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ABSTRACT

The rise of deepfake technology has made everyone vulnerable to false claims
based on manipulated media. While many existing deepfake detection methods aim
to identify fake media, they often struggle with deepfakes created by new generative
models not seen during training. In this paper, we propose VeriFake, a method
that enables users to verify that media claiming to show them are false. VeriFake
is based on two key assumptions: (i) generative models struggle to exactly depict
a specific identity, and (ii) they often fail to perfectly synchronize generated lip
movements with speech. By combining these assumptions with powerful modern
representation encoders, VeriFake achieves highly effective results, even against
previously unseen deepfakes. Through extensive experiments, we demonstrate that
VeriFake significantly outperforms general-purpose deepfake detection techniques
despite being simple to implement and not relying on any fake data for pretraining.

1 INTRODUCTION

Deepfakes, or maliciously manipulated media, have become a major threat to social stability. They are
often used by bad actors to spread false information, increase social division, cause embarrassment,
and violate privacy. As deep generative models improve, creating convincing deepfakes has become
easier and faster, making it urgent to develop automatic detection methods. Despite significant
progress in the machine learning community, current detection methods struggle, especially in
identifying new types of deepfake attacks that exploit unknown vulnerabilities.

The main limitation of existing approaches is their reliance on supervised classifiers trained to detect
deepfakes similar to those previously seen. This makes them less effective against new, previously
unseen types of deepfake attacks. With the rapid advancements in generative models, which constantly
introduce novel forms of media manipulation, this issue will become more severe. There is a pressing
need for new methods that can bridge this generalization gap and enable users to falsify deepfakes.

Empirical studies show that celebrities and politicians are often the main targets of deepfake attacks.
A recent study (Marchal et al., 2024) analyzing AI misuse incidents between January 2023 and March
2024 revealed that impersonating public figures accounts for 27% of malicious AI use. Another
worrying trend is the creation of non-consensual deepfake pornography, as seen in the January 2024
incident involving AI-generated explicit images of Taylor Swift that quickly spread on social media.
In the business world, deepfake scams targeting companies have become a significant threat, with
attackers impersonating executives or employees to manipulate company operations. A recent report
(ISMS.online, 2024) ranked deepfake impersonations as the second most frequent cybersecurity
incident experienced by businesses in the last 12 months, with 30% of U.S. businesses reporting
deepfake-related incidents during this period.

In this paper, we propose an alternative solution to tackle deepfake detection by enabling users to
prove that media claiming to show them is false. Our method is based on two assumptions about
current generative models: (i) they cannot exactly depict the impersonated identity (Chefer et al.,
2023); and (ii) they fail to perfectly sync generated lip movements with speech (Haliassos et al.,
2021). We show how coupling these two assumptions with powerful, modern representation encoders
is highly effective, even against previously unseen deepfake attacks. We focus on two important
scenarios, illustrated in Fig. 1: (i) face manipulation attacks, where the identity in a video is changed
to that of the impersonated person, and we are given user guidance about the attacked identity; and
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Figure 1: Deepfake verification scenarios, enabling users to falsify targeted attacks. (a) Face forgery:
the user’s identity is seamlessly blended into an image. The observed image depicts the user, and we
are provided with reference images of the user’s identity. (b) Audio-Visual (AV) manipulation: either
fake audio is generated to match a video, or fake video is created to align with an audio track. The
result is a manipulated video that appears to show the user saying something they did not actually say.

(ii) audio-visual attacks, where a video is manipulated to make it appear as if a person is saying
something they did not, or the audio is altered to match some video.

We present VeriFake, a deepfake verification method, illustrated in Fig. 2. VeriFake dismantles face
manipulation attacks by verifying whether media truly depict the user. VeriFake requires the user to
provide a few images of their face (even a single photo works well) and then verifies if the observed
media match the user’s face. It calculates a “truth score” (similarity function) between the media and
the user’s provided images, using off-the-shelf features pretrained on real data. A low truth score
suggests the media are fake. For example, given real images of Obama, we can detect deepfake
images of him by verifying his facial identity. For multi-modal video data, we further extend VeriFake
to address audio-visual synthesis attacks by looking for minor flaws in speech synchronization in
manipulated videos of speaking persons.

Despite being simple to implement, and not using any fake data for pretraining, we demonstrate the
superiority of our approach across many competitive benchmarks. Our main contributions are:

1. Introducing VeriFake, a practical method for deepfake verification, and demonstrating its
effectiveness in critical face swapping attack scenarios.

2. Extending VeriFake to address audio-visual synthesis attacks.

3. Analyzing overfitting in deepfake verification and presenting a strategy to benefit from it.

2 RELATED WORK

Image synthesis. Fake images are created either by manipulating parts of existing images or by
generating them from scratch. Examples of the former include techniques that modify attributes
in a source image or those that replace the original face in an image or video with a target face
(Korshunova et al., 2017; Bao et al., 2018; Perov et al., 2020; Nirkin et al., 2019). The other class of
methods, however, involves generating all pixels from scratch, whether from random noise (Karras
et al., 2019) or text prompts (Rombach et al., 2022; Ramesh et al., 2022; Saharia et al., 2022).

General deepfake detection. As deepfake technology advances, significant efforts have been devoted
to identifying manipulated media. Traditional approaches focus on examining image statistics changes,
detecting cues such as compression artifacts (Agarwal & Farid, 2017). Learning-based methods have
also been employed, with an initial emphasis on whether classifiers could effectively distinguish
images from the same generative model (Wang et al., 2019; Frank et al., 2020; Rössler et al., 2019).
Recent studies (Wang et al., 2020; Chai et al., 2020) shift towards classifiers capable of generalizing
to different generative models, demonstrating the efficacy of neural networks trained on real and fake
images from one GAN model for detecting images from other GAN models. However, (Ojha et al.,
2023) emphasizes the non-generalizability of neural networks to unknown families of generative
models when trained for fake image detection. UFD (Ojha et al., 2023) leverage CLIP’s pretrained
feature space by performing linear probing on CLIP’s image representations. While UFD also uses
pre-trained representations, our approach has significant differences in that UFD relies on fake data
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to differentiate between real and fake media. In contrast, our method does not use fake data during
training, yet achieves better performance as demonstrated in Tab. 1 and Tab. 2.

Face forgery detection. Early approaches relied on supervised learning to transform cropped face
images into feature vectors for binary classification (Dang et al., 2020; Nguyen et al., 2019; Rössler
et al., 2019). However, it became evident that relying solely on classification methods had limitations,
often leading to overfitting of training data and potentially missing subtle distinctions between real
and fake images. Incorporating frequency information proved invaluable for face forgery detection,
enabling the identification of specific artifacts associated with manipulation (Frank et al., 2020; Li
et al., 2021; Qian et al., 2020; Luo et al., 2021; Liu et al., 2021a). However, it is noteworthy that these
cues can sometimes be overcome by techniques such as artifact removal or slight alterations to model
architectures. Recent research efforts have increasingly prioritized the improvement of generalization
in forgery detection models, recognizing the significance of detecting previously unseen forgeries
(Cao et al., 2022; Sun et al., 2022; Zhuang et al., 2022). Huang et al. (2023) uses face identity and
face recognition features for supervised training of deepfake detectors. In contrast, our approach does
not need training, and therefore enjoys better generalization.

Audio-visual (AV) deepfake detection. In the domain of identifying manipulated speech videos,
prior research focused on exploiting audio-visual inconsistencies as a crucial cue. Many approaches,
rooted in supervised learning, have been devised to directly train audio-visual networks, enabling them
to discern video authenticity (Chugh et al., 2020; Mittal et al., 2020). Recently, attention has shifted
towards audio-visual self-supervision as a pretraining strategy. This entails self-supervised training,
followed by fine-tuning with real/fake labels (Grill et al., 2020; Haliassos et al., 2022). Some methods
incorporate lip-reading data for this purpose (Haliassos et al., 2021), while others implicitly integrate
it into audio-visual synchronization signals (Zhou & Lim, 2021). Feng et al. (2023) proposed AVAD,
probably the most related method, which adapts ideas from anomaly detection for AV deepfakes, and
does not use fake data for training. The method requires training a multimodal transformer using
multi-objective terms. Our method achieves higher accuracy while being far simpler, using only
off-the-shelf feature extractors and not requiring training.

3 FACE SWAPPING ATTACKS

Face forgery detection involves identifying instances of manipulated facial features. This task has
significant real-world implications, as many deepfakes involve human faces (Marchal et al., 2024;
ISMS.online, 2024). Face swapping replaces the original face in an image or video with the targeted
identity, aiming to generate a fake face indistinguishable from a real one to the human eye.

3.1 VERIFAKE: A PRACTICAL METHOD FOR DEEPFAKE VERIFICATION

We propose VeriFake, a practical method for deepfake verification in face swapping attacks. VeriFake
detects these attacks by verifying whether the observed media truly depict the user. The method
requires the user to provide a few images (as few as one) of their face. VeriFake then quantifies the
correspondence between the user’s facial identity and the identity observed in the image using an
off-the-shelf face recognition model. Our base assumption is that current generative methods fail to
perfectly transfer the user’s identity to the fake image. We thus distinguish between real and fake
images by verifying that the user’s facial identity matches that of the observed image.

VeriFake takes as input a test face image x and the user’s provided reference set of their facial identity
R. We use a face recognition model, denoted by ϕid(.), to compute facial features (we use Wang
et al. (2017)). We then measure the similarity between the test image x and each image within our
reference set using cosine similarity over ϕid(.) features. The truth score s(x) of the image x is the
similarity to the nearest face in the reference set. Low truth scores indicate that the image is fake.
Formally, the truth score is given by:

s(x) = max
y∈R

{ ϕid(x) · ϕid(y)

∥ϕid(x)∥2 · ∥ϕid(y)∥2

}
(1)

We illustrate VeriFake in Fig. 2.
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Figure 2: Illustration of VeriFake, our proposed deepfake verification method. (a) VeriFake verifies
if the observed media match the user’s face. (b) VeriFake looks for minor flaws in speech synchro-
nization in manipulated videos of speaking persons. By quantifying the similarity using the truth
score, computed via cosine similarity, VeriFake effectively distinguishes between real and fake media,
enabling robust detection of previously unseen deepfake attacks.

Table 1: Performance comparison (mean ROC-AUC %) of baseline methods on DFDC (Dolhansky
et al., 2019), evaluating their ability to detect unseen attacks. VeriFake outperforms supervised
baselines, demonstrating its robustness to previously unseen manipulations. A and B are distinct
deepfake generation methods.

Scenario Train/Test Xception FFD F3NET SPSL RECCE UCF UFD Ours

Seen A/A 95.7 96.0 97.4 96.4 95.0 97.0 95.8 99.9
B/B 93.2 85.7 89.4 81.7 88.6 94.9 91.4 100.

Unseen A/B 74.0 77.9 79.8 84.4 74.2 81.3 72.2 100.
B/A 65.9 56.6 87.9 48.7 62.0 67.1 51.3 99.9

3.2 EXPERIMENTS

Datasets. We conducted experiments on three face swapping datasets that provide identity-related
information: Celeb-DF (Li et al., 2020), DFD (Research et al.) (which is part of FF++ (Rössler
et al., 2019)), and DFDC (Dolhansky et al., 2019). Other standard face swapping datasets do not
include identity information. The Celeb-DF dataset was generated through face swapping involving
59 pairs of distinct identities, comprising 590 real videos and 5, 639 fake videos. DFD, is a deepfake
dataset characterized by 363 real videos and 3, 068 fake videos. The DFDC dataset stands out as
the largest publicly available collection of face-swapped videos, featuring 1, 133 real videos and
4, 080 manipulated videos for testing. This dataset poses a substantial challenge for existing forgery
detection methods, due to the diverse and previously unseen manipulation techniques it contains. Full
implementation details are in App. A.1.

Results. In order to assess the robustness of our proposed method against unseen deepfake attacks,
we conducted experiments on DFDC (Dolhansky et al., 2019), which contains real and fake images.
The fakes were created by two distinct deepfake generation methods. Method A and method B
denote the deepfake generation methods within DFDC. Note that the dataset does not provide specific
information about the technical details of these deepfake generation techniques; they are simply
identifiers within the DFDC dataset metadata. To establish a comparative baseline, we selected a
range of classic and contemporary state-of-the-art methods, including Xception (Rössler et al., 2019),
EfficientNetB4 (Tan & Le, 2019), FFD (Dang et al., 2020), F3Net (Qian et al., 2020), SPSL (Liu
et al., 2021a), RECCE (Cao et al., 2022), UCF (Yan et al., 2023) and UFD (Ojha et al., 2023). Each
baseline was trained to classify real vs. deepfakes generated by method A and subsequently evaluated
on real images vs. method B or vice versa. This ensured that no baseline model had prior exposure
to the test-time deepfake generation method. In contrast, our encoders were exclusively pretrained
on real data and not on fake data from methods A or B. The results, presented in Tab. 1, show that
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Table 2: Performance comparison of baseline methods and our verification method, VeriFake. The
supervised models were trained on FF++(C23) and evaluated on Celeb-DF, DFD, and DFDC datasets.

Dataset
Cross-Dataset Verification

Xception EffNetB4 FFD F3NET SPSL RECCE UCF UFD Ours

Celeb-DF 73.7 73.9 74.4 73.5 76.5 73.2 75.3 61.4 97.0
DFD 81.6 81.5 80.2 79.8 81.2 81.2 80.7 64.0 96.3
DFDC 73.7 72.8 74.3 73.5 74.1 74.2 75.9 67.0 99.7

Table 3: Feature extractor comparison (aver-
age ROC-AUC %). Best in bold.

Dataset CLIP Swin-S MX

Celeb-DF 89.3 94.5 97.0
DFD 95.7 96.1 96.3
DFDC 98.8 99.3 99.9

Table 4: Distribution shifts comparison (aver-
age ROC-AUC %).

Dataset Noise Blur Comp JPEG

Celeb-DF 96.7 96.2 97.0 96.9
DFD 96.1 96.0 96.2 96.3
DFDC 99.8 99.3 99.9 99.9

while the supervised baselines performed poorly on previously unseen attack scenarios, our method
achieved near-perfect accuracy. Additionally, to showcase the generalization challenges of supervised
methods, we also tested them on real vs. fake data from the same method as for training (e.g. A). In
this case, the baselines perform much better. Note that our method outperforms even in this case, as
DFDC does not suffer from artifacts making it challenging for methods that use visual artifacts rather
than identity.

To simulate common unseen deepfake attack scenarios, we compared our method against state-of-the-
art approaches that are trained on a large external dataset (here, FF++(C23) (Rössler et al., 2019)), and
evaluated on the previously unseen attack data in another dataset (here , Celeb-DF, DFD, and DFDC).
As our method does not require training, we only used a reference set of real images of the user’s
identity. We did not need to train on FF++. The results can be seen in Tab. 2, our method is far more
effective on such previously unseen deepfake attacks. It is clear that supervised methods struggle to
generalize well across both datasets and attack types. VeriFake removes this strong requirement for
in-dataset training data, resulting in improved performance.

3.3 ANALYSIS AND DISCUSSION

Feature extractor ablation study. In Tab. 3 we present an ablation study on the effect of ϕid.
Specifically, we compared our chosen Attention-92(MX) (Wang et al., 2017) with CLIP (Radford
et al., 2021) and Swin-S (Wang et al., 2021; Liu et al., 2021b). The results demonstrate that our
method is not overfitted to a single feature extractor. Specifically, we found that CLIP, which has
been trained on quite irrelevant data, is already effective.

Reference set size ablation study. We investigated performance sensitivity to reference set size.
The results in Fig. 3a demonstrate the method’s robustness to reference set variations. A minimal
reference set containing only a single image results in only a slight decrease in accuracy. Note that
videos were uniformly subsampled to 32 frames in our experiments (see App. A.1).

Distribution shifts in reference set. The reference set in the empirical evaluation uses other videos of
the same person. These videos differ in background, camera, face rotation, etc. In addition, following
Haliassos et al. (2021), we investigated the effects of video blurs, JPEG compression, Gaussian noises
and video compression at severity level 3 on the reference set. As shown in Tab. 4, VeriFake is robust
to changes in reference set distributions. Moreover, our facial features are invariant to variations in
attributes like facial hair, glasses, and hair color, etc. Celeb-DF results demonstrate this robustness,
as each celebrity identity exhibits high variance in facial appearance and attribute values.

Limitations. i) If an attacker simply copies the user’s face onto the observed image, it will correspond
to the user’s face identity, although this would result in an unrealistic appearance. To mitigate this, we
recommend ensembling our method with a simple image realism-based approach which will easily
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(a) (b) (c)

Figure 3: (a) Ablation on our reference set size (ROC-AUC %). Even a single image reference set
is close to full performance. (b) Percentile λ study for truth score selection. Performance is robust
across a wide range of values. (c) Comparison of truth scores for different text-image encoders. The
percentage of image captions whose fake images had a higher truth score than the original image.

catch such crude attacks. ii) Our method does not deal with cases where the user’s and observed
identities are identical, but other attributes are manipulated, e.g. changes in facial expressions, age
or other non-identity features. These tasks are left for future work. However, in Sec. 4 we extend
VeriFake to deal with audio-visual video data, where the attacker is manipulating the user’s speech.

4 AUDIO-VISUAL DEEPFAKE VERIFICATION

4.1 EXTENDING VERIFAKE

Audio-visual (AV) deepfakes manipulate either video to match a given audio track, audio to match a
video, or both simultaneously. While many of these AV deepfakes can be addressed using VeriFake
with identity information (as discussed in Sec. 3), this section focuses on AV scenarios where such
information is unavailable or irrelevant: (i) the media show the user’s identity, but the speech content
and lip movements are manipulated (the identity is not changed); (ii) the user cannot provide reference
images of their face; and (iii) the true identity is unknown, and the deepfake involves AV manipulation.
In all these cases, the verification task relies on determining whether the audio and video correspond
to the same event, independent of the identity. Our method is based on the assumption that current
generative models struggle to achieve perfect AV synthesis, often resulting in subtle inconsistencies.
To leverage this, we extend VeriFake to AV data by using powerful off-the-shelf audio-visual encoders
to extract features from each modality (we use AV-Hubert (Shi et al., 2022)). The audio and video
encoders are denoted by ϕA and ϕV , respectively, and we calculate the cosine similarity between
them as the truth score. There is an added complication in this case, as AV deepfakes are evaluated at
a video level, while the truth score is calculated for every temporal frame. We opt for a simple but
effective solution, using the truth score with the λ% lowest value in the video (we choose λ = 3%,
but a wide range of values is successful, see Fig. 3b). Formally, for a clip of length T , we denote the
visual frame at time t by vt and the audio frame by at. The truth score for frame t (denoted st) is
given by:

st =
ϕV (vt) · ϕA(at)

∥ϕV (vt)∥2 · ∥ϕA(at)∥2
(2)

We choose the frame value with the λ% percentile as the overall clip truth score s. This is given by
s = perc({s1, s2..sT }, λ) , where perc(·, λ) calculates the λ% percentile of the set. AV data with
some misaligned frames will obtain a low truth score indicating a high likelihood of being fake. Real
data will not have mismatches and will achieve high truth scores. Note that misalignment between
AV data has been detected by several previous deepfake detection methods including (Feng et al.,
2023). The novelty here lies in demonstrating that our deepfake verification method outperforms
previous methods, using a simpler, streamlined method.

4.2 EXPERIMENTS

Datasets. We evaluated our method on the FakeAVCeleb video forensics dataset (Khalid et al.,
2021). This dataset contains a diverse range of manipulations that alter both human speakers’ speech
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Table 5: AP and AUC (%) FakeAVCeleb results, following the AVAD (Feng et al., 2023) evaluation
protocol. Supervised methods are evaluated on unseen fake types. Best in bold.

Method Mode Pretrained
Dataset

Category

RVFA FVRA-WL FVFA-WL FVFA-FS FVFA-GAN AVG-FV

AP AUC AP AUC AP AUC AP AUC AP AUC AP AUC

Su
pe

rv
is

ed

Xception V ImageNet – – 88.2 88.3 92.3 93.5 67.6 68.5 91.0 91.0 84.8 85.3
LipForensics V LRW – – 97.8 97.7 99.9 99.9 61.5 68.1 98.6 98.7 89.4 91.1
AD DFD AV Kinetics 74.9 73.3 97.0 97.4 99.6 99.7 58.4 55.4 100. 100. 88.8 88.1
FTCN V – – – 96.2 97.4 100. 100. 77.4 78.3 95.6 96.5 92.3 93.1
RealForensics V LRW – – 88.8 93.0 99.3 99.1 99.8 99.8 93.4 96.7 95.3 97.1

U
ns

up
er

vi
se

d AVBYOL AV LRW 50.0 50.0 73.4 61.3 88.7 80.8 60.2 33.8 73.2 61.0 73.9 59.2
VQ-GAN V LRS2 - - 50.3 49.3 57.5 53.0 49.6 48.0 62.4 56.9 55.0 51.8
AVAD AV LRS2 62.4 71.6 93.6 93.7 95.3 95.8 94.1 94.3 93.8 94.1 94.2 94.5
AVAD AV LRS3 70.7 80.5 91.1 93.0 91.0 92.3 91.6 92.7 91.4 93.1 91.3 92.8
Ours AV LRS3 98.6 98.7 94.4 95.7 97.4 97.7 97.8 98.1 97.6 97.9 96.8 97.4

and facial features, reflecting real-world deepfake scenarios. Specifically, FakeAVCeleb is derived
from the VoxCeleb2 dataset and consists of 500 authentic videos, and 19, 500 manipulated videos.
These manipulations are generated through various techniques, including Faceswap (FaceSwap.),
FSGAN (Nirkin et al., 2019), Wav2Lip (Prajwal et al., 2020), and the incorporation of synthetic
sounds generated by SV2TTS (Jia et al., 2018). The dataset features examples that exhibit different
combinations of these manipulations, capturing the diverse nature of deepfake content.

Implementation details. In our implementation, we use the AV-HuBERT Large model as our feature
encoder. This model was pretrained on real, unlabeled speech videos from the LRS3 dataset. No fake
videos at all or any real videos from the evaluation dataset were used in pretraining. We follow the
official AV-HuBERT implementation1 for video preprocessing. Specifically, we use an off-the-shelf
landmark detector to identify Regions of Interest (ROIs) within each video clip. Both video and
audio components are transformed into feature matrices represented in RT×d, where T represents
the number of frames, and d is the AV-HuBERT feature space dimension (d = 1024). Accordingly,
we choose λ = 3% for our choice of λ. However, an ablation study is presented in Fig. 3b which
indicates that performance is not sensitive to the choice of λ. In accordance with standard practice,
we used two evaluation metrics: (i) average precision (AP) and (ii) receiver operating characteristic
area under the curve (ROC-AUC).

Settings and baselines. We conducted experiments on FakeAVCeleb (Khalid et al., 2021) following
the protocol established by AVAD (Feng et al., 2023). We report numbers by SOTA supervised
methods: Xception (Rössler et al., 2019), LipForensics (Haliassos et al., 2021), AD DFD (Zhou
& Lim, 2021), FTCN (Zheng et al., 2021), and RealForensics (Haliassos et al., 2022). We also
compared to other self-supervised methods: AVBYOL (Grill et al., 2020; Haliassos et al., 2022),
VQGAN (Esser et al., 2021) and AVAD (Feng et al., 2023). We use the same categorization as in
(Feng et al., 2023): (i) RVFA: real video with fake audio by SV2TTS; (ii) FVRA-WL: fake video by
Wav2Lip with real audio; (iii) FVFA-WL: fake video by Wav2Lip, and fake audio by SV2TTS; (iv)
FVFA-FS: fake video by Faceswap and Wav2Lip, and fake audio by SV2TTS; (v) FVFA-GAN: fake
video by FSGAN and Wav2Lip, and fake audio by SV2TTS. For supervised methods, we omitted the
evaluated category during training and used the remaining ones.

Results. The results presented in Tab. 5 underscore the superior performance of our method across all
categories, surpassing self-supervised approaches (AVBYOL, VQGAN, and AVAD) by a significant
margin. Our method consistently demonstrates comparable or superior performance to supervised
methods in all categories, despite not relying on labeled supervision or fake data. Notably, our method
outperforms all supervised baselines in terms of average AP and ROC-AUC. Although supervised
baselines excel in certain categories, their performance deteriorates in others demonstrating poor
generalization skills. This highlights the robustness and effectiveness of our method for identifying
fake videos manipulated by diverse and previously unseen deepfake attacks. A further evaluation of
VeriFake on the KoDF (Kwon et al., 2021) dataset is provided in App. A.2.

Ablation. We ablate the effect of the percentile λ in Fig. 3b. The results are robust to this hyper-
paramer, with a mere 2% decrease in fake video average performance when comparing λ = 0− 90%.

1https://github.com/facebookresearch/av_hubert
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(a) CLIP (b) BLIP2 (c) BLIP2−CLIP

Figure 4: Truth scores histograms of real and fake images with respect to the claimed caption. (a)
Fake images have higher CLIP scores. (b) BLIP2 scores achieve weak separation between real and
fake data. (c) BLIP2−CLIP scores achieve a stronger separation between real and fake data.

5 ANALYSIS: OVERFITTING EFFECTS

Here we analyse the effect of overfitting on VeriFake by studying a simplified setting, where the
attacker first synthesizes a fake image using a text prompt and a text-to-image (TTI) model. The
attacker then presents the fake image with the input prompt as its caption. In this case, the verification
task is that the text prompt and the image describe the same content. As TTI models are known not
to be perfectly aligned with the input prompt (Xu et al., 2023; Chefer et al., 2023), VeriFake can be
used to detect fake images generated by them. We note that this setting is simplified, as the attacker
would not disclose the text prompt that generated the image, and also can either choose to use another
caption to describe the fake image which differs from the input prompt. This caption can be generated
post-hoc (after the fake image was synthesized), making it potentially very accurate. Therefore, the
user would not have a access to the text prompt that generated the image. However, we focus on
analyzing the case where the caption matches the initial prompt, as this scenario provides insight into
the overfitting effects of deepfake verification.

Dataset. Our evaluation is performed on a random sample of 1000 images from COCO (Lin et al.,
2014). Each image has 5 corresponding captions written by different people. We use Stable Diffusion
(SD), to generate an image for each caption. This yields 5000 synthetic images and 1000 real images.

Truth score paradox. We begin by using the CLIP (Radford et al., 2021) encoders to encode the
caption and image respectively; the truth score is the cosine similarity between them. We compute
truth scores for all real and fake images in COCO. We begin with a simple analysis - we compare the
CLIP truth scores for each real image with its fake counterparts (fake images with the same caption).
We denote classification accuracy, as the number of fake images whose truth score was lower than that
of their real counterparts. The results are shown in Fig. 3c. Surprisingly, we see that this method’s
deepfake verification accuracy is lower than chance! Furthermore, we perform the same experiment,
but now using BLIP2 (Li et al., 2023) as the text and image encoder. This experiment results are
as expected; real images have higher truth scores than their fake counterparts. Full implementation
details are in App. A.3.

Resolution of the paradox. Why do BLIP2 truth scores behave as expected, but CLIP scores do
exactly the opposite? We recall that SD was trained with CLIP text features, but not with BLIP2
features. We therefore hypothesize that SD overfits to CLIP scores, making the fake images better
aligned with their input caption than real images. On the other hand, the generated image does not
fully correspond to the input prompt, due to imperfections in the TTI model. Therefore, an objective
multi-modal encoder, i.e. one not used for training the TTI, is able to perform verification and identify
that fake images do not fit with the text prompts. This explains why CLIP truth scores support the
text prompt, but BLIP2 rejects it.

Truth score. We compute the CLIP and BLIP2 truth score for each image and prompt pair (x, y).
The final score is the BLIP2 minus the CLIP scores:

s(x, y) =
ϕBLIP2
X (x) · ϕBLIP2

Y (y)

∥ϕBLIP2
X (x)∥2 · ∥ϕBLIP2

Y (y)∥2
− ϕCLIP

X (x) · ϕCLIP
Y (y)

∥ϕCLIP
X (x)∥2 · ∥ϕCLIP

Y (y)∥2
(3)

Results. We present the truth score histograms for CLIP, BLIP2, and BLIP2-CLIP in Fig. 4. We find
that the CLIP truth score is inversely correlated with deepfakes, and BLIP2 is positively correlated.
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Using BLIP2-CLIP achieves the best of both worlds. Numerically, CLIP truth score achieves around
30% ROC-AUC, while BLIP2 obtains around 60%. Using the difference between the truth scores
yields a much better result of 79.2%. While we do not claim that this setting is realistic (as attackers
may not disclose the exact input prompt) or that these results are better than the state-of-the-art
on COCO, this scenario demonstrates how overfitting may play an important part in deepfake
verification.

6 DISCUSSION AND LIMITATIONS

VeriFake as one-class classification (OCC). Let D be the distribution of all data, partitioned into
two sub-distributions DR for real data and DF for fake data. The objective is to provide a classifier C
which takes as input x ∈ D and classifies as real if x ∈ DR and fake if x ∈ DR. While the task may
appear a natural fit for supervised learning, there is a critical issue; at evaluation time, new attack types
will be developed (denoted zero-shot) that are very different from those existing at the time of training.
Formally, we divide the set of fake data into two non-overlapping sets: those observed at training
time Dobs and previously unseen attacks Dunseen such that DF = Dobs

⋃
Dunseen. Supervised

approaches can train a classifier C to separate between DR and Dobs but cannot guarantee that the
classifier will be effective at separating between real images x ∈ DR and previously unseen attack
images x ∈ Dunseen. In practice the success of such supervised methods will be highly dependent on
the domain gap between Dobs and Dunseen. Previous papers observed such generalization failures.

This paper proposed to overcome this challenge by using an alternative learning rule, OCC. A naive
application of OCC trains a classifier using only real media x ∈ DR to learn to differentiate between
real media and all other media (which are fake, x ∈ DF ). OCC by itself does not yield competitive
deepfake detection results. Instead, VeriFake leverages additional information beyond raw data, such
as the user’s identity or the correspondence between multi-modal data. We denote the pair of raw data
and this additional information as (x, y) ∈ D, where x represents the raw data and y represents either
the user’s identity or the multi-modal correspondence. VeriFake trains a one-class classifier C(x, y)
using only real data pairs (x, y) ∈ DR. C is then able to differentiate between real DR and fake
DF = Dobs

⋃
Dunseen. Note that as VeriFake uses OCC, it does not differentiate between observed

and previously unseen deepfake attacks. Thus, it is natural to expect that the performance of observed
and unseen attacks verification will be similar.

Unconditional deepfakes. Our method is not designed for unconditional deepfakes, e.g. a generated
image without added information such as a user’s identity or a caption. We stress that face swapping
and AV deepfakes are of sufficient practical and important to make our method valuable.

Supervised approaches work well on previously seen attacks. The primary benefit of our method is
generalizing to previously unseen attacks. Existing general-purpose supervised methods are effective
on attacks similar to those seen before, for which sufficient training data can be obtained. We note
that in most cases, our method outperforms supervised techniques even for previously seen attacks.

Hazards of future progress. To overcome VeriFake, generative models must become significantly
better than is currently possible. Specifically, they would have to replicate not only the visual
appearance but also the finer details, nuances, and contextual cues of the user’s identity or speech.
When generative methods indeed progress to this level, our method would need to be re-evaluated.

Broader impacts. Defending against deepfakes is crucial for maintaining trust in digital media and
preventing misinformation spread. Our proposed method offers a promising solution that can detect
novel, unseen deepfake attacks. This capability to detect previously unseen deepfake threats can help
mitigate the harmful societal impacts of disinformation campaigns and privacy violations.

7 CONCLUSION

This paper proposes the concept of deepfake verification to address the challenge of detecting unseen
deepfake attacks. We propose VeriFake for implementing this, and showcase it in two important
settings. VeriFake outperforms the state-of-the-art without seeing any fake data, using only pretrained
feature encoders and being simple to implement.
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REPRODUCIBILITY STATEMENT

All experiments in this paper can be reproduced using our code and data processing scripts, provided
in the supplementary material. Our VeriFake implementation uses standard Python libraries and
widely available pretrained models. For face verification implementation details, please refer to
App. A.1. For audio-visual verification experiments, settings and implementation details, please refer
to Sec. 4.2. The complete hyperparameter settings, data preprocessing steps, and evaluation protocols
are detailed in Sec. 3.2, Sec. 4.2 and App. A.1. To further simplify reproduction, we included detailed
documentation and example scripts in our code repository.

REFERENCES

Shruti Agarwal and Hany Farid. Photo forensics from jpeg dimples. 2017 IEEE Workshop on
Information Forensics and Security (WIFS), pp. 1–6, 2017.

Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua. Towards open-set identity
preserving face synthesis. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 6713–6722, 2018.

Junyi Cao, Chao Ma, Taiping Yao, Shen Chen, Shouhong Ding, and Xiaokang Yang. End-to-end
reconstruction-classification learning for face forgery detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4113–4122, 2022.

Lucy Chai, David Bau, Ser-Nam Lim, and Phillip Isola. What makes fake images detectable?
understanding properties that generalize. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVI 16, pp. 103–120. Springer,
2020.

Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite:
Attention-based semantic guidance for text-to-image diffusion models. ACM Transactions on
Graphics (TOG), 42(4):1–10, 2023.

Komal Chugh, Parul Gupta, Abhinav Dhall, and Ramanathan Subramanian. Not made for each
other-audio-visual dissonance-based deepfake detection and localization. In Proceedings of the
28th ACM international conference on multimedia, pp. 439–447, 2020.

Hao Dang, Feng Liu, Joel Stehouwer, Xiaoming Liu, and Anil K Jain. On the detection of digital
face manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
recognition, pp. 5781–5790, 2020.

Brian Dolhansky, Russ Howes, Ben Pflaum, Nicole Baram, and Cristian Canton Ferrer. The deepfake
detection challenge (dfdc) preview dataset. arXiv preprint arXiv:1910.08854, 2019.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873–12883, 2021.

FaceSwap. www.github.com/MarekKowalski/FaceSwap Accessed 2021-04-24.

Chao Feng, Ziyang Chen, and Andrew Owens. Self-supervised video forensics by audio-visual
anomaly detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10491–10503, 2023.

Joel Frank, Thorsten Eisenhofer, Lea Schönherr, Asja Fischer, Dorothea Kolossa, and Thorsten Holz.
Leveraging frequency analysis for deep fake image recognition. In International conference on
machine learning, pp. 3247–3258. PMLR, 2020.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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A EXPERIMENTAL DETAILS & ANALYSIS

A.1 FACE SWAPPING VERIFICATION

Implementation details. To ensure uniformity in our experiments, we uniformly subsampled each
video (train or test and for all datasets) into 32 frames. Furthermore, we split each identity’s authentic
videos into a 50/50 train-test split. VeriFake uses the 50% subset of training videos as its reference
set (it does not require training), denoted by R. In contrast, the supervised baselines use this subset
exclusively for training their models. The test set for the user’s identity consisted of 50% of the real
videos of this identity and fake video clips of with the user’s being the attacked identity. We followed
the literature in using frame-level evaluation, computing ROC-AUC scores across all frames. Our
reported results are an average of performance computed for all identities within the dataset.

Moreover, our implementation relies on a pretrained Attention-92(MX) model from Face-X-Zoo
(Wang et al., 2021), denoted by ϕid(.), originally trained on the MS-Celeb dataset (Guo et al.,
2016). To ensure uniformity and consistency in our data, we incorporated robust data processing
techniques. These encompassed critical steps such as face detection, precise cropping, and alignment,
all facilitated by the DLIB library (Sagonas et al., 2013). The preprocessing ensured that all face
images were uniformly cropped and normalized to compact dimensions of 112× 112. We computed
the features of all images (observed and referenced) using the above feature encoder and calculated
their similarity using cosine similarity.

Obtaining a reference set without user input. When no user is actively seeking to falsify targeted
deepfake attacks, but the targeted identity is known (either through captions or because the target
is well-known), a reference set can be constructed from public sources. Images and videos can
be retrieved from platforms like Google Image Search, which indexes content from Facebook,
LinkedIn, Instagram, and YouTube. This approach is particularly effective for detecting face-
swapping deepfakes of public figures who have numerous photos available online. Our method has
shown significant results even with a single reference photo. Given that over 2 billion people have
Facebook profiles and around 1 billion use LinkedIn, this provides a practical solution in many cases.

A.2 AUDIO-VISUAL DEEPFAKE VERIFICATION

KoDF evaluation. To further assess the cross-domain applicability of our deepfake verification
method, we conducted an evaluation on the Korean Deepfake Detection (KoDF) dataset (Kwon et al.,
2021), following the established protocol outlined by AVAD (Feng et al., 2023). For comparative
analysis, we benchmarked our method against several state-of-the-art supervised and self-supervised
baselines, including Xception (Rössler et al., 2019), LipForensics (Haliassos et al., 2021), AD DFD
(Zhou & Lim, 2021), FTCN (Zheng et al., 2021), VBYOL (Grill et al., 2020; Haliassos et al., 2022),
VQGAN (Esser et al., 2021), and AVAD (Feng et al., 2023). The supervised baselines were trained
on the FakeAVCeleb dataset (Khalid et al., 2021), which uses similar synthesis techniques to KoDF,
such as FaceSwap (FaceSwap.), FS-GAN (Nirkin et al., 2019), and Wav2Lip (Prajwal et al., 2020).

The results, summarized in Tab. 6, provide evidence for our method’s cross-generalization capability.
VeriFake achieves performance levels comparable to many state-of-the-art supervised baselines,
and surpasses all unsupervised methods by a large margin. This highlights the adaptability and
effectiveness of our method to scenarios with distinct linguistic and cultural attributes.

A.3 TEXT-TO-IMAGE DEEPFAKE VERIFICATION

Implementation details. In our implementation, we employed two multi-modal feature encoders,
CLIP (Radford et al., 2021) and BLIP2 (Li et al., 2023), to encode textual prompts and images.
Specifically, for CLIP’s architecture, we leveraged the ViT-B/16 pretrained on the LAION-2B dataset,
following OPENCLIP specifications (Ilharco et al., 2021). Furthermore, the checkpoint version of
Stable Diffusion we used was v1-5 (StableDiffusion.). In order to evaluate the performance of our
approach, we used two evaluation metrics: (i) average precision (AP) and (ii) Receiver Operating
Characteristic Area Under the Curve (ROC-AUC).
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Table 6: AP and AUC (%) KoDF results, following the AVAD (Feng et al., 2023) evaluation protocol.
Best results are in bold.

Method Modality KoDF

AP AUC

Supervised
(transfer)

Xception V 76.9 77.7
LipForensics V 89.5 86.6
AD DFD AV 79.6 82.1
FTCN V 66.8 68.1
RealForensics V 95.7 93.6

Unsupervised

AVBYOL AV 74.9 78.9
VQ-GAN V 46.8 45.5
AVAD AV 87.6 86.9
Ours AV 92.0 93.1

A.4 CAPTION COMPLEXITY AND TRUTH SCORES

We hypothesize that more complex text prompts are more falsifiable and therefore improve deepfake
verification accuracy. To test this hypothesis, we tested the correlation between textual prompt
complexity and their truth scores for real and fake images. We hypothesized that as the complexity of
the prompt increased, it would exhibit greater similarity to the real image compared to the fake image.
Caption complexity, in this context, refers to the level of detail of describing the image content. To
systematically explore this hypothesis, we evaluated a dataset consisting of 1000 randomly selected
images from the COCO (Lin et al., 2014) dataset. For each of these real images, we selected two
captions: one with the minimum length and another with the maximum length. The minimum length
caption represented a simple textual prompt, while the maximum length caption was considered more
complex due to its larger word count.

We paired each real image with its corresponding minimum and maximum length captions. For
each caption, we generated corresponding fake images, using Stable Diffusion. For each pairing,
we calculated truth scores, between the real image and its respective caption, as well as between
the fake image and the same caption. This analysis was conducted within the feature spaces of both
CLIP (Radford et al., 2021) and BLIP2 (Li et al., 2023), which notably, exhibited disagreements
in their prompt similarity trends. Our findings, presented in Fig. 5, underscore a consistent pattern.
With increasing complexity of the prompts, as measured through the maximum length captions, more
prompts achieved a higher truth score on the real images than on the fakes. This aligns with our
hypothesis, demonstrating that more complex prompts contribute to a shift in similarity to the real
image, thereby enhancing deepfake verification accuracy. Additionally, we can observe the same
phenomenon we witnessed in Sec. 5, wherein CLIP truth scores support the caption, while BLIP2
rejects it. So the effectiveness of BLIP2 truth scores increases with prompt complexity, while using
minus CLIP truth scores becomes less effective as prompts become more complex, as the overfitting
contrasts with the generative model’s failure to synthesize the image corresponding to the complex
caption.

A.5 TRAINING RESOURCES

We carried out all our experiments on a NVIDIA RTX 2080 GPU.

A.6 LICENCES

Code & models. AV-HUBERT (Shi et al., 2022) is licensed under a special Meta license as described
here2. Face-X (Wang et al., 2021) open-source library is a toolbox for face recognition. We used the
off-the-shelf Face-X Attention-92(MX) (Wang et al., 2017) and Swin-S (Liu et al., 2021b) feature

2https://github.com/facebookresearch/av_hubert?tab=License-1-ov-file
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Figure 5: Impact of prompt complexity on truth score. We paired real images with both their
minimum and maximum length captions, generating fake versions of those captions. Truth scores
were calculated for these pairs. They revealed that as prompt complexity increased, measured through
maximum length captions, more prompts achieved higher truth scores with real images, enhancing
deepfake verification accuracy. We report the percentage of image captions whose real images had a
higher truth score than the fake image for CLIP, BLIP2, and BLIP2-CLIP.

encoders. Face-X is licensed under the Apache License as described here3. CLIP (Radford et al.,
2021). PyTorch uses a BSD-style license, as detailed in the license file4.

Datasets. The FakeAVCeleb dataset (Khalid et al., 2021) is licensed under the FakeAVCelev Request
Forms as described here5. The DFDC dataset (Dolhansky et al., 2019) license is described here6. The
Celeb-DF dataset (Li et al., 2020) is released under the Terms to Use Celeb-DF, which is described
here7. The DFD dataset (Research et al.) license described here 8.

3https://github.com/JDAI-CV/FaceX-Zoo?tab=License-1-ov-file
4https://github.com/pytorch/pytorch/blob/master/LICENSE
5https://docs.google.com/forms/u/1/d/e/1FAIpQLSfPDd3oV0auqmmWEgCSaTEQ6CGpFeB-ozQJ35x-B_

0Xjd93bw/viewform
6https://ai.meta.com/datasets/dfdc/
7https://forms.gle/2jYBby6y1FBU3u6q9
8https://github.com/ondyari/FaceForensics/blob/master/LICENSE
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