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Abstract

Multivariate time-series analysis involves extracting informative representations from se-
quences of multiple interdependent variables, supporting tasks such as forecasting, imputation,
and anomaly detection. In real-world scenarios, these variables are typically collected from a
shared context or underlying phenomenon, suggesting the presence of latent dependencies
across time and channels that can be leveraged to improve performance. However, recent
findings show that channel-independent (CI) models, which assume no inter-variable de-
pendencies, often outperform channel-dependent (CD) models that explicitly model such
relationships. This surprising result indicates that current CD models may not fully exploit
their potential due to limitations in how dependencies are captured. Recent studies have
revisited channel dependence modeling with various approaches; however, these methods
often employ indirect modeling strategies, which can lead to meaningful dependencies be-
ing overlooked. To address this issue, we introduce XCTFormer, a transformer-based
channel-dependent (CD) model that explicitly captures cross-temporal and cross-channel
dependencies via an enhanced attention mechanism. The model operates in a token-to-token
fashion, modeling pairwise dependencies between every pair of tokens across time and chan-
nels. The architecture comprises (i) a data processing module, (ii) a novel Cross-Relational
Attention Block (CRAB) that increases capacity and expressiveness, and (iii) an optional
Dependency Compression Plugin (DeCoP) that improves scalability. Through extensive
experiments on three time-series benchmarks, we show that XCTFormer achieves strong
results compared to widely recognized baselines; in particular, it attains state-of-the-art
performance on the imputation task, outperforming the second-best method by an average
of 24.1% in MSE and 17.6% in MAE.

1 Introduction

Forecasting, anomaly detection, and imputation are critical tasks across a wide range of real-world domains
(Jin et al., 2024). For instance, forecasting is utilized in energy management, weather prediction, healthcare,
and more (Mystakidis et al., 2024; Brunet et al., 2023; Duarte et al., 2021). Time-series analysis plays a vital
role in extracting key information from sequential data to facilitate these tasks. The effectiveness of this
information extraction is crucial, as it directly impacts the performance of subsequent time-series tasks (Trirat
et al., 2024). Accurate time-series analysis enables organizations to enhance decision-making and optimize
resource allocation (Bui et al., 2018; Wang et al., 2024b), highlighting the importance of the information
extraction component as a key area of research.

Time-series data can be modeled using two main approaches (Han et al., 2024). Univariate approaches
treat each channel independently, disregarding any potential relationships between them. In contrast,
multivariate approaches take into account not only the temporal behavior within each channel but also
potential dependencies across channels. In real-world scenarios, multivariate datasets are often derived from
a common underlying process or phenomenon, which typically leads to dependencies among the features
(Chen et al., 2024). Incorporating relevant signals enhances representation quality and improves accuracy in
downstream tasks (Isik et al., 2025; Domingos, 2012). As a result, multivariate models are generally expected
to outperform univariate models by leveraging both cross-channel dependencies and temporal dynamics.
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Therefore, time-series analysis can benefit significantly from richer representations when cross-channel
dependencies are utilized.

However, recent work in time-series forecasting by Han et al. (2024) challenged this assumption by showing
that channel-independent (CI) models, which treat multivariate time-series as separate univariate channels
and ignore potential inter-channel correlations, outperform channel-dependent (CD) models that explicitly
model such dependencies. They attribute this surprising outcome to a trade-off between capacity, defined
as a model’s ability to fit complex patterns, and robustness, defined as its ability to remain accurate in the
presence of noise, input variation, or distribution shifts. While CD models gain capacity by incorporating
cross-channel information, this often comes at the expense of robustness, making them more sensitive to
distribution shifts. In contrast, CI models sacrifice some capacity by ignoring cross-channel dependencies,
thereby improving robustness and generalization accuracy. These findings challenge the common belief that
adding relevant information typically improves representation quality and accuracy, revealing a gap between
channel-dependent methods and their unrealized potential. Motivated by these findings, we seek in this paper
to address the following question:

How should we model sequential cross-channel information to realize its potential?

Recent research has revisited channel dependence with cross-channel modeling approaches that often outper-
form channel-independent (CI) baselines. iTransformer (Liu et al., 2024) targets cross-channel dependencies
by treating each channel as a token and applying a Transformer on the token sequence. CrossFormer (Zhang
& Yan, 2023) and CARD (Wang et al., 2024c) address both cross-channel and cross-time relationships, by
employing a two-stage pipeline for sequence modeling and channel processing. Despite recent advancements,
most methods model dependencies across different channels and time indirectly, thereby potentially over-
looking important interactions. Additionally, cross-channel dependencies are often unknown in advance, as
the underlying generative process is typically unknown. These dependencies may also change over time
(Zhao & Shen, 2024), raising the need for simultaneous cross-channel cross-time modeling. To address these
challenges, we propose a direct modeling strategy with a token-to-token approach that explicitly captures
each token’s pairwise dependencies across all channels and time-steps. This potentially minimizes essential
information loss associated with existing indirect models. To accomplish this, we introduce XCTFormer, a
Transformer-based framework that models all pairwise dependencies directly within a single attention block,
token-to-token, effectively identifying the most relevant dependencies for downstream tasks.

The backbone of the XCTFormer consists of three novel components: (i) a data processing unit, (ii)
the Cross-Relational Attention Block (CRAB), and (iii) the Dependency Compression Plugin (DeCoP).
First, we independently patch each channel and tokenize the data. Next, we flatten the channel and
time dimensions, which allows CRAB and DeCoP to capture all pairwise dependencies in a token-to-token
manner. CRAB extends the standard attention block (Vaswani et al., 2017) with two key modifications to
improve expressivity and robustness. First, it introduces a learnable, non-boolean masking mechanism that
supplements conventional binary masks by weighting dependencies according to their learned importance.
This allows the model to focus on the most crucial dependencies for the downstream task. Second, CRAB
replaces the standard softmax function with a new normalization technique that retains the properties needed
for attention activation (Saratchandran et al., 2025) while allowing negative weights. This extension increases
the model’s expressiveness by enabling it to capture a wider range of relationships, as suggested by Lv et al.
(2024). Lastly, DeCoP is an optional CRAB plugin designed to enhance scalability for datasets with numerous
channels. It addresses the memory limitations imposed by the transformer’s quadratic attention mechanism.
DeCoP compresses the quadratic attention into a linear form while minimizing information loss through a
learnable compression transformation. We evaluated XCTFormer against various baseline models on multiple
downstream tasks, including forecasting, anomaly detection, and imputation, demonstrating strong results.
Our main contributions are:

1. We identify a key limitation in the current literature on time-series modeling: while analysis methods
have advanced substantially, little emphasis has been placed on explicitly capturing both cross-channel
and cross-time dependencies in a unified manner. Most existing approaches either model temporal
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patterns or inter-channel relations separately, which restricts their ability to exploit the full structure
of multivariate time-series data.

2. To address this gap, we propose XCTFormer, a general-purpose framework that models all pairwise
cross-channel and cross-time dependencies directly through token-to-token mappings. XCTFormer
integrates two complementary components: (i) CRAB, which enhances expressiveness by learning
importance-aware attention masks and allowing signed attention activations, and (ii) DeCoP, which
mitigates scalability bottlenecks on high-dimensional data through learnable compression while
minimizing information loss.

3. We evaluate our approach on three core time series tasks, forecasting, anomaly detection, and
imputation, obtaining consistent improvements or competitive performance against strong baselines.
In particular, we achieve state-of-the-art (SoTA) performance in the imputation task, with average
reductions in MSE and MAE of 24.1% and 17.6%, respectively. We also observe notable gains in
forecasting accuracy and anomaly detection performance.

2 Related Work

From Classical Methods to Deep Architectures. Multivariate time-series analysis has progressed from
traditional statistical models like ARIMA (Box & Jenkins, 1970), which often struggle to capture nonlinear
dynamics, to deep neural approaches such as LSTM (Hochreiter & Schmidhuber, 1997) and TCN (Franceschi
et al., 2019). While these deep models improve expressiveness, they may still fall short in modeling very long-
range dependencies. More recently, time-series tasks have utilized both simple MLP-based architectures (Zeng
et al., 2023; Wang et al., 2024a; Nochumsohn et al., 2025) and Transformer-based models (Zhou et al., 2021;
Nie et al., 2023; Liu et al., 2024; Zhang & Yan, 2023; Wang et al., 2024c). Broadly, these models adopt either
a channel-independent (CI) strategy, treating each variable separately, or a channel-dependent (CD) approach
that explicitly leverages cross-variable structure.

Early CD designs: temporal focus with implicit cross-channel modeling. Early CD models
emphasized efficient temporal modeling and attention computation. These methods implicitly incorporated
cross-channel information by generating tokens representing all channels at the same or nearby time-steps,
typically using 1D convolutions, before applying cross-time attention (Li et al., 2019b; Zhou et al., 2021;
Wu et al., 2021; Liu et al., 2022b; Zhou et al., 2022). However, since inter-channel relationships were not
explicitly embedded, these approaches failed to fully leverage cross-channel dependencies (Zhang & Yan,
2023). Consequently, the attention mechanism struggled to recover missing structure, leading to suboptimal
representations (Liu et al., 2024).

CI baselines and channel as token formulations. On the CI side, PatchTST partitions each channel
into overlapping time patches, treating these patches as tokens. These channel tokens are then passed to a
stacked transformer architecture that exclusively models cross-time dependencies (Nie et al., 2023). Linear
models, when applied independently to each channel, have also demonstrated competitive performance (Zeng
et al., 2023; Das et al., 2023). MTLinear (Nochumsohn et al., 2025) is CI: it first clusters channels and
then trains a predictor for each cluster to mitigate conflicts in the multi-task objective, but cross-channel
dependencies are not explicitly modeled. To reintroduce cross-channel interactions, iTransformer represents
each entire channel as a single token, enabling self-attention to operate across variables (Liu et al., 2024).
LEDDAM (Yu et al., 2024) takes a different approach by decomposing each series into trend and seasonal
components, processing the seasonal part via parallel cross-channel and cross-time pathways before combining
them. However, it still lacks a unified mechanism that jointly models both dimensions within its attention
module.

Two-stage explicit cross-time and cross-channel modeling. CrossFormer addresses the limitations of
earlier models by dividing each channel into equal-length segments and embedding these segments individually
to better preserve semantic information (Zhang & Yan, 2023). This approach, along with CARD (Wang et al.,
2024c), utilizes a two-stage attention scheme: first attending along the temporal dimension, then explicitly
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across channels. While this sequential treatment is effective, it captures cross-channel temporal dependencies
only indirectly, which may result in limited expressiveness.

Time-series foundation models. Time-series foundation models (TSFMs) have attracted growing interest
as unified architectures for zero-shot and few-shot forecasting across multiple datasets. They are pretrained
on diverse time-series corpora to learn general-purpose temporal patterns that transfer across domains. Most
TSFMs follow channel-independent designs (Das et al., 2024; Ansari et al., 2024; Shi et al., 2025; Auer et al.,
2025), handling multivariate inputs by processing each variable independently as a univariate series. This
choice improves scalability and helps pretraining remain broadly applicable across datasets with varying
numbers and types of variables. But it may fail to fully leverage cross-variable dependencies that are crucial
in many real-world multivariate systems. Recent efforts have begun to address this cross-channel challenge.
For example, Chronos 2 (Ansari et al., 2025) introduces group attention to share information within sets of
related series, while Moirai-1 (Woo et al., 2024) proposes an any-variate architecture that flattens multivariate
time series into a single token sequence, allowing it to handle an arbitrary number of variables and jointly
model cross-channel structure. Overall, these works highlight that effectively modeling cross-channel structure
remains a key challenge, also within the time-series foundation model paradigm.

3 Vanilla Transformer Attention

To facilitate a clear understanding of our proposed modifications, we first outline the standard transformer
attention mechanism (Vaswani et al., 2017). Considering an input sequence X ∈ RN×Di , where N denotes
the sequence length and Di the per-token input feature dimension. In our case, the same sequence serves to
form queries, keys, and values. The attention block projects X with learnable matrices (with Dm being the
per-head attention dimension):

Wq,Wk,Wv ∈ RDi×Dm , Q = XWq, K = XWk, V = XWv, Q,K, V ∈ RN×Dm .

Scaled dot-product scores quantify pairwise query–key affinity:

A = QK⊤
√
Dm

∈ RN×N .

An optional mask M ∈ RN×N encodes disallowed positions (e.g., padding or future time-steps) via

Mij =
{

0, allowed
−∞, blocked

We then convert scores into attention weights row-wise and aggregate values accordingly:

W = Softmax(A+M) ∈ RN×N , O = WV ∈ RN×Dm .

Before normalization, the optional mask M is added to the score matrix A. Applying a row-wise softmax to
A+M effectively assigns zero weight to blocked entries; hence, the mask serves as a selection mechanism that
suppresses specific relationships (e.g., to prevent information leakage from future time steps). The resulting
attention matrix W is nonnegative with each row summing to one, yielding a probability-like distribution
over keys for each query. Consequently, the output O is a row-wise weighted combination of the value vectors,
governed by these attention weights, representing the attention block’s output.

4 XCTFormer

To model all pairwise dependencies through direct token-to-token modeling, we present XCTFormer, a
Transformer-based, general-purpose, encoder-only time-series model. XCTFormer comprises a universal
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Figure 1: XCTFormer model overview. Multivariate inputs are divided into patches per channel, tokenized,
and then passed as a flattened time-and-channel sequence through stacked Transformers with CRAB attention.
CRAB utilizes a learnable mask and a signed, non-softmax normalization to model direct token-to-token
dependencies. The optional DeCoP plugin enhances scalability by compressing pairwise attention into a
compact representation, reducing memory and compute requirements. In the diagram, the pink flow represents
operation with DeCoP enabled; otherwise, the blue flow is used.

backbone and a task-specific head. The backbone has three components: (i) a data-processing unit, (ii) a
Cross-Relational Attention Block (CRAB), and (iii) a Dependency Compression Plugin (DeCoP). Figure 1
summarizes the pipeline: panel A tokenizes the input and flattens across channels and patches to form a
unified sequence that exposes all pairwise dependencies to the Transformer; panel B applies a stack of our
modified Transformer equipped with CRAB (Sec. 4.2) and the optional DeCoP module (Sec. 4.3); panel C
maps the resulting representations to predictions via a task-specific head.

4.1 Data Processing

To effectively capture the diverse and unknown dependency structures present in multivariate time-series,
XCTFormer is designed to explicitly model all pairwise cross-channel and cross-temporal relationships. For
each token, we define potential pairwise dependencies across channels and time points throughout the
entire time-series. These dependencies can take one of four potential forms: (i) self-lag relationships, where
past values of the same channel may influence future states; (ii) cross-channel synchronous relationships,
where channels at identical time points may influence one another; (iii) cross-channel lagged relationships,
where other channels may exert temporal influence through their historical values; and (iv) forward-in-time
relationships, where current values may influence subsequent values within the same or different channels.
For visual representation of these dependencies, see Figure 2.

Modeling dependencies at the level of individual measurements is both computationally expensive and
impractical, as single measurements lack meaning without temporal context (Zeng et al., 2023). To address
this, we adopt a patching strategy (Nie et al., 2023), segmenting each channel independently into short
temporal patches that capture local patterns. We project each patch through a learnable linear layer and
add a learnable positional encoding along the time axis for each channel, generating tokens. Finally, we
permute the data dimensions so that the patch sequence comes first, then flatten the tokens across the patch
and channel dimensions to create a unified sequence. This enables the Transformer to model all pairwise
dependencies (see Panel A, Figure 1). We apply this permutation to simplify the structure of the attention
mask, making it easier to analyze further (see App. C.1).
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Figure 2: Potential cross-channel and temporal dependencies for token at channel 3 at time t.

4.2 Cross-Relational Attention Block (CRAB)

CRAB modifies the standard attention (Vaswani et al., 2017) block with two complementary components
designed to increase models’ expressivity: (i) a learnable, non-Boolean relational mask designed to learn
important dependencies, and (ii) a signed, absolute-sum normalization activation function that replaces the
original softmax, designed to increase expressiveness by allowing negative values, inspired by Lv et al. (2024)
findings. For a visual representation of the model, refer to Panel B.1, Fig. 1.

Our learnable non-Boolean mask is designed to learn the most dominant dependencies between tokens. We
apply this mask to a positive-transformed attention score matrix. Starting from the score matrix A ∈ RN×N ,
we remove sign information via a global shift,

A+ = A− min(A) .

Then, we initialize a learnable real-valued mask M ∈ RN×N with zero mean and standard deviation
√

2/N
following He initialization (He et al., 2015). We apply M in an element-wise fashion:

A = M ◦A+ .

Thus, this shift removes sign while preserving the relative ranking and pairwise differences of the original
scores, while the learnable mask M sets their signs and reweighs magnitudes. The produced output is then
passed to the activation function.

Our modified attention activation function replaces softmax with a row-wise normalization that yields
signed attention weights. Allowing negative weights can increase the model’s expressive power (Lv et al.,
2024). To ensure stable training, our proposed activation must preserve the stability property that underlies
softmax’s success (Saratchandran et al., 2025): maintaining a bounded Frobenius norm of

√
N for the

produced activation matrix, ∥∥Activation(A)
∥∥
F

≤
√
N .

For an attention-score matrix A ∈ RN×N , we define our activation function as a normalization of values by
the absolute sum of the corresponding row. The AbsAct function is defined as:

AbsAct(Aij) = Aij + ε∑N
k=1 |Aik + ε| + δ

, ∀i, j ∈ {1, . . . , N} (1)
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where ε = 1 × 10−4 and δ = 1 × 10−8 are numerical stabilizers. The parameter ε shifts each attention score
before normalization, while δ adds a positive margin to ensure the denominator remains non-zero. Our
activation function satisfies the bounded-norm constraint, ensuring stable training (see Appendix A.1 for a
formal proof). Additionally, allowing negative attention weights enables the model to capture a wider range
of dependencies, thereby increasing its expressiveness (see Appendix C.4 for additional analysis).

4.3 Dependency Compression Plugin (DeCoP)

Since we model all pairwise cross-channel and cross-time dependencies (Figure 2) using the attention
mechanism, memory and compute scale as O(N2), where N is the total number of modeled relations.
Applying such attention to datasets with many channels often exceeds hardware capacity leading to running
failures. To address this limitation, we introduce DeCoP, a plugin which compresses each row of the attention
matrix A ∈ RN×N with a learnable transformation, yielding a compressed matrix Ac ∈ RN×k with k ≪ N .
This reduces the dominant cost from quadratic to linear in N for fixed k, improving scalability regardless of
dataset size. For a visual plot of the model, we refer to Panel B.2, Fig. 1. DeCoP is defined as follows:

DeCoP introduces a learnable compression transform whose parameters are initialized with He initialization (He
et al., 2015) and fine-tuned during training. Our compressor is a matrix, C ∈ RN×k such that k ≪ N . Let
Q = XWq, K = XWk with Q,K ∈ RN×Dm . We utilize C in the attention computation as follows:

Ac = Q (K⊤C)√
Dm

∈ RN×k .

Due to the associative property of matrix multiplication, computing Q(K⊤C) is equivalent to computing
(QK⊤)C, enabling us to obtain a compressed version of the full token-to-token attention without materializing
the quadratic N ×N attention matrix. While vanilla attention incurs O(N2Dm) cost for computing QK⊤,
DeCoP’s reordered computation achieves O(NDmk) complexity, scaling linearly in N when k ≪ N while
preserving essential attention relationships through the compressed representation. For a full complexity
analysis, see Appendix A.2.

Finally, we also need to modify V calculations as the attention dimension is reduced to k. The modification
is defined as follows:

Wv ∈ Rk×N , V = WvX, V ∈ Rk×Dm .

The new V represents the values corresponding to the compressed attention dependencies. The final output
is calculated as follows:

Wc = AbsAct(Ac) ∈ RN×k , O = WcV ∈ RN×Dm .

5 Experiments

We evaluate the proposed XCTFormer across three fundamental time-series tasks: long-term forecasting,
imputation, and anomaly detection. Our experiments use well-established benchmark datasets commonly
used in prior work to ensure a fair comparison with existing approaches. Across all experiments, we apply
DeCoP (Sec. 4.3) to datasets with more than 60 channels; datasets with 60 or fewer channels use the plain
CRAB module without DeCoP (Sec. 4.2). For each task, we present the experimental setup and datasets and
report comparative results against strong baselines. The following subsections detail our experiments for
each time-series task. App. B provides formal task formulations, extended training and evaluation details,
including hyperparameter search protocol and values.

5.1 Long-Term Forecasting

Time-series forecasting aims to predict future values from historical observations. We evaluate our model on
seven widely used multivariate datasets, comprising four ETT subsets (ETTm1, ETTm2, ETTh1, ETTh2),
Weather, Electricity (ECL), and Traffic, following Autoformer (Wu et al., 2021). We adopt the TimesNet
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setup (Wu et al., 2023) with a lookback window of 96 time-steps and forecasting horizons {96, 192, 336, 720}.
We compare against twelve widely recognized forecasting models: (i) Transformer based: Autoformer (Wu
et al., 2021), FEDformer (Zhou et al., 2022), Crossformer (Zhang & Yan, 2023), PatchTST (Nie et al., 2023),
iTransformer (Liu et al., 2024); (ii) Linear/MLP based: DLinear (Zeng et al., 2023), TiDE (Das et al., 2023),
TimeMixer (Wang et al., 2024a), MTLinear (Nochumsohn et al., 2025); (iii) Hybrid Transformer and Linear:
LeDDAM (Yu et al., 2024); (iv) TCN based: SCINet (Liu et al., 2022a), TimesNet (Wu et al., 2023).

Table 1: Average long-term forecasting results comparison. We compare extensive competitive models
under different prediction lengths. The presented results are averaged across these four prediction horizons
{96, 192, 336, 720}. Red indicates best performance (lowest error), blue indicates second best.

Models XCTFormer MTLinear1 Leddam TimeMixer iTransformer PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Autoformer
(Ours) (AISTATS 2025) (ICML 2024) (ICLR 2024) (ICLR 2024) (ICLR 2023) (ICLR 2023) (TMLR 2023) (ICLR 2023) (AAAI 2023) (NeurIPS 2022) (ICML 2022) (NeurIPS 2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETT(Avg) 0.364 0.386 0.373 0.387 0.367 0.387 0.367 0.389 0.384 0.404 0.397 0.406 0.685 0.578 0.482 0.470 0.391 0.404 0.446 0.447 0.689 0.597 0.421 0.433 0.465 0.459

Weather 0.237 0.267 0.238 0.276 0.242 0.272 0.240 0.272 0.258 0.278 0.265 0.285 0.264 0.320 0.270 0.320 0.259 0.286 0.265 0.315 0.292 0.363 0.309 0.360 0.338 0.382

ECLp 0.166 0.263 0.198 0.283 0.168 0.263 0.182 0.273 0.178 0.270 0.216 0.318 0.244 0.334 0.252 0.344 0.193 0.304 0.225 0.319 0.268 0.365 0.213 0.327 0.227 0.364

Trafficp 0.435 0.287 0.621 0.372 0.467 0.294 0.485 0.297 0.428 0.282 0.529 0.341 0.667 0.426 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.609 0.376 0.628 0.379

1st Count 3 3 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Reported MTLinear results reflect the per-dataset best of MTNLinear and MTDLinear (Nochumsohn et al., 2025).
p DeCoP was enabled for XCTFormer on this dataset.

Results. As shown in Table 1, XCTFormer delivers strong results compared to widely recognized baselines
across diverse benchmarks, with best performance on 6 of 8 evaluation metrics. These gains highlight the
model’s effectiveness in capturing cross-channel dependencies in the long-term forecasting task.

5.2 Imputation

Time-series imputation reconstructs missing values from observed data. We evaluate our model on six
widely used multivariate datasets: four ETT subsets (ETTm1, ETTm2, ETTh1, ETTh2) (Zhou et al., 2021),
Electricity (ECL), and Weather. We adopt the TimeMixer++ setup, using a lookback window of 1024 time
steps and applying random missing-mask rates of {12.5%, 25%, 37.5%, 50%}. We compare against eleven
widely recognized models: (i) Transformer-based: Autoformer (Wu et al., 2021), FEDformer (Zhou et al.,
2022), Crossformer (Zhang & Yan, 2023), PatchTST (Nie et al., 2023), iTransformer (Liu et al., 2024); (ii)
MLP-based: DLinear (Zeng et al., 2023), TiDE (Das et al., 2023), TimeMixer (Wang et al., 2024a); (iii)
Convolutional-based: SCINet (Liu et al., 2022a), TimesNet (Wu et al., 2023), MICN (Wang et al., 2023).

Results. As shown in Table 2, XCTFormer delivers state-of-the-art (SoTA) results in comparison to
competing baselines across diverse benchmarks. With the best performance on all 6 evaluation metrics.
Particularly, our approach outperforms the second-best baseline by an average of 24.1% on MSE and 17.6%
on MAE across all datasets, highlighting the model’s effectiveness in capturing cross-channel dependencies.

5.3 Anomaly Detection

Anomaly detection seeks to identify unusual or abnormal patterns in time-series, often corresponding to faults,
attacks, or rare operational modes. We evaluate on five widely used benchmarks: SMD (Server Machine
Dataset, (Su et al., 2019)) , SWaT (Secure Water Treatment, (Mathur & Tippenhauer, 2016)), PSM (Pooled
Server Metrics, (Abdulaal et al., 2021)), and NASA telemetry datasets MSL and SMAP (Hundman et al.,
2018). We compare against nineteen widely used models: (i) RNN/TCN: LSTM (Hochreiter & Schmidhuber,
1997), TCN (Franceschi et al., 2019); (ii) Transformer-based: Transformer (Vaswani et al., 2017), LogTrans
(Li et al., 2019a), Reformer (Kitaev et al., 2020), Informer (Zhou et al., 2021), Pyraformer (Liu et al., 2022b),
Autoformer (Wu et al., 2021), FEDformer (Zhou et al., 2022), ETSformer (Woo et al., 2022), Stationary
(Non-stationary Transformer) (Liu et al., 2022c), Anomaly Transformer (Xu et al., 2022), LightTS (Zhang
et al., 2022), iTransformer (Liu et al., 2024); (iii) State-space: LSSL (Gu et al., 2022); (iv) Linear/MLP:
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Table 2: To evaluate our model performance on imputation, we randomly mask {12.5%, 25%, 37.5%, 50%} of
the time points in a time series of length 1024. The final results are averaged across these 4 different masking
ratios. Red indicates best performance (lowest error), blue indicates second best.

Models XCTFormer TimeMixer++ TimeMixer iTransformer PatchTST Crossformer FEDformer TIDE DLinear TimesNet MICN Autoformer
(Ours) (ICLR 2025) (ICLR 2024) (ICLR 2024) (ICLR 2023) (ICLR 2023) (ICML 2022) (TMLR 2023) (AAAI 2023) (ICLR 2023) (ICLR 2023) (NeurIPS 2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETT(Avg) 0.046 0.138 0.055 0.154 0.097 0.220 0.096 0.205 0.120 0.225 0.150 0.258 0.124 0.230 0.314 0.366 0.115 0.229 0.079 0.182 0.119 0.234 0.104 0.215

Weather 0.031 0.050 0.049 0.078 0.091 0.114 0.095 0.102 0.082 0.149 0.150 0.111 0.064 0.139 0.063 0.131 0.071 0.107 0.061 0.098 0.075 0.126 0.066 0.107

ECLp 0.046 0.141 0.109 0.197 0.142 0.261 0.140 0.223 0.129 0.198 0.125 0.204 0.181 0.314 0.182 0.202 0.080 0.200 0.135 0.255 0.138 0.246 0.141 0.234

p DeCoP was enabled for XCTFormer on this dataset.
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Figure 3: Average F1 score (%) for anomaly detection across five benchmark datasets (SMD, MSL, SMAP,
SWaT, PSM). Higher values indicate better performance.

DLinear (Zeng et al., 2023), TiDE (Das et al., 2023); (v) Convolutional/Mixer: TimesNet (Wu et al., 2023),
TimeMixer++ (Wang et al., 2025).

Results. As shown in Figure 3, XCTFormer performs competitively against the considered strong baselines
(for detailed comparison table refer to Appendix D.5). Our model achieves a high F1 score, suggesting it
captures cross-channel dependencies effectively for anomaly detection.

6 Analysis

Ablation Study. To evaluate the contribution of each component in XCTFormer, we conducted a compre-
hensive ablation study across three fundamental time-series tasks: long-term forecasting, imputation, and
anomaly detection. These tasks represent diverse aspects of time-series analysis, enabling a comprehensive
evaluation of the necessity of our proposed components. Our methodology involved two categories of exper-
iments: (i) component-wise analysis, where we systematically removed or altered individual architectural
modifications introduced to the vanilla Transformer to isolate each component’s impact. Modifications
include: removing the learnable mask, reverting the activation function from our proposed approach back to
the standard softmax and both; (ii) dependency modeling analysis, where we examined variants that model
only cross-channel dependencies (inspired by iTransformer (Liu et al., 2024)) or only temporal relationships
(similar to PatchTST (Nie et al., 2023)) to validate the necessity of our integrated cross-channel and cross-time
modeling strategy. Results presented in Table 3 report the average performance metrics across all datasets and
experimental configurations specific to each task for every model variation. The full XCTFormer consistently
outperforms all variants across all three tasks and evaluation metrics. These findings validate our architectural
design choices and provide empirical evidence that each proposed component contributes meaningfully to the
model’s overall performance across diverse time-series applications. For detailed experimental configurations
and full results, refer to Appendix D.2.
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Table 3: Ablation study results across different tasks, evaluated with different XCTFormer variations.

Long-term Forecasting Imputation Anomaly Detection XCTFormer
vs Others

MSE MAE MSE MAE Precision Recall F-Score (%)
XCTFormer (Original) 0.328 0.337 0.044 0.124 92.1 83.7 87.6 -

W/o mask 0.338 0.344 0.050 0.132 90.6 74.5 81.1 6.7%
Original softmax activation 0.359 0.364 0.053 0.143 90.3 75.4 81.5 9.7%
Vanilla transformer 0.361 0.364 0.060 0.149 90.9 76.1 82.0 11.2%
Sequence modeling 0.341 0.343 0.052 0.131 91.2 78.8 83.9 5.6%
Channel modeling 0.341 0.348 0.081 0.174 91.2 76.1 82.3 14.2%

Robustness Across Random Seeds. To evaluate the stability and reliability of XCTFormer, we assessed
its performance across different random initializations. Neural models are often sensitive to parameter
initialization randomness and the order of training samples, leading to variability in results. To address this,
we trained XCTFormer using the optimal hyperparameters selected by validation on five distinct random seeds
(2021 to 2025). For each of the three primary time-series tasks: long-term forecasting, anomaly detection, and
imputation, we report both the mean and standard deviation of the relevant performance metric, providing
a more robust estimate of model effectiveness. We further quantify robustness using a confidence score,
calculated from the coefficient of variation (Reed et al., 2002), which reflects the model’s precision and
repeatability. In this context, a lower standard deviation indicates greater consistency and, therefore, higher
reliability. Summarized seed robustness results are presented in Table 4. For more information on confidence
score calculation and the complete analysis tables, refer to Appendix D.3.

Table 4: Averaged metrics of trained models, evaluated on five different seeds (2021–2025) across all datasets,
are reported for each metric and time-series task, along with the corresponding confidence interval.

Task Metric Mean ± Avg. Std Confidence Score (%)

Long-Term Forecasting MSE 0.3304 ± 0.0031 99.05%
Long-Term Forecasting MAE 0.3387 ± 0.0024 99.28%

Imputation MSE 0.04683 ± 0.00509 89.14%
Imputation MAE 0.1280 ± 0.00883 93.10%

Anomaly Detection Precision 91.382 ± 0.868 99.05%
Anomaly Detection Recall 79.660 ± 4.298 94.60%
Anomaly Detection F1 84.600 ± 3.100 96.34%

7 Limitations

XCTFormer explicitly models all pairwise channel-time dependencies via a unified attention block, improving
expressiveness and delivering strong performance relative to well-established baselines. However, this design
also introduces practical limitations. Flattening time channel tokens makes attention quadratic in the number
of tokens, increasing memory and runtime as the lookback length and channel count grow. DeCoP mitigates
this cost by compressing attention to a linear form, but it still scales with sequence length and dimensionality
and adds a decent parameter overhead. Finally, the gains are not uniform across datasets and tasks, with
some settings showing smaller improvements or higher variance, suggesting that the presented pairwise
modeling strategy is sensitive to the underlying dependency structure and may offer limited benefits when
cross-channel relations are weak or difficult to capture.

8 Conclusion

In this paper, we address a fundamental paradox in multivariate time-series analysis: although leveraging
cross-channel structure should improve performance, recent findings show that channel-independent models

10
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often outperform channel-dependent models. This counterintuitive result suggests that existing channel-
dependent methods do not fully exploit cross-channel information. We argue that this limitation arises from
current approaches that model cross-channel and cross-time dependencies indirectly, thereby overlooking
interactions. To bridge this gap, we introduce XCTFormer, which revisits channel dependence through direct,
token-by-token modeling. Instead of treating channels and time steps as separate entities processed through
multi-stage pipelines, XCTFormer treats each channel-time data point as an individual token and models all
pairwise dependencies within a unified attention mechanism, which is important for capturing time-evolving
dependencies. Through the Cross-Relational Attention Block (CRAB) with learnable masking and an enhanced
attention activation function, XCTFormer improves expressivity while maintaining robustness, and the optional
Dependency Compression Plugin (DeCoP) supports scalability on high-dimensional datasets. Extensive
evaluation across forecasting, anomaly detection, and imputation highlights XCTFormer’s effectiveness: it
delivers state-of-the-art imputation accuracy, with average error reductions of 24.1% in MSE and 17.6% in
MAE, while also achieving strong performance gains in forecasting and anomaly detection. At the same
time, this direct modeling strategy introduces practical limitations: Unified token-to-token attention scales
quadratically with the number of time-channel tokens, and while DeCoP reduces this cost, the parameter
count still grows linearly and remains non-negligible. In addition, gains are not uniform across datasets and
tasks, with some settings showing smaller improvements or higher variance, suggesting sensitivity to the
underlying dependency structure. This motivates further research into more robust channel-time modeling
strategies that balance expressiveness, efficiency, and consistency across diverse datasets and tasks. Despite
the limitations presented, our proposed direct modeling approach represents a substantial step toward a
more comprehensive capture of dependencies and toward realizing the full modeling potential of multivariate
time-series data.
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A Appendix: Extended Notes on XCTFormer

A.1 Theoretical validity of the proposed activation function

Proof. We show that the proposed AbsAct activation function satisfies the sufficient stability criterion of
Saratchandran et al. (2025), namely that the Frobenius norm of the produced matrix is bounded by the
square root of the number of rows:

∥Activation(A)∥F ≤
√
N

Given a matrix A = (aij) ∈ RN×N , and using the activation defined in Section 4, we have:

AbsAct
( a11 · · · a1n

... . . . ...
an1 · · · ann

 )
=


a11∑n
j=1|a1j |

· · · a1n∑n
j=1|a1j |

... . . . ...
an1∑n
j=1|anj |

· · · ann∑n
j=1|anj |

 . (2)

Note. In practice, we add a small positive offset and a denominator stabilizer to prevent division by zero. We set
ãij = aij +10−4 element-wise, then normalize each row by

∑n
j=1|ãij |+10−8, i.e., use ãij

/(∑n
k=1|ãik| + 10−8)

.
These constants (10−4 and 10−8) are included only for numerical stability and are omitted from the proof for
simplicity.

By definition of the Frobenius Norm:

∥AbsAct(A)∥2
F =

N∑
i=1

n∑
j=1

(
aij∑n

k=1|aik|

)2
(3)

=
N∑
i=1

∑n
j=1 a

2
ij

(
∑n
k=1|aik|)2 (4)

≤
N∑
i=1

(∑n
j=1|aij |

)2

(
∑n
k=1|aik|)2 (since

∑
j

x2
j ≤ (

∑
j

|xj |)2) (5)

=
N∑
i=1

1 = N. (6)

Hence, ∥AbsAct(A)∥F ≤
√
N .

Note. The same bound holds when DeCoP is applied: the matrix still has N rows, and after rowwise ℓ1
normalization each row’s Frobenius norm is strictly less than one. Consequently, the sum of the Frobenius
norm across all rows does not exceed N .

A.2 DeCoP: Complexity Analysis

We show that DeCoP reduces the attention cost from quadratic in the sequence length N to linear (for fixed
k ≪ N), thereby lowering both compute and memory costs.

Setup. Let X ∈ RN×Di and Wq,Wk ∈ RDi×Dm . Define

Q = XWq ∈ RN×Dm , K = XWk ∈ RN×Dm .

DeCoP introduces a learnable compression matrix C ∈ RN×k with k ≪ N .
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DeCoP computation (no N ×N intermediate).

S = K⊤C ∈ RDm×k, A = QS√
Dm

∈ RN×k.

CRAB Operations Starting from the score matrix A ∈ RN×N , we remove sign information via a global
shift,

A+ = A− min(A) .

Then, the learnable non-boolean mask is applied element-wise:

A = M ◦A+ .

This contributes O(Nk) compute and O(Nk) parameters.

Total complexity.

Total = O(NDiDm) (form Q)
+O(NDiDm) (form K)
+O(NDmk) (S = K⊤C)
+O(NDmk) (A = QS/

√
Dm)

+O(Nk) (global shift to A+)
+O(Nk) (element-wise gate M ◦A+)

= O
(
N [ 2DiDm + 2Dmk + 2k ]

)
= O

(
2NDiDm + 2NDmk

)
(dropping lower-order Nk)

(Di=Dm)= O
(
N(D2

m +Dmk)
)
.

Growth in N . For fixed Di, Dm, k with k ≪ N , the cost is linear in N .

Memory. Store Q,K: O(NDm); A and A+: O(Nk); temporary S: O(Dmk); parameters C: O(Nk), M :
O(Nk). No N ×N matrix is materialized.
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B Appendix: Implementation Details

B.1 Time-Series Tasks Formulation and Metrics

This section presents the mathematical formulation and evaluation metrics for three fundamental time-series
tasks: long-term forecasting, anomaly detection, and imputation. Each task addresses distinct challenges in
temporal data analysis while sharing common architectural foundations.

B.1.1 Long-Term Forecasting

Long-term forecasting aims to predict future values of a multivariate time-series given historical observations.
Given a historical sequence X ∈ RL×C where L is the lookback window length and C is the number of
channels, the objective is to predict the future sequence Y ∈ RH×C where H is the prediction horizon.

Training Objective: The model minimizes the Mean Squared Error (MSE) loss:

Lforecast = 1
N

N∑
i=1

||Yi − Ŷi||2 (7)

where N is the number of training samples, Yi is the ground truth, and Ŷi is the predicted sequence.

Evaluation Metrics: Performance is assessed using multiple regression metrics:

• Mean Absolute Error (MAE): MAE = 1
NH

∑N
i=1

∑H
t=1 |Yi,t − Ŷi,t|

• Mean Squared Error (MSE): MSE = 1
NH

∑N
i=1

∑H
t=1(Yi,t − Ŷi,t)2

B.1.2 Imputation

Time-series imputation reconstructs missing values in partially observed sequences. Let X ∈ RL×C be the
ground-truth sequence and M ∈ {0, 1}L×C a binary mask where Mt,c = 0 marks a missing entry; the observed
input is obtained via an element-wise product Xobs = X ⊙ M .

Problem Formulation. An imputation model with parameters ψ reconstructs the complete sequence:

X̂ = Imputerψ
(
Xobs, M

)
. (8)

Training Objective. During training, artificial masks are sampled with mask rate p. The reconstruction
loss is computed only on masked positions:

Limpute = 1
|M|

∑
(t,c)∈M

(
Xt,c − X̂t,c

)2
, M = {(t, c) : Mt,c = 0}. (9)

Evaluation Protocol.

1. Apply a random mask (rate p) to test sequences to obtain Xobs and M.

2. Impute the missing entries: Xfilled = Xobs ⊙ M + X̂ ⊙ (1 − M).

3. Compute metrics exclusively on the masked set M.

Evaluation Metrics (masked-only). All metrics are calculated only on masked values (t, c) ∈ M:

MAEmask = 1
|M|

∑
(t,c)∈M

∣∣Xt,c − X̂t,c

∣∣, (10)

MSEmask = 1
|M|

∑
(t,c)∈M

(
Xt,c − X̂t,c

)2
. (11)
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B.1.3 Anomaly Detection

Anomaly detection identifies unusual patterns or outliers in time-series data using a reconstruction-based
approach. The model learns to reconstruct normal patterns and flags samples with high reconstruction errors
as anomalous.

Problem Formulation: Given a time-series X ∈ RL×C , the model gϕ learns to reconstruct the input:

X̂ = gϕ(X) (12)

The anomaly score is computed as the reconstruction error: s = ||X − X̂||2

Training Objective: The model is trained exclusively on normal data using reconstruction loss:

Lrecon = 1
N

N∑
i=1

||Xi − gϕ(Xi)||2 (13)

Detection Mechanism: We use a percentile-based threshold over the pooled anomaly-score distribution.
Let S = {strain} ∪ {stest}. For a target anomaly rate α, the threshold is

τ = quantile(S, 1 − α).

In our experiments we set α = 0.01 (1%) for all datasets, except SMD (Su et al., 2019), where α = 0.005
(0.5%). A sample with score s is labeled as

label =
{

1, if s > τ (anomaly),
0, if s ≤ τ (normal).

Evaluation Metrics: Performance is measured using binary classification metrics:

• Precision: P = TP
TP+FP (proportion of correctly identified anomalies)

• Recall: R = TP
TP+FN (proportion of actual anomalies detected)

• F1-Score: F1 = 2 · P×R
P+R (harmonic mean of precision and recall)

• Accuracy: Acc = TP+TN
TP+TN+FP+FN (overall classification correctness)

where TP , TN , FP , and FN represent true positives, true negatives, false positives, and false negatives,
respectively.

B.2 Experiment Datasets And Evaluation Setups

We evaluate long-term forecasting on seven widely used multivariate datasets (Weather, Electricity, Traffic,
ETTh1, ETTh2, ETTm1, ETTm2). For forecasting, we follow the TimesNet (Wu et al., 2023) setup with
a look-back window L = 96 and horizons H ∈ {96, 192, 336, 720}; dataset specifications appear in Table
5. For time-series imputation, we use the same datasets as forecasting, except for Traffic, and follow the
TimeMixer++ (Wang et al., 2025) setup with L = 1024 and masking ratios p ∈ {12.5%, 25%, 37.5%, 50%},
refer to Table 6. Anomaly detection focuses on identifying fine-grained patterns. To assess this, we selected
the following datasets: SMD (Server Machine Dataset, (Su et al., 2019)), SWaT (Secure Water Treatment,
(Mathur & Tippenhauer, 2016)), PSM (Pooled Server Metrics, (Abdulaal et al., 2021)), and NASA telemetry
datasets MSL and SMAP (Hundman et al., 2018). The details of the datasets used for anomaly detection are
provided in Table 7. The details of the datasets used for anomaly detection are provided in Table 7.
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Table 5: Benchmark datasets and evaluation settings for long-term forecasting.

Dataset Dim Look-back Prediction Horizons Dataset Size Frequency Information

ETTm1 7 96 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature
ETTm2 7 96 {96, 192, 336, 720} (34465, 11521, 11521) 15 min Temperature
ETTh1 7 96 {96, 192, 336, 720} (8545, 2881, 2881) 15 min Temperature
ETTh2 7 96 {96, 192, 336, 720} (8545, 2881, 2881) 15 min Temperature
Weather 21 96 {96, 192, 336, 720} (36792, 5271, 10540) 10 min Weather
Electricity 321 96 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity
Traffic 862 96 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation

Table 6: Benchmark datasets and evaluation settings for time-series imputation.

Dataset Dim Look-back Imputation Mask Ratios Dataset Size Frequency Information

ETTm1 7 1024 [12.5%, 25%, 37.5%, 50%] (34465, 11521, 11521) 15 min Temperature
ETTm2 7 1024 [12.5%, 25%, 37.5%, 50%] (34465, 11521, 11521) 15 min Temperature
ETTh1 7 1024 [12.5%, 25%, 37.5%, 50%] (8545, 2881, 2881) 15 min Temperature
ETTh2 7 1024 [12.5%, 25%, 37.5%, 50%] (8545, 2881, 2881) 15 min Temperature
Weather 21 1024 [12.5%, 25%, 37.5%, 50%] (36792, 5271, 10540) 10 min Weather
Electricity 321 1024 [12.5%, 25%, 37.5%, 50%] (18317, 2633, 5261) Hourly Electricity

Table 7: Dataset detailed descriptions for anomaly detection. The dataset size is organized in (Train,
Validation, Test).

Dataset Dim Series Length Dataset Size Information

SMD 38 100 (566724, 141681, 708420) Server machines
MSL 55 100 (44653, 11664, 73729) Spacecraft telemetry (Mars)
SMAP 25 100 (108146, 27037, 427617) Spacecraft telemetry
SWaT 51 100 (396000, 99000, 449919) Water treatment ICS
PSM 25 100 (105984, 26497, 87841) Server metrics
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B.3 Training Details.

All experiments were implemented in PyTorch (Paszke et al., 2019) and run on NVIDIA RTX 3090 GPUs. We
fix the random seed to 2021. We applied a RevIN transformation (Kim et al., 2022) to mitigate distributional
shifts in the data. Models are trained with the Adam optimizer (Kingma & Ba, 2015) using mean squared
error (MSE) loss, together with a OneCycleLR scheduler. At a high level, OneCycleLR first increases the
learning rate from its initial value to a peak (while inversely adjusting momentum), and then gradually
anneals it to a small value for the remainder of training; this promotes fast early progress and stable late-stage
convergence. We set pct_start = 0.4, allocating 40% of the total training steps to the warm-up/increase
phase and 60% to the annealing phase. For each run, we select the checkpoint with the lowest validation
MSE and report the corresponding test performance in the tables.

Hyper-Parameter Search. We tuned hyperparameters with Optuna and chose the configuration yielding the
lowest validation MSE. The selected configuration is tuned per dataset and task, and then kept fixed across
all forecasting horizons or imputation mask ratios , as reported in Table 8. For baselines evaluated under the
same experimental setting as our main study, we directly used the reported results from the TimeMixer++
Wang et al. (2025) paper when available, and otherwise reported from the corresponding original papers.

Table 8: Hyperparameter settings for XCTFormer per dataset per time-series task
Data Processing Transformer XCTFormer Training

Dataset patch_len stride e_layers n_heads d_model d_ff dropout fc_dropout attn_dropout k batch_size learning_rate epochs
Long-term time-series Forecasting

ETTh1 16 8 1 1 8 16 0.2 0.3 0.6 - 32 0.001 10
ETTh2 16 8 3 1 30 60 0.1 0.2 0.8 - 32 0.01 10
ETTm1 16 8 2 4 32 64 0.1 0.05 0.8 - 32 0.005 10
ETTm2 16 8 1 1 224 448 0.1 0.05 0.8 - 32 0.005 10
Weather 16 8 3 2 248 496 0.1 0.05 0.8 - 32 0.0005 10
Traffic 16 8 3 4 248 496 0.1 0.05 0.6 192 8 0.001 10
Electricity 16 8 3 1 248 496 0.1 0.05 0.5 64 32 0.005 10

Imputation
ETTh1 16 8 2 1 64 128 0.1 0.05 0.5 - 32 0.01 10
ETTh2 64 32 3 1 160 320 0.1 0.05 0.3 - 32 0.005 10
ETTm1 16 8 3 4 96 192 0.1 0.05 0.1 - 32 0.005 10
ETTm2 16 8 2 1 128 256 0.1 0.05 0.5 - 32 0.001 10
Weather 16 8 3 1 192 384 0.1 0.05 0.8 - 32 0.001 10
Electricity 64 32 2 2 192 384 0.1 0.05 0.7 128 32 0.005 10

Anomaly Detection
MSL 16 8 2 4 256 512 0.1 0.05 0.7 - 128 0.01 10
PSM 16 8 2 1 256 512 0.1 0.05 0.8 - 128 0.001 10
SMAP 16 8 3 1 256 128 0.1 0.05 0.3 - 128 0.005 10
SMD 16 8 2 1 168 336 0.1 0.05 0.3 - 128 0.001 10
SWaT 16 8 1 2 216 432 0.1 0.05 0.4 - 128 0.0005 10

Hyper-Parameter Search Space. We searched over a bounded hyperparameter space per dataset and task,
while fixing a few coupled settings to reduce degrees of freedom (we set stride = patch_len/2 and d_ff = 2
× d_model). For ETTh1/ETTh2 in forecasting, where we observed stronger overfitting, we narrowed the
d_model range and explicitly tuned dropout to improve generalization. The search area is represented in
Table 9.

Table 9: Hyperparameter Search Space
Task Datasets lr att_dropout n_heads e_layers d_model patch_len dropout fc_dropout k

Long-term Forecast ETTh1, ETTh2
{5e-4, 1e-3,
5e-3, 1e-2} [0.1, 0.8]0.1 {1, 2, 4} [1, 3]

[4, 64]2 – [0.1, 0.3]0.05 [0.05, 0.3]0.05 –
Others [8, 256]8 – – – [64, 256]†64

Imputation All [32, 256]32 {16, 64, 128} – – [64, 256]†64

Anomaly Detection All [8, 256]8 – – – –
Notation: [a, b]s denotes integer/float range from a to b with step s; {...} denotes categorical choices; – indicates parameter not

used. †k was searched only for Electricity and Traffic datasets.

B.4 Technical Evaluation Note

We compute final metrics for imputation and forecasting as weighted averages across batches to account
for varying batch sizes during evaluation. This adjustment is necessary because the last batch in an epoch
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may contain fewer samples than the standard batch size. When computing performance metrics by simply
averaging across batches without considering batch sizes, smaller batches receive disproportionate weight in
the final metric calculation, leading to biased performance estimates that do not accurately reflect true model
performance across the entire dataset. In many older works, researchers addressed this problem by setting
the drop_last=True parameter in PyTorch’s DataLoader, which discards the final incomplete batch to ensure
identical batch sizes. However, this approach wastes data and can be particularly problematic for smaller
datasets, where discarding samples reduces available training or evaluation data In recent works, it is more
common to solve this problem by setting drop_last=False and computing weighted averages, where each
batch’s metric contribution is weighted by its actual size, ensuring that the final averaged metric accurately
represents performance across all samples in the dataset without discarding any data.
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C Appendix: Extended Analysis

C.1 Interpretable Learned Masks Analysis.

CRAB (Sec. 4.2) introduces a learnable non-boolean mask that learns the most dominant cross-channel and
temporal dependencies. The mask learns dominant dependencies by directly modulating the strength of
attention values during training. Specifically, the mask multiplies attention weights element-wise, with higher
absolute values amplifying the corresponding attention relationships and values near zero suppressing them.
Through gradient-based optimization, the mask automatically discovers which cross-channel and temporal
interactions are most informative for the downstream task, effectively learning a data-driven weighting scheme
that prioritizes the most predictive dependencies.

Examining the learned mask can therefore provide data-specific insights about these dependency structures,
as the mask values directly reflect relationship dominance, with higher absolute values indicating stronger
learned dependencies. In this section, we explain how to interpret the attention mask as a foundation for
further analysis so it can be leveraged for different analytical needs.

Following data processing (Sec. 4.1), the input data is first permuted so that the patch-sequence dimension
is placed before the channel dimension, and then the sequence and channel dimensions are flattened. This
creates an attention mask structure that can be visualized as a grid of squares where each square represents
cross-channel relationships between pairs of time steps (refer to Figure 4 for visual representation), with
the main diagonal squares capturing cross-channel interactions within the same time step and off-diagonal
squares revealing temporal cross-channel dependencies.

Permute Flatten Final Attention

Figure 4: Interpretable Learned Mask Structure: The data permutation step places the patch sequence
dimension first, creating an attention mask that can be visualized as a grid of squares where each square
represents cross-channel relationships between pairs of time-steps. Note: batch and data dimensions are
excluded from this diagram for clarity.

Analysis of Learnable Masks on ETTm1 Dataset Figure 5 analyzes learnable attention masks trained
on the ETTm1 dataset across two forecasting scenarios: 96→96 (top row) and 96→192 (bottom row). Each
row displays three visualizations: initial random masks initiated from a normal distribution (left), learned
patterns after training (middle), and corresponding heatmaps quantifying cross-channel dependency strength
(right).
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Data Processing and Architecture. The ETTm1 dataset was processed using patches of length 16 with
a stride of 8, generating 12 patches across ETTm1’s 7 channels. This configuration produces an 84 × 84
attention matrix (12 × 7 = 84 dimensions) that captures both temporal and cross-channel relationships.

Heatmap Interpretation. The dependency strength heatmaps are derived from the trained masks by
averaging the absolute values within each cross-channel grid. Since masks are applied to attention weights,
higher absolute mask values correspond to more dominant dependencies, with darker red regions in the
heatmap indicating stronger cross-channel relationships between specific time steps.

Key Findings. The trained masks exhibit several notable patterns. First, they develop structured grid
formations that align precisely with the 12-patch architecture, suggesting the model learns systematic cross-
channel dependencies. By examining the heatmaps from both configurations, we observe a high density of
dominant dependencies along the main diagonal. This diagonal concentration indicates that the model learns
strong self-attention patterns, in which each time step primarily attends to itself and its immediate temporal
neighbors. Such patterns suggest that the most informative relationships for forecasting are local temporal
dependencies, in which recent observations carry the greatest predictive power for future values. This finding
aligns with the intuitive understanding that in time-series analysis, temporally proximate data points are
typically more relevant than distant historical information.

Before Train After Train
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Figure 5: Analysis of learnable attention masks on ETTm1 dataset. Top row: 96→96 forecasting; bottom
row: 96→192 forecasting. Left column: initial random masks; middle column: learned structured patterns
after training; right column: heatmaps of cross-channel dependency strength derived from trained masks.
The heatmaps visualize the strength of cross-channel dependencies between time points, with darker red
regions indicating stronger relationships.
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Figure 6: DeCoP k sensitivity on Traffic (forecasting). Average MAE/MSE across horizons
{96, 192, 336, 720} for different compressed representation sizes k.

C.2 DeCoP compression size analysis

As recalled, DeCoP compresses token-to-token interactions into a low-dimensional representation; the choice
of k directly controls the expressive capacity of this bottleneck and thus can affect both accuracy and
efficiency. In particular, larger k increases the dimensionality of the compressed attention embedding. Which
summarizes each token’s pairwise interactions with all other tokens, enabling richer dependency modeling.
However, this comes at a higher compute and memory cost. Therefore, analyzing sensitivity to k is important
for providing practical guidance on choosing k that accounts for resource constraints.

Concretely, we tested k ∈ [2, 32] (step 2) and k ∈ [64, 256] (step 32). For each k, we report the average
MAE/MSE across forecasting horizons 96, 192, 336, 720 and the average MAE/MSE across imputation
mask ratios 0.125, 0.25, 0.375, 0.5. Overall, we observe dataset-dependent behavior. On Traffic (forecasting
analysis Table 6), performance tends to improve as k increases, indicating that a higher-capacity compressed
representation better captures the complex multivariate dependencies in this dataset. In contrast, on
Electricity (forecasting analysis Table 7, imputation analysis Table 8), smaller or mid-range k values are
often competitive and occasionally slightly better, suggesting that stronger compression can provide a useful
regularizing effect and that further increasing k yields limited additional benefit. Based on these results, we
recommend treating k as a dataset-specific hyperparameter and tuning it to balance accuracy with compute
and memory costs, as larger k values often yield only marginal gains.

C.3 Patch length and stride analysis.

Patching determines how the input sequence is divided into fixed-length windows, where patch_len sets the
window size, and each window is projected into a token embedding. The stride controls the overlap between
consecutive windows and thus the density with which the sequence is covered. Together, they affect which
information is represented in each token and how many tokens the transformer processes. With a larger
patch_len or stride, the model uses fewer tokens, but each token must represent a longer window, which can
make it harder to preserve meaningful temporal information. With a smaller patch_len or stride, tokens
represent more local information and overlap increases, but the longer token sequence raises the computational
cost of attention. Therefore, patch_len and stride define a fundamental accuracy efficiency trade-off. This
sensitivity analysis evaluates how robust our method is to this configuration and if dataset-specific tuning
may be required.
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Figure 7: DeCoP k sensitivity on Electricity (forecasting). Average MAE/MSE across horizons
{96, 192, 336, 720} for different compressed representation sizes k.
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Figure 8: DeCoP k sensitivity on Electricity (imputation). Average MAE/MSE across mask ratios
{0.125, 0.25, 0.375, 0.5} for different compressed representation sizes k.

26



Under review as submission to TMLR

20 40 60 80 100
Patch Length

0.368

0.370

0.372

0.374

0.376

0.378

0.380

0.382

Te
st

 M
SE

long_term_forecasting - ETTm1
Test
Validation

20 40 60 80 100
Patch Length

0.390

0.392

0.394

0.396

0.398

Te
st

 M
AE

long_term_forecasting - ETTm1

0.585

0.590

0.595

0.600

0.605

0.610

0.615

0.620

Va
lid

at
io

n 
M

SE
Figure 9: Patch length sensitivity on ETTm1 (forecasting). Average validation and test losses across
horizons {96, 192, 336, 720} for different patch_len values with stride = patch_len/2.

Following PatchTST’s (Nie et al., 2023) best practice, we kept the patching configuration fixed in most of
our main experiments. For forecasting and anomaly detection, we used patch_len= 16 and stride= 8. For
imputation, where the lookback was substantially larger (L=1024 versus 96 in forecasting and 100 in anomaly
detection), we tested a small set of patch_len values 16, 64, 128 with the corresponding stride= patch_len/2.
Based on validation error during hyperparameter search, we selected patch_len= 64 and stride= 32 for
some imputation datasets.

In this subsection, we conducted a patching sensitivity experiment for forecasting by fixing stride =
patch_len/2 and testing different values of patch_len from 8 to 96 in increments of 8. The plots report
the average validation and test losses on the ETTm1 (Figure 9) and Weather (Figure 10) datasets, where
the average is computed across horizons {96, 192, 336, 720}. Overall, performance varies only slightly across
different setups, indicating that our method is robust to this hyperparameter. While the effect is small on
ETTm1, it is more noticeable on Weather, yet the differences remain limited to roughly 2-4%, suggesting
that the preferred patching configuration can be dataset-dependent without requiring highly precise tuning.

C.4 Signed-attention mask analysis.

Distribution of negative weights. As recalled from the Method (Sec. 4.2), we do not use the vanilla
attention scores directly. Instead, we first apply a positive transformation and then adjust the scores with
a learnable, non-Boolean attention mask, which controls both the sign and the magnitude of the resulting
attention weights. Concretely, given an attention score matrix A ∈ RN×N , we remove sign information via
a global shift A+ = A− min(A), which ensures A+ ≥ 0 element-wise, and then form the signed attention
as A = M ◦ A+, where M ∈ RN×N is a learnable real-valued mask applied element-wise. Since A+ is
non-negative, the sign of each entry in A is determined entirely by the corresponding mask value: Mij < 0
produces a negative attention weight, while Mij > 0 produces a positive one. We initialize M from a
zero-mean Gaussian distribution, so roughly half of its entries are negative at initialization, and consequently,
about half of the resulting attention weights are negative as well. Although M is fine-tuned during training, its
distribution remains close to normal, so negative weights persist and can contribute throughout optimization.
Take a look at Figure 11, which shows the distributions of the mask values and the activated attention weights
at the end of the first and last training epochs.

Ablation: clipping negative weights. We further isolate the role of negative weights with a targeted
ablation. We keep our signed-attention activation unchanged, and only add a final ReLU that clips all negative
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Figure 10: Patch length sensitivity on Weather (forecasting). Average validation and test losses across
horizons {96, 192, 336, 720} for different patch_len values with stride = patch_len/2.
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Figure 11: Distributions of mask and signed-attention weights. Histograms of the learnable mask
values M and the resulting activated attention weights. Results are shown for the forecasting task upon the
ETTm1 dataset with lookback L=96 and horizon H=192. The left panel shows the distributions after the
first training epoch, and the right panel after the final (10th) epoch. The distributions remain approximately
Gaussian over training, indicating that negative weights persist.

values to zero. This variant is trained with the exact same hyperparameters and experimental settings,
covering all forecasting horizons {96, 192, 336, 720} and all imputation mask ratios {0.125, 0.25, 0.375, 0.5}.
We then report performance averaged across these settings (see Table 16). Overall, the original model that
permits negative weights improves performance by about 1.3% over the clipped variant, suggesting that
negative weights provide a consistent but modest performance gain.

C.5 Empirical Scalability Analysis with Respect to Input Dimension

As noted in the Limitations, XCTFormer is sensitive to input size because it explicitly models all pairwise
time and channel relationships, which induces quadratic scaling. We design DeCoP to mitigate this cost by
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Table 10: Ablation study results across different tasks, evaluated with different XCTFormer with clipped
values.

Long-term Forecasting Imputation Anomaly Detection XCTFormer
vs Others

MSE MAE MSE MAE Precision Recall F-Score (%)
XCTFormer (Original) 0.328 0.337 0.044 0.124 92.1 83.7 87.6 -

AbsAct + ReLU 0.331 0.339 0.044 0.124 92.1 79.5 85.2 1.3%
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Figure 12: Scalability with respect to channel dimensionality (n_features). XCTFormer’s parameter count
grows quadratically, while the DeCoP variant scales approximately linearly.

compressing per-token dependencies and thereby achieving approximately linear scaling. To verify these
theoretical expectations, we conduct an empirical scalability analysis. Because the effective input equals the
product of the sequence tokens (after patching) and the number of channels, we vary each factor independently
and measure how the parameter amount changes. Table 11 represents the hyperparameter used.

Table 11: Hyperparameter settings for XCTFormer scalability analysis
Data Processing Transformer XCTFormer Variable

Experiment patch_len stride e_layers n_heads d_model d_ff dropout fc_dropout attn_dropout k Range
Dimension Scaling Analysis

XCTFormer 16 8 2 4 128 256 0.1 0.05 0.0 - n_features: 1–100 (step 2)
XCTFormer (DeCoP) 16 8 2 4 128 256 0.1 0.05 0.0 64 n_features: 1–100 (step 2), 100–800 (step 16)

Sequence Length Scaling Analysis
XCTFormer 16 8 2 4 128 256 0.1 0.05 0.0 - seq_len: 64–1024 (step 32)
XCTFormer (DeCoP) 16 8 2 4 128 256 0.1 0.05 0.0 64 seq_len: 64–1024 (step 32), 1024–4096 (step 128)

Channel scaling. We fix the lookback sequence length to 96 and vary the number of channels to match the
dataset’s dimensionality. Specifically, we tested n_features from 1 to 100 in steps of 2, and further extended
from 100 to 800 in steps of 16 for the DeCoP variant. Because utilizing XCTFormer without DeCoP on
larger datasets is impractical, the original XCTFormer is evaluated only over the smaller range. As shown in
Fig. 12, XCTFormer exhibits quadratic parameter growth with respect to the number of channels, whereas
adding DeCoP yields approximately linear growth.

Sequence scaling. We fix the data dimensionality to 10 and vary the sequence length, which determines
the number of tokens after patching. We evaluate sequences from 64 to 1024 in steps of 32, and extend from
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Figure 13: Scalability with respect to sequence length (seq_len). XCTFormer exhibits quadratic parameter
growth, while the DeCoP variant scales approximately linearly.

1024 to 4096 in steps of 128 for the DeCoP variant. Again, XCTFormer is evaluated only on the shorter range.
Fig. 13 shows the same trend: XCTFormer grows quadratically with sequence length, whereas XCTFormer
with DeCoP scales approximately linearly.
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D Appendix: Full Results

D.1 Statistical significance tests

To assess whether the observed performance differences are robust to random initialization, we conducted
statistical significance tests for the forecasting task against our two strongest baselines, LeDDAM (Yu et al.,
2024) and iTransformer Liu et al. (2024), under the same evaluation protocol used throughout the paper.
The results are reported in Tables 12 and 13 respectively.

Experimental setup. For each dataset, we evaluated all models on the four standard prediction horizons
{96, 192, 336, 720}. For every method (ours and each baseline), we trained the model five times using
different random seeds {2021, 2022, 2023, 2024, 2025}. For our model, we used the hyperparameters reported
in Appendix B.3. For the baselines, we used the best hyperparameters provided in their official GitHub
repositories. All runs followed the same training procedure as the main experiments, including model selection
based on validation loss and reporting test-set errors. We applied a two-sided paired t-test with α = 0.05.
We mark a result as significant when the mean difference favors our model and p ≤ 0.05; otherwise, we treat
it as inconclusive.

Table 12: Statistical comparison of XCTFormer vs LeDDAM on forecasting datasets. Results averaged over
prediction lengths {96, 192, 336, 720} across five seeds (2021-2025). Confidence level derived from Welch’s
t-test (99.9%: p < 0.001, 99%: p < 0.01, 95%: p < 0.05). Bold indicates statistically significant better
performance.

XCTFormer (Ours) LeDDAM Confidence

Dataset MSE MAE MSE MAE Level

ETTh1 0.449 ± 0.002 0.436 ± 0.001 0.436 ± 0.0073 0.432 ± 0.0034 95%
ETTh2 0.374 ± 0.007 0.399 ± 0.004 0.374 ± 0.0019 0.398 ± 0.0007 n.s.
ETTm1 0.371 ± 0.003 0.393 ± 0.002 0.388 ± 0.0034 0.398 ± 0.0023 99%
ETTm2 0.271 ± 0.001 0.319 ± 0.001 0.282 ± 0.0019 0.326 ± 0.0009 99.9%
Electricity 0.176 ± 0.007 0.270 ± 0.007 0.171 ± 0.0042 0.264 ± 0.0027 n.s.
Traffic 0.435 ± 0.001 0.287 ± 0.001 0.468 ± 0.0075 0.294 ± 0.0052 95%
Weather 0.237 ± 0.001 0.267 ± 0.001 0.244 ± 0.0013 0.273 ± 0.0012 99.9%

n.s. Not statistically significant (p ≥ 0.10).

Table 13: Statistical comparison of XCTFormer vs iTransformer on forecasting datasets. Results averaged
over prediction lengths {96, 192, 336, 720} across five seeds (2021-2025). Confidence level derived from Welch’s
t-test (99.9%: p < 0.001, 99%: p < 0.01, 95%: p < 0.05). Bold indicates statistically significant better
performance.

XCTFormer (Ours) iTransformer Confidence

Dataset MSE MAE MSE MAE Level

ETTh1 0.449 ± 0.002 0.436 ± 0.001 0.457 ± 0.0014 0.449 ± 0.0013 99.9%
ETTh2 0.374 ± 0.007 0.399 ± 0.004 0.383 ± 0.0022 0.407 ± 0.0011 95%
ETTm1 0.371 ± 0.003 0.393 ± 0.002 0.408 ± 0.0022 0.412 ± 0.0013 99.9%
ETTm2 0.271 ± 0.001 0.319 ± 0.001 0.291 ± 0.0010 0.335 ± 0.0011 99.9%
Electricity 0.176 ± 0.007 0.270 ± 0.007 0.176 ± 0.0037 0.267 ± 0.0026 n.s.
Traffic 0.435 ± 0.001 0.287 ± 0.001 0.430 ± 0.0010 0.283 ± 0.0010 99.9%
Weather 0.237 ± 0.001 0.267 ± 0.001 0.260 ± 0.0014 0.281 ± 0.0016 99.9%

n.s. Not statistically significant (p ≥ 0.10).
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Results. Overall, our model achieves strong performance and shows statistically significant improvements
across most datasets relative to both baselines. Compared to LeDDAM, the results are inconclusive on
Electricity and ETTh2, while ETTh1 favors LeDDAM. Compared to iTransformer, the result is inconclusive
on Electricity, and Traffic favors iTransformer. These outcomes suggest that gains are often consistent across
seeds, but in some datasets, the differences are not statistically significant.

D.2 Ablation Study: Complete Analysis

We conduct a systematic ablation study with six configurations to isolate the contribution of each architectural
component in XCTFormer. All variants maintain identical data processing (patch length/stride), training
procedures, and model parameters, except for the specific component being modified.

Configuration Details

1. Full XCTFormer (Baseline): Complete architecture including CRAB module, learnable non-
boolean mask, DeCoP, cross-time and cross-channel attention, and our proposed attention activation
function.

2. W/o Learnable Mask: Removes the learnable mask component. Attention masks are not
converted to positive values and no element-wise multiplication is applied. The CRAB module
remains unchanged otherwise.

3. Standard Softmax Activation: Replaces our proposed activation function with standard Trans-
former softmax while preserving CRAB and the learnable mask. Note that our attention_dropout
rate parameter is replaced with the standard dropout argument commonly used in related work for
fair comparison.

4. Vanilla Transformer: Substitutes CRAB (and DeCoP) with standard attention blocks following
Vaswani et al. (2017).

5. Sequence Modeling Only: Retains only temporal self-attention within each channel, disabling
cross-channel modeling (channel-independent processing). This configuration tests the necessity of
modeling cross-channel relationships, mirroring approaches like PatchTST (Nie et al., 2023).

6. Channel Modeling Only: Preserves only cross-channel attention at each time step while removing
temporal self-attention. This configuration tests the necessity of modeling temporal relationships,
similar to designs that emphasize cross-variable mixing like iTransformer (Liu et al., 2024).

Full Ablation Study Results Complete ablation study results for each time-series task are presented in
Tables 14, 15, and 16. For long-term forecasting and imputation tasks, the results shown for each dataset
represent averages across all prediction horizons and mask ratios, respectively.

Table 14: Ablation study results for Long-term Forecasting across different datasets, evaluated with different
XCTFormer variations.

ETTh1 ETTh2 ETTm1 ETTm2 Electricity traffic weather XCTFormer
vs Others

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE (%)
XCTFormer (Original) 0.450 0.436 0.369 0.396 0.369 0.392 0.270 0.319 0.166 0.263 0.435 0.287 0.237 0.267 -

W/o mask 0.453 0.440 0.383 0.405 0.379 0.394 0.282 0.326 0.180 0.273 0.435 0.287 0.256 0.280 +2.5%
Original softmax activation 0.443 0.435 0.390 0.409 0.410 0.413 0.280 0.326 0.224 0.317 0.520 0.368 0.247 0.278 +8.0%
Vanilla transformer 0.452 0.439 0.397 0.412 0.385 0.398 0.285 0.330 0.224 0.317 0.520 0.368 0.263 0.284 +8.3%
Sequence modeling 0.449 0.436 0.380 0.404 0.375 0.393 0.281 0.327 0.195 0.280 0.450 0.284 0.256 0.279 +2.8%
Channel modeling 0.461 0.450 0.388 0.409 0.378 0.393 0.278 0.321 0.166 0.263 0.476 0.329 0.239 0.269 +3.4%
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Table 15: Ablation study results for Imputation across different datasets, evaluated with different XCTFormer
variations.

ETTm1 ETTm2 ETTh1 ETTh2 weather Electricity XCTFormer
vs Others

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE (%)
XCTFormer (Original) 0.029 0.113 0.024 0.092 0.087 0.201 0.046 0.144 0.031 0.050 0.046 0.141 -

W/o mask 0.041 0.132 0.029 0.100 0.092 0.206 0.064 0.169 0.031 0.047 0.046 0.141 +8.5%
Original softmax activation 0.032 0.117 0.027 0.099 0.078 0.192 0.065 0.178 0.040 0.075 0.077 0.196 +14.7%
Vanilla transformer 0.043 0.137 0.033 0.113 0.094 0.208 0.079 0.193 0.031 0.048 0.077 0.196 +19.9%
Sequence modeling 0.040 0.130 0.029 0.101 0.089 0.201 0.081 0.166 0.031 0.047 0.046 0.139 +8.7%
Channel modeling 0.065 0.174 0.044 0.136 0.203 0.305 0.060 0.167 0.041 0.072 0.075 0.191 +34.6%

Table 16: Ablation study results for Anomaly Detection across different datasets, evaluated with different
XCTFormer variations.

PSM SWaT MSL SMAP SMD XCTFormer
vs Others

F-Score F-Score F-Score F-Score F-Score (%)
XCTFormer (Original) 95.3 92.6 79.0 86.7 84.2 -

W/o mask 95.3 88.2 72.3 66.7 83.0 +8.0%
Original softmax activation 95.3 90.2 69.0 68.6 84.3 +7.5%
Vanilla transformer 95.3 93.1 71.8 66.9 83.2 +6.7%
Sequence modeling 95.3 93.5 79.4 67.5 83.9 +4.4%
Channel modeling 92.9 92.5 76.9 66.5 82.8 +6.4%

D.3 Robustness Across Random Seeds: Complete Analysis

Coefficient of Variation (CV) for a Single Metric We quantify run-to-run stability using the coefficient
of variation, a unitless measure of dispersion relative to the mean (Reed et al., 2002). For a metric with mean
µ and standard deviation σ across five seeds (2021 to 2025), we compute:

CV(%) = 100 · σ

|µ|
.

The coefficient of variation tells us how much results vary around their mean relative to the mean itself. Since
CV is unitless, it enables comparison across datasets and metrics: smaller values indicate greater stability,
while larger values indicate greater variability.

Confidence score mapping For intuitive interpretation, we report a complementary confidence score:

Conf(%) = 100 − CV(%).

This confidence score inverts the scale so that lower variability corresponds to higher confidence. For example,
if CV = 3.2%, then Conf = 96.8%, indicating that repeated runs with identical setups produce very similar
results.

Full Seed Analysis Results To enhance readability, we include only the averaged analysis table for all
time-series tasks in the main paper, while the complete results are provided in Tables 17, 18 and 19. The
confidence score presented for each dataset represents the average confidence score across all of its metrics.
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Table 17: Standard deviation for XCTFormer on forecasting datasets, evaluated across five seeds (2021-2025).
Results averaged over the four prediction lengths {96, 192, 336, 720}.

Model XCTFormer (Ours) Confidence Score

Dataset MSE MAE Score %

ETTh1 0.449 ± 0.002 0.436 ± 0.001 99.7%
ETTh2 0.374 ± 0.007 0.399 ± 0.004 98.5%
ETTm1 0.371 ± 0.003 0.393 ± 0.002 99.3%
ETTm2 0.271 ± 0.001 0.319 ± 0.001 99.6%
Electricity 0.176 ± 0.007 0.270 ± 0.007 96.6%
traffic 0.435 ± 0.001 0.287 ± 0.001 99.7%
weather 0.237 ± 0.001 0.267 ± 9.81e − 04 99.5%

Table 18: Results of the imputation task across datasets, evaluated across five seeds (2021-2025). We randomly
mask {12.5%, 25%, 37.5%, 50%} of the time points; the final results are averaged across these four masking
ratios.

Model XCTFormer (Ours) Confidence Score

Dataset MSE MAE Score %

ETTh1 0.090 ± 0.002 0.204 ± 0.003 98.0 %
ETTh2 0.052 ± 0.013 0.153 ± 0.020 80.9 %
ETTm1 0.031 ± 0.004 0.116 ± 0.007 90.2 %
ETTm2 0.026 ± 0.003 0.097 ± 0.007 90.8 %
ETT(Avg) 0.049 ± 0.006 0.143 ± 0.009 91.1 %
Electricity 0.051 ± 0.008 0.149 ± 0.014 87.6 %
weather 0.031 ± 5.26e − 04 0.049 ± 0.002 96.9 %

Table 19: Results for the anomaly detection task (P, R, and F1 are precision, recall, and F1-score in %),
evaluated across five seeds (2021-2025).

Model XCTFormer (Ours) Confidence Score

Dataset Precision Recall F1 Score %

MSL 87.84 ± 1.73 66.66 ± 3.92 75.77 ± 3.18 96.0%
PSM 98.31 ± 0.09 93.05 ± 0.57 95.61 ± 0.34 99.6%
SMAP 91.81 ± 1.78 64.59 ± 14.53 75.22 ± 10.43 87.2%
SMD 87.01 ± 0.25 81.99 ± 1.15 84.42 ± 0.69 99.2%
SWaT 91.94 ± 0.49 92.01 ± 1.32 91.98 ± 0.86 99.0%

D.4 Long-Term Forecasting Results

To improve readability, we present only the averaged table for long-term forecasting in the main paper and
provide the full results here.

D.5 Anomaly Detection Full Results

To improve readability, we present only the averaged plot for anomaly detection in the main paper and
provide the full results here:
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Table 20: Long-term forecasting results comparison across multiple datasets and horizons. We compare
extensive competitive models under different prediction lengths. Avg is averaged from all four prediction
lengths, that {96, 192, 336, 720}.

Models XCTFormer MTLinear1 Leddam TimeMixer iTransformer PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Autoformer
(Ours) (AISTATS 2025) (ICML 2024) (ICLR 2024) (ICLR 2024) (ICLR 2023) (ICLR 2023) (TMLR 2023) (ICLR 2023) (AAAI 2023) (NeurIPS 2022) (ICML 2022) (NeurIPS 2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1

96 0.302 0.350 0.337 0.363 0.319 0.359 0.320 0.357 0.334 0.368 0.352 0.374 0.404 0.426 0.364 0.387 0.338 0.375 0.346 0.374 0.418 0.438 0.379 0.419 0.505 0.475
192 0.354 0.382 0.379 0.387 0.369 0.383 0.361 0.381 0.390 0.393 0.374 0.387 0.450 0.451 0.398 0.404 0.374 0.387 0.382 0.391 0.439 0.450 0.426 0.441 0.553 0.496
336 0.385 0.404 0.412 0.409 0.394 0.402 0.390 0.404 0.426 0.420 0.421 0.414 0.532 0.515 0.428 0.425 0.410 0.411 0.415 0.415 0.490 0.485 0.445 0.459 0.621 0.537
720 0.435 0.433 0.468 0.443 0.460 0.442 0.454 0.441 0.491 0.459 0.462 0.449 0.666 0.589 0.487 0.461 0.478 0.450 0.473 0.451 0.595 0.550 0.543 0.490 0.671 0.561
Avg 0.369 0.392 0.399 0.401 0.385 0.397 0.381 0.396 0.410 0.410 0.402 0.406 0.513 0.495 0.419 0.419 0.400 0.406 0.404 0.408 0.485 0.481 0.448 0.452 0.588 0.517

E
T

T
m

2

96 0.168 0.252 0.175 0.254 0.176 0.257 0.175 0.258 0.180 0.264 0.183 0.270 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.293 0.286 0.377 0.203 0.287 0.255 0.339
192 0.232 0.295 0.240 0.296 0.243 0.303 0.237 0.299 0.250 0.309 0.255 0.314 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.361 0.399 0.445 0.269 0.328 0.281 0.340
336 0.289 0.332 0.301 0.335 0.303 0.341 0.298 0.340 0.311 0.348 0.309 0.347 0.597 0.542 0.377 0.422 0.321 0.351 0.382 0.429 0.637 0.591 0.325 0.366 0.339 0.372
720 0.391 0.395 0.402 0.393 0.400 0.398 0.391 0.396 0.412 0.407 0.412 0.404 1.730 1.042 0.558 0.524 0.408 0.403 0.558 0.525 0.960 0.735 0.421 0.415 0.433 0.432
Avg 0.270 0.319 0.279 0.320 0.280 0.325 0.275 0.323 0.288 0.332 0.290 0.334 0.757 0.611 0.358 0.404 0.291 0.333 0.354 0.402 0.571 0.537 0.304 0.349 0.327 0.371

E
T

T
h1

96 0.389 0.400 0.386 0.393 0.377 0.394 0.375 0.400 0.386 0.405 0.460 0.447 0.423 0.448 0.479 0.464 0.384 0.402 0.397 0.412 0.654 0.599 0.395 0.424 0.449 0.459
192 0.440 0.429 0.439 0.421 0.424 0.422 0.429 0.421 0.441 0.512 0.477 0.429 0.471 0.474 0.525 0.492 0.436 0.429 0.446 0.441 0.719 0.631 0.469 0.470 0.500 0.482
336 0.479 0.447 0.476 0.441 0.459 0.442 0.484 0.458 0.487 0.458 0.546 0.496 0.570 0.546 0.565 0.515 0.491 0.469 0.489 0.467 0.778 0.659 0.530 0.499 0.521 0.496
720 0.490 0.468 0.472 0.460 0.463 0.459 0.498 0.482 0.503 0.491 0.544 0.517 0.653 0.621 0.594 0.558 0.521 0.500 0.513 0.510 0.836 0.699 0.598 0.544 0.514 0.512
Avg 0.450 0.436 0.443 0.429 0.431 0.429 0.447 0.440 0.454 0.467 0.507 0.472 0.529 0.522 0.541 0.507 0.458 0.450 0.461 0.458 0.747 0.647 0.498 0.484 0.496 0.487

E
T

T
h2

96 0.295 0.342 0.288 0.336 0.292 0.343 0.289 0.341 0.297 0.349 0.308 0.355 0.745 0.584 0.400 0.440 0.340 0.374 0.340 0.394 0.707 0.621 0.358 0.397 0.346 0.388
192 0.370 0.393 0.375 0.388 0.367 0.389 0.372 0.392 0.380 0.400 0.393 0.405 0.877 0.656 0.528 0.509 0.402 0.414 0.482 0.479 0.860 0.689 0.429 0.439 0.456 0.452
336 0.402 0.417 0.412 0.423 0.412 0.424 0.386 0.414 0.428 0.432 0.427 0.436 1.043 0.731 0.643 0.571 0.452 0.452 0.591 0.541 1.000 0.744 0.496 0.487 0.482 0.486
720 0.411 0.433 0.418 0.440 0.419 0.438 0.412 0.434 0.427 0.445 0.436 0.450 1.104 0.763 0.874 0.679 0.462 0.468 0.839 0.661 1.249 0.838 0.463 0.474 0.515 0.511
Avg 0.369 0.396 0.373 0.397 0.372 0.398 0.365 0.395 0.383 0.407 0.391 0.411 0.942 0.683 0.611 0.550 0.414 0.427 0.563 0.519 0.954 0.723 0.436 0.449 0.450 0.459

W
ea

th
er

96 0.153 0.199 0.159 0.211 0.156 0.202 0.163 0.209 0.174 0.214 0.186 0.227 0.195 0.271 0.202 0.261 0.172 0.220 0.195 0.252 0.221 0.306 0.217 0.296 0.266 0.336
192 0.199 0.242 0.202 0.252 0.207 0.250 0.208 0.250 0.221 0.254 0.234 0.265 0.209 0.277 0.242 0.298 0.219 0.261 0.237 0.295 0.261 0.340 0.276 0.336 0.307 0.367
336 0.257 0.286 0.259 0.294 0.262 0.291 0.251 0.287 0.278 0.296 0.284 0.301 0.273 0.332 0.287 0.335 0.280 0.306 0.282 0.331 0.309 0.378 0.339 0.380 0.359 0.395
720 0.339 0.340 0.332 0.346 0.343 0.343 0.339 0.341 0.358 0.347 0.356 0.349 0.379 0.401 0.351 0.386 0.365 0.359 0.345 0.382 0.377 0.427 0.403 0.428 0.419 0.428
Avg 0.237 0.267 0.238 0.276 0.242 0.272 0.240 0.272 0.258 0.278 0.265 0.285 0.264 0.320 0.270 0.320 0.259 0.286 0.265 0.315 0.292 0.363 0.309 0.360 0.338 0.382

E
C

Lp

96 0.138 0.237 0.183 0.265 0.141 0.235 0.153 0.247 0.148 0.240 0.190 0.296 0.219 0.314 0.237 0.329 0.168 0.272 0.210 0.302 0.247 0.345 0.193 0.308 0.201 0.317
192 0.164 0.261 0.183 0.268 0.159 0.252 0.166 0.256 0.162 0.253 0.199 0.304 0.231 0.322 0.236 0.330 0.184 0.322 0.210 0.305 0.257 0.355 0.201 0.315 0.222 0.334
336 0.170 0.266 0.196 0.283 0.173 0.268 0.185 0.277 0.178 0.269 0.217 0.319 0.246 0.337 0.249 0.344 0.198 0.300 0.223 0.319 0.269 0.369 0.214 0.329 0.231 0.443
720 0.190 0.286 0.231 0.317 0.201 0.295 0.225 0.310 0.225 0.317 0.258 0.352 0.280 0.363 0.284 0.373 0.220 0.320 0.258 0.350 0.299 0.390 0.246 0.355 0.254 0.361
Avg 0.166 0.263 0.198 0.283 0.168 0.263 0.182 0.273 0.178 0.270 0.216 0.318 0.244 0.334 0.252 0.344 0.193 0.304 0.225 0.319 0.268 0.365 0.213 0.327 0.227 0.364

Tr
affi

cp

96 0.402 0.269 0.647 0.383 0.426 0.276 0.462 0.285 0.395 0.268 0.526 0.347 0.644 0.429 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.613 0.388
192 0.424 0.281 0.594 0.359 0.458 0.289 0.473 0.296 0.417 0.276 0.522 0.332 0.665 0.431 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.616 0.382
336 0.444 0.291 0.601 0.362 0.486 0.297 0.498 0.296 0.433 0.283 0.517 0.334 0.674 0.420 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.622 0.337
720 0.472 0.307 0.640 0.382 0.498 0.313 0.506 0.313 0.467 0.302 0.552 0.352 0.683 0.424 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.660 0.408
Avg 0.435 0.287 0.621 0.372 0.467 0.294 0.485 0.297 0.428 0.282 0.529 0.341 0.667 0.426 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.609 0.376 0.628 0.379

1st Count 14 12 2 6 5 4 4 3 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 Reported MTLinear results reflect the per-dataset best of MTNLinear and MTDLinear (Nochumsohn et al., 2025).
p DeCoP was enabled for XCTFormer on this dataset.
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Table 21: Full results for the anomaly detection task. The P, R, and F1 represent the precision, recall, and
F1-score, (%) respectively. F1-score is the harmonic mean of precision and recall. A higher value of P, R and
F1 indicates a better performance. Red indicates highest F1 score, blue indicates second highest F1 score.

Datasets SMD MSL SMAP SWaT PSM Avg F1

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 (%)

LSTM (1997) 78.52 65.47 71.41 78.04 86.22 81.93 91.06 57.49 70.48 78.06 91.72 84.34 69.24 99.53 81.67 77.97
Transformer (2017) 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07 76.88
LogTrans (2019a) 83.46 70.13 76.21 73.05 87.37 79.57 89.15 57.59 69.97 68.67 97.32 80.52 63.06 98.00 76.74 76.60
TCN (2019) 84.06 79.07 81.49 75.11 82.44 78.60 86.90 59.23 70.45 76.59 95.71 85.09 54.59 99.77 70.57 77.24
Reformer (2020) 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31
Informer (2021) 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Anomaly∗ (2022) 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40 80.50
Pyraformer (2022b) 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57
Autoformer (2021) 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
LSSL (2022) 78.51 65.32 71.31 77.55 88.18 82.53 89.43 53.43 66.90 79.05 93.72 85.76 66.02 92.93 77.20 76.74
Stationary (2022c) 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29 82.08
DLinear (2023) 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46
ETSformer (2022) 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76 82.87
LightTS (2022) 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
FEDformer (2022) 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97
TimesNet (2023) 88.66 83.14 85.81 83.92 86.42 85.15 92.52 58.29 71.52 86.76 97.32 91.74 98.19 96.76 97.47 86.34
TiDE (2023) 76.00 63.00 68.91 84.00 60.00 70.18 88.00 50.00 64.00 98.00 63.00 76.73 93.00 92.00 92.50 74.46
iTransformer (2024) 78.45 65.10 71.15 86.15 62.65 72.54 90.67 52.96 66.87 99.96 65.55 79.18 95.65 94.69 95.17 76.98
TimesMixer++ (2025) 88.59 84.50 86.50 89.73 82.23 85.82 93.47 60.02 73.10 92.96 94.33 94.64 98.33 96.90 97.60 87.47
XCTFormer (Ours) 86.94 81.64 84.21 89.46 70.81 79.05 93.79 80.57 86.68 92.25 92.96 92.60 98.26 92.52 95.30 87.57

∗ The original paper of Anomaly Transformer (Xu et al., 2022) adopts the temporal association and
reconstruction error as a joint anomaly criterion. For fair comparisons, we only use reconstruction error
here.
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