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ABSTRACT

Recently within Spiking Neural Networks, a method called Twin Network Aug-
mentation (TNA) has been introduced. This technique claims to improve the val-
idation accuracy of a Spiking Neural Network simply by training two networks
in conjunction and matching the logits via the Mean Squared Error loss. In this
paper, we validate the viability of this method on a wide range of popular Convolu-
tional Neural Network (CNN) benchmarks and compare this approach to existing
Knowledge Distillation schemes. Next, we conduct an in-depth study of the dif-
ferent components that make up TNA and determine that its effectiveness is not
solely situated in an increase of trainable parameters, but rather the effect of the
training methodology. Finally, we analyse the representations learned by networks
trained with TNA and highlight their superiority in a number of tasks, thus proving
empirically the applicability of Twin Network Augmentation on CNN models.

1 INTRODUCTION

Training a neural network typically follows a standard setup where it is optimized via an objective
function to align the predictions for a set of inputs to a corresponding set of targets. During this
procedure, the internal layers of the neural network learn to encode informative features that assist
in the accurate prediction of the target labels. To further increase the quality and usefulness of those
internal features, different approaches exist such as regularization to prevent overfitting (Ng, 2004;
Hinton, 2012), and data augmentation (Cubuk et al., 2019; 2020) to increase input variety.

Beyond aiding in classification, the learned features of the model can have numerous other uses.
For example, it has been demonstrated that internal features can be used to cluster and retrieve
semantically similar inputs (Babenko et al., 2014), accelerate the training of smaller models via
Knowledge Distillation (KD) (Hinton et al., 2015) or Deep Mutual Learning (DML) (Zhang et al.,
2018), or even allow the same model to generalize on a different dataset (Weiss et al., 2016). These
show the importance of learning strong, usable features, which we also explore in this work.

Recently, Deckers et al. (2024) introduced a method called Twin Network Augmentation (TNA)
which involves optimizing two Spiking Neural Networks (SNNs) concurrently on a classification
task and aligning their logits during training via an additional Mean Squared Error (MSE) loss
term, which results in greatly improved single network test accuracy. While this approach has been
shown successfully in the context of SNNs, it has however not been proven that this methodology is
applicable across other non-spiking types of neural networks and other different model architectures
of machine learning in general.

To this end, we explore the effects of this approach on standard Artificial Neural Networkss (ANNs),
and more specifically, on a range of benchmark CNN models. Worth-noting is that different from
the stateless neuron models that compose standard ANNs; typically characterized by weights, bi-
ases and an activation function, such as the ReLU, a spiking neuron integrates its inputs over time
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and generates binary events depending on its weights, biases and neuronal thresholds. As this is
a substantial difference, and considering the wide usage of standard ANNs, we strive to determine
whether TNA is a valid training strategy for CNNs.

Our contributions are the following.

1. We show the applicability of the recently introduced Twin Network Augmentation
(TNA) (Deckers et al., 2024) on Convolutional Neural Networks (CNNs).

2. We corroborate on the superiority of L2 matching the logits w.r.t. using Kullback-Leibler
(KL) Divergence on the probabilities (Kim et al., 2021) in the Online KD setting.

3. We demonstrate that the increased effectiveness of TNA cannot naively be reduced to an in-
crease in trainable parameters, but rather is related to both network reinforcing each other’s
predictions, meaning the whole is greater than the sum of its parts.

4. Via an in-depth analysis, we determine that the features learned via TNA exhibit greater
predictive capabilities at most levels and show a greater robustness to data corruptions.

The rest of the paper is structured as follows. In section 2 we highlight related methods and ap-
proaches. In section 3 we reintroduce Twin Network Augmentation (TNA). Via experiments, we
show the impact of applying TNA in section 4, and we conclude this work in section 5.

2 RELATED WORK

2.1 KNOWLEDGE DISTILLATION

Pretrained Teacher. Knowledge Distillation (KD) aims to exploit the learned features within a
fully trained neural network (a ’teacher network’) to accelerate, and improve the training process
of a secondary network (a ’student network’). A typical approach uses a combination of a task-
specific loss such as the Cross-Entropy loss for classification, and a distillation loss which allows
the student to learn from the teacher. The foundational approach (Hinton et al., 2015) introduces
the notion of soft targets, which are the output probabilities of a teacher network given an input,
and argue that these soft targets provide more nuanced views of the input compared to hard targets,
namely ground-truth labels. They introduce a distillation loss based on the Kullback-Leibler (KL)
Divergence (Kullback & Leibler, 1951) such that the student model learns to mimic the probability
distribution of the teacher model. Kim et al. (2021) studies the effect of the temperature parameter
τ in the KL divergence and finds that a high τ is equivalent to logit matching, while a τ close to 0 is
equivalent to label matching. They furthermore derive a relationship between KL divergence with
a large τ and the MSE loss on the logits. A secondary approach (Romero et al., 2015), proposed to
match hidden activations, thus allowing the student network to learn similar features to the teacher
network. A generalization of the previous approaches is Relational KD (Park et al., 2019). Rather
than matching the knowledge extracted from single samples, instead relations between the knowl-
edge of multiple samples is matched. This can be done in a distance-based manner (second-order
matching) or in an angle-based manner (third-order matching). Another approach that has shown
promise is self-distillation (Zhang et al., 2019), in rather than viewing a model as a monolith, it is
instead considered as a stack of submodels, where each submodule feeds in one another. Self disit-
illation then uses the submodels as students and the full model as teacher. Then, the submodels are
updated concurrently with a mix of KD losses, while the full model is training.

Online Knowledge Distillation and Deep Mutual Learning. Rather than using a fixed pretrained
teacher network, Online Knowledge Distillation (Guo et al., 2020) allows for the teacher model to
evolve during its operation. This is useful in cases where the data distribution changes throughout
time, and allows the teacher to include the new data distribution within its learned features. Deep
Mutual Learning (DML) (Zhang et al., 2018) goes a step further, rather than using a teacher network,
instead a set of student networks – called a cohort – are trained concurrently. Typically each student
model is trained on hard targets via the cross entropy loss and additionally, on soft targets using the
KL Divergence Loss.

Comparison with TNA.While DML is the field that lies the closest to TNA, the key difference is
that TNA works directly on the logits of the model, rather than the SoftMax probabilities. This al-
lows us to use a different loss function, namely the MSE Loss, compared to the KL Divergence Loss,
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Figure 1: A comparison of TNA to different related approaches. Note that Ensembling employs
both models during inference and KD relies on a frozen pretrained network during training. TNA
focuses on matching logits, while DML and KD focus on matching probabilities.

which is only applicable on probability distributions. We state that the MSE-based logit matching
allows for a more direct comparison and therefore leads to better generalized latent representations.
See fig. 1 for a visual comparison.

2.2 SIAMESE NETWORKS AND CONTRASTIVE LEARNING

Siamese networks (Chicco, 2021) consist of two (or more) identical neural networks that are trained
concurrently. Different from TNA, these networks are trained in a contrastive fashion, with a loss
such as the Triplet Loss (Schultz & Joachims, 2003), and each weight update is applied on all the
networks involved, thus all networks have always identical weights. In contrast, TNA starts with
differently initialized networks, employs a cross-entropy loss to learn for classification, and has
separate weight updates per network.

2.3 ENSEMBLING AND MIXTURE OF EXPERTS

Ensembling (Ju et al., 2018) is a technique which aggregates the predictions of multiple fully trained
networks, either via a voting system or via averaging the individual logits. By ensembling, it is pos-
sible to produce a classifier that outperforms an individual model, at the cost of additional parameters
during inference. Mixture of Experts (MoE) (Jacobs et al., 1991) is similar in this regard, but rather
than having classifiers that can recognize all classes, instead the involved models are specialised in a
limited number of classes. The MoE structure includes a routing mechanism to efficiently determine
to which experts a specific input should be fed to. In contrast, TNA also involves multiple models
that are trained, however while in Ensembling and MoE these models are trained individually, in
TNA these models are trained in an entangled manner. Additionally, during inference, we only use a
single model, different to the previously-mentioned methods, which leads to reduced inference costs
when compared to those methods.

3 METHODOLOGY

3.1 TWIN NETWORK AUGMENTATION

Contrastive Learning is a technique that employs augmented views of the same datapoint to learn co-
hesive usable representations. This is done by employing two distinct transformation functions and
feeding both through an encoder network which computes representations. The two representations
are transformed via a projection head onto a different space, on which the contrastive loss is applied
with the aim of steering feature similarity. After training, then the projection head is discarded.
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We hypothesise that a similar process can be exploited using different (partially) trained neural
networks. Rather than generating different views of a datapoint via augmentations, we can feed the
same sample through different networks. As both networks have different weights, the views they
provide are different from one another. Additionally, if we assume that both networks are similarly
trained, i.e., have a similar validation accuracy, then those views should be of similar quality.

We use this concept to reintroduce Twin Network Augmentation (TNA) from a representation learn-
ing perspective. TNA is a training paradigm that trains multiple networks in parallel with the goal
of improving the accuracy of the base network. To achieve this, in conjunction with the standard
Cross-Entropy losses on each model, an additional Mean Squared Error loss is applied on the logits
of both networks. The goal of this term is to force the outputs of the networks to grow closer and
incorporate the information of the multiple views of the datapoint in the training process. Having
multiple views of the same input allows the model to learn more robust features and reduces the risk
of overfitting on certain data points.

Formally, TNA is defined as follows. Given two networks, a base network FA and a twin network
FB with weights ΘA and ΘB respectively, we define the output logits of FA given an input I as
FA(I) = oA. This leads us to the following definition of the TNA training procedure.

LTNA = LA
CE︸︷︷︸

Base Loss

+ LB
CE︸︷︷︸

Twin Loss

+α · ||oA − oB||22︸ ︷︷ ︸
Logit Matching Loss

(1)

During inference, we can discard the twin network FB, thus only using the base network FA to
make predictions. This means that no additional overhead is incurred when making predictions. An
additional option would be to ensemble both models for a minor performance gain at the cost of a
longer inference time.

3.2 COMPARISON WITH MUTUAL LEARNING

The loss of network FA trained with Deep Mutual Learning (DML) (Zhang et al., 2018) on a dataset
with M classes and N samples can be defined as follows:

LA
ML = LA

CE +DKL(pB ||pA) (2)

with DKL(pB ||pA) the Kullback-Leibler (KL) Divergence as defined below.

DKL(pB ||pA) =
N∑
i=1

M∑
j=1

pjB(xi)log
pmB (xi)

pmA (xi)
(3)

with pmA (xi) the probability of class m for network FA given a sample xi; computed via SoftMax

pmA (xi) =
exp(oA

m)∑M
m=1 exp(oA

m)
(4)

Different to DML, we do not aim to match probability distributions, but rather the logits. We argue
that matching a probability distribution, which is generated by applying SoftMax on the logits,
discards useful information due to the rescaling properties of SoftMax. We base ourselves on the
work by Kim et al. (2021) that shows that minimizing KL divergence loss with a temperature τ → ∞
is equivalent to minimizing MSE loss with an additional constant. By following the assumption that
the teacher’s logit mean is 0, this constant forces the student logit mean to diverge from zero. The
authors also prove this empirically.

3.3 EXPERIMENTAL SETUP

We apply the TNA methodology on different baselines from the Computer Vision domain, specif-
ically focusing on CNNs. We use a simple ConvNet, a ResNet-18 (He et al., 2016), and a Mo-
bileNetv2 (Sandler et al., 2018) on datasets such CIFAR-10 and CIFAR-100 (Krizhevsky et al.,
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Table 1: Results of applying TNA on the different dataset network combinations.

Network Dataset Single Train TNA Gain

ConvNet CIFAR-10 86.84 ± 0.14% 87.07 ± 0.31% +0.23%
ResNet-18 CIFAR-10 95.06 ± 0.05% 95.38 ± 0.18% +0.32%
MobileNetv2 CIFAR-10 93.94 ± 0.22% 94.56 ± 0.32% +0.62%

ConvNet CIFAR-100 61.14 ± 0.37% 61.83 ± 0.36% +0.69%
ResNet-18 CIFAR-100 77.66 ± 0.28% 79.00 ± 0.35% +1.34%
MobileNetv2 CIFAR-100 76.17 ± 0.15% 79.50 ± 0.27% +3.33%

ConvNet TinyImageNet 37.75 ± 0.23% 38.12 ± 0.41% +0.37%
ResNet-18 TinyImageNet 59.33 ± 0.57% 64.84 ± 0.56% +5.51%
MobileNetv2 TinyImageNet 60.10 ± 0.20% 65.11 ± 0.09% +5.01%

ResNet-50 ImageNet 76.61 ± 0.07% 77.65 ± 0.01% +1.04%
ViT-S/16 ImageNet 69.83 ± 0.12% 71.76 ± 0.35% +1.97%

Table 2: The performance of TNA compared to DML.

Network Dataset lr Single Train TNA DML

MobileNet-v2 CIFAR-100 0.1 74.74 ± 0.16% 77.78 ± 0.15% 1.66 ± 1.15%
MobileNet-v2 CIFAR-100 0.05 76.17 ± 0.15% 79.50 ± 0.27% 78.08 ± 0.34%

ResNet-18 TinyImageNet 0.1 59.33 ± 0.57% 64.84 ± 0.56% 0.05 ± 0.00%
ResNet-18 TinyImageNet 0.05 57.79 ± 0.20% 64.34 ± 0.29% 62.98 ± 0.44%

2009), and TinyImageNet (Le & Yang, 2015). More complex scenarios are considered with ResNet-
50 (He et al., 2016), and ViT-S/16 (Beyer et al., 2022) on ImageNet (Deng et al., 2009). The full
training configurations, as well as the architecture of the ConvNet are listed in the appendix. For
each configuration, we apply Stochastic Gradient Descent, and use Cosine Learning Rate annealing
during the training process. To ensure that our observations are representative of the trends, each
experiment is repeated over three random runs.

4 EXPERIMENTS

4.1 TWIN NETWORK AUGMENTATION

By applying the Twin Network Augmentation methodology on different baselines, we notice a con-
sistent increase in accuracy w.r.t. training a single network in table 1, thus showing that application
of TNA is valid. However, for the ConvNet architecture, this increase is not alwas statistically sig-
nificant. We link this to the limited capacity of the network, and hypothesize that this limits feature
space exploration, and as such the performance of TNA. As DML follows a similar methodology, we
compare with that approach in table 2. We notice that while networks trained with DML also signif-
icantly outperforms the single trained network, applying TNA results in an additional performance
gain. It should be noted that in order for DML to converge to a good solution, we had to tweak the
learning rate. In the case of MobileNet-v2 + CIFAR-100 this tweaking also had a positive effect
on the other settings, while in the case of ResNet-18 + TinyImageNet, this negatively affects the
baseline. This shows additionally that TNA is more robust to different values of hyperparameters.
Next we strive to understand why this methodology improves validation accuracy.

4.2 TNA AND NETWORK CAPACITY.

One hypothesis for the increased performance of networks trained with TNA is that the effective
capacity of the base network is artificially increased by virtue of the Logit Matching Loss. The
reasoning behind this is that when two randomly initialized neural networks are trained separately,
they converge to different solutions, encoding different features. By adding the Logit Matching
Loss, the output of both networks is constrained to be similar, i.e., both networks will converge to
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Table 3: Ensembling of differently trained
ResNet-18 models on TinyImageNet. * in-
dicates networks trained with lr=0.05 rather
than lr=0.1.

No Ensemble Ensemble

Single 59.36 ± 0.57% 63.79 ± 0.26%
TNA 64.84 ± 0.56% 66.56 ± 0.24%

DML* 62.98 ± 0.44% 65.04 ± 0.03%

Table 4: Wide ResNet-18 performance with dif-
ferent width multipliers compared to a ResNet-18
trained with TNA on different datasets.

Width

Dataset 1× 2× 4× TNA

CIFAR100 77.56% 79.12% 79.22% 79.00%
TinyImageNet 59.08% 60.51% 60.90% 64.65%

a closely similar solution, but by using different initializations, both networks will explore different
paths in the feature space. These different paths provide positive reinforcement for each other and
lead to a general increase in performance.

To test this hypothesis, we conduct three tests. First, we compare TNA with a naive method to im-
prove the capacity of a neural network, namely by training a single network with a modified width
(number of filters of a network), thus leading to the same or higher number of trainable parame-
ters. Second, we compare TNA with ensembling of regularly trained models, which is a technique
that increases the capacity of a model during inference by averaging predictions of different mod-
els. Third, we conduct a progressive reinitialization test, starting from an identical twin and base
network, to determine the impact of twin initialization on the TNA algorithm.

Comparison with wider networks. In table 4, we compare the performance of ResNet-18 with
TNA to the training of different variants of single WideResNet-18 models. These are variations of
ResNet-18 with different capacities, obtained by multiplying the number of filters in each layer by
a specific factor. In this experiment we choose the multipliers w ∈ {1, 2, 4}, with w=1 equivalent
to ResNet-18. In the case of CIFAR-100, the validation accuracy of the wider networks and the
version with TNA lie well within a standard deviation in both directions, showing no difference
of significance. In the case of TinyImageNet, the difference is much more pronounced, with TNA
significantly outperforming the wider networks. This shows that the gain of TNA lies not only in a
simple increase of the trainable parameters.

Comparison with model ensembling. Next, we study a more advanced approach of increasing the
model capacity via model ensembling. We focus on logit averaging, which averages the outputs of
a set of trained networks to get a single output. In the case of k = 2 models, this involves double the
computational resources during both training and inference compared to training a single network.
As such, it has a similar computational cost during training as the TNA technique, but double the
inference cost. In table 3, we compare the performance of differently trained ResNet-18 models
with that of an ensemble of two ResNet-18 models. We notice that TNA outperforms the ensemble
of two standard ResNet-18s, which shows the additional efficiency that is encoded within the single
network. Remarkably, even though the objective of TNA is to minimize the distance between logits
of the base and the twin network, we still achieve a substantial accuracy increase when ensembling
the base and the twin network with logit averaging. This suggests that our hypothesis that the twin
architecture exploring multiple solutions in the feature space might be correct.

Progressive Reinitialization. A straight-forward assumption to make about TNA is that both net-
works need to be initialized differently. Of course, if both networks are totally similar at initializa-
tion, each network will produce the same logits given the same input and as such, the matching loss
will be zero. However, to determine exactly how different the networks need to be for TNA to yield
a noticeable increase in validation accuracy, we attempted TNA with a twin network that was only
initialized differently in one layer. We noticed that no matter which layer we initialized differently,
this had no significant impact on the validation accuracy, thus showing that initialization of the twin
network doesn’t matter for the performance of TNA.

4.3 FEATURES LEARNED BY TNA

Next we want to assess the quality of the features learned by TNA. In the previous section, we
discussed that application of TNA can lead to increased validation accuracy on several benchmarks,
but this still leaves a number of questions unanswered, such as: (1) How different are the learned
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Table 5: Feature Similarity between ResNet-18 models trained on TinyImageNet with different
approaches, measured with CKA. Both base and twin networks are trained concurrently with TNA,
while DML A and DML B are trained concurrently with DML.

Single vs Single TNA vs Single Base vs Twin DML A vs DML B

Block 1 0.5201 ± 0.3226 0.7860 ± 0.2863 0.9798 ± 0.0132 0.9554 ± 0.0231
Block 2 0.8758 ± 0.0597 0.9262 ± 0.0714 0.9660 ± 0.0209 0.9693 ± 0.0100
Block 3 0.9292 ± 0.0251 0.9541 ± 0.0169 0.9770 ± 0.0147 0.9821 ± 0.0044
Block 4 0.8651 ± 0.0260 0.8496 ± 0.0650 0.9749 ± 0.0015 0.9384 ± 0.0102
Block 5 0.9493 ± 0.0058 0.9427 ± 0.0158 0.9823 ± 0.0007 0.9774 ± 0.0002
Block 6 0.8752 ± 0.0327 0.8527 ± 0.0426 0.9442 ± 0.0026 0.9208 ± 0.0024
Block 7 0.8746 ± 0.0056 0.8664 ± 0.0095 0.9349 ± 0.0010 0.9128 ± 0.0024
Block 8 0.6683 ± 0.0016 0.6392 ± 0.0029 0.8132 ± 0.0023 0.7935 ± 0.0020
FC 0.8556 ± 0.0009 0.8630 ± 0.0026 0.9714 ± 0.0001 0.9268 ± 0.0002
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Figure 2: Validation accuracy of linear probes
inserted at different points in a ResNet-18 trained
on TinyImageNet.
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Figure 3: Convergence behaviour of ResNet
models at different sizes while training on Tiny-
ImageNet.

features from those encoded in single trained networks? (2) Are only the deeper-level features better,
or is there a distinction already in the shallow-level features? (3) How much difference between the
twin and base initialization is required for TNA to work?

Feature Similarity. We use the Centered Kernel Alignment (CKA) metric introduced by Kornblith
et al. (2019) to directly compare features learned by different networks. Two experimental settings
are considered, (1) a comparison of networks trained using various methods and (2) a comparison of
networks learned in conjunction via DML or TNA. For each setting, we calculate the representation
similarity with CKA at the end of each convolutional block in a ResNet-18 over the TinyImageNet
validation set, and list the results in table 5. We notice that applying TNA results in increased feature
similarity at each point in the network w.r.t. the baseline. While this is expected at the logit level
– after the fully connected layer – as these are directly matched, this shows that both networks
try to mimic each others features. Interestingly, we still notice a considerably larger difference in
the high-level features, albeit less pronounced than in the case of two separately trained network,
showing that these networks still consider different information. This indicates that the networks
still consider different kinds of information to achieve similar logits. Additionally, we notice that
the feature similarity of TNA trained networks is higher at the logit level (FC layer) than that of
DML-trained networks, which indicates better agreement between the networks. Coupled with the
results on classification benchmarks, this indicates that the better similarity of the logits achieved by
TNA leads to a gain in classification accuracy.

Intermediate feature quality. While it is evident that the features at the last convolutional layer
of TNA learned networks are better suited for classification, we next want to determine how dis-
criminative the intermediate representations are. For this purpose we use a linear probing technique
introduced by Alain & Bengio (2017). At certain points in the network, we train a linear classifi-
cation head on the frozen weights of the preceding layers. To avoid large computations, we first

7



Published as a conference paper at ICLR 2025

Table 6: ResNet-18 accuracy on different corruptions of the TinyImageNet-C dataset.

Corruption Single TNA Corruption Single TNA

Brightness 36.35% 42.45% Impulse Noise 24.09% 25.29%
Contrast 11.85% 14.57% JPEG Compression 47.53% 52.33%
Defocus blur 26.57% 28.60% Motion Blur 32.16% 35.62%
Elastic Transform 38.95% 43.16% Pixelate 37.65% 41.87%
Fog 27.29% 31.69% Shot Noise 25.09% 27.56%
Frost 29.69% 31.69% Snow 27.09% 32.53%
Gaussian Noise 20.82% 22.71% Zoom Blur 31.02% 33.92%
Glass Blur 21.99% 23.32%

Average 29.88% 32.49% None 59.33% 64.84%

Table 7: Ablation test of different values for the parameter α. Entries indicated with a dash (-) did
not converge and remained at random chance.

α
Network Dataset 0.0 1E-4 5E-4 1E-3 5E-3 1E-2 5E-2 1E-1

ResNet-18 TinyImageNet 59.33% 60.98% 62.33% 63.33% 64.65% 63.79% - -
ResNet-18 CIFAR-10 95.06% 95.23% 95.25% 95.43% 95.38% 95.33% - -
MobileNetv2 CIFAR-100 76.17% 76.54% 77.12% 77.43% 77.86% 78.61% 79.50% 77.91%

apply a dimensionality reduction in the form of Average Pooling across each channel. We show the
results in fig. 2. We can see that the main accuracy gain of the networks trained with TNA comes
from the deeper features. This lies in line with the results from the CKA analysis, thus showing that
the reason for a better performance is a better combination of similar low-level features, resulting in
better performing high-level features.

Corruption Robustness. Introduced by Hendrycks & Dietterich (2019), TinyImageNet-C is a
dataset that consists of different perturbations applied on the TinyImageNet dataset. The goal of
this dataset is to measure the robustness of the model to different types of corruption it might en-
counter in the wild. The performance on a specific corruption is calculated as the mean over 5
different levels of perturbation strength. We list the corruption robustness for ResNet-18 in table 6.
We notice that networks trained with TNA prove more robust to each of the corruptions, thus proving
that the representations learned by TNA are stronger than those trained with regular training.

4.4 ABLATION STUDY

The effect of α. By setting α = 0, the logit matching loss term from LTNA (eq. (1)) is removed,
which in turn severs the dependency between the two networks during training and equates to train-
ing both independently. As such, varying the factor α results in more or less guidance via the twin
network. To determine the optimal amount of guidance required, we perform an ablation test on the
parameter α, of which we list the results in table 7.

From these results it is clear that a higher α, indicating more guidance of the twin network, results
in better performance of the base network. However, at some point, a too large α can inhibit the
training procedure, this is evident with MobileNetv2 + CIFAR-100, where if α = 0.1 (last column
of table 7) the model lags significantly behind the other settings in the first 50 epochs of training.
An even larger α leads to non-convergence and networks that are no better than random chance.

Differently sized twin networks. As of now, in our experiments, we used twin networks of the
same size as the base network. I.e., if the base network is a ResNet-18, then the twin network is a
(differently initialized) ResNet-18. In this ablation, we remove that constraint, and study a combi-
nation of different ResNet models on the TinyImageNet dataset. We list the results in table 8. We
notice that for ResNet-50 on this dataset, we require a lower value for α to avoid non-convergence.
More specifically, for ResNet-50 we use α = 5E-4 rather than α = 5E-3 for the other settings.
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Table 8: The impact of twin network size on base network accuracy for TinyImageNet.

Twin Network

Base Network ResNet-18 ResNet-34 ResNet-50

ResNet-18 64.75 ± 0.47% 64.51 ± 0.25% 62.17 ± 0.53%
ResNet-34 66.26 ± 0.23% 65.97 ± 0.41% 64.69 ± 0.48%
ResNet-50 65.08 ± 0.38% 64.70 ± 0.24% 64.94 ± 0.77%
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Figure 4: The impact of using a frozen fully-trained ResNet-18 model as twin on (left) TinyIma-
geNet validation accuracy and (right) training loss.

We notice that applying TNA with a small and a large model produces a better performing large
model, but a worse performing small model, than applying TNA with same size models. This shows
that Logit Matching is seemingly harming the performance of the small model to benefit the larger
model. We hypothesise that the cause of this lies in the different convergence behaviour of larger
networks compared to smaller networks. To illustrate this, we have plotted the validation accuracy
curves of standard training on TinyImageNet in fig. 3. We can see that during the initial epochs, the
accuracy of the large ResNet-50 model is substantially lower, even though it converges to a higher
final accuracy. When combining two networks with different convergence behaviours in TNA, this
leads to an ’averaging’ behaviour pulling down the smaller model. This phenomenon is not observed
in traditional KD methods, in which the knowledge is extracted from a larger, fully trained model.

Frozen, fully-trained twin networks. One of the disadvantages of TNA is that training two net-
works in parallel is more computationally expensive than training a single network, as the computa-
tional graph is increased drastically. As such, a straightforward application would be to use a frozen
fully-trained twin network as guidance for the base network. Not only would this vastly speed up
the backward pass during training, the base network will already have access to high-quality logits
at the start of training. This definition coincides with a Knowledge Distillation approach following
Kim et al. (2021), in which the loss on the hard targets (LCE) is weighted significantly more than the
loss on the soft targets (Lmatching).

In fig. 4 we use ResNet-18 + TinyImagenet to show the results. We notice that when using a frozen
pretrained twin network, the validation accuracy of the base network is higher in the earlier epochs,
but converges to a lower accuracy than the co-training of the twin network and the base network.
We hypothesise that this is due to the concurrent mutual reinforcement of the twin and base network
which provides better guidance within the later epochs than using a frozen network. This is evident
in the evolution of the Logit Matching loss, where we notice that the logits of the base network and
the frozen twin are substantially different.

Late matching. Another improvement, which has been proposed by Anil et al. (2018), is to apply
the distillation loss in online KD in a later phase. While (Anil et al., 2018) only studied this with
the KL Divergence, we also apply this on the L2 matching loss. The idea behind this approach is
that two networks at initialization and during early training are too different, and as such matching
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Figure 5: The accuracy (left) and logit matching loss (right) of ResNet-18 on CIFAR100 for differ-
ent settings (at 0, 50, 100 and 150 epochs) of Late Matching.

the features would be counterproductive for their respective training. We conduct experiments for
different starting points for the Logit Matching and show the results in fig. 5.

Analysing the results on ResNet-18 with CIFAR100, we notice that TNA without late matching
outperforms the different late matching approaches, albeit with a small margin, and we link later
matching with lower performance. Additionally, we notice that when late matching is activated,
the validation accuracy jumps sharply in that epoch which coincides with a sharp drop in the logit
matching loss, showing that the application of logit matching has an immediate and noticeable im-
pact. Interestingly, this after a few epochs the validation accuracy drops again, albeit to a higher
value. The cause of this is not further explored, but we hypothesise that there is likely a mismatch
between the new position in the loss landscape and the current learning rate.

5 CONCLUSION

We have assessed the applicability of the Twin Network Augmentation methodology on a set of var-
ious CNN benchmarks, demonstrating that TNA consistently improves the baseline by significant
margins. To determine the effect of the additional trainable parameters, we conducted an in depth
study comparing TNA to similar approaches, and we show that for a given number of trainable pa-
rameters, TNA outperforms with an additional bonus of a lower inference cost. The performance
gain can be boosted even further by ensembling the base and twin network at the cost of no longer
having faster inference. Based on a set of carefully crafted ablations we discovered that the per-
formance increase when training with TNA is linked to the matching of logits between two equally
well-trained models, and that matching needs to occur throughout the training process for best re-
sults. Using a frozen model, or two models with too different sizes, results in less pronounced
increases over the baseline, or even decreases.

Next, we conducted a thorough analysis of the representations learned through TNA to understand
the underlying reasons for the superior performance of these networks compared to those trained via
conventional methods. Our analysis reveals that although the low-level features are similar between
standard trained networks and those learned via TNA, the main difference is made in the high-level
features, which are more dissimilar to those of regularly trained networks. We link this difference to
a higher utility in classification via linear probes.

Next Steps. While we show that TNA induces better high-level features within networks and as
such, leads to better validation accuracy, we do not find a specific root cause for this phenomenon.
As such, determining the exact cause for the observed better performance might allow training
techniques with less overhead. Additionally, we can study different levels of supervision, such as
matching intermediate features as opposed to matching only at the logit level.
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A TRAINING CONFIGURATIONS

A.1 TNA AND STANDARD TRAINING

We list the training configurations used for each model in table 9. For each model, we used a SGD
optimizer with the specified LR, except for the ViT for which we used ADAM.
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Table 9: Training configurations used for different dataset network combinations.

Network Dataset Batch Size LR Epochs

ConvNet CIFAR-10 256 0.1 200
ResNet-18 CIFAR-10 256 0.1 200
MobileNetv2 CIFAR-10 256 0.1 200

ConvNet CIFAR-100 256 0.1 200
ResNet-18 CIFAR-100 256 0.1 200
MobileNetv2 CIFAR-100 256 0.05 200

ConvNet TinyImageNet 256 0.1 200
ResNet-18 TinyImageNet 256 0.1 200
MobileNetv2 TinyImageNet 256 0.05 200

ResNet-50 ImageNet 256 0.2 90
ViT-S/16 ImageNet 1024 0.001 90

A.2 NETWORK STRUCTURES

ConvNet structure. The ConvNet we use during our experiment with CIFAR-10, CIFAR-100 is
listed in table 10. After each layer, we apply the ReLU activation function, and before the linear
classification layer, we flatten the input. For TinyImageNet, we replace the last pooling layer with
an adaptive pooling layer to ensure that the input to the linear layer remains the same shape.

Table 10: A simple ConvNet for use with CIFAR-10,

Layer Description

Conv1 3× 3 Conv layer w/ 16 filters
Conv2 3× 3 Conv layer w/ 32 filters
Pool 2× 2 Avg Pooling layer
Conv3 3× 3 Conv layer w/ 64 filters
Conv4 3× 3 Conv layer w/ 64 filters
Pool 2× 2 Avg Pooling layer
Fc Linear layer w/ 1600× 10 connections

ResNet-18 structure. Following common practice, we modify the ResNet-18 structure for small-
image datasets (CIFAR-10, CIFAR-100, TinyImageNet). We do this by replacing the first convolu-
tional layer and omitting the first MaxPool layer. More specifically, rather than a convolutional layer
with a 7× 7 kernel, a padding of 3 and a stride of 2; instead we employ a convolutional layer with a
3× 3 kernel, a padding of 1 and a stride of 1.

A.3 LINEAR PROBING

To insert the linear probes, we first identified the residual blocks within a ResNet-18 model. Next,
we freeze the weights up until that point and inserted a Downsampling layer via Average Pooling
and a linear classification layer. By using this downsampling, we considered a single value per
channel to avoid excessive computations.

Training the linear probes is done on the full training dataset with a reduced learning rate of 0.01 for
10 epochs. Afterwards the accuracy of the linear probe is calculated via the validation set, and this
is considered as a proxy of the feature quality at that point in the network.

B COMBINING TNA WITH DIFFERENT AUGMENTATION VIEWS

In the main paper, we have highlighted the similarities between TNA and Contrastive Learning.
Both approaches attempt to align two views of the same datapoint. In the case of TNA, this is by
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using feeding the datapoint through two distinct networks, while contrastive approaches instead feed
two augmented views of the same datapoint through a single network.
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Figure 6: The convergence curves of the (left) validation accuracy and (right) Matching loss, for
TNA on ResNet-18 + TinyImageNet with, and without different augment

While the effectiveness of both approaches has been shown, one could ask the question what would
happen when combining both. This means generating two views of the same datapoint and then
feeding each view through a distinct network, and matching the logits as such. In fig. 6, we show
the convergence curves of TNA with and without differing augmentations.

We notice that the case where both networks receive different augmented views of the same sample,
significantly impacts the convergence of the models. This is caused by a severely increased Logit
Matching Loss, compared to the baseline TNA. Based on this empirical evidence, we hypothesize
that the use of augmentations results in logits that are too different from each other, thus leading to
an adverse effect on the training phase.
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