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ABSTRACT

Camouflaged object segmentation in videos faces inherent challenges due to the
targets’ indistinguishable appearance and irregular motion patterns. While Seg-
ment Anything Model 2 (SAM2) provides a flexible framework for prompt-driven
segmentation, it heavily relies on handcrafted or external prompts, limiting its
potential in complex, real-world scenarios. To address the issue, we present Camo-
Tracer, a prompt-free yet prompt-rich framework that leverages multimodal large
language models (MLLMs) to generate diverse and informative prompts, i.e., point,
mask and text prompts, to guide SAM2 without any human intervention. We
introduce two key components: (1) a Semantic-Guided Adapter that aligns CLIP
and SAM2 representations via cross-attention, injecting rich semantic context into
high-resolution visual features; and (2) a Semantic-Aware Prompter that transforms
semantic response maps into coarse masks and Gumbel-Softmax-based sampling
points, which allows end-to-end differentiable optimization. Meanwhile, LLM
outputs text tokens to derive implicit text prompts that encode rich visual-language
priors. These prompts collaboratively guide the SAM2 mask decoder in a self-
adaptive manner. Further, we devise a memory-guided bi-directional keyframe
selection strategy to enhance temporal context propagation and prompt reliability
across video frames. Extensive experiments on VCOS benchmarks, MoCA-Mask
and CAD datasets, demonstrate that CamoTracer achieves new state-of-the-art
performance, strong generalization ability, and robust prompt adaptation, outper-
forming previous approaches by a significant margin. Our results highlight the
potential of self-prompted segmentation empowered by multimodal understanding,
bringing SAM2 one step closer to human-like perception in camouflaged scenes.

1 INTRODUCTION

Camouflaged object segmentation (COS)1 is a crucial and challenging task in computer vision, aiming
to segment objects that blend seamlessly into their surroundings. The inherent ambiguity in object
appearance makes COS particularly difficult, as camouflaged targets often exhibit low contrast against
the background and lack clear semantic boundaries. Recent advances in this field have deepened the
insights into camouflage patterns and enabled practical applications in various fields, e.g., medical
image analysis (Bao et al., 2024; Huang et al., 2024a; Zhang et al., 2024b; Wolleb et al., 2022; Zhao
et al., 2021), industrial defect detection (Cao et al., 2023; Roth et al., 2022; Liu et al., 2021), and
wildlife conservation (Lidbetter, 2020).

Extending COS to the video domain, video COS (VCOS) introduces additional challenges that
are unique to temporal modeling. These challenges include not only visual ambiguity caused by
appearance similarity between objects and backgrounds, but also prediction instability arising from
scene dynamics, such as occlusion, sudden object emergence, and motion blur. While temporal
information can reveal subtle appearance changes, accurately modeling motion in camouflaged
scenarios remains non-trivial. Moreover, objects may remain motionless or be visually indistinct,
making both appearance- and motion-based detection inherently unreliable.

1Also termed as camouflaged object detection (COD). Throughout, we use COS and COD interchangeably.
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Figure 1: (a) Comparison of mask predictions between ground truth (GT), SLT-Net (Cheng et al.,
2022a), baseline (LISA (Lai et al., 2024)) and CamoTracer (Ours). (b) Illustration of challenges and
our motivation.

Existing VCOS methods (Bideau & Learned-Miller, 2016a; Lamdouar et al., 2020; Cheng et al.,
2022a; Yu et al., 2024b; Hui et al., 2024a) mainly leverage optical flow or temporal correlation
for motion-aware segmentation. However, (i) motion estimation can be erroneous in low-contrast
scenes, leading to error accumulation in downstream predictions; and (ii) many methods rely heavily
on limited annotated data, leading to poor generalization across diverse scenes. These limitations
highlight the need for a more robust and universal solution to handle dynamic and ambiguous
camouflage patterns.

Segment Anything Model 2 (SAM2) (Ravi et al., 2024) represents a major advancement in video
object segmentation. As a prompt-driven foundation model, SAM2 demonstrates strong generalization
across domains. However, SAM2’s reliance on external prompts makes it difficult to adapt to COS,
where providing reliable prompts is particularly challenging due to the lack of distinguishable visual
cues. Recent works (Hui et al., 2024b; Meeran et al., 2024; Zhang et al., 2025a) attempt to integrate
appearance-motion heuristics or self-prompting strategies to enhance SAM2 for VCOS, but these
methods are still limited by the ambiguity of appearance and the noise in motion estimation. In such
camouflaged settings, generating high-quality prompts without human intervention remains a key
bottleneck.

To address this, we draw inspiration from human perception, as illustrated in Fig. 1. When faced with
camouflaged objects, humans tend to rely on subtle motion cues for initial identification. Once the
object is recognized, the memory of its features facilitates subsequent detection, even under occlusion
or static conditions. Inspired by the role of semantic reasoning and temporal memory in human
vision, we aim to endow SAM2 with human-like perception by integrating multimodal large language
models (MLLMs). MLLMs possess powerful semantic reasoning capabilities and can synthesize
visual-language priors to detect subtle targets. We leverage MLLMs to generate diverse multimodal
prompts, thereby replacing human intervention with adaptive, semantics-rich guidance.

We present CamoTracer, a prompt-free yet prompt-rich framework that combines MLLMs and SAM2
for robust VCOS. Specifically, we introduce two key components: (i) the Semantic-Guided Adapter
(SGA), which injects semantic context from MLLMs into SAM2 via cross-attention, aligning visual
and semantic representations; and (ii) the Semantic-Aware Prompter (SAP), which converts MLLM
outputs into diverse and complementary prompts (text, point, mask) to enrich the prompt space and
enhance segmentation quality.

To further strengthen temporal consistency and mitigate challenges such as motion variability and
occlusions, we propose a memory-guided Bi-directional Keyframe Selection (Bi-KFS) strategy. This
strategy utilizes bidirectional inference consistency and mask prediction confidence to select reliable
keyframes as memory anchors, thereby stabilizing the segmentation process across frames. By
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ensuring that contextual information from keyframes propagates effectively to subsequent frames,
our approach reduces the impact of drift and maintains consistent segmentation throughout the video
sequence.

Our contributions are summarized as follows:

• We propose CamoTracer, the first MLLM-enhanced VCOS framework that enables fully
automated prompt generation for SAM2, removing the need for human intervention and
significantly enhancing segmentation quality in camouflage scenarios.

• To address the challenge of visual ambiguity, we introduce the Semantic-Guided Adapter
and Semantic-Aware Prompter, effectively aligning visual and semantic representations
and providing robust prompt guidance, endowing SAM2 with human-like perception.

• To mitigate the instability caused by inter-frame discontinuities and irregular motion, we
design a Bi-directional Keyframe Selection strategy, which identifies optimal memory
anchors to enhance long-term temporal propagation and prediction consistency.

• Extensive experiments on MoCA-Mask and CAD2016 benchmarks demonstrate the superi-
ority of CamoTracer, surpassing the previous state-of-the-art method CamoSAM2 by +9.4%
and +22.3% mIoU, respectively.

2 RELATED WORK

2.1 VIDEO CAMOUFLAGED OBJECT SEGMENTATION

VCOS (Xiao et al., 2024; Bi et al., 2021) presents unique challenges, primarily due to the need to
utilize motion cues to differentiate targets with indistinguishable appearances. Traditional VCOD
approaches rely on optical flow (Bideau & Learned-Miller, 2016a; Lamdouar et al., 2020) to capture
motion cues between video frames but suffered from accumulated mask errors in dynamic scenes.
SLT-Net (Cheng et al., 2022a) addresses this by proposing a two-stage framework that models both
short- and long-term temporal consistency. TMNet (Yu et al., 2024b) enhances the segmentation
accuracy by using motion-guided features extracted via learnable token selection, while IMEX (Hui
et al., 2024a) integrates both implicit and explicit motion learning through cross-scale fusion.

The limited availability of training data often restricts the generalization capabilities of these models,
prompting the need for more generalizable solutions. In response, TSP-SAM (Hui et al., 2024b)
introduces temporal-spatial prompt learning within the Segment Anything Model (SAM), enabling
the automatic generation of prompts based on motion cues. SAM-PM (Meeran et al., 2024) builds
on SAM by incorporating a propagation module to enforce temporal consistency in segmentation.
CamoSAM2 (Zhang et al., 2025a) enhances SAM2’s performance for VCOD tasks by introducing a
motion-appearance prompt inducer and an adaptive multi-prompt refinement strategy.

Existing methods rely on prompts based on appearance and motion, overlooking the semantic
requirements inherent in camouflaged object detection tasks. In contrast, our approach incorporates
MLLMs, effectively addressing the challenges of both visual and semantic ambiguities.

2.2 SEGMENT ANYTHING MODEL 2

SAM2 (Ravi et al., 2024) represents a significant advancement over its predecessor, SAM (Kirillov
et al., 2023), by enabling a universal vision segmentation model that spans both image and video tasks.
While SAM was confined to image segmentation, SAM2 extends its capabilities by incorporating a
memory structure, allowing it to handle temporal dependencies. This addition has enabled SAM2 to
achieve a remarkable leap in the domain of natural video segmentation, particularly in its zero-shot
capabilities.

Despite its success, SAM2’s performance in specialized fields remains limited. To address this,
several studies have tailored SAM2 for specific domains, such as medical image segmentation (Yu
et al., 2024a; Chen et al., 2024; Mansoori et al., 2024; Zhu et al., 2024), video object tracking
(Zhang et al., 2024a; Stanczyk & Bremond, 2024), point cloud segmentation (Guo et al., 2024), and
video camouflaged object segmentation (Zhang et al., 2025a; Zhou et al., 2024; Tang & Li, 2024),
demonstrating its versatility in these areas. However, it is important to note that SAM2’s performance
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heavily relies on the quality of the provided prompts. Current methods like medicineSAM (Zhu
et al., 2024) and SAM-PM (Meeran et al., 2024) still depend significantly on handcrafted or external
prompts, which restrict the model’s potential in more complex, real-world scenarios.

In contrast, our approach focuses on automating the generation of diverse and informative prompts
for SAM2, without any human intervention. By leveraging MLLMs, the prompts we generate are not
only rich in appearance and motion cues but also integrate semantic understanding into SAM2.

2.3 MULTIMODAL LARGE LANGUAGE MODEL

MLLMs have recently recorded striking breakthroughs on vision-language tasks. Some studies
(Alayrac et al., 2022; Li et al., 2023a;b; Liu et al., 2023; Zhu et al., 2023; Ye et al., 2023; Lei et al.,
2025) have made groundbreaking progress. BLIP-2 (Li et al., 2023b) and Mplug-Owl (Ye et al.,
2023) use a two-stage design, combining image embeddings with text tokens for zero-shot transfer
via a frozen LLM. In contrast, LLaVA (Liu et al., 2023) and MiniGPT-4 (Zhu et al., 2023) explicitly
project visual features into the language space and apply visual-instruction tuning for interactive
instruction following.

Building on such expressive representations, Wang et al. (2023); Chen et al. (2023); Zhang et al.
have moved from holistic description to explicit grounding. At the same time, MLLMs have proved
adaptable to diverse visual downstream tasks such as multimodal generation (Ye et al., 2024; Dong
et al., 2023), object detection (Jiao et al., 2024), and image segmentation (Lai et al., 2024; Ren et al.,
2024b; Tang et al., 2025); in particular, LISA (Lai et al., 2024) decodes the hidden state of a dedicated
<SEG> token into open-set masks, whereas PixelLM (Ren et al., 2024b) internalises a segmentation
codebook and pixel decoder to produce multi-object masks.

Building on image-level progress, recent work extends MLLMs to video: LITA (Huang et al.,
2024b) uses relative time tokens for temporal localization; TimeChat (Ren et al., 2024a) combines
a timestamp-aware encoder with a sliding Q-Former; and Momentor (Qian et al., 2024) learns
continuous temporal embeddings from Moment-10M. However, these methods remain instruction-
driven, differing from our target of video camouflage segmentation. To bridge this gap, we introduce
the first MLLM-based VCOS framework that is prompt-free yet retains prompt-rich features.

3 METHOD

Our proposed CamoTracer pioneers the integration of MLLMs with SAM2 for video camouflaged
object segmentation. By leveraging the rich semantic priors from MLLMs, CamoTracer automatically
generates informative prompts that guide the promptable segmentation model SAM2, setting a new
precedent for semantic-driven, video-based segmentation in camouflaged scenarios.

3.1 ARCHITECTURE

Fig. 2 illustrates the overall architecture of CamoTracer, which integrates the promptable segmentation
model SAM2 with the MLLM. Given a video clip xvideo = {x(1)

img,x
(2)
img, . . . ,x

(T )
img }, where x

(t)
img

represents the individual image frame at time step t, the model processes the frames sequentially,
utilizing contextual information and memory from previous frames to generate segmentation masks.

Each input frame x
(t)
img is combined with a fixed text instruction, formatted as: “<IMAGE> Please

segment the camouflaged object in this image.”, where <IMAGE> serves as a
placeholder for the image patch tokens. To enable the LLM to assist in segmentation, we extend
the LLM’s vocabulary with a special token <SEG>, following previous work (Lai et al., 2024). The
CLIP image encoder processes the input image and encodes it into visual tokens, which are passed to
the LLM. The LLM then generates a text-based response ŷtxt, formulated as:

ŷtxt = F(x(t)
img,xtxt). (1)

The embedding corresponding to the <SEG> token, h̃seg, is extracted from the last layer of the
LLM and passed through a projection layer γ to obtain a feature embedding hseg, which serves as a

4
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“Please segment the camouflaged object in this image.”
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Figure 2: Overall architecture of CamoTracer. Our framework integrates MLLM’s semantic under-
standing with SAM2’s promptable segmentation capabilities.

text prompt for SAM2’s mask decoder. Simultaneously, the SAM2 image encoder, Fsam2, extracts
multi-scale visual features fsam2 from each frame x

(t)
img:

hseg = γ(h̃seg), fsam2 = Fsam2(x
(t)
img). (2)

The SAM2 captures fine-grained spatial details, while the CLIP encoder provides high-level semantic
representations. To align these two feature spaces, we introduce the Semantic-Guided Adapter (SGA),
which injects semantic priors into the visual stream. This module will be introduced in Section 3.2.

While LLM generates text token embeddings as prompts for SAM2’s mask decoder, these prompts
lack explicit spatial cues, which are crucial for accurate segmentation. To address this limitation, we
propose the Semantic-Aware Prompter (SAP), which derives semantic responses from the MLLM to
generate both mask and point prompts, further improving segmentation performance. Details of SAP
are provided in Section 3.3.

Our model employs a streaming processing and memory-based prompting mechanism, which en-
hances segmentation stability by leveraging context from previous frames. However, for camouflaged
objects that are partially visible or gradually emerge across frames, earlier frame predictions may
propagate noise, leading to error accumulation. To mitigate this issue, we introduce a motion-
guided bidirectional keyframe selection strategy to enhance temporal context propagation and ensure
segmentation consistency. This strategy will be elaborated in Section 3.5.

3.2 SEMANTIC-GUIDED ADAPTER

Camouflaged objects often blend seamlessly into the background, making it difficult to distinguish
targets from distractors using visual cues alone. This calls for external semantic guidance to disam-
biguate object regions. While the SAM2 encoder provides rich low- and mid-level visual features,
it lacks the high-level semantic grounding required to accurately localize camouflaged objects. To
address this limitation, we introduce a lightweight Semantic-Guided Adapter (SGA) that injects
high-level semantic priors into the visual feature stream, enhancing the semantic discriminability of
visual representations.

Specifically, SGA takes the visual features from SAM2 fsam2 as queries and applies a lightweight
cross-attention mechanism conditioned on CLIP features fclip, followed by a layer normalization:

fadapted = LayerNorm(CrossAttn(fsam2, fclip)). (3)

The adapted features are fused back with the original SAM2 features to produce semantically enriched
visual representations:

ffused = fsam2 + fadapted. (4)

This fusion integrates fine-grained spatial details with global semantic context, allowing the model to
attend to semantically meaningful regions even under weak visual contrast. The adapter is trained
end-to-end and introduces minimal additional parameters.

5
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3.3 SEMANTIC-AWARE PROMPTER

Although text prompts provide high-level semantic guidance, they lack explicit spatial cues required
for accurate localization. To compensate for this, we propose the Semantic-Aware Prompter (SAP),
which extracts semantic response maps from aligned vision-language features and converts them
into mask prompts. We first obtain the enhanced features f ′clip via a Global-Local Fusion (GLF)
module that integrates early- and final-layer features from CLIP, capturing both local details and
global semantics. This can be formulated as:

f ′clip = Ψ(Φ(fclip)) + Ψ(Φ(fearly)),

Φ(·) = GELU(LayerNorm(TransConv(·))),
Ψ(·) = GELU(TransConv(·)),

(5)

where TransConv denotes transposed convolution, and GELU is the GELU activation function. Then,
we calculate the text-pixel response maps through the inner product, which are reshaped to obtain
mask predictions n̂ of the target with low-resolution:

n̂ = hseg · f ′clip, (6)

where n̂ ∈ RH×W highlights potential target regions. This map is upsampled to a higher resolution
n̂′, and encoded into a mask prompt embedding fm using the SAM2 prompt encoder Fenc:

fm = Fenc(n̂
′). (7)

To further enrich the spatial prompt, we extract a representative point from n̂ that indicates the highest
activation location. However, the conventional argmax operation is non-differentiable and blocks
gradient flow. To overcome this, we employ the Gumbel-Softmax trick (Jang et al., 2016) to produce
a differentiable one-hot spatial mapM∈ RH×W :

M = Gumbel-Softmax(n̂), (8)

whereM softly approximates hard point selection in a gradient-friendly manner. Since the SAM2
prompt encoder is frozen during training, we precompute the position embeddings E ∈ RH×W×D

for all spatial locations as a lookup table. The final point embedding hp ∈ RD is then retrieved via a
weighted sum overM:

hp =

H×W∑
i=1

Mi · Ei. (9)

To enhance temporal consistency, the fused embedding ffuse and the mask prediction m̂ are fed into
SAM2’s memory encoder to produce the memory embedding fmem, which integrates information
from the current and previous keyframes, guiding the segmentation of the current frame:

fmem = Fmem(ffuse, m̂). (10)

This memory feature fmem is then used as an additional input to the SAM2 mask decoder, alongside
the text prompt hseg, the mask prompt fm, and the point prompt hp:

m̂ = Fdec(hseg, fm,hp, fmem). (11)

3.4 TRAINING

Training Objectives. Our model is trained end-to-end with a multi-task loss that jointly optimizes text
generation and segmentation performance. The overall loss L is a weighted sum of an autoregressive
cross-entropy loss for text generation Ltxt as well as segmentation losses for mask prediction Lmask

and coarse mask prediction Lcoarse, with corresponding loss weights λtxt, λmask, and λcoarse:

L = λtxtLtxt + λmaskLmask + λcoarseLcoarse. (12)

The segmentation losses Lmask and Lcoarse are computed as a combination of binary cross-entropy
(BCE) and DICE loss, with weights λbce and λdice, respectively. Given the ground-truth targets
(ytxt,m,n) and predictions (ŷtxt, m̂, n̂), where m and n denote the final and coarse masks, the losses
are defined as:

Ltxt = CE(ŷtxt,ytxt),

Lmask = λbce BCE(m̂,m) + λdice DICE(m̂,m),

Lcoarse = λbce BCE(n̂,n) + λdice DICE(n̂,n).
(13)

6
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Table 1: Comparison with SOTA methods on the MoCA-Mask and CAD2016 datasets. The best and
the second-best results are bolded and underlined, respectively.

Method Pub./Year Input
MoCA-Mask CAD2016

Sα ↑ Fw
β ↑ Eϕ ↑ M ↓ mDice ↑ mIoU ↑ Sα ↑ Fw

β ↑ Eϕ ↑ M ↓ mDice ↑ mIoU ↑

SINet (Fan et al., 2020) CVPR2020 Image 0.574 0.185 0.655 0.030 0.221 0.156 0.601 0.204 0.589 0.089 0.289 0.209
SINet-v2 (Fan et al., 2021a) TPAMI2021 Image 0.571 0.175 0.608 0.035 0.211 0.153 0.544 0.126 0.546 0.049 0.170 0.110
ZoomNet (Pang et al., 2022) CVPR2022 Image 0.582 0.211 0.536 0.033 0.224 0.167 0.587 0.225 0.594 0.063 0.246 0.166
BGNet (Sun et al., 2022) IJCAI2022 Image 0.590 0.203 0.647 0.023 0.225 0.167 0.607 0.203 0.666 0.089 0.345 0.256
FEDERNet (He et al., 2023) CVPR2023 Image 0.555 0.158 0.542 0.049 0.192 0.132 0.607 0.246 0.725 0.061 0.361 0.257
FSPNet (Huang et al., 2023) CVPR2023 Image 0.594 0.182 0.608 0.044 0.238 0.167 0.539 0.220 0.553 0.145 0.309 0.212
PUENet (Zhang et al., 2023) TIP2023 Image 0.594 0.204 0.619 0.037 0.302 0.212 0.673 0.427 0.803 0.034 0.499 0.389

RCRNet (Yan et al., 2019) ICCV2019 Video 0.597 0.174 0.583 0.025 0.194 0.137 0.627 0.287 0.666 0.048 0.309 0.229
PNS-Net (Ji et al., 2021) MICCAI2021 Video 0.576 0.134 0.562 0.038 0.189 0.133 0.678 0.369 0.720 0.043 0.409 0.308
MG (Yang et al., 2021) ICCV2021 Video 0.547 0.165 0.537 0.095 0.197 0.141 0.484 0.314 0.558 0.370 0.351 0.260
SLT-Net (Cheng et al., 2022a) CVPR2022 Video 0.656 0.357 0.785 0.021 0.387 0.310 0.679 0.420 0.805 0.033 0.445 0.342
ZoomNeXt (Pang et al., 2024) TPAMI2024 Video 0.734 0.476 0.497 0.010 0.497 0.422 0.757 0.593 0.865 0.020 0.599 0.510
TMNet (Yu et al., 2024b) ICASSP2024 Video 0.740 0.485 0.735 0.008 0.503 0.417 - - - - - -
IMEX (Hui et al., 2024a) TMM2024 Video 0.661 0.371 0.778 0.020 0.409 0.319 0.684 0.452 0.813 0.033 0.469 0.370
TSP-SAM (Hui et al., 2024b) CVPR2024 Video 0.689 0.444 0.808 0.008 0.458 0.388 0.704 0.524 0.912 0.028 0.543 0.438
SAM-PM (Meeran et al., 2024) CVPRW2024 Video 0.728 0.567 0.813 0.009 0.594 0.502 0.729 0.602 0.746 0.018 0.594 0.493
EMIP (Zhang et al., 2025b) TIP2025 Video 0.675 0.381 - 0.015 0.426 0.333 0.719 0.514 - 0.028 0.536 0.425
Vcamba (Li et al., 2025) Arxiv2025 Video 0.684 0.382 0.804 0.010 0.459 0.369 0.729 0.573 0.842 0.034 0.634 0.509
CamoSAM2 (Zhang et al., 2025a) Arxiv2025 Video 0.765 0.607 0.848 0.007 0.620 0.542 0.774 0.652 0.852 0.018 0.647 0.543

CamoTracer Ours Video 0.800 0.665 0.878 0.006 0.674 0.593 0.830 0.745 0.900 0.014 0.750 0.664

Training Strategies. To preserve the rich pre-trained knowledge embedded in the LLM, we adopt
LoRA (Hu et al., 2022) for parameter-efficient fine-tuning, and freeze all components of SAM2
except for its mask decoder Fdec. Additionally, the LLM token embeddings, the LLM head, the
projection layer γ, the SGA and SAP modules are trainable. This strategy maintains the robustness
of the pre-trained models while adapting them effectively to the VCOS task. To further enhance
generalization and reduce the model’s over-reliance on specific prompt types, we apply random
dropout on point, mask, text or memory prompts during training.

3.5 MEMORY-GUIDED BI-DIRECTIONAL KEYFRAME SELECTION

To enhance segmentation stability and reduce temporal error accumulation in camouflaged videos, we
introduce a memory-guided bi-directional keyframe selection strategy. Given a sequence of T frames,
we apply SAM2 in both forward and backward directions to obtain predicted masks {M fwd

t }Tt=1 and
{M bwd

t }Tt=1. For each frame t, we compute a forward-backward consistency score:

St = IoU(M fwd
t ,M bwd

t ), (14)

which reflects the agreement between bi-directional predictions. We rank frames by St and select the
top-K (empirically K = 3) pairs. For each pair, the frame with the higher predicted mask confidence
(IoU) is chosen as a keyframe. Additionally, any frame with a mask confidence exceeding a threshold
(0.95) is also selected. A frame is considered a keyframe if it satisfies either criterion.

Finally, we re-run inference by first processing keyframes and then the remaining frames, using
keyframes as memory anchors to guide segmentation. The detailed algorithm for Bi-KFS is provided
in Algorithm 1. This strategy effectively propagates temporal context and suppresses noise in
challenging dynamic scenes. Experiments show notable gains in both segmentation accuracy and
temporal consistency for VCOS tasks.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Details of the datasets, evaluation metrics, and implementation are provided in Appendix A.

4.2 COMPARISON WITH SOTA METHODS

Quantitative Results. As shown in Table 1, CamoTracer outperforms all previous methods across
all metrics on both MoCA-Mask and CAD2016, including methods based on images and videos.
Compared to the best method without using SAM, TMNet, CamoTracer improves Sα and mIoU by
0.06 and 0.176 on MoCA-Mask, corresponding to relative gains of 8.1% and 42.2%, respectively.
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Image GT SLT-Net ZoomNeXt SAM-PM Baseline OursMGSINet

Figure 3: Comparison of segmentation results between the SOTA methods, the baseline, and our
proposed CamoTracer. The baseline used here is LISA with SAM2.

Table 2: Component ablation results on MoCA-
TE dataset.

Setting SGA SAP Bi-KFS Sα ↑ Fw
β ↑ Eϕ ↑ M ↓ mDice ↑ mIoU ↑

Baseline 0.653 0.359 0.710 0.039 0.384 0.325
+ SGA ✓ 0.735 0.527 0.790 0.017 0.546 0.478
+ SAP ✓ 0.735 0.524 0.767 0.012 0.532 0.475

+ SGA & SAP ✓ ✓ 0.771 0.606 0.822 0.009 0.614 0.541

All ✓ ✓ ✓ 0.800 0.665 0.878 0.006 0.674 0.593

Table 3: Ablation study for different inference
strategies on MoCA-TE dataset.

Setting Sα ↑ Fw
β ↑ Eϕ ↑ M ↓ mDice ↑ mIoU ↑

Forward 0.771 0.606 0.822 0.009 0.614 0.541
Backward 0.746 0.557 0.817 0.007 0.570 0.498
Bi-KFS 0.800 0.665 0.878 0.006 0.674 0.593

Benefiting from the powerful segmentation capability of SAM2, CamoSAM2 surpasses all prior
methods. Our CamoTracer further addresses the ambiguity of appearance and noise in motion
estimation inherent in SAM-based methods, achieving additional improvements of 0.035 in Sα and
0.051 in mIoU on MoCA-Mask, corresponding to relative gains of 4.6% and 9.4%. On CAD2016,
CamoTracer achieves increases of 0.056 in Sα and 0.121 in mIoU, representing improvements of
7.2% and 22.2%. These results demonstrate the superiority of our method.

Qualitative Results. As shown in the Fig. 3, we present a visual comparison of the segmentation
results produced by our method and other methods. We use LISA with SAM2 we implemented as
the baseline, which relies solely on text prompts and employs memory attention for tracking. In the
first row, our method effectively alleviates visual ambiguity, successfully distinguishing camouflaged
objects from the background. In the second row, the text prompts provided by the MLLM introduce
shape priors, benefiting both the baseline and our method. The third row demonstrates our method’s
ability to perform fine-grained segmentation of multiple objects. In the fourth row, our method is
capable of segmenting small objects that other models fail to detect.

4.3 ABLATION STUDIES

We performed thorough ablation studies to validate our improvements, examining the contributions of
each module, the effects of various prompt designs, and the influence of keyframe selection strategies.

Modules. As shown in Table 2, building upon the baseline, our proposed SGA module improves
Sα and mIoU by 0.082 and 0.153, corresponding to relative gains of 12.6% and 47.1%, respectively,
highlighting the importance of aligning visual and semantic representations. Meanwhile, the SAP
module fully leverages the strong capabilities of SAM2 by providing robust prompt guidance,
resulting in improvements of 12.6% in Sα and 46.2% in mIoU. When both modules are used together,
they yield a combined gain of 0.118 in Sα and 0.216 in mIoU, corresponding to relative improvements
of 18.1% and 66.5%. In addition, by incorporating the training-free Bi-KFS to enhance long-term
temporal propagation and prediction consistency, we achieve further improvements. Compared to
the variant without Bi-KFS, Sα and mIoU increase by 3.8% and 9.6%, respectively. Relative to the
baseline, the gains reach 22.5% in Sα and 82.5% in mIoU.

Different Prompts. To validate the effectiveness of the three different prompt types and the memory
attention module that functions as historical frame prompting, we conduct an ablation study as shown
in Table 4. Each prompt positively contributes to the overall segmentation performance. For instance,
removing the text prompt results in a decrease of 0.033 in Sα and 0.065 in mIoU, demonstrating the
importance of semantic understanding. Similarly, removing the point prompt and mask prompt leads
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Table 4: Ablation study for different prompts on
MoCA-TE dataset.

Mask Point Text Memory Sα ↑ Fw
β ↑ Eϕ ↑ M ↓ mDice ↑ mIoU ↑

✓ ✗ ✗ ✓ 0.751 0.568 0.841 0.012 0.577 0.510
✗ ✓ ✗ ✓ 0.726 0.525 0.752 0.026 0.534 0.475
✗ ✗ ✓ ✓ 0.735 0.527 0.790 0.017 0.546 0.478
✗ ✓ ✓ ✓ 0.733 0.525 0.881 0.012 0.531 0.473
✓ ✗ ✓ ✓ 0.756 0.583 0.808 0.010 0.587 0.518
✓ ✓ ✗ ✓ 0.738 0.529 0.823 0.014 0.541 0.476
✓ ✓ ✓ ✗ 0.723 0.505 0.804 0.012 0.525 0.447
✓ ✓ ✓ ✓ 0.771 0.606 0.822 0.009 0.614 0.541
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Figure 4: Impact of keyframe number.

to decreases in Sα by 0.015 and 0.038, and in mIoU by 0.023 and 0.068, respectively, highlighting the
importance of explicit spatial cues for accurate segmentation. Moreover, when the memory attention
is removed, the performance drops significantly. Specifically, Sα decreases by 0.048 and mIoU by
0.094, confirming the module’s crucial role in maintaining consistent object tracking across frames.

Different Inference Strategies. As shown in Table 3, when video frames are processed in their
natural forward order during a single inference, the model achieves an Sα score of 0.771. In contrast,
processing the video in reverse order results in a slightly lower Sα of 0.746. However, for videos
where camouflaged objects are difficult to detect in the early frames, utilizing contextual information
from later frames can lead to more accurate segmentation, as shown in Fig. 6. Our proposed Bi-
KFS strategy combines the advantages of both approaches by leveraging bi-directional contextual
information during inference and mitigating the impact of inaccurate segmentation on subsequent
frames. As a result, it achieves an improved Sα score of 0.800.

Additionally, we conduct experiments to analyze the effect of the number of key frames used in
Bi-KFS, as shown in Fig. 4. The results show that using too few key frames leads to insufficient
contextual information, whereas using too many introduces noise. Optimal performance is achieved
when the number of key frames, K, is set to 3. Notably, the Bi-KFS strategy consistently outperforms
both the forward-only (baseline in the figure) and backward-only inference strategies, regardless of
the number of key frames.

4.4 VISUALIZATION

Mask prompt and Point Prompt. We show the mask prompt and point prompt generated by our
method in Fig. 5. Compared to the baseline that relies solely on text prompts, our mask prompt
successfully captures the chameleon on the right, enabling accurate segmentation of multiple objects.

The effectiveness of Bi-KFS. We present segmentation results produced by three different inference
strategies in Fig. 6. The forward strategy suffers from inter-frame discontinuities, where objects
segmented in one frame may disappear in subsequent frames. In contrast, the backward strategy
propagates predictions from clearer frames to more ambiguous ones, resulting in improved accuracy.
Our proposed Bi-KFS combines both directions, leveraging bidirectional contextual information to
effectively mitigate inter-frame discontinuities.

5 CONCLUSION

We present CamoTracer, the first VCOS framework that integrates MLLMs with SAM2 to achieve
fully automated, semantics-rich prompt generation. By introducing the Semantic-Guided Adapter
and Semantic-Aware Prompter, our approach bridges the gap between visual and language modalities,
enabling robust segmentation in camouflaged scenes. Additionally, our Bi-directional Keyframe
Selection strategy enhances temporal consistency through memory-guided propagation. Extensive
experiments demonstrate that CamoTracer surpasses previous SOTA by a large margin, marking a
promising step toward general-purpose, LLM-driven video segmentation in challenging camouflage
scenarios. In future work, we plan to extend our framework to broader video segmentation tasks in
open-world settings.
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A DATASETS AND METRICS

Datasets. We evaluate our method on two widely used video camouflaged object detection (VCOD)
benchmarks: MoCA-Mask (Cheng et al., 2022b) and CAD2016 (Bideau & Learned-Miller, 2016b).
MoCA-Mask is derived from the MoCA dataset and provides dense pixel-level annotations of
camouflaged animals in dynamic natural scenes. It consists of 87 video sequences, including
19,313 frames from 71 sequences for training and 3,626 frames from 16 sequences for testing, with
annotations every fifth frame. CAD2016 is a compact evaluation-only dataset composed of 9 short
clips (836 frames in total), with manually annotated segmentation masks also sampled every five
frames.

Evaluation Metrics. We adopt six standard metrics for quantitative evaluation: S-measure (Sα),
which evaluates structural similarity; Weighted F-measure (Fw

β ), balancing precision and recall with
spatial weighting; Enhanced-alignment measure (Eϕ), assessing both region-aware and pixel-level
alignment; Mean Absolute Error (M), measuring average pixel-wise deviation; mean Dice (mDice),
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and mean Intersection-over-Union (mIoU), both of which quantify region overlap. Higher scores of
Sα, Fw

β , Eϕ, mDice, and mIoU, along with a lowerM, indicate better segmentation performance.

Implementation Details. We train the model using two NVIDIA 24G 3090 GPUs with a distributed
training script based on DeepSpeed (Rasley et al., 2020). We use the AdamW (Loshchilov & Hutter,
2017) optimizer with the learning rate and weight decay set to 3e-4 and 0, respectively. We adopt
WarmupDecayLR as the learning rate scheduler, with the warmup iterations set to 100. The weights
of the text generation loss (λtxt), the mask loss (λmask) and the coarse mask loss (λcoarse) are all
set to 1.0. The weights of the BCE loss (λbce) and the DICE loss (λdice) are set to 2.0 and 0.5,
respectively. Following Cheng et al. (2022a), we use the training set of COD10K (3,040 images) (Fan
et al., 2021b) and the training set of MoCA-Mask (19,313 frames) and evaluate on the MoCA-Mask
test set, as well as on the entire CAD2016 dataset. We choose the hiera-L version of SAM2 and
LISA-7B (Lai et al., 2024) in all experiments. We train CamoTracer for 10 epochs with a per-device
batch size of 2.

B VISUALIZATION RESULTS

Below are the visualizations of our experimental results.

Image GT Mask & Point PromptOursBaseline

Figure 5: Visualization of the mask prompt and point prompt generated in our method.

Frame 30 Frame 35 Frame 50 Frame 55 Frame 60Frame 45Frame 40

(a)

(b)

(c)

Figure 6: Visualization of segmentation results under different inference strategies: (a) forward-only;
(b) backward-only; (c) Bi-KFS.

C COMPARISON WITH RECENT MLLMS

Table 5 presents a comprehensive comparison between our proposed CamoTracer and several recent
multimodal large language models (MLLMs), including PixelLM, LISA, LISA++, and VideoLISA,
evaluated on two challenging VCOS benchmarks: MoCA-Mask and CAD2016. While generic
MLLMs demonstrate certain capabilities in multimodal understanding, their performance on camou-
flaged object segmentation remains suboptimal. This is primarily due to the unique challenges in
camouflage scenarios, such as high background-foreground similarity and low object saliency, which
are not explicitly addressed in generic MLLM training. As the results show, our method outperforms
all baselines across all six metrics on both datasets, achieving notable gains in structure-aware mea-
sures (Sα, Fw

β , Eϕ) as well as region-aware scores (mDice, mIoU). In particular, on the MoCA-Mask
dataset, CamoTracer surpasses the strongest baseline (VideoLISA) by large margins in Fw

β (0.665
vs. 0.273), mDice (0.674 vs. 0.309), and mIoU (0.593 vs. 0.246). A similar trend is observed
on CAD2016, where our model achieves state-of-the-art performance with Eϕ = 0.900, mDice =
0.750, and mIoU = 0.664. These consistent improvements validate the importance of domain-specific
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Table 5: Comparison with recent MLLMs on MoCA-Mask and CAD2016 datasets. The best results
are bolded. Our CamoTracer outperforms all baselines across six metrics, demonstrating its superior
capability in segmenting camouflaged objects with higher accuracy, robustness, and generalizability.

Method
MoCA-Mask CAD2016

Sα ↑ Fw
β ↑ Eϕ ↑ M ↓ mDice ↑ mIoU ↑ Sα ↑ Fw

β ↑ Eϕ ↑ M ↓ mDice ↑ mIoU ↑

PixelLM (Ren et al., 2024b) 0.476 0.113 0.504 0.135 0.135 0.104 0.552 0.368 0.594 0.218 0.391 0.314
LISA (Lai et al., 2024) 0.552 0.179 0.627 0.037 0.209 0.158 0.650 0.424 0.742 0.037 0.418 0.335
LISA++ (Yang et al., 2023) 0.509 0.156 0.633 0.099 0.171 0.132 0.604 0.385 0.786 0.053 0.401 0.313
VideoLISA (Bai et al., 2024) 0.557 0.273 0.621 0.133 0.309 0.246 0.696 0.530 0.798 0.054 0.569 0.474

CamoTracer (Ours) 0.800 0.665 0.878 0.006 0.674 0.593 0.830 0.745 0.900 0.014 0.750 0.664

architectural enhancements and temporal modeling, as well as the effectiveness of task-oriented
fine-tuning. In contrast to generic MLLMs, CamoTracer is specifically tailored to the demands of
video camouflaged object segmentation, leading to significant performance gains and more reliable
predictions in complex scenes.

D PARAMETER AND TRADE-OFF ANALYSIS

Table 6 compares the tuning parameter and segmentation performance of different methods on
the MoCA-Mask and CAD2016 VCOS benchmarks. Our model, CamoTracer, achieves the best
performance across all evaluation metrics, with only a marginal increase in parameters (291.38M)
compared to the LISA+SAM2 baseline (288.26M). Despite this small overhead of only 1.1% in
parameter size, our model yields substantial improvements: a relative gain of 85.2% in Fw

β and 82.5%
in mIoU on MoCA-Mask, and similar improvements on CAD2016. This strong boost originates
from our specifically designed lightweight modules that enhance temporal coherence and semantic
alignment without significantly increasing computational burden.

Compared to SLT-Net and TSP-SAM, CamoTracer consistently outperforms even under stricter
resource constraints. Importantly, we are the first to introduce a multimodal large language model
(MLLM) tailored for video camouflaged object segmentation (VCOS), which integrates visual-
language reasoning via task-specific instruction tuning. To ensure parameter efficiency, we adopt
LoRA-based tuning, enabling effective multimodal alignment with minimal trainable overhead.
These design choices allow CamoTracer to push the state of the art in VCOS while remaining
computationally tractable for practical deployment.

Beyond accuracy, we also report inference efficiency on RTX3090 (batch=1). CamoTracer runs
at 2.63 FPS with ∼3131 GFLOPs and ∼15.5 GB memory usage, which is comparable to FSPNet
(2.94 FPS) and TSP-SAM (2.53 FPS) while delivering much higher accuracy (+9.4% mIoU over
CamoSAM2 and +52.8% mIoU over TSP-SAM). This confirms that our design achieves a favorable
accuracy–efficiency trade-off.

Table 6: Tuning parameters and segmentation performance of different methods. The best results are
bolded.

Method Tuning Params (M)
MoCA-Mask CAD2016

Sα ↑ Fw
β ↑ Eϕ ↑ M ↓ mDice ↑ mIoU ↑ Sα ↑ Fw

β ↑ Eϕ ↑ M ↓ mDice ↑ mIoU ↑

FSPNet (Huang et al., 2023) 274.24 0.594 0.182 0.608 0.044 0.238 0.167 0.539 0.220 0.553 0.145 0.309 0.212
SLT-Net (Cheng et al., 2022a) 82.38 0.656 0.357 0.785 0.021 0.387 0.310 0.679 0.420 0.805 0.033 0.445 0.342
TSP-SAM (Hui et al., 2024b) 89.78 0.689 0.444 0.808 0.008 0.458 0.388 0.704 0.524 0.912 0.028 0.543 0.438

CamoSAM2 (Zhang et al., 2025a) 95.5 0.765 0.607 0.848 0.007 0.620 0.542 0.774 0.652 0.852 0.018 0.647 0.543

Baseline (LISA w/ SAM2) 288.26 0.653 0.359 0.710 0.039 0.384 0.325 0.805 0.677 0.885 0.017 0.693 0.601
CamoTracer (Ours) 291.38 0.800 0.665 0.878 0.006 0.674 0.593 0.830 0.745 0.900 0.014 0.750 0.664

E GENERALIZATION EVALUATION

To assess the generalizability of our framework beyond camouflaged scenes, we evaluated CamoTracer
on DAVIS-2016 (Perazzi et al., 2016), a benchmark for generic video object segmentation, under the
unsupervised setting. As shown in Table 7, our method achieves a J&F score of 90.3, outperforming
recent SOTA methods such as GFA (Song et al., 2024) (88.2) and (Cho et al., 2024) (87.6). This
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Table 7: Performance Comparison with SOTA methods over DAVIS2016.

Method Pub. J&F J F

DTTT (Liu et al., 2024) CVPR 2024 87.2 85.8 88.5
DPA (Cho et al., 2024) CVPR 2024 87.6 86.8 88.4
GSA (Lee et al., 2024) CVPR 2024 87.7 87.0 88.4
GFA (Song et al., 2024) AAAI 2024 88.2 87.4 88.9
TMO (Cho et al., 2025) Arxiv 2025 88.2 88.0 88.3
CamoTracer (ours) - 90.3 90.1 90.4

result demonstrates that the proposed prompt-free video segmentation framework possesses strong
transferability.

F ALGORITHM OVERVIEW FOR BI-KFS STRATEGY

To clarify the implementation of our proposed keyframe selection strategy, we provide the pseudo
code of the Memory-Guided Bi-Directional Keyframe Selection (Bi-KFS) in Algorithm 1. This
method leverages bi-directional segmentation predictions to estimate frame-wise consistency and
selects keyframes based on both confidence and temporal coherence. By combining consistency-
aware ranking with high-confidence filtering, the strategy ensures reliable keyframe selection under
challenging camouflaged scenarios. This not only improves temporal robustness but also facilitates
memory-efficient processing for downstream segmentation.

Algorithm 1: Memory-Guided Bi-Directional Keyframe Selection
Input: Video frames {I1, I2, . . . , IT }; Segmentation model F ; Confidence threshold τ ; Number

of keyframes K;
Output: Keyframe set K;
Step 1: Bi-directional Inference;
for t = 1, 2, . . . , T do

M fwd
t ,Conffwd

t ← F(I1:t);
M bwd

t ,Confbwd
t ← F(IT :t);

St ← IoU(M fwd
t ,M bwd

t );
Step 2: Select Candidates by Consistency;
Sort frames by St in descending order;
Select top-K frames {t1, t2, . . . , tK};
Step 3: Select High-Confidence Frames;
for t = 1, 2, . . . , T do

if max(Conffwd
t ,Confbwd

t ) > τ then
Add t to high-confidence setH;

Step 4: Finalize Keyframes;
for each t ∈ {t1, t2, . . . , tK} ∪ H do

if Conffwd
t > Confbwd

t then
K ← K ∪ {(It,M fwd

t )};
else
K ← K ∪ {(It,M bwd

t )};

Return: Keyframe set K;

G QUALITATIVE COMPARISON OF VIDEO SEGMENTATION

To further validate the effectiveness of our method, we present qualitative comparisons on challenging
video sequences. As illustrated in the supplementary video (demo.mp4), our model consistently
produces high-quality masks that accurately delineate camouflaged objects across frames, even under
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severe boundary ambiguity, foreground occlusion, camera shake, morphological similarity, dynamic
occlusion, color homogeneity and structural resemblance. Compared to existing methods, which often
suffer from mask fragmentation or temporal inconsistency, CamoTracer exhibits robust temporal
coherence and precise boundary localization. This visual evidence underscores the benefits of our
multimodal guidance and temporal modeling modules, and highlights the superiority of our approach
in real-world camouflaged scenarios.

H LIMITATIONS AND FUTURE WORK

While CamoTracer demonstrates strong performance in VCOS, it still faces several practical chal-
lenges. First, the bi-directional inference strategy introduces additional computational overhead
compared to one-way propagation, although it significantly improves temporal consistency and is
practical for short-to-medium video sequences. Second, the quality of semantic prompts generated by
the multimodal model may occasionally be suboptimal in complex or cluttered scenarios, potentially
leading to imperfect guidance. Finally, due to memory constraints, our training primarily focuses on
short video clips, which may limit temporal modeling in extremely long sequences. These issues are
not fundamental flaws but represent areas where further optimization could yield broader applicability
and efficiency.

In future work, we plan to explore lightweight alternatives for bi-directional inference, such as adap-
tive keyframe scheduling or early-exit mechanisms, to reduce computational cost while preserving
accuracy. To improve semantic alignment, we aim to incorporate temporally-aware language ground-
ing or refinement modules that better adapt to dynamic visual scenes. Moreover, we intend to extend
CamoTracer’s temporal scope by integrating memory-efficient recurrent architectures or hierarchical
temporal sampling, enabling robust performance in longer and more diverse video sequences.
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