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ABSTRACT

Explaining video data predictions is challenging due to the complex spatio-
temporal information in videos. In particular, the existing perturbation-based
methods for video interpretation often fail to consider different temporal contexts,
making them ineffective for dynamic videos where the important regions change
rapidly or appear ephemerally across frames. To address this, we propose a novel
video interpretation method, time importance score-aware extremal perturbation
masks (TIEM), that enhances explainability by focusing on temporal dynamics
in videos. TIEM exploits a dual perturbation process: first, it evaluates temporal
importance across frames via temporal perturbation and then generates spatio-
temporal extremal perturbation masks using the temporal importance explicitly.
Our experimental results demonstrate that TIEM resolves the key challenges of
the existing methods, providing more precise explanations across the time domain
in synthetic white-box models and black-box models for real-world videos.

1 INTRODUCTION

Artificial intelligence (Al)-based predictive models have been widely used across various domains
such as healthcare, finance, autonomous driving, and video analysis, especially due to the powerful
predictive performance of deep neural network (DNN) models (LeCun et al.| 2015} [Yu et al.| 2020
Ashfaq et al., |2022). However, despite their widespread use, these DNN models are often referred
to as “black-box models,” meaning that their internal workings are not transparent to humans. This
lack of transparency makes it difficult to trust their predictions and therefore difficult to use them
for decision-making as well (Guidotti et al., 2018; |Buhrmester et al., |2021). To address this issue,
a range of explainable Al (XAI) techniques are being developed that interpret and explain how
the predictive models work internally (Adadi & Berradal |2018}; |Samek & Miiller, |2019). A visual
explanation method, one of the representative XAl techniques, is used to explain black-box models
for images and videos by visualizing the input regions that influence the model’s output (Selvaraju
et al.,[2017; |Chattopadhay et al., [2018};|Alicioglu & Sun, [2022).

So far, research on visual explanation has focused primarily on interpreting the model’s predictions
for a single image, which leads to visually clear explanations of the predictions(Adebayo et al.,
2018). However, visual explanation methods for a single image are difficult to directly apply to
prediction models that use video data as its input, since the video data is not a simple collection
of multiple images. The images that make up video data have complex recurrent spatio-temporal
dependencies, such as the order and connections between the images and the interactions between
objects within the images (Zhou et al., [2018). Therefore, to interpret the predictions for a video,
visual explanation methods need to consider not only the spatial information in the images, but also
the temporal information across the images.

To illustrate how temporal information in a video provides insight to humans, Fig. [I] shows the
frames composing a “tennis swing” video. The images presented at the top of the figure visualize
a video composed of the four frames arranged in the correct order of the original video, while the
images at the bottom visualize a video composed of the same frames, but their order is shuffled. In
the figure, the original video contains both spatial and temporal information across the four frames,
allowing us to recognize it as a video of a “tennis swing.” On the other hand, the shuffled video
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Figure 1: Example of video to illustrate temporal information.

contains the same spatial information as the original video, but the temporal information is missing.
As aresult, with the shuffled video, it is difficult to tell whether the video shows the player swinging,
serving, or simply waiting for the ball. This example clearly shows that the temporal information in
a video, based on the sequence, interaction, and connection of frames in different temporal contexts,
plays a crucial role in the predictions for videos.

1.1 MOTIVATION AND CONTRIBUTION

In the recent development of XAI methods for video predictions, there have been significant efforts
to consider the temporal information inherent in video data. To this end, the existing perturbation-
based works (Li et al [2021; |Uchiyama et al.l [2023)) mainly attempt to address the temporal infor-
mation in videos. They extend the visual explanation method for a single image by expanding the di-
mensions for the time domain, but not considering it explicitly. As shown in the example in Fig.[T] the
interactions of the spatial information between the consecutive frames are significant for the effective
estimation of the temporal information. To consider this observation, the existing works estimate the
temporal information by blending the spatial information of the adjacent multiple frames in the time
domain. As a result, this blending-based approach can generate a natural and smooth visual expla-
nation. In particular, it is effective in interpreting the predictions for gentle videos with low temporal
dynamics, in which the important regions across frames change gradually in the spatial domain, e.g.,
a video in which important objects in the video shift gently across the frames (Li et al., 2021]).

However, such a blending-based approach makes the estimation of the temporal information highly
dependent on the spatial information across the adjacent frames. This may lead to an over-integration
of the spatial and temporal information and a failure to consider temporal contexts of different
lengths. As a result, the blending-based approach may be ineffective in interpreting the prediction
for dynamic videos with high temporal dynamics, in which the important regions change rapidly or
appear ephemerally across frames.

Video of white box model STEP
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Figure 2: Example of a white-box model. The white regions are the ground truth of its visual expla-
nation. The frame numbers start from O and increase from left to right, top to bottom.

Here, we classify the issues that may arise due to the limitation of the blending-based approach
into temporal concentration and temporal spillover. To clearly describe the issues, we provide an
example of a visual explanation for a synthetic white-box model by using STEP in Fig. 2] In the
visual explanation, the important regions are highlighted in green. The white-box model generates
random numbers for each pixel and computes predictions using only the numbers of the white re-
gions. Therefore, its ground truth for visual explanation is the white region in each frame. In the
example, the white-box model is designed so that the important regions change rapidly and appear
ephemerally in frames 7 and 8, while the important regions gently shift across frames 4-6 and 9-13.
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Temporal concentration indicates a phenomenon in which the estimated important regions are
overly concentrated on specific frames that have an excessive influence on the prediction. This also
leads to the frames near the excessively influential frames being overlooked in the interpretation. In
the example, this issue is clearly shown as most of the estimated important regions are concentrated
in frames 7 and 8, leading to the neglect of the white regions in frames 4-6 and 9-13. In addition,
temporal spillover refers to a phenomenon in which the estimated important regions in one frame
spill over into its adjacent frames. This issue is observed in frames 6 and 9 of the example. In those
frames, the edges are estimated as important regions as in frames 7 and 8, even though they do
not lie within the ground truth region. In real-world applications, these issues can occur in videos,
where a particular action is present in the video for only a short time, such as sports and accident
safety. The results and discussion of the issues in real-world datasets are presented in Section

In this paper, we propose a novel video interpretation method based on perturbation, called time
importance score-aware extremal perturbation masks (TIEM). To overcome the above issues, it con-
siders the temporal dimension separately, through dual perturbation. More specifically, TIEM first
analyzes how much each frame is significant for the prediction by using temporal perturbation, in
terms of various window lengths. Then, it evaluates the time importance score (TIS) of each frame
by combining the analyses of the frame for the window lengths. The TIS enables TIEM to estimate
the temporal importance of each frame considering its temporal relations to the adjacent frames in
different temporal contexts. Finally, TIEM finds a spatio-temporal visual explanation by conducting
the TIS-aware spatial analysis for each frame based on extremal perturbation. This novel dual pertur-
bation of TIEM not only avoids the over-integration of spatial and temporal information across the
adjacent frames but also estimates the temporal dynamics more precisely. Through the experiments
with the synthetic white-box model and the black-box model for real-world datasets, it is shown that
the proposed method resolves both temporal concentration and spillover. In addition, it outperforms
the state-of-the-art video interpretation method, especially in terms of temporal interpretation.

2 RELATED WORKS

Recent research on visual explanation methods has moved beyond interpreting a single image, and
increasingly focused on incorporating temporal information to interpret the predictions for video
data. The early works (Chattopadhay et al., 2018)) interpret the predictions considering the multiple
frames that make up a video, but do not consider the temporal information across frames. In the
subsequent works, a variety of visual explanation methods have been developed that incorporate
the temporal information during interpretation to achieve more accurate video interpretation and
visualization as summarized in Table[ll

Table 1: Visual explanation methods for video prediction

Study Type ::(t)f;;ll)retable Temporal awareness

Bargal et al.| (2018)) Gradient CNN-RNN Temporal normalization
Stergiou et al.[(2019a)  Gradient 3D-CNN Feature pyramids

Stergiou et al.[(2019b)  Gradient 3D-CNN Spatio-temporal saliency map
Hartley et al.| (2022) Gradient 3D-CNN Computing superpixel
Uchiyama et al.{(2023) Perturbation 3D-CNN Optical flow

Li et al.| (2021) Perturbation Model-agnostic ~ Smoothing

Ours (TIEM) Dual perturbation Model-agnostic  Time importance score

In Bargal et al|(2018), a gradient-based interpretation method, called cEB-R, is proposed that in-
corporates temporal information during video interpretation. It extends the excitation backpropaga-
tion method by introducing temporal normalization during backpropagation. Another gradient-based
method, Saliency Tube (Stergiou et al.,[2019b), leverages 3D saliency maps to consider the tempo-
ral information in 3D CNNs. In addition, Class Feature Pyramids (Stergiou et al.,2019a) consider
different kernels at varying network depths within a 3D CNN model to reflect temporal information.
SWAG-V (Hartley et al., 2022)), which extends the SWAG method designed for interpreting a single
image, integrates temporal information by creating superpixels from the model’s gradient values.
The superpixel in SWAG-V incorporates temporal characteristics.
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As another approach, perturbation-based methods (Li et al.|[2021; [Uchiyama et al., 2023)) have been
proposed, which are similar to our work. In|Li et al.|(2021)), a spatio-temporal extremal perturbation
(STEP) method is developed, which is the only model-agnostic method for video prediction. It
extends the extremal perturbation (EP) technique (Fong et al., | 2019) by additionally considering
the time domain, thereby considering temporal information during interpretation. Furthermore, it
uses a 3D kernel to smooth and limit identified important regions across frames. In|Uchiyama et al.
(2023), an adaptive occlusion sensitivity analysis (AOSA) framework is proposed that reflects an
optical flow between frames during its perturbation-based importance analysis. This enables the
AOSA framework to incorporate temporal information, rather than simply extending the existing
OSA methods along the time domain.

3 TIEM: TIME IMPORTANCE SCORE-AWARE EXTREMAL PERTURBATION
MASK

3.1 OVERVIEW

We consider model-agnostic interpretation of video prediction models based on perturbation. In a
video prediction model, a video with T" frames, each of width W and height H, is considered as
an input. The video is denoted by X = (x;)L_;, where x; € RH¥*W*3_ The prediction model is
denoted by &, which can be either a classification model or a regression model. In the case of a
regression model, it is expressed as $(X) € R, whereas in the case of a classification model, the
probability of class ¢, when the ground truth class of X is ¢ out of the total C classes, is expressed
as §.(X) € R after passing through the softmax function. The objective of perturbation-based
interpretation is to learn an importance map M = (m;)Z_,, where m; € [0, 1]#*W that visualizes
the significant regions of X during prediction using &. Each element of my, m; ;;, corresponds to
each pixel of frame ¢, x; ; ;, where 4, j denote the spatial coordinates in each frame. The perturbation
operation by the mask is expressed as M ® X = M o X + (1 — M) o (k * X), where o denotes the
Hadamard product, * represents the convolution operator, and & denotes a Gaussian blur kernel.

1. Temporal perturbation: Time importance score (TIS) calculation phase
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Figure 3: Flowchart of TIEM with temporal dynamics-focused dual perturbation. In the TIS calcu-
lation phase, the time importance score of each frame is evaluated considering different temporal
contexts. In the importance map generation phase, the perturbation mask is fitted based on the score.

We propose a novel video interpretation method with temporal dynamics-focused dual perturba-
tion, called time importance score-aware extremal perturbation mask (TIEM), which is illustrated
in Fig. 3] TIEM addresses the challenges of addressing temporal dynamics in interpreting video
predictions: temporal concentration and temporal spillover. To this end, we design the temporal
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dynamics-focused dual perturbation approach that utilizes both temporal and extremal perturba-
tions. It enhances the existing video interpretation methods by separating the learning structure for
the importance map into two distinct dimensions: temporal and spatial. In a TIS calculation phase,
TIEM appropriately calculates the temporal importance across frames, called the time importance
score (TIS), using temporal perturbation. Then, in an importance map generation phase, based on the
TIS, TIEM fits an importance map (i.e., the perturbation mask) that interprets the spatial domain of
each frame, using extremal perturbation. This separate learning structure of TIEM allows it to over-
come the challenges of video interpretation by avoiding over-integration of the spatial and temporal
dimensions during the interpretation and by focusing on temporal dynamics more explicitly.

3.2 TEMPORAL PERTURBATION: CALCULATING TIME IMPORTANCE SCORES
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Figure 4: Conceptual illustration of the TIS calculation. The TIS of each frame ¢ is calculated by ap-
propriately integrating the importance of the windows that contains frame ¢ (i.e., the set W¥*t, Vw).
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In the TIS calculation phase, we introduce temporal perturbation to consider different temporal con-
texts. It refers to perturbing the video frame-by-frame via window masking with different window
sizes. The importance of each frame is evaluated by analyzing the importance of windows of dif-
ferent lengths containing the frame and combining them as illustrated in Fig. [ This allows us to
evaluate the importance score of each frame in the time domain, focusing on temporal dynamics that
comprehensively consider both short-term and long-term temporal contexts.

We denote a window of size w starting at frame ¢’ by a pair of (w, t'). Then, the masked video by a
window of (w,t’) is defined as

, AT , OH><W><3 1ft'<t<t/
owt = (of’t ) , where O;U’t = { ’ Tw (1)
t=1 X¢, otherwise
In the masked video O®-*', all frames in the interval from ¢ to t' + w are replaced by 07 *xWx3

which is a zero tensor whose size is given by H x W x 3, indicating a black image. To calculate the
TIS, masked videos are generated for all available different windows and inputted into the prediction
model. Then, the difference in the model response of each masked video owt' compared with the
unmasked video X is computed as

P P(X) — B (O™

= : 2
T—w+1 /
t’:;u pw,t

w,t

The difference p™- *" indicates the importance of the masked frames in O™*" for the model predic-

tion. The set of the importance of windows is given by P = {p“}L_,, where p¥ = {p! }3,“’“
considering various lengths of temporal context.

Since the length of the temporal context required for accurate interpretation may vary, we choose
valid window sizes to consider in the calculation of TIS, rather than using all window sizes. The set
of valid window sizes is given by

C ={wl|0” > o - max(0)}, 3)
where o < 1is a hyperparameter that controls the sensitivity of the filtering, 8 = (6*)1_,, and
v = tT,_i"Jrl T ’ This filtering process utilizes the total variation " in the temporal changes
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of window w in the set P, which enables more accurate interpretation of videos with relatively high
frame-to-frame variation rates. We define a set of the windows of size w containing frame ¢ by
Wt = {(w,t')|t € [t',t +w)}. Based on the importance of windows and valid window sizes, we
calculate the TIS of frame ¢ as

ZwGC E(w,t’)GWw'“ pw7t
ZwEC Z(w,f/)EWw*t 1
This TIS calculation is carried out by accumulating the importance of the valid windows. Since the
number of valid windows may differ across the frames, the TIS is divided by the number of valid

windows to scale the differences. The TIS vector across the frames is given by 1 = (I;)L_;. For ease
of presentation, we assume that after the TIS calculation, the TIS vector is normalized so that its

sum is 1 as l(ZtT:1 I¢)~. The pseudo-code of the TIS calculation is provided in the appendix.

“4)

I =

3.3 EXTREMAL PERTURBATION: GENERATING TIS-AWARE IMPORTANCE MAP

In the importance map generation phase, a TIS-aware importance map is fitted based on extremal
perturbation. We introduce an important region ratio a, which is a hyperparameter that represents
the ratio of the region preserved. The size of the important region of each frame is constrained
individually by using both a and TIS 1 together, unlike the existing methods that constrain the total
size of the region over the expanded spatio-temporal dimension using a. More specifically, a TIS-
aware importance map with the ratio a can be obtained as

M,, = arg max o.(M® X), (5)
M:||my ||y =al, T HW,vt

where || - ||; denotes the Ly norm. The TIS-aware importance map, M, restricts the region size of
each frame ¢ in the video according to the corresponding TIS-aware ratio of frame ¢, a - I;. Further-
more, to take advantage of extremal masks (Fong et al., 2019; |Li et al.,[2021), we find the smallest
TIS-aware importance map that achieves the lowest baseline bound &, based on the smallest impor-
tant region ratio a*, defined as

a* =min{a : $.(M;, ® X) > &y}. (6)

It is worth emphasizing that the extremal perturbation in equation[f]is different from those in Fong
et al.|(2019); L1 et al.| (2021)), since its importance map considering the TIS across the frames.

To solve equation [5|using typical gradient-based methods, we construct a loss function that regular-
izes the TIS-aware important region for each frame as follows:

T

M,, = arg min{\ Z [vecsort(m;) — rq, ||? — $(M @ X)}, (7)
M t=1

where ) is a hyperparameter for the region regularization and r,, is the region regularization vector

that consists of aly HW ones followed by (1 — al;) HW zeros. In equation [/} the TIS-aware area

constraint for each frame is considered individually as a regularization term, thereby independently

constraining the regions of each frame. This ensures that the important region of each frame can be

fitted focusing on the key factors without temporal concentration and temporal spillover.

4 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our proposed method, TIEM, through experiments.
First, we consider a synthetic white-box regressor based on video data, whose internal process of
how the model predicts is perfectly known. As illustrated in Fig.[2] interpreting the white-box model
allows us to clearly evaluate how well each visual explanation method performs. Furthermore, we
interpret a black-box model for real-world videos by using visual explanation methods. This al-
lows us to visually verify whether each method provides a plausible interpretation of the black-box
model for real-world videos. In the experiments, we consider the model-agnostic visual explanation
methods, EP-3D and STEP, for comparison. Both methods are based on perturbation masks as in
TIEM. EP-3D is a method that simply extends the spatial dimension to the spatio-temporal dimen-
sion, while STEP is a method that additionally considers smoothing the perturbation masks across
adjacent frames.
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4.1 WHITE-BOX REGRESSOR

We consider a simple white-box regressor whose predictions only rely on a known target subset A
of the entire pixels composed of a video. Each pixel of the video can be indicated by a tuple (¢, 1, 7),
where ¢t € {1,---,T} denotes the frame number and (¢, j) € {1,--- , H} x {1,--- , W} denote the
spatial coordinates. Therefore, the target subset .4 contains the tuples whose corresponding pixels
are used for the regressor. In a mathematical expression, for a given video X = (x;)7_,, where
x; € REXW vt the white-box regressor is defined as

FX) = > (@ig)™ ®)

(t4,5)€A

Since the output of the regressor depends only on the pixels belonging to the target subset A, the
ground truth of its visual explanation is the region composed of these pixels.

R%qressgr visqalizatjgn EP 3D STEP TIEM (Ours)
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Figure 5: The experimental results of the white-box regressor. The white regions indicate the pixels
used for the regressor, thereby being the ground truth of its visual explanation. The frame numbers
start from 0 and increase from left to right, top to bottom.

To clearly show the performance of the methods, we consider two regressors whose target subsets
change gently and dynamically across frames, respectively. The regressors are visualized in Fig. [3]
by highlighting the target subset in white. In the gentle regressor’s visualization at the top of the
figure, the white rectangle gradually moves diagonally downward. This represents a gentle video in
which the significant regions across frames change gradually in the spatial domain. In the dynamic
regressor’s visualization at the bottom of the figure, the white rectangle moves identically to the
gentle one, but in frames 7 and 8, the white regions are momentarily reversed (i.e., the outside of the
black rectangle becomes a target subset). This represents a dynamic video in which the significant
regions change rapidly or appear ephemerally across frames.

In the figure, the three images to the right side of each regressor visualization show the visual ex-
planation results for the white-box regressor by using EP-3D, STEP, and our method. For a fair
comparison, all methods are configured to highlight up to 10% of the regions (i.e., the area con-
straint of each method is set to be 10%). Ideally, the green regions should lie perfectly within the
white regions of the regression visualization.

We first investigate the results from the qualitative perspective. In the results of the gentle regressor,
the visual explanation of the three methods is quite similar, effectively identifying the consistently
moving white rectangle. On the other hand, in the results of the dynamic regressor, the visual expla-
nation of the three methods is significantly different. First, in the visual explanation of EP-3D, the
temporal concentration occurs, where the important region is overwhelmingly concentrated in the
crucial frames (i.e., frames 7 and 8). As a result, the white regions in other frames are completely
neglected. In the visual explanation of STEP, although the temporal concentration is not as severe as
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in EP-3D, the temporal spillover occurs in frames 6 and 9 as also described in Section [I.1] Finally,
TIEM identifies the white rectangles in frames 6 and 9, while EP-3D and STEP fail to do so. It also
detects, albeit minimally, the white rectangles in frames 4, 5, 9, and 10.

To quantitatively evaluate the performance of the methods, we introduce a pointing game as a metric
and apply it to the results in Fig. 5] The idea of the pointing game is to assess how well the visual
explanation identifies the important region of a video (Petsiuk et al., 2018). In the pointing game for
the white-box regressors, the accuracy of the visual explanation is quantified as

Highlighted region in .4 — Highlighted region out of .4 «

100.
Total highlighted region

Pointing Game (%) =

This metric explicitly reflects the temporal spillover, considering the highlighted region out of A. If
the highlighted region of a method perfectly lies within the white region in the regressor visualiza-
tion, its pointing game score becomes 100%. On the other hand, if none of the highlighted regions
lies within the white region, its pointing game score becomes -100%.

We provide the pointing game scores for the white-box o )
regressors in Table 2] For the gentle regressor, all three Table 2: Pointing Game for White-Box
methods achieve comparable results of about 90%, as Regressor (%)

their visual explanations are similar as shown in Fig. [5] _
For the dynamic regressor, TIEM significantly outper- Gentle Dynamic
forms the other methods, achieving nearly 100%. This  EP-3D  89.994+0.21 91.854+0.27
implies that almost every region highlighted by TIEM STEP 89.68+1.05 65.35£1.39
lies within the target subset, as shown in Fig. E} EP-3D TIEM 90.14+0.28 99.79+0.06
achieves about 91% as its highlighted regions are highly

concentrated in frames 7 and 8. STEP achieves only about 65% since it highlights the regions out of
the target subset due to the temporal spillover.

These results demonstrate that the separate learning structure of TIEM via dual perturbation qualita-
tively and quantitatively outperforms the existing methods. It effectively mitigates the two key chal-
lenges of the existing methods—temporal concentration and temporal spillover. As a result, TIEM
can be effectively applied not only to gentle videos but also to dynamic videos.

4.2 BLACK-B0OX CLASSIFIER FOR REAL-WORLD VIDEOS

The state-of-the-art models for video classification are highly complex and diverse. We here consider
an R(2+1)D model (Tran et al.|[2018), a widely used 3D-CNN architecture, as an action recognition
model to compare the interpretability of the methods. Specifically, we fine-tune the R(2+1)D-18
architecture that is pretrained on the Kinetics-400 dataset for our experiments. For comparison,
we use the UCF101-24 dataset (Soomro} 2012) which is a large-scale video dataset widely used
for video-based learning such as action recognition and video classification. It includes 101 action
classes, covering a variety of sports, exercises, and daily activities. The dataset contains a total of
13,320 video clips, each extracted from real videos collected from the internet. To focus on temporal
dynamics from the object’s movements, we customize the UCF101-24 dataset by adding videos of
swimming strokes, in which key movements of each swimming stroke appear ephemerally during
a specific frame segment. The details of the hyperparameters of the model and more experimental
results with another video classification model and other samples are provided in the appendix.

We provide a visual explanation of the methods for the action recognition model in Fig. [f] In the
figure, each video represents the sample fed into the model for prediction. We consider two video
samples of swimming strokes, “front crawl” at the top of the figure and “breaststroke” at the bot-
tom of the figure, which have different temporal dynamics. For each video, some frames show the
movement of the corresponding swimming stroke that is distinct from other types of strokes. We
call such frames signature frames and highlight them in red. Therefore, the type of swimming stroke
in the video can be recognized by its signature frames and it is difficult to distinguish the type of
swimming stroke in the video by examining only the non-signature frames that do not contain any
distinctive movement. In the front crawl video, the distinctive movement of the front crawl, where
the arms move in a crossing pattern with a leg kick, begins at frame 7. In the breaststroke video, the
distinctive movement of the breaststroke, where the body lifts for breathing, the circular arm stroke,
and the frog-like leg kick come together, appears in the segment from frame 5 to frame 9.
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Front crawl
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Figure 6: The experimental results of the black-box model for real-world videos. In the videos, the
signature frames highlighted in red contain the distinctive movements of the corresponding stroke.
The frame numbers start from 0 and increase from left to right, top to bottom.

In the figure, the three images on the right side of each video show the visual explanation results of
the video using EP-3D, STEP, and our TIEM. Each visual explanation interprets the prediction from
the action recognition model by visualizing the important region appearing as it is while the unim-
portant region is masked in black. As in the white-box regressor experiments, the area constraint of
each method is set to be 10% for fair comparison.

We first examine the results of the front crawl video. EP-3D effectively extracts the spatial informa-
tion of the swimmer from each frame. However, in a temporal aspect, its importance map appears to
focus on frames non-signature frames 0—6 rather than the signature frames (especially, frames 12—
15). This indicates that EP-3D is ineffective in extracting the temporal dynamics of the front crawl
video. STEP is more effective than EP-3D in considering the temporal dynamics and its importance
map tracks the swimmer well across the frames. However, it still fails to focus on the key temporal
region (i.e., the signature frames). In contrast, our TIEM effectively focuses on the key temporal
region, extracting the spatial information in the signature frames.

In the results of the breaststroke video, EP-3D and STEP still fail to focus on the signature frames,
and particularly they concentrate their importance map on a few specific frames. EP-3D did not ex-
tract any spatial information at all for signature frames 8 and 10. In STEP, the spatial information of
the signature frames is partially unmasked as smoothing it, but the majority of its importance map
appears outside the signature frames. On the other hand, TIEM not only extracts significant spatial
information from each frame well, but also effectively focuses on the signature frames when gener-
ating an importance map. As a result, its importance map clearly unmasks the swimmer’s movement
in the signature frames. In real-world videos, it is challenging to explicitly assess temporal concen-
tration and spillover due to the nature of the model and the ambiguity of the videos, which makes
the ground truth unclear. Nevertheless, these results demonstrate that TIEM significantly mitigates a
limitation of the existing methods in focusing their analysis on frames outside the signature frames.

To quantify how well each method considers the temporal dynamics in videos, we design a temporal
pointing game as a metric. Contrary to the pointing game in Section it focuses on the time do-
main (i.e., the signature frames of the target video) since the ground truth of the visual explanation in
real-world videos is unclear. In the temporal pointing game for the black-box classifier, the temporal
accuracy of the importance map is evaluated as

Unmasked region in the signature frames

Temporal Pointing Game (%) = x 100.

Total unmasked regions

If the unmasked region of a method perfectly belongs to the signature frames, its temporal pointing
game score becomes 100%. On the other hand, if it perfectly belongs to frames outside the signature
frames, the result becomes 0%.
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We provide the temporal pointing game scores for the
black-box classifier with two videos in Table 3l From
the results, we can see that our TIEM significantly out-
performs the other two methods in terms of consider-
ing the temporal dynamics. In particular, for the front
crawl video, TIEM achieves a result close to 100%. On EP-3D  47.57+5.38 24.52+1.38
the other hand, EP-3D achieves the result of around STEP  55.3249.92 32.53£1.98
47%, while STEP is superior to EP-3D by about 8% TIEM  98.73+0.17  65.22+0.34
due to its tendency to continuously detect objects. It

is difficult to say that EP-3D and STEP examine the temporal dynamics well, considering that the
signature frames account for 56.25% of the video. For the breaststroke video, the temporal pointing
game scores of all methods decrease compared with those for the front crawl video due to the shorter
segment of the signature frames. TIEM achieves a score of about 65%, which is quite larger than the
given ratio of the signature frames to the video of 37.5%, while EP-3D and STEP achieve scores of
about 24-32%. This shows that EP-3D and STEP do not effectively consider temporal dynamics in
their visual explanation.

Table 3: Temporal Pointing Game for
Black-Box Classifier (%)

Front crawl Breaststroke

These results demonstrate that TIEM outperforms the existing model-agnostic perturbation-based
methods in terms of interpreting the black-box model for real-world videos. In particular, TIEM
effectively identifies the signature frames compared with the existing methods, focusing on the tem-
poral dynamics of videos by its dual perturbation process. This shows that TIEM can be used for
real-world applications, where an action is presented ephemerally.

4.3 DISCUSSIONS

The proposed method, TIEM, can effectively interpret video predictions via its temporal dynamics-
focused dual perturbation. The experimental results demonstrate this strength, but TIEM can still be
enhanced in a variety of aspects. In particular, we observe a few limitations of TIEM in the results.

The process for calculating the TIS can be improved and more sophisticated. In TIEM, the average
importance of the windows to which a frame belongs is considered as the TIS of the frame as
described in equation 4] This is a simple and effective way to represent the temporal importance of
each frame, but it makes limited use of the given windows. For example, an insignificant frame may
be overestimated if the frame is included in a long window containing significant frames as in frame
1 of the breaststroke video in Fig.[6] (The detailed analysis of the TIS is provided in the appendix.)
To avoid this, a more powerful temporal explanation of frames can be synthesized by considering
more complex connections between frames through the interaction of multiple windows.

The TIS-aware importance map can be generated more precisely. TIEM fits the importance map
using the TIS of each frame. This effectively considers the temporal information across frames, but
it does not address spatial information appearing across frames continuously as shown in Fig. [6] As
a result, TIEM focuses well on the signature frames, but often extracts spatial information that is
discontinuous across the frames. Therefore, if we extend its importance map generation process to
exploit the spatial information of adjacent frames together, such as STEP, a more complete spatio-
temporal perturbation mask can be obtained.

5 CONCLUSION

In this paper, we have studied model-agnostic visual explanations for videos via perturbation. We
have first examined the key challenges of the existing methods—specifically, temporal concentra-
tion and temporal spillover—which are especially prevalent in dynamic videos. To address these is-
sues, we proposed a novel method called TIEM, which utilizes a dual perturbation strategy focused
on temporal dynamics. This method incorporates temporal perturbation to evaluate the TIS across
frames in a video and extremal perturbation to generate a TIS-aware importance map for the video.
The dual perturbation strategy enables TIEM to effectively capture the temporal dynamics within a
video by explicitly exploiting the TIS of a video when fitting the importance map for the video. Our
experiments with synthetic and real-world videos demonstrated that TIEM outperforms the existing
methods. In particular, it is clearly shown that the concept of dual perturbation in TIEM mitigates
the key challenges of the existing methods.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A survey on explainable
artificial intelligence (XAI). IEEE Access, 6:52138-52160, 2018.

Julius Adebayo, Justin Gilmer, Michael Muelly, lan Goodfellow, Moritz Hardt, and Been Kim. San-
ity checks for saliency maps. Advances in Neural Information Processing Systems, 31, 2018.

Gulsum Alicioglu and Bo Sun. A survey of visual analytics for explainable artificial intelligence
methods. Computers & Graphics, 102:502-520, 2022.

Zarlish Ashfaq, Rafia Mumtaz, Abdur Rafay, Syed Mohammad Hassan Zaidi, Hadia Saleem,
Sadaf Mumtaz, Adnan Shahid, Eli De Poorter, and Ingrid Moerman. Embedded Al-based digi-
healthcare. Applied Sciences, 12(1):519, 2022.

Sarah Adel Bargal, Andrea Zunino, Donghyun Kim, Jianming Zhang, Vittorio Murino, and Stan
Sclaroff. Excitation backprop for RNNs. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1440-1449, 2018.

Vanessa Buhrmester, David Miinch, and Michael Arens. Analysis of explainers of black box deep
neural networks for computer vision: A survey. Machine Learning and Knowledge Extraction, 3
(4):966-989, 2021.

Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-
CAM++: Generalized gradient-based visual explanations for deep convolutional networks. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),
pp- 839-847, 2018.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 248-255, 2009.

Ruth Fong, Mandela Patrick, and Andrea Vedaldi. Understanding deep networks via extremal per-
turbations and smooth masks. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCVW), pp. 2950-2958, 2019.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino
Pedreschi. A survey of methods for explaining black box models. ACM Computing Surveys
(CSUR), 51(5):1-42, 2018.

Thomas Hartley, Kirill Sidorov, Christopher Willis, and David Marshall. SWAG-V: Explanations for
video using superpixels weighted by average gradients. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), pp. 604-613, 2022.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436-444,
2015.

Zhengiang Li, Weimin Wang, Zuoyue Li, Yifei Huang, and Yoichi Sato. Towards visually explain-
ing video understanding networks with perturbation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), pp. 1120-1129, 2021.

Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: Randomized input sampling for explanation of
black-box models. arXiv preprint arXiv:1806.07421, 2018.

Wojciech Samek and Klaus-Robert Miiller. Towards explainable artificial intelligence. Explainable
Al: Interpreting, Explaining and Visualizing Deep Learning, pp. 5-22, 2019.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-CAM: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCVW),
pp- 618-626, 2017.

K Soomro. UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402, 2012.

11



Under review as a conference paper at ICLR 2025

Alexandros Stergiou, Georgios Kapidis, Grigorios Kalliatakis, Christos Chrysoulas, Ronald Poppe,
and Remco Veltkamp. Class feature pyramids for video explanation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 42554264,
2019a.

Alexandros Stergiou, Georgios Kapidis, Grigorios Kalliatakis, Christos Chrysoulas, Remco
Veltkamp, and Ronald Poppe. Saliency Tubes: Visual explanations for spatio-temporal convo-
lutions. In Proceedings of the IEEE International Conference on Image Processing (ICIP), pp.
1830-1834, 2019b.

Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri. A closer
look at spatiotemporal convolutions for action recognition. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition (CVPR), pp. 6450-6459, 2018.

Tomoki Uchiyama, Naoya Sogi, Koichiro Niinuma, and Kazuhiro Fukui. Visually explaining 3D-
CNN predictions for video classification with an adaptive occlusion sensitivity analysis. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp.
1513-1522, 2023.

Fuxun Yu, Zhuwei Qin, Chenchen Liu, Di Wang, and Xiang Chen. REIN the RobuTS: Robust DNN-
based image recognition in autonomous driving systems. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 40(6):1258-1271, 2020.

Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. Temporal relational reasoning in
videos. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 803-818,
2018.

12



Under review as a conference paper at ICLR 2025

A PSEUDOCODE OF TIS CALCULATION

The pseudocode of the TIS calculation with temporal perturbation is presented in Algorithm|[I}

Algorithm 1 Calculate Time Importance Score

Input: Original input X = {x;}7_,, x; € R"*W Model &,, Threshold ratio o
Output: TIS 1
Initialize an empty array O, P,C, 0,1, A = (\)L,
A 0"
forw=1to T do
fort=1to7T —w+1do
owt + X
for ¢/ —tt0t+wd0
Ot’ (7 0H><W><3
end for
pw,t — @C(X) _ @c(ow,t)
end for
p* = p"/sum(p")
: end for

: forw=1to7T do
eu, _ T—w+1
= 2ut=1

A A ol e

— = = =
AN

dp®t
dt

_.
a

: end for
C={w] 0" >a max(0)}
: for win C do
for i = 1 to len(p™) do
for t/ =itoi+wdo
ly+ =p™t
A+ =1
end for
end for
: end for

P 1= (3) /sum ()

Ol N R R N N N S e el
NN HEPD 2o 0 0

B DETAILS OF EXPERIMENTAL SETUP

Table 4: R(2+1)D-18 Model parameter

Type In/Out Kernel

Conv3d (3,16, 128, 128)/(64,16,64,64) (1 x 7 x7)
BatchNorm3d (64, 16 64, 64) -

ReLU (64,16, 64, 64) -

MaxPool3d (64,16,64,64)/(64,16,32,32) (1 x 3 x 3)
2xRQ+DD Block  (64,16,32,32)/(64,16,32,32) (1 x3x3),(3x1x1)
2 xRQ2+1)D Block  (64,16,32,32)/(128,8,16,16) (1 x3x3),(3x 1 x 1)
2xRQ+DD Block  (128,8,16,16)/(256, 4 8,8) (1x3x3),(3x1x1)
2xR+1)DBlock (256, 4, 8,8)/(512, 2, 4, 4) (1x3x3),3x1x1)
AdaptiveAvgPool3d (512, 2,4 4)/(512,1,1,1) -

FCI (512)/(400) -

FC2 (400)/(128) -

FC3 (128)/(28) -

In this section, we provide a more detailed explanation of the video prediction model architecture
and the hyperparameters used for training, which were not sufficiently covered in the experimental
setup described in Section [#.2] and Appendix [C] First, for the R(2+1)D model included in the main
paper, the model was constructed in the PyTorch environment as shown in Table |4} and we utilized
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a pretrained model on the Kinetics-400 dataset for transfer learning. The model was trained using
the Adam optimizer with a learning rate of le-3 for 50 epochs. The trained model achieved 100%
accuracy on video classification within the dataset split into 70% for training, 9% for testing, and
21% for validation.

Table 5: ResNet-50 LSTM Model Parameters

Type In/Out Kernel
Convad (3,128,128)/(64,64,64) 7 x7
BatchNorm2d (64,64,64) -
ReLU (64, 64, 64) -
MaxPool2d (64,64,64)/(64,32,32) 3 x3
ResNet Layer3 (512,16,16)/(1024,8,8) -
ResNet Layer4 (1024,8,8)/(2048,4,4) -
AdaptiveAvgPool2d  (2048,4,4)/(2048,1,1) -
FC1 (2048)/(1024) -
FC2 (1024)/(512) -
LSTM (512)/(256) -
FC3 (256)/(28) -

In Appendix [D| additional interpretation experiments were conducted using the ResNet50-LSTM
(R50LSTM) model to demonstrate the model-agnostic characteristic of the proposed TIEM method.
The parameters of the trained model are shown in Table [5] The model was structured so that the
final FC2 layer of the ResNet50 model, which receives a single frame as input, was connected to
the input of the LSTM model at each timestep. This model was also constructed within the PyTorch
environment, and we utilized a pretrained model on the ImageNet dataset (Deng et al., 2009) for
transfer learning. The Adam optimizer was used for training with a learning rate of 5e-5 over 100
epochs. Since the main objective of this experiment was not to improve model performance but to
evaluate the proposed visual explanation method, hyperparameters were fine-tuned for this purpose.
The model achieved relatively high classification accuracies of 92.8% on the validation dataset and
95.2% on the test dataset, using the same dataset split as in the previous experiment.

C TIS ANALYSIS OF EXPERIMENTAL RESULTS IN SECTION

In this section, we provide an analysis of the TIS utilized in the calculation of the importance maps
using the TIEM for the “front crawl” and “breaststroke” videos, as discussed in Section 4.2}

In Fig.[/|and Fig. |8} we provide the TIS of each frame and the importance of each window size in
two videos calculated by TIEM. In Section .2] when analyzing the overall results by focusing on
the signature frames that were crucial in the temporal sequence of each video, it is evident that the
TIEM method effectively detects the key temporal regions of the video. The results are based on the
calculated TIS for each video, which can be seen in Fig. [7a]and Fig. [Sal

In Fig. when examining the importance of front crawl video across different window sizes rang-
ing from w = 1 to w = 4, which captures relatively short-term temporal context, the early part of
the video is highlighted as important. Following this, as longer-term temporal context is considered,
we observe an increase in importance for the later part of the video. This indicates that analysis re-
sults may vary depending on the extent to which temporal context between frames is accounted for,
illustrating that relying on the temporal context of a single frame to calculate temporal importance
can hinder accurate analysis of the overall video’s impact on the prediction model.

Furthermore, the window size that recorded the highest peak among all windows is w = 5. Att = 8
of w = b, the TIS recorded a score close to 1, where the window masks the video frames 8-13. This
nearly coves the key temporal region of the signature frame, excluding just one frame on each side.
This result indicates that the key temporal region is almost perfectly identified by TIS.

Fig.[7a]is computed based on the importance of each window size from Fig. In this experiment,
a was set to 0.8, and the TIS was calculated using the valid window sizes C = {5,6, 7}.
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Figure 7: TIS analysis results of the front crawl video. In the temporal importance results, the win-
dow numbers start from 1 and increase from left to right, top to bottom.
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Figure 8: TIS analysis results of the breaststroke video. In the temporal importance results, the
window numbers start from 1 and increase from left to right, top to bottom.
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Next, in the case of Fig.[8b] unlike Fig.[7b] most of the importances were concentrated in the middle
section of the video across the different window sizes, showing consistent behavior. The highest
peaks were observed for w = 6 and w = 8, which regions also recorded high scores at smaller
window sizes. At w = 6, the peak occurs at t = 5, and at w = 8§, the peak occurs at t = 3, with
frames 5-11 and frames 3-11 being masked, respectively. Both regions include the key region of
signature frames from 5 to 10. The TIS for Fig. [8a was calculated using the same o = 0.8 as the
previous video, and the valid window size was C = {6, 8}.

Through the TIS analysis of the two preceding videos, we confirmed that different window sizes
may need to be considered for accurate temporal context analysis of the videos, and we can observe
the calculation process of TIS, which successfully identifies the key temporal regions.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we additionally present the interpretation results of the RSOLSTM model, as dis-
cussed in Appendix

Video EP 3D STEP TIEM (Ours)

==

Figure 9: The experimental results of the black-box model for the floor gymnastics video. In the
videos, the signature frames highlighted in red contain the distinctive movements of the correspond-
ing stroke. The frame numbers start from 0 and increase from left to right, top to bottom.

Floor gymnastics

In Fig. 0] we provide a visual explanation of the methods using the RSOLSTM model with CNN-
LSTM structure, to demonstrate the model-agnostic characteristic of TIEM. In contrast, Section
employed the R(2+1)D model with a 3D-CNN structure. The video shown in the figure depicts
a “floor gymnastics” action, and as in previous experiments, we highlight the frames where the
gymnastics occur in red, assigning them as signature frames, while frames before and after, where
the athlete is standing, are assigned as non-signature frames.

Analyzing the interpretation results of each method, all three methods exhibit the same patterns ob-
served in the previous experiments with the R(2+1)D model. First, in the case of EP-3D, although
the method effectively extracted the spatial information of the gymnast in each frame, it highlighted
non-signature frames 1-3 and 14 from a temporal aspect. Even within the signature frames, it de-
tected the gymnast in a discontinuous form rather than continuously emphasizing the appearance of
a gymnast.

In the case of STEP, it detected the gymnast more continuously within the signature frames com-
pared to EP-3D. However, this method also highlighted the non-signature frames 1-3. Both tech-
niques, similar to previous experiments, sporadically identified the spatial information of each frame
but failed to locate the key temporal regions. In contrast, TIEM effectively focused on the key tem-
poral regions, and the spatial information captured in each frame was connected continuously.

Table 6: Temporal Pointing Game for Black-Box Classifier (%)

Floor gymnastics

EP-3D 62.54£9.76
STEP 57.42+4.68
TIEM 99.89+0.25
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The fact that TIEM focused on key temporal regions more effectively than the other methods is also
evident in Table [6] which is calculated using the same formula as Table 3] While EP-3D recorded
a score in the 60% range and STEP achieved a score of 57%, TIEM showed results close to 100%.
This suggests that TIEM reflects temporal dynamics more effectively than the other two methods,
successfully focusing on the signature frames.
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Figure 10: TIS analysis results of the floor gymnastics video. In the temporal importance results, the
window numbers start from 1 and increase from left to right, top to bottom.

Fig. [I0] visualizes the TIS and importance of each window size, calculated by using TIEM in the
additional experiment. First, in Fig. for the cases of w = 1 and w = 2, which consider relatively
short-term temporal context, we can observe that frame 5, located at the beginning of the signature
region, was identified as an important frame. As w increases, the latter part of the signature region
becomes more influential, with frames 8-12 being identified as the most influential when w = 4. As
w continues to grow, considering long-term dependencies, when the signature region is either absent
or only slightly included, frames from the non-signature region, especially in the earlier parts, are
found to have a greater impact on the model’s prediction.

Based on these window-specific TIS values, Fig. [[0a] was computed with @« = 0.6 and C =
{1,2,3,4,5,6,7,8}. As a result, it can be observed that the TIS of the videos was analyzed us-
ing a small window size that considers a relatively short-term temporal context.
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