingly important. Indeed, automated medical image
segmentation plays a crucial role in diagnosis (Devunooru et al., 2021), treatment plan-
ning (Sharma and Aggarwal, 2010), and screening (Norman et al., 2018).

Deep learning techniques, particularly convolutional neural networks (CNNs), have
shown remarkable success in various image analysis tasks, including medical image seg-
mentation (Wang et al., 2021; Patel et al., 2021). Recently, transformer based models have
shown improved performance (Dosovitskiy et al., 2020). Such deep models can learn com-
plex patterns and features from large-scale annotated datasets, enabling them to achieve
state-of-the-art performance in segmentation tasks. However, the success of deep learning
methods heavily relies on the availability of annotated training data, which is often limited
and expensive to acquire in the medical domain.

Zero-shot segmentation offers a promising solution to address the challenges associated
with data scarcity in medical imaging. Unlike traditional supervised learning approaches,
zero-shot segmentation aims to perform segmentation tasks without relying on annotated
data from the target domain. Instead, it leverages pre-trained models trained on related
domains or tasks and generalize to a test image from an unseen domain. This approach has
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the potential to significantly reduce the annotation burden and accelerate the development
of segmentation solutions in medical imaging.

In this paper, we propose a novel method for zero-shot segmentation in medical images
by adapting a deep learning architecture originally trained on natural images. Specifically,
we rely on the seminal SAM foundation model by (Kirillov et al., 2023).

Our approach aims to bridge the gap between natural and medical image domains,
enabling accurate and robust segmentation of anatomical structures and pathological regions
without the need for extensive labeled medical data. It does require a sparse prompt in the
form of a handful of forground and background points that are marked on the test image.

We demonstrate the effectiveness of our method through comprehensive experiments on
diverse medical imaging datasets. As we show, while SAM itself has zero-shot capabilities,
those obtained by our method far surpass these baseline capabilities.

2. Related Works

In the domain of medical imaging, segmentation plays a crucial role. Numerous deep
learning-based approaches have been proposed for medical image segmentation (Zhou et al.,
2018; Xiao et al., 2018; Wang et al., 2021; Patel et al., 2021; Shaharabany and Wolf, 2022).
Utilizing convolutional neural networks (CNNs), these methods automatically delineate
anatomical structures and pathological regions from medical images. While these algo-
rithms offer substantial improvements in accuracy and efficiency compared to manual seg-
mentation, they necessitate a significant amount of annotated data. Our solution addresses
this challenge by harnessing the power of large pretrained “foundation” models, allowing
for effective segmentation without reliance on labeled data.

The Segment Anything Model (SAM) has emerged as a powerful tool for segmentation
tasks in computer vision. Developed by Kirillov et al. (2023), SAM introduces a versa-
tile architecture capable of segmenting arbitrary objects in natural images. SAM utilizes
a combination of sparse and dense prompts to guide the segmentation process, enabling
accurate delineation of objects of interest. Several studies have explored the effectiveness
of SAM in medical domain under fully-supervised settings tasks (Shaharabany et al., 2023;
Wu et al., 2023; Xie et al., 2024; Ma et al., 2024), demonstrating its ability to outperform
traditional methods in segmenting complex scenes. Utilizing SAM, our method operates
under zero-shot conditions, indicating the absence of labeled data and training sets. (Shi
et al., 2023; Mattjie et al., 2023; Roy et al., 2023) employ SAM also in zero-shot settings,
without engaging in weight fine-tuning, while our methodology involves fine-tuning of the
SAM image encoder based on its self-similarity map.

Learning to distinguish between the foreground and background of medical imaging with
few marked points, positive and negative, can be used with a contrastive loss (Zhai et al.,
2023) or, as we do, employing transfer learning from a method that already was trained on
such a prompt (Xie et al., 2024). Our approach builds upon the sparse prompt encoder of
SAM, but unlike previous work, achieves this in the zero-shot setting, without performing
fine-tuning on the training set.

Zero-shot learning has emerged as a promising paradigm for addressing the challenge
of data scarcity by leveraging knowledge transfer from related domains (Bucher et al.,
2019; Narayan et al., 2020; Tewel et al., 2022; Mahapatra et al., 2021), especially zero-shot
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Figure 1: Sample results of segmentation of an image from the Monu dataset. (a) the input
image, with marked positive and negative points. (b) the ground truth mask. (c)
SAM output mask with the points as prompt. (d) The initial mask J extracted
from the self-similarity of SAM’s encoder. (e) SAM output mask with mask
prompt using J . (f) our result. The first row employs 4 random positive and 4
random negative points. The second employs 3 and 3. The encoder used is Vit-B.

segmentation methods (Bian et al., 2021; Ma et al., 2021) which offer a cost-effective and
efficient solution for medical image segmentation, paving the way for automated analysis
of medical images without the need for extensive annotation efforts. These previous work
employ a different setting and cannot be compared directly with our results.

Recent work have used self-similarity maps for unsupervised and weakly supervised
localization tasks for natural images (Siméoni et al., 2021; Wang et al., 2023). These
identify a pattern that is well supported at multiple spatial locations in the latent space.
Our approach is based on a two-stage solution, in the first stage we extract an initial mask
from the self-similarity maps based on the locations provided in the sparse prompt directly.

Friebel et al. (2022); Berg et al. (2019); Pachitariu and Stringer (2022) and others inte-
grate human-machine interactions to accelerate the annotation process for medical objects.
These methods typically leverage pretrained models from medical domains in conjunction
with label sketches. In a manner akin to our methodology, these techniques can be cus-
tomized for utilization in a single-image context, employing point-prompt based strategies
without requiring further adjustments or refinement. In order to compare with such ap-
proaches, we ignore the utilization with pretrained models from medical domains and com-
pare with a baseline that incorporates two components that are frequent in these methods:
a superpixel technique and color clustering.

3. Method

In this section, we describe the application of the Segment Anything Model (SAM) (Kirillov
et al., 2023) to perform zero-shot segmentation on medical images, which is an out-of-
distribution domain. Our method consists of two stages (i) the extraction of initial mask
from self-similarity maps, and (ii) a test-time image-specific fine-tuning of SAM.
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Figure 2: Segmenting images from the Glas dataset. (a) the input, with marked positive
and negative points. (b) the ground truth mask. (c) SAM output mask with
the points as prompt. (d) the initial mask J . (e) SAM output mask with mask
prompt using J . (f) our result. The 1st row employs 1 positive and 0 negative
points; the last has 3 each. ViT-Base encoder is used.

The Segment Anything Model S generates an output mask M ∈ RH×W given an RGB
input image I ∈ RH×W×3 (for gray scale medical images we duplicate the image across
the three channels) and two types of prompts: (i) a sparse prompts Ps which related to
bounding boxes B ∈ R4 or two sets of positive and negative points P ∈ R2, and (ii) a
dense prompts Pd ∈ RW×H which is an estimated segmentation map. The output map is
obtained as Mo = S(M,Ps, Pd).

SAM consists of three main components. The first component is the visual encoder Ei,
which is based on a visual transformer (ViT) (Dosovitskiy et al., 2020) with a patch size of
16× 16 and one of three architectures (i) “Base” with 12 transformers layers, (ii) “Large”
with 24 transformers layers, or (iii) “Huge” with 32 transformers layers. The encoder maps

the input image I to a tensor Zi ∈ Rdi×W
16

×H
16 , where di is 768.

The second component of SAM is the two prompt encoders: one for the sparse prompt
Ps and one for the dense prompt Pd. These encoders Es, Ed map the corresponding input

prompt to tensors Zs ∈ Rds×W
16

×H
16 and Zd ∈ Rds×W

16
×H

16 , respectively. For each encoder,
there is a null prompt for not using this specific prompt.

The last component of SAM is the mask decoder Dm, which receives the visual represen-
tation Zi together with the prompts representations Zs and Zd and generates an outputs
mask Mo. In the setting of the zero-shot medical segmentation, the model receives the
image and several points that indicate foreground Ppos and background Pneg pixels.

The straightforward option is to use SAM’s sparse prompt encoder Es with Ps that is
the concatenation of the positive and the negative points, together with the original encoder
Ei in order to get the output mask from Dm. However, since the data is out-of-distribution,
the output mask is inaccurate and requires further refinement.

We, therefore, propose a two-stage method that first extracts an initial mask J from
the visual embeddings Zi returned by Ei, and then applies test time fine-tuning of SAM’s
image encoder to bring SAM’s output mask closer J . The other encoders and the decoder
are not tuned (frozen networks).
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First stage - From Self Similarity Maps to Initial Mask We consider the normalized
visual latent space as Zi and calculate the cosine similarity between the vectors in Rdi in
each pair of spatial locations. The output similarity map A ∈ Rcwch×cwch , where ch and cw
are H

16 and W
16 , respectively. For SAM cases, the input image size is fixed to 1024× 1024, so

cw and ch equals to 64.

The map A has a diagonal equal to 1 and Auv stands for the cosine similarity between
Zi(⌊ u

ch
⌋, u mod ch) and Zi(⌊ v

cw
⌋, v mod cw), where indexing into Zi by spatial dimensions

and provide a vector in di.

For each input point (x, y), whether it Ppos or Pneg, we calculate the corresponding
latent pixel by dividing the pixel values by 16, and sampling the u = x ∗ 64 + y row of A.
The obtained row is denoted as A(u) and can be viewed as a spatial map of size cw × ch.

We then define two maps: a positive maps Mpos, and a negative map Mneg (both contain
only positive numbers) by a simple summation: Mpos =

∑
(x,y)∈Ppos

A(x∗64+y), Mneg =∑
(x,y)∈Pneg

A(x ∗ 64 + y)

In the case in which no negative points are used, the algorithm normalizes the value of
Mpos by subtracting the minimum value in Mpos from each pixel in Mpos and dividing by a
d = maxMpos −minMpos. Then, the initial mask J is given by thresholding the obtained
normalized map at a value of 0.5.

In the case of mixed label point, the algorithm obtains the initial mask J by compar-
ing each pixel in the two maps, i.e., J(x, y) = 1

2(sign(Mpos(x, y) − Mneg(x, y)) + 1) . A
visualization of J is presented in App. A.

Second Stage - Test time Optimization of SAM In the second stage, we utilize
the initial mask J , which indicates foreground and background pixels, and finetune SAM’s
visual encoder Ei while the decoder weights are frozen and both prompts are null, by
considering Mo = S(I, null, null). During the optimization, for each test image separately,
the algorithm initializes S with the pre-trained weights and optimizes for that single test
image independently of any other test images.

The following loss terms are used during this fine-tuning process L(I) = LBCE(Mo, J)+
Ldice(Mo, J), where the BCE loss is defined as LBCE(X,Y ) = −Y ∗log(X)−(1−Y )∗log(X),

the Soft-Dice loss is defined as: Ldice(X,Y ) = 1− (2∗
∑

ij Xij∗Yij)+1

2∗
∑

ij Xij∗Yij+
∑

ij (1−Xij)∗Yij+
∑

ij Xij∗(1−Yij)+1

4. Experiments

In this section, we detail the experimental setup used to validate the efficacy of our proposed
zero-shot sparse-prompt segmentation method employing the Segment Anything Model
(SAM) (Kirillov et al., 2023). Our study is structured around two primary stages: (i)
the extraction of the initial mask J from self-similarity maps and (ii) the test-time fine-
tuning of SAM. We, therefore, also provide multiple alternative results, which apply only
some of these elements: the SAM model with the point prompt, SAM model on top of the
initial mask J , and the initial mask itself.

To assess the effectiveness of our network in image-based segmentation tasks, we utilized
the commonly employed metrics: mean Intersection-over-Union (IoU) and the Dice-Score.

Three datasets are used: AMOS22 (Ji et al., 2022) Abdominal CT Organ Segmentation
with 240 test images and 14 different categories. We adopted the 2D slicing configuration
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Table 1: Zero-shot segmentation: dice scores for AMOS22 dataset with a varying number
of positive points. SAM w/P utilizes the positive points as sparse prompts. The
supervised state-of-the-art nnUNet-3D (Isensee et al., 2021) serves as the upper
limit for comparison with the method.

Spl. R.Kid. L.Kid. GallBl. Esoph. Liver Stom. Aorta Postc. Pancr. R.AG. L.AG. Duod. Blad.

Super-Clustring w/P=1 0.329 0.454 0.474 0.311 0.287 0.272 0.212 0.422 0.358 0.220 0.038 0.023 0.235 0.245
SAM w/P=1 0.632 0.759 0.770 0.616 0.382 0.577 0.508 0.720 0.453 0.317 0.085 0.196 0.339 0.542
J w/P=1 0.512 0.629 0.701 0.576 0.292 0.467 0.428 0.680 0.413 0.281 0.150 0.260 0.349 0.532
Ours w/P=1 0.667 0.781 0.784 0.686 0.377 0.533 0.528 0.767 0.463 0.309 0.135 0.182 0.358 0.611

Super-Clustring w/P=3 0.430 0.488 0.482 0.377 0.293 0.363 0.274 0.455 0.398 0.248 0.044 0.039 0.272 0.298
SAM w/P=3 0.733 0.784 0.786 0.683 0.448 0.658 0.577 0.758 0.493 0.343 0.129 0.240 0.325 0.631
J w/P=3 0.594 0.663 0.749 0.655 0.378 0.535 0.502 0.727 0.462 0.328 0.201 0.272 0.332 0.603
Ours w/P=3 0.742 0.804 0.797 0.713 0.468 0.638 0.557 0.798 0.502 0.352 0.214 0.254 0.365 0.692

Super-Clustring w/P=10 0.654 0.652 0.661 0.596 0.548 0.615 0.661 0.638 0.533 0.445 0.303 0.411 0.385 0.594
SAM w/P=10 0.857 0.855 0.857 0.800 0.643 0.811 0.759 0.842 0.637 0.538 0.405 0.516 0.480 0.789
J w/P=10 0.834 0.802 0.816 0.778 0.662 0.795 0.729 0.811 0.602 0.518 0.332 0.502 0.421 0.744
Ours w/P=10 0.872 0.862 0.866 0.811 0.677 0.835 0.779 0.837 0.622 0.551 0.375 0.532 0.455 0.792

nnUNet-3D (supervised) 0.978 0.951 0.951 0.903 0.856 0.978 0.919 0.961 0.923 0.856 0.790 0.815 0.814 0.929

outlined by Roy et al. (2023). The MoNuSeg dataset (Kumar et al., 2019) contains 38
microscopic images depicting seven organs in its training set, annotated with 21,623 indi-
vidual nuclei, where the test set comprises 14 similar images. The Gland segmentation
(GlaS) challenge (Sirinukunwattana et al., 2017) comprises a curated dataset consisting
of 85 high-resolution images designated for training and 80 images reserved for testing.

In the experiments, positive points are sampled randomly from coordinates where the
pixel value in the ground-truth mask equals 1, while negative points are sampled from
coordinates where the pixel value is 0. The random sampling means that the points are, in
many cases, less typical than those a human would select as guidance. Since the sampling
process introduces a variation, each experiment result is averaged over five iterations on
each test image and then averaged over the entire test set. Naturally, the same points are
used for comparing the various algorithms.

Inspired by previous work, we add a strong zero-shot baseline (“Super-Clustering”) that
combines superpixel segmentation and color clustering techniques for zero-shot segmenta-
tion. Additional details are available in App. C.

Optimization details During the test-time fine-tuning of S, we employ the ADAM op-
timizer with an initial learning rate of 1 · 10−5. A batch size of 1 is utilized, and no further
augmentation has been implemented. We conduct training on NVIDIA A5000 with 24GB
GPU RAM. The number of fine-tuning iterations for S network fine-tuning was set to 100.
The SAM pre-trained weights that we utilized were based on the ViT ‘base’ and ’large‘
architecture, Due to resource constraints, we opt not to use the Huge ViT-based encoder,
which necessitates more than 48GB GPU memory. The SAM image encoder is provided
with input images of size 1024×1024. We adhere to the pre-processing protocol outlined by
SAM (resize, padding, normalization) to ensure optimal performance. The test time fine-
tuning operation takes 40 and 80 seconds per image for Vit-base and Vit-large respectively.

Results Tab. 1 presents zero-shot segmentation results for the AMOS22 (Ji et al., 2022)
dataset across different numbers of positive points (P) and various methods. Notably,
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Table 2: MoNu results for different number of positive points npos and negative points nneg.
All methods are zero-shot methods with a handful of points on the test image used
for supervision. SAM w/P uses the points as the sparse prompt. SAM w/J uses
the map J obtained from the first phase of our method as a dense prompt. The first
number indicates the dice score and the second the IoU. Best (2nd best) results
are indicated as bold (underlined). For reference, the fully supervised AutoSAM
method, trained on the entire training dataset, which is not used in zero-shot at
all, obtains a Dice score of 82.43 and an IoU of 70.17 (Shaharabany et al., 2023).

ViT Base ViT Large

n
p
o
s

n
n
eg

SAM w/P SAM w/J J Ours SAM w/P SAM w/J J Ours Super-Clustring

1 0 11.84/6.68 29.62/17.52 31.18/19.56 40.43/27.81 9.85/5.43 33.37/20.20 25.64/15.54 29.47/18.80 37.11/23.32

1 1 11.65/6.88 34.32/21.08 36.17/22.84 37.71/24.98 3.05/1.82 34.28/20.90 41.29/26.44 46.78/31.68 44.77/31.67

2 0 10.31/5.82 30.40/18.05 33.71/20.72 38.86/25.32 10.80/6.05 33.61/20.38 31.73/19.57 32.75/20.92 37.95/23.65

3 0 9.05/5.10 31.32/18.79 32.26/19.71 37.52/24.13 14.00/7.88 33.51/20.30 37.93/23.87 40.85/26.68 38.55/24.11

2 2 20.86/12.52 34.77/21.32 37.33/23.68 40.91/28.07 5.01/2.89 34.02/20.68 37.53/23.83 42.11/28.26 17.08/12.24

4 0 6.90/3.87 31.40/18.85 35.88/22.16 40.84/26.30 11.76/6.60 33.59/20.37 36.34/22.43 39.19/24.76 38.43/24.17

5 0 9.42/5.37 30.79/18.36 33.59/20.35 36.23/22.40 12.57/6.98 33.85/20.56 36.90/22.95 39.20/24.88 38.53/24.10

3 3 18.80/11.31 32.13/19.45 42.28/28.10 42.48/28.65 7.34/4.46 34.03/20.70 42.91/27.88 49.09/33.82 21.81/15.81

4 4 15.16/9.14 32.74/19.86 46.43/30.67 54.98/39.49 11.49/6.97 34.86/21.33 40.85/26.22 46.69/31.69 3.62/2.42

5 5 18.13/10.82 33.57/20.50 45.14/29.43 52.37/36.34 8.25/4.92 34.10/20.76 43.76/28.44 50.45/34.80 4.61/3.41

our proposed method, labeled as ”ours w/P=1,” achieves the highest Dice scores for most
anatomical structures at P=1, surpassing the average performance of super-clustering by
more than 0.2 dice score, and outperforming competing methods SAM w/P=1 and J w/P=1
by 0.02 and 0.06 dice score on average, respectively. This highlights the effectiveness of
our approach even with minimal positive points. As positive points increase to P=3, our
method maintains superior performance, particularly evident in Dice scores for organs like
the spleen, right kidney, and left kidney, outperforming SAM w/P=3 and J w/P=3. On
average for P=3, our algorithm outperforms super-clustering, SAM w/P=3, and J w/P=3
by more than 0.24, 0.02, and 0.06 dice score, respectively. At P=10, our method (Ours
w/P=10) sustains high performance across most structures, achieving the highest overall
Dice score and surpassing super-clustering by more than 0.15 dice score on average, as well
as baseline methods SAM w/P=10 and J w/P=10 by more than 0.005 and 0.04 dice score on
average, respectively. Moreover, our method competes favorably with the supervised state-
of-the-art represented by nnUNet 3D, demonstrating its potential for practical deployment
in scenarios with limited annotated data. The improvement of J during the finetune for
images from AMOS22 presented in App. B.

The results from the MoNu dataset are presented in Tab. 2. It is evident that our
method achieves the best performance, attaining a mean IoU of 39.49 with ViT-base, which
significantly outperforms the top result obtained by SAM using J in the mask prompt en-
coder, which achieved a mean IoU of 21.33 with ViT-base. Across most input marked point
modes, both ViT architectures demonstrate superior performance compared to standard
zero-shot with SAM and super-clustering, except in cases where a single positive point is
sampled without a negative point for ViT-large. This discrepancy could be attributed to
the inherent inaccuracies associated with relying on a single random representation in our
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Table 3: GLAS results for different number of positive points npos and negative points nneg.
The first number in each pair indicates the dice score and the second the IoU. See
Table 1 for details. For reference, the fully supervised AutoSAM obtains the Dice
score of 92.82 and an IoU of 87.08 (Shaharabany et al., 2023).

ViT Base ViT Large

n
p
o
s

n
n
eg

SAM w/P SAM w/J J Ours SAM w/P SAM w/J J Ours Super-Clustering

1 0 45.31/33.48 52.11/36.95 44.00/30.00 56.81/42.38 56.60/42.60 65.76/50.90 48.35/33.82 51.36/36.71 65.53/50.75

1 1 26.76/19.31 54.52/39.46 63.38/48.00 65.45/50.28 5.72/3.84 65.74/50.91 63.77/48.81 64.88/50.21 31.79/24.55

2 0 42.42/31.04 58.83/43.57 61.65/45.93 65.79/50.91 57.64/43.37 65.82/50.95 63.66/48.19 65.26/50.19 65.28/50.43

3 0 44.24/32.60 59.31/44.08 61.87/46.26 65.10/50.18 57.89/43.53 65.89/51.06 63.90/48.66 65.32/50.43 64.72/49.89

2 2 29.92/21.60 57.95/42.83 63.33/48.70 64.71/50.66 4.50/2.84 65.75/50.89 68.45/53.91 69.45/55.16 16.15/12.66

4 0 43.56/31.99 60.33/45.14 64.13/48.84 66.05/51.15 57.64/43.39 65.97/51.14 64.62/49.55 66.02/51.30 65.14/50.35

5 0 42.75/31.56 60.23/45.10 64.32/49.08 65.96/51.08 57.52/43.28 65.96/51.43 65.25/50.05 66.78/51.94 64.15/49.44

3 3 27.29/19.72 59.31/44.20 65.22/50.52 66.10/51.82 3.18/2.03 65.82/50.97 69.94/55.26 71.27/56.98 9.24/7.48

4 4 26.99/19.32 59.29/44.23 69.43/54.54 70.36/55.76 4.07/2.55 65.95/51.11 69.80/55.05 70.56/56.12 4.01/3.41

5 5 23.27/16.64 58.90/43.98 68.02/53.26 69.32/55.09 4.22/2.69 65.84/50.98 72.02/57.71 72.82/58.84 2.71/2.17

algorithm, whereas the mask encoder of SAM effectively manages this issue. Consequently,
for multi-point input scenarios, our algorithm demonstrates superior performance. As a
general trend, given more points, the performance improves. However, going from four
to five points of each type does not increase performance. Typically results on the Monu
dataset using ViT-Base are presented in Fig. 1 for Vit-Base SAM. The masks obtained by
SAM, using either the point prompt or a dense prompt that relies on the initial mask we
extract are inaccurate, while our full method provides adequate segmentation maps. The
results for the GlaS dataset are depicted in Tab. 3. Among these, the highest performance
is achieved by ViT-large, with a mean IoU of 58.84, surpassing the best performance of the
standard SAM which yields a mean IoU of 51.43, and super-clustering, which obtained mean
IoU of 50.75. Our algorithm demonstrates superior performance in scenarios involving four
marked points; however, its sensitivity to outliers leads to decreased performance in cases
with fewer points. Notably, the point encoder’s ability to handle negative points appears
inadequate, suggesting potential limitations in SAM’s capacity to discern foreground from
background on this data. Figure 2 showcases typical results on the GlaS dataset utiliz-
ing Vit-Base SAM. Similarly to Figure 1, our solution enhances the segmentation mask in
comparison to SAM’s results using either prompt and also greatly improves over J .

5. Conclusions

We demonstrate that SAM is not effective in zero-shot segmentation of out-of-domain med-
ical images with multiple foreground segments, when using the sparse prompt. However,
when relying on SAM’s embedding, one can extract a reasonable initial mask. SAM’s out-
put when using this initial mask as a dense prompt is not better than this mask. However,
when applying a test-time fine-tuning of SAM, the obtained model is considerably better
on the test image at hand. As future work we would like to study the generalization ability
of these finetuned networks (a simple experiment that we did not yet run) and also train a
feed-forward model using meta-learning (Lutati and Wolf, 2023).
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Figure 3: The initial mask J for different numbers of positive points and no negative points.
The first row shows successful cases, and the second failure cases, where the
difference is due to the sampling of the points. (a) The input image (b) the
ground truth (c) one positive point (d) two positives points (e) three positive
points (f) four positive points. The SAM model is based on ViT-Large.

Appendix A. Samples of the initial mask J

Figure 3 demonstrates the evolution of the self-similarity-derived mask J as the number
of positive points grows. Two results are presented for each case, to demonstrate the
variability that arises from the random sampling process. In the typical case, more points
tend to improve performance. In the failure case, where unfavorable points are sampled,
more points do not lead to an improvement.

Appendix B. Finetune Enhancement Graphs

Fig. 4 illustrates the enhancement achieved through the fine-tuning process using the initial
mask J for spleen segmentation, the first category, within the AMOS22 (Ji et al., 2022). The
results demonstrate notable performance improvements across most points, not only refining
the accuracy of the initial mask J but also enhancing the segmentation for inaccurate
instances.

Appendix C. Super-Clustring

Superpixel techniques (Achanta et al., 2012) partition the image into meaningful regions
based on low-level features, while color clustering groups pixels with similar color values
into clusters. In our experiments, superpixels are initially generated to divide the image
into homogeneous regions. Foreground super-pixels are then selected using the supervision
points. We employ k-means clustering with k=2 to facilitate color clustering, effectively
grouping individual super-pixels based on similar color characteristics. This combined pro-
cess enhances the delineation of relevant regions in the image.
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Figure 4: Comparison of segmentation performance before and after fine-tuning using the
initial mask J for spleen segmentation in the AMOS22 dataset. The graphs depict
the enhancement observed at different levels of positive points (P ), specifically
(a) P = 10, (b) P = 3, and (c) P = 1.

13


	Introduction
	Related Works
	Method
	Experiments
	Conclusions
	Samples of the initial mask J
	Finetune Enhancement Graphs
	Super-Clustring

