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Abstract

Recent neural image compression (NIC) advances
have produced models which are starting to out-
perform traditional codecs. While this has led
to growing excitement about using NIC in real-
world applications, the successful adoption of any
machine learning system in the wild requires it to
generalize (and be robust) to unseen distribution
shifts at deployment. Unfortunately, current re-
search lacks comprehensive datasets and informa-
tive tools to evaluate and understand NIC perfor-
mance in real-world settings. To bridge this cru-
cial gap, we provide a comprehensive benchmark
suite to evaluate the out-of-distribution (OOD)
performance of image compression methods and
propose spectrally inspired inspection tools to
gain deeper insight into errors introduced by im-
age compression methods as well as their OOD
performance. We then carry out a detailed per-
formance comparison of a classical codec with
NIC variants, revealing intriguing findings that
challenge our current understanding of NIC.

1. Introduction
Consider the Mars Exploration Rover, whose scientific ob-
jective is to search for clues to past activity of water (and
perhaps life) on Mars. To achieve this, the rover collects
images of interesting rocks and soils to be analyzed by the
scientists on Earth. Sending these images down the Earth-
bound data stream in their original form is too slow and
expensive due to limited bandwidth. Thus, it is well ac-
cepted that image compression could play a key role in
producing scientific breakthroughs (Malin et al., 2017).
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Employing image compression in such a setting is challeng-
ing for three main reasons: 1) a high compression ratio is
desired due to low communication bandwidth, 2) given the
battery-operated nature of these devices, the compression
module has to be lightweight so it consumes less memory
and power, and 3) robustness and generalization to environ-
mental noises and domain shifts, respectively, is desired due
to limited Mars-specific training data. These requirements
are not specific only to the planetary exploration use case
but arise in a wide range of scientific applications using
image compression in the wild (Klasky et al., 2021).

Recently, neural image compression (NIC) has demon-
strated remarkable performance in terms of rate-distortion
and runtime overhead on in-distribution (IND) data (Ballé
et al., 2018; Minnen et al., 2018)—satisfying requirements
1) and 2). However, there is limited work on understanding
the out-of-distribution (OOD) robustness and generalization
performance of image compression methods (requirement
3) (Liu et al., 2022). Our work is driven by several open
fundamental empirical and theoretical questions around this
crucial issue.

How can the expected OOD performance of image com-
pression models be reliably assessed? Can we gain a
deeper understanding of the modus operandi of differ-
ent image compression methods? How do training data
properties and biases impact data-driven compression?

Main Contributions: This paper takes a critical view of
the state of image compression and makes several contri-
butions toward answering the aforementioned questions.
❶ First, we design comprehensive benchmark datasets for
evaluating the OOD performance of image compression
methods. Inspired by existing OOD benchmarks for clas-
sification and detection (Hendrycks & Dietterich, 2019;
Hendrycks et al., 2021; Sun et al., 2022b;a), we design
CLIC-C by introducing 15 common shifts emulating train-
deployment distribution mismatch to the popular CLIC
dataset. ❷ Next, we focus on understanding the image com-
pression performance. The de-facto approach is to use rate-
distortion (RD) curves measured with perceptual quality
metrics, such as PSNR. Such scalar metrics, although easy
to compute, are known to be extremely limited in what they
can capture and sometimes can even be misleading (Wang
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Figure 1: (a) Top row: An original CLIC image and the same image with 3 different corruptions in CLIC-C (severity 5). Bottom left:
Average PSD of CLIC dataset, 1

N

∑N
k=1 PSD(Xk). Bottom row, other figures: Average PSD of the difference between the corrupted

images and the clean images for each given CLIC-C corruption c, 1
N

∑N
k=1 PSD(c(Xk)−Xk). (b) CLIC-C corruptions categorized as

low, medium, or high based on corruption average PSD.

et al., 2004; Wang & Bovik, 2009). To complement RD
curves, we propose spectrally-inspired inspection tools that
provide a more nuanced picture of (a) compression error,
and (b) OOD performance of a given method. Specifi-
cally, we introduce a power spectral density (PSD) based
approach to understand the reconstruction error. Our ap-
proach not only quantifies how much error was made but
also highlights precisely where it was made (in the fre-
quency domain). Similarly, to understand the OOD per-
formance of a compression method in unseen deployment
scenarios, we propose Fourier sensitivity heatmaps—a vi-
sualization tool for highlighting the sensitivity of the re-
construction performance of a compression method to dif-
ferent perturbations in the frequency domain.1 ❸ Using
our benchmark datasets and inspection tools, we carry
out a systematic empirical comparison of a classical codec
with two variants of NIC models.

2. Out-of-distribution image compression
datasets

To evaluate NIC in the presence of environmental or dig-
ital distribution shifts, we generated variants of the CLIC
dataset, which we refer to as CLIC-C. Following the tech-
niques presented in (Hendrycks & Dietterich, 2019) for
studying the performance of DNN classifiers encountering
distributional shifts “in the wild”, our -C datasets consist
of images augmented by 15 common corruptions. For each
image in the original dataset, the -C dataset contains a cor-
rupted version of the image for each of the 15 common
corruptions2, and for each of five corruption severity levels,
with 1 being the lowest severity and 5 being the highest.
Figure 1a shows a sample of some corruptions in CLIC-C.

1Method and results for Fourier sensitivity heatmaps are pre-
sented in Appendix A.

2We used github.com/bethgelab/imagecorruptions to apply cor-
ruptions to CLIC images

While each -C dataset offers a broad sampling of environ-
mental or digital image corruptions, it also provides a spec-
trally diverse collection of corruptions, in the sense that
each corruption can be categorized as low, medium, or high
frequency based on the frequency content used for pertur-
bations. We will write PSD(·) to denote the function that
converts the input image from the spatial to the frequency
domain by computing the power spectral density of the in-
put. Practically, computing PSD(·) is done by applying the
fast Fourier transform (FFT) (Brigham & Morrow, 1967),
followed by a shift operation to center the zero-frequency
component, then taking the absolute value. Now suppose we
have a set X = {Xk}Nk=1 of uncorrupted images and some
corruption function c(·) (e.g., frost, gaussian noise, etc.).
We analyze the spectrum each corruption c(·) by computing
1
N

∑N
i=1 PSD(Xi − c(Xi)) (see Figure 1a). Identifying

dominant frequencies in the Fourier spectrum for each cor-
ruption yields a rough categorization into low, medium, and
high-frequency corruptions, provided in Table 1b.

3. Spectral inspection tools
While existing scalar metrics, such as PSNR, are able to
summarize the visual similarity of reconstructed images
to the original, we will demonstrate that such metrics can
provide an incomplete (and sometimes misleading) picture
when measuring the impact of compression in OOD settings.
Notably, existing tools do not consider the impact of com-
pression on different frequency ranges of images within a
dataset. To more thoroughly analyze the effects of image
compression, we propose to measure and visualize the ef-
fect of image compression in the spectral domain. Given
an image compression model C that returns reconstructed
images, we introduce tools for analyzing compression er-
ror in the Fourier domain to better understand (i) which
spectral frequencies are distorted by C, (ii) the OOD gener-
alization error, and (iii) the robustness error in the presence
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Figure 2: Visualizing distortion via CLIC test set evaluation. Left: spectral measure of in-distribution reconstruction error D under
the fixed-bpp constraint at three rates. Center: Rate-distortion curves with vertical lines indicating fixed-bpp values and horizontal lines
indicating fixed-PSNR values. Right: D under fixed-PSNR constraint. Each D plot is labeled with a tuple of that model’s (bpp, PSNR)
on CLIC. Hotter colors (red) indicate more error in that frequency range.

of distributional shifts.

Definition 3.1 (Spectral Measure of Distortion Error). To
analyze (i), we evaluate the image compression model C’s
ability to reconstruct components of an image across a range
of frequencies. To quantify this, we compute the average
PSD of the difference between each image Xk in a dataset
X and the reconstructed version C(Xk) of Xk: D(C,X ) :=
1
N

∑N
k=1 PSD(Xk − C(Xk)).

Definition 3.2 (Spectral Measure of OOD Generalization
Error). For (ii), we evaluate C’s ability to faithfully recon-
struct OOD images. To quantify this, we extend the metric
D(C,X ) to account for a corrupted version c(X ) of X as fol-
lows: G(C,X , c) := 1

N

∑N
k=1 PSD(c(Xk)− C(c(Xk))).

Definition 3.3 (Spectral Measure of OOD Robustness Er-
ror). For (iii), we evaluate C’s denoising ability. To quan-
tify this, we compute the average PSD of the difference
between each uncorrupted image Xk and the reconstructed
version C(c(Xk)) of the corresponding corrupted image
c(Xk): R(C,X , c) := 1

N

∑N
k=1 PSD(Xk − C(c(Xk))). 3

Note that G provides insight into C’s ability to generalize to
a distribution shift c while R visualizes the denoising effect
(or lack thereof) of C across the frequency domain.

4. Experiments and findings
We analyze the performance of the following image com-
pression methods. ❶ Classical Codec: We apply the
JPEG2000 algorithm over several compression rates q. ❷
Neural Image Compressors (NIC): NIC model optimiza-
tion uses a hyperparameter λ to control the relative weight
of distortion (quality of reconstruction) and rate (level of
compression) terms in the objective function. Our experi-

3For simplicity, when (C,X , c) is clear from the context, we
will just write D, G, or R.

ments include eight Fixed-Rate (FR) models, each trained
on a single λ value, and one Variable-Rate (VR) model,
trained over a continuous range of λ values using loss con-
ditional training (Dosovitskiy & Djolonga, 2020). For both
FR and VR NICs, the models were optimized for PSNR and
the base architectures were the scale hyperprior model of
(Ballé et al., 2018). All NIC models were optimized on the
train split of the 2020 CLIC dataset (Toderici et al., 2020).

Evaluation setup. We compare results under three con-
straints: (a) no constraint, (b) fixed-bpp, and (c) fixed-
PSNR. In (a), we compare methods over their full range of
rate-distortion tradeoffs by generating rate-distortion curves.
In (b), we compare models with hyper-parameters which
give a very similar bpp result on a particular dataset. For
example, we find that on the CLIC dataset, FR NIC with
λ = 0.15, VR NIC with λ = 0.21, and JPEG2000 with
q = 10, all give a bpp very close to 1.21. Thus, comparing
these three models with those hyper-parameters on CLIC
under a fixed bpp constraint, emulates a setting in which a
fixed budget is available to store images. Analogously, in
(c) we compare models with hyper-parameters yielding a
fixed PSNR. This emulates a setting with a requirement on
minimum allowable reconstructed image quality. Scenarios
(b) and (c) are used when evaluating D,G,R and Fourier
heatmaps (Appendix A).

Test data. All models are tested on (a) in-distribution (IND)
and (b) corrupted (or OOD) datasets. We use CLIC and
CLIC-C for (a) and (b) respectively.

4.1. Evaluating spectral distortion on IND data

On IND data, the existing RD curve metrics in the center
of Figure 2 verify the established trend that NIC models
outperform the JPEG2000 model over the compression rates
that the NIC model is trained on (bpp ∈ (0.1, 1.5)) (Ballé
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Figure 3: Generalization errors and denoising errors for a high-frequency shift (shot noise) on CLIC-C. Left: Generalization. RD
curves of of C(c(X )) w.r.t. c(X ) (i.e., PSNR of the reconstructed shifted images w.r.t. the original shifted images) and spectral plots
G. Right: Denoising. RD curves of C(c(X )) w.r.t. X (i.e., PSNR of the reconstructed shifted images w.r.t. the original clean images)
and spectral plots R. RD curve plots have three curves for each model: severity=1 (least transparent), severity=3, and severity=5 (most
transparent); G and R are also tested at severities 1, 3, 5. The plots of G and R are labeled with tuples of the model’s (bpp, PSNR w.r.t.
c(X )) and (bpp, PSNR w.r.t. X ) respectively.

et al., 2018). VR NIC obtains the same performance as
FR NIC for low and moderate bpps; however, FR NIC
outperforms the VR NIC at high bpps, despite the fact that
both models were trained on the same range of λ. This
result follows (Dosovitskiy & Djolonga, 2020) and suggests
that the VR NIC may not be expressive enough to learn the
high PSNR regime.

Next, we use our spectral inspection tool D to better under-
stand the effects of different compression methods. Specifi-
cally, Figure 2 shows plots of D under three fixed-bpp and
three fixed-PSNR scenarios on the CLIC dataset (e.g., mod-
els on the “high psnr” column all have hyper-parameters
which result in a PSNR ≈ 36.85 on the CLIC test set).
Despite having comparable PSNRs, the plots of D vary
greatly between the NIC models and JPEG2000. In particu-
lar, NIC models distort high frequencies significantly more
than medium frequencies (notice the warmer-colored rings
around the edges of the D plots with cooler-colored centers)
while JPEG2000 distorts low and medium frequencies more
than high frequencies (notice the large rectangles of warmer
colors). This suggests that NIC models produce inherently
different spectral artifacts than classical codecs.

4.2. Evaluating generalization and robustness of image
compression on OOD data

Using our CLIC-C dataset and spectral tools, we study the
OOD performance of different compression methods and
show results for one example corruption in Figure 3.4

The generalization metrics (left side of Figure 3) show
that all the compression methods fail to generalize to high-
frequency shifts. Specifically, on this corruption, all three
models have RD curves with low PSNRs w.r.t. c(X )
(PSNRs range from 10-24 vs. 28-40 for IND data in Fig-

4Results for additional corruptions are in Appendix B

ure 2) and leave much larger errors in G (notice the color
bar ranges from 0-700 in Figure 3 vs. 0-60 in Figure 2).
From the RD curves, we see that the main factor determin-
ing the PSNR is the severity of the corruption and not the
model type or bpp. These results might lead us to expect
that these models make similar reconstruction mistakes, but
our spectral inspection tools indicate that this is not the
case at all. Our plots of G indicate that NIC models distort
the higher frequencies significantly more than the low and
medium frequencies while JPEG2000 distorts medium and
low frequencies more than high frequencies. This nuance,
which is equivalent to one we previously observed with IND
data in Figure 2, becomes more apparent from the plots of
G on a high-frequency corruption because high-frequency
signals are much more prevalent on this data than on the
IND data.

The robustness (i.e., denoising), metrics (right side of Fig-
ure 3) reveal more differences between the models. In par-
ticular, they show that NIC models are better at denoising
high-frequency corruptions than JPEG2000. The evidence
for this is (a) at each severity, NIC models achieve signif-
icantly better PSNR w.r.t. X than JPEG2000 and (b) the
edges of R plots (representing the high-frequency signals)
are comprised of cooler colors (less error) with FR NIC
than JPEG2000. The implication of this finding extends into
adversarial example denoising, where JPEG and JPEG2000
were previously used (Aydemir et al., 2018).

5. Conclusion
We proposed benchmark datasets and spectral inspection
tools to gain a deeper understanding of the robustness and
the generalization behavior of image compression models.
Using our tools, we revealed similarities and differences of
compression methods via a systematic OOD evaluation.
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A. Fourier Sensitivity Heatmap Tool
While our spectral tools allow us to measure different capabilities of compression models, they require the availability of
OOD, or corrupted, data. To support a setting in which such OOD data is unavailable, we propose adopting another tool: the
Fourier sensitivity heatmap. This tool evaluates the PSNR of a compression model on data perturbed with Fourier basis
elements (Yin et al., 2019). The resulting visualization is a heatmap where the value at coordinate (i, j) is the PSNR of the
compression method on perturbed data {Xk + rkεUi,j}Nk=1, where each rk is selected uniformly at random from {−1, 1},
ε is the norm of the perturbation, and Ui,j is the (i, j)th Fourier basis matrix. From (Yin et al., 2019), Ui,j ∈ Rn1×n2

and satisfies (i) ∥Ui,j∥ = 1 and (ii) F(Ui,j) has at most two non-zero coordinates specifically at (i, j) and the coordinate
symmetric to (i, j) about the matrix center.

We consider two versions of Fourier heatmaps: (a) with respect to perturbed data and (b) with respect to original data. To
analyze (a) and (b), the PSNR at each coordinate (i, j) is computed with respect to the perturbed dataset, {Xk+rkεUi,j}Nk=1,
and the unperturbed dataset, {Xk}Nk=1, respectively. (a) and (b) can be seen as measures of generalization and robustness
respectively.

Figure 4: Fourier heatmaps of methods under the fixed-bpp setting. Left: PSNRs of C(c(X ))
with respect to c(X ). Right: PSNR of C(c(X )) with respect to X . Warmer colors (red) indicate
higher PSNR.

We computed Fourier heatmaps
over the CLIC dataset in Fig-
ure 4. We selected hyper-
parameters for these models us-
ing a fixed-bpp constraint on
the clean data. Note: in these
Fourier heatmap plots, warmer
colors represent higher PSNR,
which is in contradiction to the
plots of D, G, and R where
warmer colors represented more
error.

On the left side of Figure 4, we
analyze the generalization of the
image compression models to
various frequency shifts. We
find that all image compression
models generalize to low- and
medium-frequency signals better
than high-frequency signals. Specifically, observe how the centers of the plots–corresponding to low-frequency signals–have
hotter colors than the edges of the plots. This corroborates our findings from both the RD curves and G metrics on the
CLIC-C dataset.

On the right side of Figure 4, we analyze the robustness, or denoising, capabilities of the models. These plots show that
NIC models are better at denoising high-frequency corruptions than low-frequency corruptions (notice the cooler-colored
diamonds in the center of the NIC plots). Meanwhile JPEG2000 has very consistent and poor denoising properties across
the entire range of corruption frequencies (the plots are blue with a narrow gradient of color compared to the NIC plots).

B. Additional Results - Other CLIC-C Corruptions
Figures 5 and 6 show the results of 12 other corruptions from CLIC-C which were not included in the main body.
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Figure 5: RD Curves for corruptions not seen in the main body. Rows 1, 3, and 5 show PSNR w.r.t. c(X ). Rows 2, 4, and 6
show PSNR w.r.t. X .
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Figure 6: Generalization error G and denoising error R for FR NIC and JPEG2000 on other corruptions of CLIC-C.
We plot both spectral metrics for one low, medium, and high-frequency corruption at severities 1 and 5. The plots of G and
R are labeled with tuples of the model’s (bpp, PSNR w.r.t. c(X )) and (bpp, PSNR w.r.t. X ) respectively.
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