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Abstract

Large Language Models (LLMs) employ-001
ing Chain-of-Thought (CoT) prompting have002
broadened the scope for improving multi-step003
reasoning capabilities. We generally divide004
multi-step reasoning into two phases: path005
generation to generate the reasoning path(s);006
and answer calibration post-processing the007
reasoning path(s) to obtain a final answer.008
However, the existing literature lacks system-009
atic analysis on different answer calibration010
approaches. In this paper, we summarize the011
taxonomy of recent answer calibration tech-012
niques and break them down into step-level013
and path-level strategies. We then conduct a014
thorough evaluation on these strategies from a015
unified view, systematically scrutinizing step-016
level and path-level answer calibration across017
multiple paths. Experimental results reveal018
that integrating the dominance of both strate-019
gies tends to derive optimal outcomes. Our020
study holds the potential to illuminate key021
insights for optimizing multi-step reasoning022
with answer calibration.023

1 Introduction024

Chain-of-Thought (CoT) prompting (Wei et al.,025

2022) has significantly improved multi-step reason-026

ing capabilities of Large Language Models (LLMs)027

(Zhao et al., 2023b; Qiao et al., 2023). As seen028

from Figure 1, the process of multi-step reasoning029

generally contains two primary modules: reasoning030

path generation which generates one or multiple031

reasoning paths (Fu et al., 2023; Yao et al., 2023b);032

and answer calibration which post-processes the033

reasoning path(s) to calibrate the initial output034

(Wang et al., 2023i; Zhao et al., 2023a).035

In practice, answer calibration is pluggable and036

can be integrated into path generation models. The037

answer calibration framework can be divided into038

step and path levels, applicable to single or mul-039

tiple paths, as illustrated in Figure 1. For step-040

level answer calibration on a single path, the model041
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Figure 1: Illustration of answer calibration for multi-
step reasoning with LLM.

rectifies errors in intermediate-step answers of a 042

generated path (Zhao et al., 2023a). For step-level 043

answer calibration on multiple paths, the model 044

verifies each intermediate-step answer (Weng et al., 045

2023) or aggregates the correct step answers (Cao, 046

2023) from multiple paths. For path-level answer 047

calibration on a single path, the model revises the 048

entire rationale to obtain the correct answer (Baek 049

et al., 2023). For path-level answer calibration on 050

multiple paths, the model produces a result indi- 051

cating the consensus of all candidate paths (Wang 052

et al., 2023i; Yoran et al., 2023). As answer calibra- 053

tion can identify and rectify errors in the reasoning 054

path, or even holistically utilize multiple candidate 055

paths, it plays a vital role in multi-step reasoning to 056

ensure a precise, consistent and reliable reasoning 057

process (Pan et al., 2023). 058

However, we argue that the crucial factors driv- 059

ing the success of answer calibration strategies re- 060

main obscure, with a comprehensive systematic 061
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analysis still underexplored. To bridge the gap,062

our study investigates: (1) The specific conditions063

where answer calibration notably boosts multi-064

step reasoning performance; (2) The strengths and065

weaknesses of step-level versus path-level answer066

calibration, and the pathway to attaining optimal067

performance; (3) The robustness and generalizabil-068

ity of answer calibration strategies.069

To address these questions, we dissect cutting-070

edge answer calibration techniques for multi-step071

reasoning with LLMs, and introduce a unified072

framework that elucidates step-level and path-level073

strategies. We define two thresholds to respectively074

signify the step-level and path-level dominance in075

the unified framework. We then undertake a com-076

prehensive evaluation of answer calibration strate-077

gies, w.r.t. accuracy, faithfulness, informativeness,078

consistency, and perplexity over steps or paths.079

Through rigorous experiments on five representa-080

tive multi-step reasoning tasks involving arithmetic081

and commonsense, we find that: (1) employing082

answer calibration can enhance accuracy, with the083

improvement being more noticeable in zero-shot084

scenarios (§4.2) and less significant on stronger085

backbone models (§4.4); (2) The optimal perfor-086

mance of the unified answer calibration strategy087

typically achieved by synthesizing step-level and088

path level dominance (§4.3); (3) path-level answer089

calibration is more beneficial in improving accu-090

racy, and step-level answer calibration is more ef-091

fective for mitigating low-quality prompting (§4.5);092

(4) answer calibration can improve consistency on093

arithmetic tasks but weakens faithfulness, infor-094

mativeness and perplexity on both arithmetic and095

commonsense tasks (§4.6).096

2 Related Work097

Reasoning Path Generation. Previous methods098

for reasoning path generation mostly focus on two099

aspects to improve reasoning process, including100

refining input query or prompts (input refinement)101

and polishing the reasoning path (rationale polish).102

As for input refinement, Zero-shot CoT (Kojima103

et al., 2022) and Few-shot CoT (Wei et al., 2022)104

are classic methods to elicit multi-step reasoning105

ability of LLMs, with “Let’s think step by step”106

prompts. To decouple planning and execution,107

Wang et al. (2023g); Sun et al. (2023) devise a plan108

by prompting and divide and conquer multi-step109

tasks. To enrich prompts, Wang et al. (2023b) lever-110

age structure triples as evidence, Kong et al. (2023)111

design role-play prompting, and Xu et al. (2023) 112

employ re-reading instructions. Besides, LLM per- 113

formance can also be affected by prompt complex- 114

ity (Fu et al., 2023) and formats, such as program 115

(Gao et al., 2023; Chen et al., 2023; Sel et al., 2023; 116

Jie et al., 2023; Lei and Deng, 2023; Wang et al., 117

2023d; Bi et al., 2024) and table (Jin and Lu, 2023). 118

Further, Wang et al. (2023c); Shi et al. (2023); 119

Liang et al. (2023) propose to adaptively utilize 120

prompts. Apart from refining prompts, Xi et al. 121

(2023b) progressively refine the given questions, 122

Wang et al. (2023j) convert semantically-wrapped 123

questions to meta-questions, and Jie and Lu (2023) 124

augment training data with program annotations. 125

In terms of rationale polish, recent work mainly 126

focus on step-aware training (Wang et al., 2023k) 127

and path-level optimization. For step-aware train- 128

ing, Zhang et al. (2023) introduce step-by-step plan- 129

ning and Lee and Kim (2023) recursively tackle 130

intermediate steps; Jiang et al. (2023a) reconstruct 131

the reasoning rationale within prompts by residual 132

connections; Paul et al. (2023) iteratively provide 133

feedback on step answers; Lanchantin et al. (2023) 134

leverage self-notes as intermediate steps and work- 135

ing memory; Li et al. (2023b); Ling et al. (2023); 136

Lightman et al. (2023) propose to verify on inter- 137

mediate step answers; Li et al. (2023a); Wang et al. 138

(2023e) process step-aware verification by knowl- 139

edge base retrieval. For path-level optimization, Li 140

and Qiu (2023) enable LLMs to self-improve via 141

pre-thinking and recalling relevant reasoning paths 142

as memory; Wang et al. (2023d); Yue et al. (2023) 143

leverage hybrid rationales in formats of natural 144

language and program. Some work also generate 145

deliberate rationales beyond CoT, such as Tree-of- 146

Thought (Yao et al., 2023b; Long, 2023), Graph-of- 147

Thought (Yao et al., 2023e; Besta et al., 2023) and 148

Hypergraph-of-Thought (HoT) (Yao et al., 2023a). 149

Answer Calibration. Given generated reasoning 150

path(s), answer calibration methods post-process 151

the path(s) to calibrate the answer, involving step- 152

or path-level calibration on one or multiple path(s). 153

Step-level answer calibration. Xue et al. (2023); 154

Cao (2023) propose to rectify factual inconsistency 155

and reasoning logic between intermediate steps. 156

Miao et al. (2023); Wu et al. (2024) check the 157

correctness of each intermediate step. Zhao et al. 158

(2023a) post-edit multi-step reasoning paths with 159

external knowledge. Yao et al. (2023c); Hao et al. 160

(2023); Shinn et al. (2023); Yao et al. (2023d) draw 161

up a plan and act step by step with LLMs as agents 162
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(Wang et al., 2023f; Xi et al., 2023a), encourag-163

ing interaction with the environment to provide164

feedback. Weng et al. (2023); Jiang et al. (2023b)165

unleash the self-verification ability of LLMs, by166

forward reasoning and backward verification on in-167

termediate step answers. Zhou et al. (2023) propose168

code-based self-verification on reasoning steps.169

Path-level answer calibration. Zelikman et al.170

(2022) present a self-taught reasoner to itera-171

tively generate rationales. Zheng et al. (2023)172

progressively use the generated answers as hints173

to make double-check. Mountantonakis and Tz-174

itzikas (2023) enrich generated reasoning paths175

with hundreds of RDF KGs for fact checking. Baek176

et al. (2023) iteratively rectify errors in knowledge177

retrieval and answer generation for knowledge-178

augmented LMs. To cultivate the reasoning abil-179

ity of smaller LMs, Ho et al. (2023); Wang et al.180

(2023h,l) propose to fine-tune CoT for knowl-181

edge distillation. Huang et al. (2022) demonstrate182

that LLMs can self-improve with high-confidence183

rationale-augmented answers. Yoran et al. (2023)184

prompt LLMs to meta-reason over multiple paths.185

Liu et al. (2023); Madaan et al. (2023) leverage186

feedback to improve model initial outputs. Wan187

et al. (2023) adaptively select in-context demonstra-188

tions from previous outputs to re-generate answers.189

Wang et al. (2023i) leverage self-consistency de-190

coding strategy to majority vote on multiple path191

answers. Aggarwal and Yang (2023) propose192

adaptive-consistency to reduce sample budget.193

3 Comprehensive Analysis of Answer194

Calibration195

3.1 Formulation of Answer Calibration196

Given a question denoted as Q and its associated197

prompt P , we leverage the LLM to generate the re-198

sultR. R can either encompass a single reasoning199

path P with an initial answer A or multiple reason-200

ing paths P = {Pi}i∈[1,N ] with a corresponding201

answer set A = {Ai}i∈[1,N ]. The total number of202

paths in P is N . In this paper, we analyze under the203

assumption that each reasoning path comprises a204

maximum ofM steps. Paths exceedingM steps are205

truncated, and those with fewer steps are padded.206

The intermediate step answers for each reasoning207

path P(i) are represented as {aj}(i)j∈[1,M ].208

Step-Level Answer Calibration. Given a single209

reasoning path P with an initial final path answer210

A and intermediate step answers {aj}j∈[1,M ], the211

objective of step-level answer calibration is to rec- 212

tify any erroneous aj , so that deriving the correct 213

A. For multiple reasoning paths P, step-level an- 214

swer calibration seeks to either select the reasoning 215

path with the maximum correct intermediate step 216

answers or aggregate the verified correct steps to 217

form the most accurate reasoning path, leading to 218

a correct final path answer. Self-verification (Weng 219

et al., 2023) is an effective approach for step-level 220

answer calibration on multiple reasoning paths. 221

Path-Level Answer Calibration. Given a sin- 222

gle reasoning path P with an initial final path an- 223

swer A, the goal of path-level answer calibration 224

is to revise the wrong A. For multiple reasoning 225

paths P = {Pi}i∈[1,N ] with corresponding answers 226

A = {Ai}i∈[1,N ], path-level answer calibration is 227

designed to select the reasoning path from P with 228

the most consistent answer in A. Self-consistency 229

(Wang et al., 2023i) is a widely-used efficacious 230

technique for path-level answer calibration on mul- 231

tiple reasoning paths. 232

3.2 Unified View of Answer Calibration 233

Considering the advantages of both step-level 234

and path-level answer calibration, we propose 235

to integrate the two strategies on multiple paths. 236

Given the multiple generated reasoning paths P = 237

{Pi}i∈[1,N ], we define a unified score Di for each 238

Pi (with the final path answer: Ai and intermediate 239

step answers: {aj}(i)j∈[1,M ]): 240

Di = α
ni
N︸︷︷︸

path−level

+ (1− α)mi

M︸ ︷︷ ︸
step−level

(1) 241

where ni ∈ [1, N ] is the frequency of Ai existing 242

in A, mi ∈ [0,M ] is the number of correct interme- 243

diate steps in Pi, and α is a hyper-parameter. The 244

final answer is Ai∗ satisfying i∗ = argmax
i∈[1,N ]

(Di). 245

To better analyze the effects of varying α in 246

the unified framework, we then define particular 247

choices for α which we call step and path level 248

dominant answer calibration. 249

Definition 1. Step-Level Dominant Answer Cal-
ibration: This choice refers to the level of α at
which the step-level score is used as the domi-
nant criterion, with the path-level score given much
smaller weight and only serving to break ties when
necessary. Specifically, larger mi always results
in larger Di, no matter how small ni is. We de-
note this as: ∀nj , nk ∈ [1, N ] and mj ,mk ∈
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[0,M ],where nj < nk and mj > mk, the scores
Dj and Dk should satisfy

α
nj
N

+ (1− α)mj

M
> α

nk
N

+ (1− α)mk

M

Thus we can obtain250

α <
1

M(nk−nj)
N(mj−mk)

+ 1
(2)251

If Eq (2) is constant, we can infer that252

α < min

 1
M(nk−nj)
N(mj−mk)

+ 1

 =
1

M max(nk−nj)
N min(mj−mk)

+ 1

(3)253

As 1 ≤ nj < nk, nj+nk ≤ N , and 0 ≤ mk < mj ,254

we can deduce that min(mj−mk) = 1, max(nk−255

nj) = N − 2. From the above, we deduce:256

α <
1

M(N−2)
N + 1

(4)257

Definition 2. Path-Level Dominant Answer Cali-
bration: For this choice, Di gives priority to the
path-level score, with the step-level score given
much smaller weight and only serving to break ties
when necessary. Concretely, larger ni always con-
duces larger Di, no matter how small mi is. We
denote this as: ∀nj , nk ∈ [1, N ] and mj ,mk ∈
[0,M ],where nj > nk and mj < mk, the scores
Dj and Dk should satisfy

α
nj
N

+ (1− α)mj

M
> α

nk
N

+ (1− α)mk

M

Analogously, we can obtain258

α >
1

M(nj−nk)
N(mk−mj)

+ 1
(5)259

If Eq (5) is constant, we can infer that260

α > max

 1
M(nj−nk)
N(mk−mj)

+ 1

 =
1

M min(nj−nk)
N max(mk−mj)

+ 1

(6)261

As 1 ≤ nk < nj , and 0 ≤ mj < mk ≤ M , we262

deduce that min(nj −nk) = 1, max(mk−mj) =263

M − 0 =M . From the above, we deduce:264

α >
1

1
N + 1

(7)265

In general, considering step-level and path-level266

answer calibration dominance, we can obtain two267

thresholds: 1
M(N−2)

N
+1

and 1
1
N
+1

. Note that α = 0268

and α = 1 are respectively equivalent to the269

self-verification and self-consistency strategies.270

3.3 Evaluation of Answer Calibration 271

Calculation of ROSCOE Scores. In addition to the 272

classical evaluation metric: Accuracy, Golovneva 273

et al. (2023) have proposed ROSCOE, a suite 274

of metrics for multi-step reasoning, under four 275

perspectives: semantic alignment (ROSCOE-SA), 276

semantic similarity (ROSCOE-SS), logical infer- 277

ence, and (ROSCOE-LI) and language coherence 278

(ROSCOE-LC). Due to space limits, we select 279

some representative scores from ROSCOE as evalu- 280

ation metrics in the experiments. 281

Given source ground truth rationale (s) and gen- 282

erated rationale (h) with multiple steps (hi), we 283

calculate five scores (All scores satisfy the princi- 284

ple that larger is better): 285

(1) Faithfulnessstep (h→ s): To assess whether 286

the model misconstrues the problem statement, or 287

if the reasoning path is too nebulous, irrelevant, or 288

improperly employs input information. 289∑N
i=1 r-align(hi → s)/N (8) 290

where N is the number of steps and r-align is used 291

to measure how well hi ∈ h can be aligned with 292

any one of the steps in the ground truth path s. 293

(2) Informativenesspath (h → s): To measure 294

the level of concordance between the generated 295

path and the source, and if the generated reasoning 296

path is well-grounded with respect to the source. 297

[1 + cos(h, s)]/2 (9) 298

where cos(·, ·) is a function for cosine similarity. 299

(3) Consistencysteps (hi ↔ hj): To measure 300

logical entailment errors within the reasoning steps. 301

302

1−maxi=2..N maxj<i pcontr(hi, hj) (10) 303

where pcontr is used to assess the likelihood of step 304

pairs contradicting each other. hi ∈ h and hj ∈ h. 305

(4) Consistencypath (h ↔ s): To evaluate mis- 306

takes in logical entailment between the generated 307

reasoning path h and source context s: 308

1−maxi=1..N maxj=1..T pcontr(hi, sj) (11) 309

where pcontr is the likelihood of source and gener- 310

ated steps contradicting each other. sj ∈ s; hi ∈ h. 311

(5) Perplexitypath (h): As an indicator of lan- 312

guage coherence, it calculates average perplexity 313

of all tokens in the generated reasoning path steps. 314

1/PPL(h) (12) 315

where PPL denotes the perplexity. 316
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Task Method Accuracy ↑ Faithfulness ↑
(Over Steps)

Informativeness ↑
(Over Path)

Consistency ↑
(Within Steps)

Consistency ↑
(Within I/O)

Perplexity ↑
(Over Path)

GSM8K

CoT 80.21 88.73 96.38 97.94 96.94 9.14
CoT + SV 82.34(+2.13) 86.22(−2.51) 95.19(−1.19) 96.78(−1.16) 93.46(−3.48) 14.90(+5.76)

CoT + SC 87.11(+6.90) 88.83(+0.10) 96.40(+0.02)∼ 97.90(−0.04)∼ 97.44(+0.50) 8.90(−0.24)

ZS CoT 62.85 86.58 95.61 97.30 93.07 15.67
ZS CoT + SV 67.70(+4.85) 86.24(−0.34) 95.19(−0.42) 96.78(−0.52) 93.44(+0.37) 14.90(−0.77)

ZS CoT + SC 71.42(+11.14) 86.70(+0.12) 95.67(+0.06)∼ 97.19(−0.11) 94.57(+1.50) 14.95(−0.72)

SVAMP

CoT 78.20 87.73 95.74 30.57 9.82 6.65
CoT + SV 85.80(+7.60) 87.26(−0.47) 95.00(−0.74) 33.39(+2.82) 10.41(+0.59) 6.23(−0.42)

CoT + SC 84.40(+6.20) 87.60(−0.13) 95.71(−0.03) 33.51(+2.94) 9.92(+0.10) 6.22(−0.43)

ZS CoT 72.80 87.46 95.77 31.71 18.39 11.93
ZS CoT + SV 81.20(+8.40) 86.92(−0.54) 95.05(−0.72) 35.27(+3.56) 20.24(+1.85) 11.44(−0.49)

ZS CoT + SC 82.00(+9.20) 87.40(−0.06) 95.81(+0.04)∼ 34.73(+3.02) 19.67(+1.28) 11.68(−0.25)

MultiArith

CoT 97.67 88.53 94.91 7.77 7.47 5.51
CoT + SV 98.33(+0.66) 88.36(−0.17) 94.38(−0.53) 46.59(+38.82) 24.56(+17.09) 10.54(+5.03)

CoT + SC 98.17(+0.50) 88.42(−0.11) 94.82(−0.09) 10.22(+2.45) 9.29(+1.82) 5.33(−0.18)

ZS CoT 87.00 89.32 95.30 47.54 24.39 10.75
ZS CoT + SV 97.00(+10.00) 88.35(−0.97) 94.38(−0.92) 46.26(−1.28) 24.58(+0.19) 10.54(−0.21)

ZS CoT + SC 97.00(+10.00) 89.18(−0.14) 95.32(+0.02)∼ 47.42(−0.12) 23.83(−0.56) 10.63(−0.12)

MathQA

CoT 52.83 85.99 95.31 49.57 23.78 7.64
CoT + SV 54.74(+1.91) 85.93(−0.06) 95.24(−0.07) 51.39(+1.82) 24.61(+0.83) 7.18(−0.46)

CoT + SC 54.47(+1.64) 85.93(−0.06) 95.20(−0.11) 51.73(+2.16) 25.03(+1.25) 7.15(−0.49)

ZS CoT 49.45 85.20 96.08 23.50 13.76 13.44
ZS CoT + SV 52.86(+3.41) 85.93(+0.73) 95.24(−0.84) 51.40(+27.90) 24.63(+10.87) 7.19(−6.25)

ZS CoT + SC 49.51(+0.06) 85.22(+0.02)∼ 96.08(−0.00)∼ 23.66(+0.16) 13.79(+0.03) 13.48(+0.04)∼

CSQA

CoT 74.77 81.40 92.57 95.57 57.54 2.46
CoT + SV 74.04(−0.73) 80.89(−0.51) 92.10(−0.47) 92.77(−2.80) 56.05(−1.49) 2.47(+0.01)∼
CoT + SC 75.27(+0.50) 81.50(+0.10) 92.71(+0.14) 95.04(−0.53) 56.97(−0.57) 2.43(−0.03)

ZS CoT 67.57 79.77 95.26 25.81 29.17 9.90
ZS CoT + SV 66.42(−1.15) 79.06(−0.71) 94.65(−0.61) 25.36(−0.45) 28.56(−0.61) 9.06(−0.84)

ZS CoT + SC 71.58(+4.01) 79.51(−0.26) 95.21(−0.05)∼ 25.08(−0.73) 29.69(+0.52) 8.96(−0.94)

Table 1: Comprehensive performance (%) with different strategies on GPT-3.5 (gpt-3.5-turbo). CoT: Few-
shot CoT (Wei et al., 2022) with complex-prompting (Fu et al., 2023); ZS-CoT: Zero-Shot CoT (Kojima et al.,
2022); SV: Self-Verification (Weng et al., 2023); SC: Self-Consistency (Wang et al., 2023i). Best few-shot results
are marked in bold; best zero-shot results are underlined. I/O: input/output. ↑: larger is better. ∼, ∼: comparable.

4 Experiments317

4.1 Setup318

Evaluation Metrics. In this paper, we aim to con-319

duct comprehensive evaluation on multi-step rea-320

soning, thus we select some scores from ROSCOE321

(Golovneva et al., 2023) as introduced in §3.3,322

which contains a suite of metrics allowing us to323

evaluate the quality of reasoning rationales, not324

limited to the correctness of final answers.325

Datasets. We evaluate on five benchmark326

datasets involving arithmetic and commonsense327

multi-step reasoning: GSM8K (Cobbe et al.,328

2021), SVAMP (Patel et al., 2021), MultiArith329

(Roy and Roth, 2015), MathQA (Amini et al.,330

2019) and CSQA (Talmor et al., 2019).331

Models. For reasoning path generation, we332

leverage Zero-shot CoT (ZS CoT) (Kojima et al.,333

2022) and Few-shot CoT (CoT) (Wei et al.,334

2022) with complexity-based prompting (Fu et al.,335

2023). For answer calibration, we employ Self-336

Verification (SV) (Weng et al., 2023) and Self-337

Consistency (SC) (Wang et al., 2023i) on multiple338

paths. SV is a step-level strategy, which verifies 339

intermediate-step answers and returns the path con- 340

taining the maximum number of correct step an- 341

swers. SC is a path-level strategy, which conducts 342

majority voting on final answers of all generated 343

paths and selects the most consistent result. 344

Implementation. We release the codes and 345

generated results anonymously1. In this pa- 346

per, the number of reasoning paths N defined 347

in Eq (1) is 10, and number of intermediate 348

steps M is 3 on all datasets except for CSQA 349

where M is 10. We utilize GPT-3.5 (200B) with 350

gpt-3.5-turbo engine as the backbone LLM 351

to generate reasoning paths, and the temperature 352

is set to 0.7. We also leverage GPT-4 (OpenAI, 353

2023) with gpt-4 engine to generate ground-truth 354

rationales given the ground-truth answers for all 355

datasets excluding GSM8K (which already con- 356

tains them). For evaluation referring to ROSCOE 357

(Golovneva et al., 2023), we respectively lever- 358

1https://anonymous.4open.science/r/Eval_Multi-Step_
Reasoning-4E60.
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Figure 2: Accuracy under different integrated step-level and path-level answer calibration strategies, varying with
the values of α defined in Eq (1). Performance with two thresholds of 1

M(N−2)
N +1

and 1
1
N +1

are marked as F.

age all-MiniLM-L6-v2/SentenceTransformer,359

and pretrained gpt2-large (Radford et al.,360

2019) to obtain token/sentence embedding and cal-361

culate perplexity defined in Eq (12). All the reason-362

ing paths for CoT and ZS CoT were generated dur-363

ing 8th to 23rd June 2023, and answer calibration364

on the generated reasoning paths was conducted365

during 12th October to 8th November 2023.366

4.2 Analysis on Step-Level and Path-Level367

Answer Calibration Strategies368

We respectively incorporate the effective step-level369

and path-level answer calibration strategies, Self-370

Verification (SV) and Self-Consistency (SC), into371

CoT-based models operating on multiple paths. We372

evaluate their performance using six evaluation373

metrics, with the results presented in Table 1.374

Generally, in terms of accuracy, employing an-375

swer calibration is effective. Seen from Table 1,376

we find that models equipped with SV and SC ob-377

viously outperform vanilla methods, as both few-378

shot and zero-shot CoT employing SV/SC achieve379

significant accuracy improvements on almost all380

tasks. Notably, zero-shot CoT with SV and SC381

achieves much more significant outperformance382

of accuracy than few-shot settings on almost all383

tasks, demonstrating that answer calibration is384

more effective in zero-shot settings. As zero-shot385

CoT is relatively challenging due to the absence386

of task-specific in-context learning, answer cali-387

bration strategies essentially creating a feedback388

loop where the model assesses its own performance389

and adjusts accordingly, could help to mitigate bi-390

ases and overfitting to specific patterns during in-391

ference, allowing the model to better generalize to 392

new types of problems and datasets. 393

Furthermore, in terms of other metrics, answer 394

calibration can improve consistency on arith- 395

metic tasks but weakens faithfulness, informa- 396

tiveness and perplexity on both arithmetic and 397

commonsense tasks. Observed from Table 1, we 398

find that SV and SC weaken the perplexity score, 399

suggesting that the rationale generated from multi- 400

ple paths is more complex than that from a single 401

path with CoT models. However, these two strate- 402

gies improve consistency scores on arithmetic tasks, 403

intuitively benefiting from multiple paths. As SV 404

verifies answers for intermediate steps and SC con- 405

siders answers for all paths, they naturally enhance 406

consistency within steps and between input/output 407

(I/O). Additionally, SV and SC worsen faithfulness 408

and informativeness on almost all tasks. The pos- 409

sible reason is that answer calibration on multiple 410

paths focuses more on answer accuracy, while its 411

increased complexity of its rationales tends to re- 412

sult in lower alignment and concordance between 413

the source content and the output path. Generally, 414

despite the benefits of employing SV and SC to 415

CoT-based methods, the improvements are task- 416

dependent and vary across different metrics. 417

4.3 Analysis on Integrated Answer 418

Calibration Strategies 419

We then integrate step-level and path-level an- 420

swer calibration strategies, varying α as defined 421

in Eq (1). We present the accuracy of the inte- 422

grated strategies in Figure 2. As observed, ac- 423

curacy peaks at a specific value of α between 424
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Engine Strategy GSM8K SVAMP MultiArith CSQA

GPT-3 (175B)
code-davinci-001

CoT 13.84 38.42 45.85 46.75
CoT + SV 13.92↑ 38.96↑ 46.19↑ 47.68↑
CoT + SC 23.40⇑ 54.58⇑ 79.82⇑ 54.92⇑
CoT + SC + SV 23.59⇑ 54.68⇑ 80.01⇑ 55.09⇑

Instruct-GPT (175B)
code-davinci-002

CoT 60.81 75.87 96.13 77.42
CoT + SV 65.14⇑ 76.99↑ 99.15⇑ 77.83↑
CoT + SC 78.00⇑ 86.77⇑ 100.00⇑ 81.43⇑
CoT + SC + SV 78.32⇑ 86.94⇑ 100.00⇑ 81.53⇑

GPT-3.5 (200B)
gpt-3.5-turbo

CoT 80.21 78.20 97.67 74.77
CoT + SV 82.34↑ 85.80⇑ 98.33↑ 74.04↓
CoT + SC 87.11⇑ 84.40⇑ 98.17↑ 75.27↑
CoT + SC + SV 88.25⇑ 86.80⇑ 99.00↑ 75.18↑

Table 2: Accuracy (%) with different backbone engines. ↑/⇑: slightly/significantly better; ↓: slightly worse than
the baseline few-shot CoT. We refer to Weng et al. (2023) for results with GPT-3 and Instruct-GPT engines. As
Weng et al. (2023) didn’t test on MathQA dataset, we also exclude the results of MathQA here for fair comparisons.

the two thresholds defined in Eq (4) and (7) in425

almost all scenarios across all tasks, demonstrat-426

ing that optimal model performance should bal-427

ance both step-level and path-level answer cal-428

ibration dominance. Besides, we notice that for429

“CoT on SVAMP task” in Figure 2(b) and “zero-430

shot CoT on MathQA task” Figure 2(d), employing431

integrated answer calibration strategies reaches a432

peak with α not between the two thresholds, and433

the overall performance remains stably lower than434

the initial best accuracy with α = 0 (i.e., SV).435

The possible reason may related to employing SV436

(i.e., α = 0) presenting more significant advan-437

tages than SC (i.e., α = 1) in the two scenarios.438

Specifically, CoT on SVAMP respectively achieves439

accuracy of 85.80% and 84.40% when α values 0440

(SV) and 1 (SC), with the difference larger than 1%;441

Zero-shot CoT on MathQA employing SV and SC442

achieves accuracy of 52.86% v.s. 49.51%, where443

the difference is larger than 3%. Except for these444

two distinctive scenarios, others in Figure 2 obtain445

the optimal results by synthesizing step-level and446

path level answer calibration dominance.447

In conclusion, the value of α plays a significant448

role in the performance of both few-shot and zero-449

shot CoT. Optimal ranges of α for each task are450

mostly between the two thresholds of step-level451

and path-level answer calibration dominance. The452

marked two thresholds represent boundaries for453

optimizing performance, which could guide fur-454

ther fine-tuning. Besides, the performance variance455

across datasets implies that the characteristics of456

each task, such as complexity, size, or the nature457

of the tasks. Models equipped with answer calibra-458

tion strategies may require task-specific tuning to459

achieve the best performance.460

4.4 Effects of Backbone Models 461

We compare accuracy on CoT-based answer cal- 462

ibration strategies with different LLM backbone 463

engines, and present results in Table 2. 464

As observed from the results, for GPT-3 and 465

Instruct-GPT, both self-verification (SV) and self- 466

consistency (SC) provide consistent improvements; 467

while on the larger GPT-3.5 model, their improve- 468

ments are significantly weaker, particularly for SV, 469

with which accuracy even slightly drops on the 470

CSQA task. The possible reason is that GPT-3.5 471

is more prone to making mistakes when verifying 472

on intermediate-step answers for multiple paths. 473

Further, for integrated answer calibration strategies 474

(SV+SC), the model’s performance is close to the 475

better one between SV and SC. Generally, path- 476

level answer calibration is more advantageous than 477

step-level one, with relatively higher accuracy and 478

lower computation cost. We can infer that answer 479

calibration strategies, especially path-level self- 480

consistency, provide benefits in many cases, par- 481

ticularly on less powerful LLMs. 482

We further speculate, if the path generation for 483

CoT with strong backbone LLM is sophisticated 484

enough, the answer calibration may be simplified. 485

We can directly conduct path-level answer calibra- 486

tion for multiple paths. But these findings cannot 487

indicate that step-level answer calibration is mean- 488

ingless for stronger backbone LLMs. As seen from 489

Table 1, LLM equipped with step-level answer cal- 490

ibration is relatively beneficial to improve consis- 491

tency scores. Besides, as mentioned in (Weng et al., 492

2023), step-level answer calibration can provide 493

explainable answers by verifying on intermediate- 494

step answers, making results more reliable. 495
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Figure 3: Performance (%) of “Accuracy, Faithfulness (Over Steps) and Informativeness (Over Path)” on SVAMP
and MultiArith with different prompting on CoT models. We didn’t show full results of other tasks for space limits.

4.5 Effects of Prompting496

We further demonstrate the effects of prompting497

with few-shot demonstrations on answer calibra-498

tion, evaluated on CoT models.499

We respectively input prompts of no coherence500

and no relevance for few-shot CoT referring to501

Wang et al. (2023a) (examples are listed in Ap-502

pendix A), and present performance on SVAMP503

and MultiArith in Figure 3. As seen, the deficiency504

of coherence and relevance in the prompting signif-505

icantly weaken the performance of all models, with506

no relevance having a more profound impact than507

no coherence. In addition, CoT+SV achieves com-508

parable performance with CoT+SC when prompt-509

ing is standard or not coherent. Further, CoT+SV510

tends to perform significantly better than CoT+SC,511

when prompting with no relevance, indicating that512

step-level answer calibration strategy SV, is benefi-513

cial to maintain performance under adverse condi-514

tions. This observation suggests the robustness of515

step-level answer calibration. It also highlights516

the potential benefits of step-level answer cali-517

bration strategies to mitigate performance de-518

generation caused by poor prompting. The pos-519

sible reason is that step-level answer calibration520

strategies break down the task into subtasks, and521

these subtasks are simple enough so that less likely522

to be influenced by the low-quality prompts.523

4.6 Analysis on Tasks524

As seen from Table 1,2, and Figure 2, generally,525

SV and SC present more significant outperfor-526

mance on arithmetic tasks than on the common-527

sense task (CSQA). Further, for CSQA, employ-528

ing answer calibration tends to worsen the con-529

sistency scores, which is contrary to the trend ob-530

served in arithmetic tasks. The possible explana- 531

tion lies in the characteristics of each task, such as 532

complexity, size, or the nature of the tasks. In the 533

CSQA task, correct intermediate steps may not al- 534

ways contribute to a coherent reasoning path due to 535

potential irrelevance and redundancy. Specifically, 536

even if we calibrate both intermediate step and 537

path answers, there can be some correct common- 538

sense statements while irrelevant to the question, 539

resulting in worse consistency and perplexity. Con- 540

versely, in arithmetic tasks, correct intermediate 541

answers almost guarantee a consistent reasoning 542

path, as all intermediate answers are necessary and 543

will contribute to a correct final answer. 544

5 Conclusion and Future Work 545

In this paper, we dissect multi-step reasoning into 546

path generation and answer calibration, and pro- 547

vide a unified view of answer calibration strategies 548

through a comprehensive evaluation. We find that 549

path-level answer calibration is particularly potent 550

in improving accuracy, while step-level answer cal- 551

ibration is more suitable for addressing issues re- 552

lated to low-quality prompting. The improvement 553

is more pronounced in zero-shot scenarios and less 554

significant on stronger backbone models. We also 555

define step-level and path-level answer calibration 556

dominance with two thresholds, and propose to 557

integrate of the two types of strategies, which is 558

promising to achieve optimal performance. Our 559

findings suggest that answer calibration is a ver- 560

satile strategy that can be integrated into various 561

models to bolster multi-step reasoning capabilities 562

of LLMs. In the future, we aim to develop more 563

sophisticated multi-step reasoning models, drawing 564

on the insights and conclusions from this study. 565
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Limitations566

The main limitation for this paper is that we didn’t567

analyze more answer calibration strategies, such568

as step-/path-level methods on the single path, and569

varying the numbers of steps and paths in the inte-570

grated answer calibration strategies. Besides, we571

can also employ answer calibration strategies to572

other path generation models, not limited to CoT-573

based methods. Further, we should also evaluate574

answer calibration strategies on more tasks to make575

the results more sufficient.576
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Appendices 961

A Cases of Low-Quality Prompts 962

We list some examples of prompts in Table 3. 963

Prompt Setting

Example Query (Arithmetic Reasoning)
Leah had 32 chocolates and her sister had 42.
If they ate 35,
how many pieces do they have left in total?

Standard CoT

Originally,
Leah had 32 chocolates and her sister had 42.
So in total they had 32 + 42 = 74.
After eating 35,
they had 74 - 35 = 39 pieces left in total.
The answer is 39.

No Coherence

After eating 32 + 42 = 74,
they had 32 pieces left in total.
Originally, Leah had 74 - 35 = 39 chocolates
and her sister had 35.
So in total they had 42. The answer is 39.

No Relevance

Patricia needs to donate 19 inches,
and wants her hair to be 31 inches long
after the donation.
Her hair is 29 inches long currently.
Her hair needs to be 19 + 31 = 50
inc long when she cuts it.
So she needs to grow 50 - 29 = 21 more inches.
The answer is 21.

Table 3: Examples of prompts (standard, no coherence
and no relevance) in our experiments.
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