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ABSTRACT

Existing reasoning tasks often follow the setting of “end-to-end reasoning”, which
has an important assumption that the input contents can be always accessed while
reasoning. However, human beings frequently adopt another reasoning setting
in daily life, referred to “reasoning after memorizing”. Concretely, human be-
ings have the ability to unconsciously memorize their experiences within limited
memory capacity, from which they can recall and respond to subsequent tasks.
In this setting, the input contents are no longer available during reasoning, thus
we need to compress and memorize the input stream in one pass, trying to an-
swer general queries that are unseen before. Memory augmented neural networks
introduce a write-read memory to perform such human-like memorization and
reasoning, but they continually update the memory from current information and
inevitably forget the early contents, failing to answer the queries relevant to early
information. In this paper, we propose the Continual Memory (CM) to explore
this ability of reasoning after long-term memorization. To alleviate the gradual
forgetting of early information, we develop self-supervised memorization training
with item-level and sequence-level objectives. We demonstrate several interesting
characteristics of our continual memory via synthetic data, and evaluate its per-
formance by several downstream tasks, including long-term text QA, long-term
video QA and recommendation with long sequences.

1 INTRODUCTION

In recent years, the tremendous progress of neural networks has enabled machines to perform rea-
soning given a query Q and the input contents X , e.g., infer the answer of given questions from
the text/video stream in text/video question answering (Seo et al., 2016; Le et al., 2020b), or pre-
dict whether a user will click the given item based on the user behavior sequence in recommender
systems (Ren et al., 2019; Pi et al., 2019). Studies that achieve top performances at such reason-
ing tasks usually follow the setting of “end-to-end reasoning”, where the raw input contents X is
available at the time of answering Q. In this setting, complex interaction between X and Q can be
designed to extract query-relevant information from X with little loss, such as co-attention interac-
tion (Xiong et al., 2016). Though these methods (Seo et al., 2016; Le et al., 2020b) can effectively
handle these reasoning tasks, they require unlimited storage resources to hold the original input X .
Further, they have to encode the whole input and develop the elaborate interaction from scratch,
which are time consuming. This is not acceptable for online services that require instant response
such as recommender systems, as the input sequence becomes extremely long (Ren et al., 2019).

Another setting of “reasoning after memorization”, which has the restrictions that the raw input
X is not available at the time of answering Q, requires the model to first digest X in a streaming
manner, i.e., incrementally compress the current subsequence of X into a memory M with very
limited capacity (size much smaller than |X|). Under such constraints, in the inference phase, we
can only capture query-relevant clues from the limited states M (rather than X) to infer the answer
to Q, where the information compression procedure in M is totally not aware of Q, posing great
challenges of what to remember in M . This setting is very similar to the daily situation of our
human beings, i.e., we may not even know the tasksQ that we will answer in the future when we are
experiencing current events, and we also cannot go back to replay when we are solving problems at
hand. However, it’s our instincts, which continually process information during our entire life with
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limited and compressed memory storages, that allow us to recall and draw upon past events to frame
our behaviors given the present situations (Moscovitch et al., 2016; Baddeley, 1992).

Compared to “end-to-end reasoning”, “reasoning after memorization” though may not achieve bet-
ter precisions at regular tasks with short sequences according to literatures (Park et al., 2020), is
naturally a better choice for applications like long-sequence recommendation (Ren et al., 2019) and
long-text understanding (Ding et al., 2020). Maintaining M can be incremental with only a small
part of inputs at each timestep while inference over M and Q is also tractable for online service.
Memory augmented neural networks (MANNs) (Graves et al., 2014; 2016) introduce a write-read
memory that already follows the setting of “reasoning after memorization”, which compress the
input contents into a fixed-size memory and only read relevant information from the memory dur-
ing reasoning. However, existing works do not emphasize on using MANNs to perform long-term
memory-based reasoning. They learn how to maintain the memory only by back-propagated losses
to the final answer and do not design specific training target for long-term memorization, which in-
evitably lead to the gradual forgetting of early contents (Le et al., 2019a). That is, when dealing with
the long-term input stream, the memory may only focus on current contents and naturally neglect
long-term clues. Thus, existing MANNs fail to answer the query relevant to early information due
to the lack of long-term memorization training.

In this paper, we propose the Continual Memory (CM) to further explore this ability of reasoning af-
ter long-term memorization. Specifically, we compress the long-term input stream into the continual
memory with fixed-size capacity and infer subsequent queries based on the memory. To overcome
gradual forgetting of early information and increase the generalization ability of the memorization
technique, we develop the extra self-supervised task to recall the recorded history contents from the
memory. This is inspired by the fact that human beings can recall details nearby some specific events
and distinguish whether a series of events happened in the history, which respectively correspond to
two different memory process revealed in cognitive, neuropsychological, and neuroimaging studies,
i.e., recollection and familiarity (Yonelinas, 2002; Moscovitch et al., 2016). Concretely, we de-
sign the self-supervised memorization training with item-level and sequence-level objectives. The
item-level objective aims to predict the masked items in history fragments, which are sampled from
the original input stream and parts of items are masked as the prediction target. This task tries
to endow the recollection ability that enables one to relive past episodes. And the sequence-level
objective tries to distinguish whether a historical fragment ever appears in the input stream, where
we directly sample positive fragments from the early input stream and replace parts of the items
in positive ones as negative fragments. This task enables the familiarity process that can recognize
experienced events or stimulus as familiar. We also give implementations on segment-level mainte-
nance of memory to better capture context clues and improve the modeling efficiency. We illustrate
the long-term memorization ability of our continual memory via a synthetic task, and evaluate its
performance at solving real-world downstream tasks, including long-term text QA, long-term video
QA and recommendation with long sequences, showing that it achieves significant advantages over
existing MANNs in the “reasoning after memorizing” setting.

2 RELATED WORKS

Memory Augmented Neural Networks (MANNs) introduce external memory to store and access
the past information by differentiable write-read operators. Neural Turing Machine (NTM) (Graves
et al., 2014) and Differentiable Neural Computer (DNC) (Graves et al., 2016) are the typical MANNs
for human-like reasoning under the setting of “reasoning after memorizing”, whose inference relies
only on the memory with limited capacity rather than starting from the original input data. In
this line of research, Rae et al. (2016) adopt the sparse memory accessing to reduce computational
cost. Csordás & Schmidhuber (2019) introduce the key/value separation problem of content-based
addressing and adopt a mask for memory operations as a solution. Le et al. (2019b) manipulate both
data and programs stored in memory to perform universal computations. And Santoro et al. (2018);
Le et al. (2020a) consider the complex relational reasoning with the information they remember.

However, these works exploit MANNs mainly to help capture long-range dependencies in deal-
ing with input sequences, but not paying efforts in dealing with the gradual forgetting issue in
MANNs (Le et al., 2019a). They share the same training objective as those methods developed for
the setting of “end-to-end reasoning”, inevitably incurring gradual forgetting of early contents (Le
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Figure 1: The Framework of Continual Memory and Self-Supervised Memorization Training.

et al., 2019a). Recently, there are a few works trying to alleviate this problem in training MANNs.
Le et al. (2019a) propose to measure “remember” ability by the final gradient on the early input, and
adopt a uniform writing operation on the memory. Rae et al. (2019) minimize the difference between
successive memory states along with the reasoning objective, as they assume the steadily changed
memory states will benefit remembering older information. And Munkhdalai et al. (2019) design
the meta-learned neural memory instead of the conventional array-structured memory and memo-
rize the current and past information by reconstructing the written values via the memory function.
Note that our approach is different and parallel to these techniques, since we give no assumptions on
what behavior will remember the most. Instead, we optimize towards this goal directly by designing
auxiliary tasks in a self-supervised manner. A recent work (Park et al., 2020) also introduces a self-
supervised memory loss to ensure how well the current input is written to the memory, but it only
focuses on remembering the current information and ignoring the long-term information forgetting.

Continual learning (Kirkpatrick et al., 2017; Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018;
de Masson d’Autume et al., 2019) is another field about the forgetting problem of neural networks,
which aims to learn from an infinite stream of data and gradually extend acquired knowledge without
catastrophic forgetting of early knowledge. But our continual memory focuses on remembering the
infinite information stream and try to overcome gradually forgetting of long-term information.

3 CONTINUAL MEMORY

3.1 PROBLEM FORMULATION

Given the input stream X = {x1,x2, · · · } and a query Q, the methods under the setting of “end-
to-end reasoning” directly learn the reason model T (X,Q) to predict the answer A. These is an
important assumption that the input stream X can be always accessed while reasoning. And complex
interaction between X and Q can be designed to extract query-relevant information in T (X,Q).
Obviously, these methods have to store the original input and infer the answer from scratch when
the query is known. But under the setting of “reasoning after memorizing”, we compress the input
stream X into a fixed-size memory M = {mk}Kk=1 with K memory slots and then infer the answer
for any relevant query Q by A = R(M,Q). Here we only need to store the compressed memory
M, which can be updated in real-time and reused for a series of queries. Since the slot number K in
the memory is irrelevant to the input length |X|, this setting only requires O(1) storage space rather
than O(|X|) in the setting of “end-to-end reasoning”.
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3.2 CONTINUAL MEMORY MACHINE

As shown in Figure 1, given the input stream X = {x1,x2, · · · }, we apply a continual memory
machine GΘ(·) to compress them into continual memory M = {mk}Kk=1 with K memory slots.
By self-supervised memorization training, we try to overcome the gradual forgetting of early in-
formation and make it possible to capture the clues at any time in the stream. Concretely, based
on continual memory, we develop the history recall model Hξ(·) to reconstruct the masked history
fragments and distinguish positive history fragments from negative ones. Simultaneously, we train
the task-specific reason model RΩ(·) based on continual memory. Under the setting of “reasoning
after memorizing”, we can develop the continual memory M = GΘ(X) and then infer the answer
for any relevant query Q by A = RΩ(M,Q).
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Figure 2: The Process of Memory Updating.

We deal with the input stream X from the
segment level rather than item level, i.e., we
cut the input sequence into fixed-length seg-
ments and memorize them into the memory
slots segment-by-segment. Compared to exist-
ing MANNs (Graves et al., 2014; 2016), which
store the input stream item-by-item orderly
with a RNN-based controller, our segment-
level memorization can further capture the bi-
directional context of each item and improve
the modeling efficiency. We denote the t-th seg-
ment as Xt = {xtn}Nn=1 and the current memory as Mt = {mt

k}Kk=1, where we have recorded t-1
segments in Mt. The xtn and mt

n have the dimension dx and dm, respectively.

We first model the t-th segment by a Transformer encoder (Vaswani et al., 2017) and obtain the
sequence features Ft = {f tn}Nn=1 with dimension dx. After it, we apply a memory update module
to write Ft into Mt. As shown in Figure 2, we apply a slot-to-item attention to align the sequence
features to slot features in the current memory Mt, and then develop multi-head gate-based up-
date. Concretely, we first calculate the slot-to-item attention matrix where each element means the
relevance of a slot-item pair, and then learn aligned features Lt = {ltk}Kk=1 for each slot, given by

αtkn = w>a tanh(W
a
1m

t
k +Wa

2f
t
n + ba), α̂tkn =

exp(αtkn)∑K
j=1 exp(α

t
jn)

, ltk =

N∑
n=1

α̂tknf
t
n, (1)

where Wa
1 ∈ Rdmodel×dm , Wa

2 ∈ Rdmodel×dx and ba ∈ Rdmodel are the projection matrices and
bias. w>a is the row vector. After it, we project slot features and aligned features into Z subspaces,
which is similar to the Multi-Head setting in Transformer (Vaswani et al., 2017), given by

mt
kz = WM

z mt
k, l

t
kz = WL

z l
t
k, (2)

where WM
z ∈ Rdmodel/Z×dm and WL

z ∈ Rdmodel/Z×dx are the projection matrices. The mt
kz and

ltkz are the slot and aligned sub-features in the z-th subspace. Next, the k-th slot sub-feature mt
kz

is updated with the corresponding sub-feature ltkz based on the z-th GRU unit with dmodel

Z -d hidden
states, given by

mt+1
kz = GRUz(m

t
kz, l

t
kz), (3)

where ltkz is the current input of the z-th GRU unit. Next, the new slot feature mt+1
k is aggregated

from Z subspaces by mt+1
k = WoConcat(mt+1

k1 , · · · ,mt+1
kZ ), where Wo ∈ Rdm×dmodel is the

aggregation matrix. After the memorization of T segments, we can obtain continual memory MT

and we denote it by M for convenience. Note that, at the inference stage, we can develop and
update the continual memory in real time by GΘ(·), thus we do not need the input contents during
subsequent reasoning and have the ability to reason after long-term memorization.

3.3 SELF-SUPERVISED MEMORIZATION TRAINING

After memorizing the input stream, we conduct self-supervised memorization training to alleviate
the gradual forgetting of early information by the history recall model Hξ(·) with item-level and
sequence-level objectives, where the item-level objective aims to reconstruct the masked positive
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history fragments and the sequence-level objective tries to distinguish positive history fragments
from negative ones.

Concretely, we sample the preceding segment from the input stream as the positive history frag-
ment {h+

1 , h
+
2 , · · · , h

+
N} with N items, where each item h+

∗ corresponds to a feature x∗ in the
stream. We then mask 50% of items in the fragment and add an especial item [cls] at the be-
ginning to obtain the masked positive history fragment H+ = {h+

[cls], h
+
1 , h

+
[mask1], · · · , h

+
N}. In

order to guarantee that the model Hξ(·) reconstructs the masked fragment by utilizing continual
memory rather than only relying on fragment context, we set the mask ratio to 50% instead of
15% in BERT (Devlin et al., 2019). Moreover, we construct the masked negative history fragment
H− = {h−[cls], h

−
1 , h

−
[mask1], · · · , h

−
N} by replacing 50% of unmasked items in the positive frag-

ments, where the replacement items are sampled from other input stream to make the negative frag-
ments distinguishable. Here we construct B masked positive fragments with corresponding B nega-
tive ones. Next, we adopt a bidirectional Transformer decoder (Vaswani et al., 2017) without the fu-
ture masking to model each history fragmentH+/H−. In the decoder, each history item can interact
with all other items. The continual memory M is input to the “encoder-decoder multi-head attention
sub-layer” in each decoder layer, where the queries come from the previous decoder layer and the
memory M are regarded as the keys and values. This allows each item in the decoder to attend over
all slot features in the memory. Finally, we obtain the features {r+/−

[cls] , r
+/−
1 , r

+/−
[mask1], · · · , r

+/−
N }

where each r
+/−
∗ has the dimension dx.

Item-Level Reconstruction. We first predict the masked items of positive history fragments to build
the item-level loss. Considering there are too many item types, we apply the contrastive training He
et al. (2020); Chen et al. (2020) based on the ground truth and other sampled items. For the N/2
masked items, we compute the item-level loss by

Litem = − 2

N

N/2∑
i=1

log
exp(φ(r+

[maski]
,yi))

exp(φ(r+
[maski]

,yi)) +
∑J
j=1 exp(φ(r

+
[maski]

,yj))
, (4)

where yi ∈ Rdx is the feature of ground truth of the i-th masked item, yj ∈ Rdx is the feature of
sampled items and φ(·) is the inner product.

Sequence-Level Prediction. Next, we predict whether the masked history fragment ever appears in
the current input stream, i.e. distinguish positive history segment from negative ones. Concretely,
we project the feature r

+/−
[cls] into a confident score s+/− and develop the sequence-level loss by

Lseq = −
B∑
i=1

log(s+
i ) +

B∑
j=1

log(1− s−j ), (5)

where B is the number of positive and negative history fragments.

3.4 TASK-SPECIFIC REASONING TRAINING

Besides self-supervised memorization training, we simultaneously develop task-specific reasoning
training. For several downstream tasks, we propose different task-specific reason modelRΩ(M,Q)
for any query Q based on continual memory M. Here we adopt the simple and mature components
in the reason model for fair comparison. The details are introduced in Appendix A.1. Briefly, we
first learn the query representation q by a task-specific encoder and then perform the multi-hop
attention-based reasoning. Finally, we obtain the reason loss Lr fromRΩ(M,Q).

Eventually, we combine the memorization and reason losses to train our model, given by
Lcm = λ1Litem + λ2Lseq + λ3Lr, (6)

where λ1, λ2 and λ3 are applied to adjust the balance of three losses.

4 EXPERIMENTS

We validate our continual memory on synthetic data and several downstream tasks, including long-
term text question answering, long-term video question answering and recommendation with long
sequences.
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4.1 EXPERIMENT SETTING

Model Setting. We first introduce the common model settings for all downstream tasks. We set the
layer number of the Transformer encoder and bi-directional Transformer decoder to 3. The head
number in Multi-Head Attention is set to 4. And the subspace number Z in the memory update
module is also set to 4. We set λ1, λ2 and λ3 to 1.0, 0.5 and 1.0, respectively. The number B of
history fragments is set to 5. During training, we apply an Adam optimizer (Duchi et al., 2011) to
minimize the multi-task loss Lcm, where the initial learning rate is set to 0.001.

Baseline. We compare our continual memory with the end-to-end reasoning methods and the
memory-based reasoning approaches under the “reasoning after memorizing” setting. The end-
to-end baselines are different in downstream tasks and the memory-based baselines mainly are
DNC (Graves et al., 2016), NUTM (Le et al., 2019b), STM (Le et al., 2020a) and DMSDNC (Park
et al., 2020). For fair comparison, we modify the reason module of memory-based baselines to be
consistent with our continual memory, i.e. we conduct multi-hop attention-based reasoning based on
the built memory. And the number of memory slots in these baselines is also set to K. Besides, we
set the core number of NUTM to 4, the query number of STM to 8 and the memory block number
of DMSDNC to 2.

4.2 SYNTHETIC EXPERIMENT

Synthetic Dataset. We first introduce the setting of the synthetic task. Here we abstract the general
concepts of reasoning tasks (QA/VQA/Recommendation) to construct the synthetic task. We define
the input sequence as a Stream and each item in the sequence as a Fact, where the stream and fact
can correspond to the text sequence and word token in text QA. We set the number of fact types
to Rf , that is, each fact can be denoted by a Rf -d one-hot vector and obtain the fact feature by a
trainable embedding layer. Different facts can correspond to different words in text QA. Considering
reasoning tasks often need to retrieve vital clues related to the query from the given input and then
infer the answer, we define the query-relevant facts in the stream as the Evidence and regard the
Evidence-Query-Answer triple as the Logic Chain. As shown in Figure 3, given a stream and
a query, we need to infer the answer if the stream contains the evidence. Specifically, we set the
number of query types to Rq and each query can be denoted by a Rq-d one-hot vector. For each
query, we set the number of answer types to Ra. That is, there are totally Rq ∗ Ra query-answer
pairs and we need to synthesize Rq ∗ Ra corresponding evidences of each pair. Concretely, each
evidence is denoted by a sequence of facts {fact1, · · · , factRc}, which orderly appear in the input
stream. And Rc is the length of the evidence. During the evidence synthesis, we first define 20
different group and uniformly split these facts and queries to 20 groups. Next, if a query belongs to
group k, we randomly sample Rc facts from the group as the evidence, and then assign the evidence
to a query-answer pair to generate a fixed logic chain.

evidence

… …

stream
infer

query answer

… …

Figure 3: A Data Sample with Consecutive Evidence .

Eventually, we synthetic 400 data samples for each logic chain to train the models. Each sample
contains the input stream with Rl items, a query and an answer. Concretely, we first sample Rl facts
as a sequence and then place the evidence in the sequence, where we guarantee each stream-query
pair corresponds to a unique answer. Moreover, we synthesize two datasets with the consecutive
and discrete evidence, respectively. The facts in the consecutive evidence continuously appear in the
stream, but facts in the discrete evidence are distributed in different parts of the stream, where we
still make these facts exist in a certain interval that does not exceed 20% length of the input stream.

Baselines and Model Details. The Directly Reason method first models the input stream by RNN
to obtain the stream feature, then concatenates the stream feature with the query feature and predicts
the answer by a linear layer. The Multi-Hop Reason method further applies multiple attention layers
after RNN-based stream modeling to capture the query-relevant clues. In the main experiment, we
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Table 1: Performance Comparisons on Synthetic Data. Rf=400,Rl=200,Rq=40,Ra=30,Rc=5.

Method Setting Discrete Evidence Consecutive Evidence
Early Later All Early Later All

Directly Reason End-to-End 9.45 9.32 9.39 13.57 13.41 13.49
Multi-Hop Reason End-to-End 32.16 33.42 32.29 34.38 34.50 34.44

DNC Memory-Based 13.37 22.54 17.95 20.56 26.59 23.58
NUTM Memory-Based 17.84 23.59 20.72 24.31 29.71 27.01
STM Memory-Based 17.90 23.47 20.68 23.55 29.64 26.59

DMSDNC Memory-Based 18.17 24.21 21.19 24.92 30.74 27.83

CM (Only Reason) Memory-Based 18.71 25.13 21.92 25.79 31.38 28.63
CM (Full) Self-Sup. Memory 22.14 24.98 23.56 28.42 31.71 30.07

CM (Only Litem) Self-Sup. Memory 21.79 24.46 23.13 27.88 31.12 29.50
CM (Only Lseq) Self-Sup. Memory 19.75 23.81 21.78 26.63 30.25 28.44

CM (Single Head) Self-Sup. Memory 21.24 24.12 22.68 27.79 31.14 29.47
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Figure 4: Effect of the Memory Slot Number.
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Figure 5: Performance on Synthetic Data with
Longer Stream and Evidence.

set the dataset hyper-parameters Rf , Rl, Rq , Ra and Rc to 400, 200, 40, 30, and 5, respectively.
The facts of the evidence may appear in different stages of the input stream. Early means the facts
appear in the preceding 50% of the stream and Later means the facts appear in the subsequent 50%.
For our continual memory, we set the dx, dm and dmodel to 128. The number K of memory slots and
length N of segments are set to 20 and 10, respectively. And we sample all other facts as negative
items in Litem.

Evaluation Results. Table 1 reports the performance comparison between our method and base-
lines, where CM (Full) is the full model with the memorization and reasoning training and CM
(Only Reason) only employ the task-specific reasoning training. Overall, end-to-end methods have
the close early and later performance, but memory-based approaches DNC, NUTM, STM, DMS-
DNC and CM (Only Reason) achieve the terrible early performance due to the gradual forgetting.
By the self-supervised memorization training, our CM (Full) significantly improves the early accu-
racy and achieves the best memory-based reasoning performance. This fact suggests our proposed
memorization training can alleviate the gradual forgetting of early information. Besides, CM (Only
Reason) outperforms other memory-based methods, which indicates our continual memory machine
can better memorize the long-term information even without the memorization training. Moreover,
we can find the Directly Reason approach achieves the worst performance but the Multi-Hop Rea-
son method has a high accuracy, which demonstrates the performance of end-to-end methods mainly
depends on the complicated interaction between the input contents and queries.

Ablation Study. We next perform ablation studies on the memorization loss and multi-head update
strategy. Concretely, we first remove the sequence-level or item-level loss to produce two ablation
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models CM (Only Litem) and CM (Only Lseq). As shown in Table 1, CM (Full) outperforms two
ablation models on all metrics, which illustrates two self-supervised losses are both helpful for long-
term memorization. Moreover, CM (Only Litem) achieves better accuracy than CM (Only Lseq),
demonstrating the importance of the item-level loss. Next, we discard the multi-head setting from
the memory update module to generate the ablation model CM(Single Head). From the results, we
can find the CM(Single Head) has the performance degradation, indicating the multi-head update
can improve the memorization ability of continual memory.

Hyper-Parameters Analysis. We then explore the effect of the slot number K. We set K to [5,
10, 15, 20, 25] and display the results in Figure 4. We note that the model performance gradually
improves with the increase of slot number and it reaches the bottleneck when the slot number is set
to 25. Besides, the early performance has more significant improvement than the later performance.

Longer Stream and Evidence. To further validate the characteristics of our continual memory, we
synthesize a more complicated dataset where Rf , Rl, Rq , Ra and Rc are set to 2000, 1000, 40,
30, and 10, respectively. That is, the dataset contains the longer input stream and more complex
evidence. We set the number K of memory slots and length N of segments to 20. As shown in
Figure 5, we display the reasoning performance of each model when the facts in the evidence appear
in different locations of the input stream. For example, 25∼50% means the facts appear between
25% and 50% of the stream. We can observe that our CM (Full) has an obvious performance
improvement compared to memory-based methods in the 0∼25% and 25∼50% stage, but achieves
a slight improvement in the 75∼100% stage. This verifies our self-supervised training is beneficial
for long-term memorization.

Table 2: Performance Comparisons for Long-Term Text
Question Answering on NarrativeQA.

Method Setting Val Test

AS Reader End-to-End 26.9 25.9
E2E-MN End-to-End 29.1 28.6

DNC Memory-Based 25.8 25.2
NUTM Memory-Based 27.7 27.2
STM Memory-Based 27.2 26.7

DMSDNC Memory-Based 28.1 27.5

CM (Only Reason) Memory-Based 28.0 27.6
CM (Full) Self-Sup. Memory 28.8 28.1

Table 3: Performance Comparisons for Long-Term
Text Question Answering on TVQA.

Method Setting Acc.

Multi-Stream End-to-End 63.14
MSAN End-to-End 65.77

DNC Memory-Based 55.92
NUTM Memory-Based 58.41

CM (Only Reason) Memory-Based 59.87
CM (Full) Self-Sup. Memory 61.12

4.3 LONG-TERM TEXT QUESTION ANSWERING

Dataset, Baseline and Model Details. We apply two multi-choice datasets NarrativeQA (Kočiskỳ
et al., 2018) and TVQA (Lei et al., 2018) for long-term text question answering. The two datasets
provide the answer candidates thus they are suitable for the setting “reasoning after memorizing”.
Note that the TVQA dataset also provides the video contents as input but we only use the subtitles
in the videos. For NarrativeQA, the AS Reader (Kadlec et al., 2016) applies a pointer network
to generate the answer and E2E-MN (Sukhbaatar et al., 2015) employs the end-to-end memory
network to conduct multi-hop reasoning. For TVQA, the Multi-Stream (Lei et al., 2018) method
develops the query-subtitle interaction for reasoning. And MSAN (Kim et al., 2020) first localizes
the clues relevant to the question and then predicts the answer. For our continual memory, we set
the dx, dm and dmodel to 256. The number K of memory slots and length N of segments are both
set to 20. And we sample all other words as negative items in Litem.

Evaluation Results. As shown in Table 2 and Table 3, the results are similar to synthetic ex-
periments, i.e. our continual memory obtains the best performance among the memory-based
approaches. And CM (Full) achieves the further improvement compared to CM (Only Reason),
demonstrating the self-supervised memorization training can boost the reasoning ability of contin-
ual memory. Moreover, our proposed method achieves the accuracy close to the excellent end-to-end
method E2E-MN in the NarrativeQA dataset, but still has a large performance gap with MSAN in
the TVQA dataset. This is mainly because the MSAN method applies the two-stage reasoning with
elaborate interactions between texts and queries.

8



Under review as a conference paper at ICLR 2021

4.4 LONG-TERM VIDEO QUESTION ANSWERING

Dataset, Baseline and Model Details: The ActivityNet-QA dataset (Yu et al., 2019) contains 5,800
videos from the ActivityNet (Caba Heilbron et al., 2015). The average video duration of this dataset
is about 180s and is the longest in VQA datasets. We compare our method with three basic end-
to-end baselines E-VQA, E-MN, E-SA from (Yu et al., 2019) and the SOTA end-to-end model
HCRN (Le et al., 2020b). For our continual memory, we set the dx, dm and dmodel to 256. The
number K of memory slots and length N of segments are both set to 20. And in Litem, we select 30
other frame features from the video as the sampled items.

Evaluation Results. As shown in Table 4, the CM (Only Reason) obtains the better performance
than other memory-based models DNC and NUTM, and CM (Full) further achieves the 1.1% abso-
lute improvement, showing the effectiveness of our model designs and self-supervised memoriza-
tion training. Moreover, our method outperforms the basic end-to-end baselines and slightly worse
than the SOTA method HCRN. This suggests our continual memory can reduce the gap between
memory-based and end-to-end reasoning paradigms.

Table 4: Performance Comparisons for Long-Term
Video Question Answering on ActivityNet-QA.

Method Setting Acc.

E-VQA End-to-End 25.2
E-MN End-to-End 27.9
E-SA End-to-End 31.8

HCRN End-to-End 37.6

DNC Memory-Based 30.3
NUTM Memory-Based 33.1

CM (Only Reason) Memory-Based 34.6
CM (Full) Self-Sup. Memory 35.7

Table 5: Performance Comparisons for Lifelong Se-
quence Recommendation on XLong.

Method Setting AUC

GRU4REC End-to-End 0.8702
Caser End-to-End 0.8390
RUM End-to-End 0.8649
DIEN End-to-End 0.8793

HPMN Memory-Based 0.8645
MIMN Memory-Based 0.8731

CM (Only Reason) Memory-Based 0.8756
CM (Full) Self-Sup. Memory 0.8824

4.5 LIFELONG SEQUENCE RECOMMENDATION

Dataset, Baseline and Model Details. The lifelong sequence recommendation aims to predict
whether the user will click a given item based on long sequences, thus it can be regarded as a long-
term reasoning task. The XLong dataset (Ren et al., 2019) is sampled from the click logs on Alibaba.
The length of historical behavior sequences in this dataset is 1000. We compare our method with four
end-to-end methods GRU4REC (Hidasi et al., 2015), Caser (Tang & Wang, 2018), DIEN (Zhou
et al., 2019), RUM (Chen et al., 2018) and two memory-based methods HPMN (Ren et al., 2019)
and MIMN (Pi et al., 2019), where the HPMN method builds the memory by hierarchical RNNs and
the MIMN method introduces a write-read memory as in (Graves et al., 2014). For our continual
memory, we set the dx, dm and dmodel to 64. The number K of memory slots and length N of
segments are both set to 20. And in Litem, we select 200 items from the large item set as the
sampled items.

Evaluation Results. As shown in Table 5, our CM (Full) method not only outperforms other
memory-based approaches, but also achieves better performance than state-of-the-art end-to-end
baselines. This is because our continual memory can aggregate and organize the long-term interests
from user behavior sequences and these interests can be activated during next-item prediction. But
the end-to-end approaches may fail to learn such informative interest representations.

5 CONCLUSIONS

In this paper, we propose the continual memory to explore the ability of reasoning after long-term
memorization. We compress the input stream into continual memory with the self-supervised mem-
orization training and task-specific reasoning training. Based on continual memory, we can capture
the clues for the subsequent queries and give the correct responses. Extensive experiments on a
series of downstream tasks verify the effectiveness of the continual memory. For future work, we
will further explore the property of continual memory.
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A APPENDIX

A.1 TASK-SPECIFIC REASON MODELS

In this section, we introduce the task-specific reason modelRΩ(M,Q), where M is the built mem-
ory and Q is the given query. Specifically, we first model the query feature q ∈ Rdmodel by a
task-specific encoder. For synthetic experiments, the given query Q is a one-hot vector and we di-
rectly obtain q by an embedding layer. For long-term text and video QA tasks, the query Q is a
sentence and we apply a bi-directional GRU to learn the sentence feature q. As for the recommen-
dation task with long sequences, the given query is a target item with the unique id and we likewise
learn an embedding layer to obtain the feature q.

Next, we develop the multi-hop attention-based reasoning on continual memory M. Concretely, at
each step c, we capture the importance memory feature ec ∈ Rdm from M based on the current
query qc−1 using an attention method, given by

γck = w>c tanh(W
c
1q
c−1 +Wc

2mk + bc), γ̂ck =
exp(γck)∑K
j=1 exp(γ

c
j )
, ec =

K∑
k=1

γ̂ckmk,

where Wc
1 ∈ Rdmodel×dmodel , Wc

2 ∈ Rdmodel×dm and bc ∈ Rdmodel are the projection matrices
and bias. And w>c is the row vector. We then produce the next query qc = Wq[ec;qc−1] ∈
Rdmodel , where Wq ∈ Rdmodel×(dm+dmodel) is the projection matrix and q0 is the original q. After
C steps, we obtain the reason feature qC . The hyper-parameter C is set to 2, 2, 2 and 1 for synthetic
experiments, text QA, video QA and sequence recommendation, respectively.

After it, we design the final reasoning layer for different tasks. For synthetic experiments and long-
term video QA with fixed answer sets, we directly apply a classification layer to select the answer and
develop the cross-entropy loss Lr. But text QA datasets NarrativeQA and TVQA provide different
candidate answers for each query, we first model each candidate feature ai by another bi-directional
GRU and then concatenate ai with qC to predict the conference score for each candidate. Finally,
we also learn the cross-entropy loss Lr based on answer probabilities. As for the sequence recom-
mendation task, we can directly compute a confidence score based on qC by a linear layer and build
the binary loss function Lr.

A.2 HYPER-PARAMETER ANALYSIS OF SEGMENT LENGTH

We explore the effect of the segment length N in the main experiment of the synthesis task. We set
N to [5, 10, 15, 20] and display the results in Figure 6. We can find that when the segment length is
set to 5, the model achieves a terrible result and the performance is relatively stable when the length
changes between 10 and 20. This is because when the segment is too short, important evidence may
be scattered in different segments, and the model cannot effectively capture the evidence and infer
the answer.
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Figure 6: Effect of the Segment Length.

13


	Introduction
	Related Works
	Continual Memory
	Problem Formulation
	Continual Memory Machine
	Self-Supervised Memorization Training
	Task-Specific Reasoning Training

	Experiments
	Experiment Setting
	Synthetic Experiment
	Long-term Text Question Answering
	Long-Term Video Question Answering
	Lifelong Sequence Recommendation

	Conclusions
	Appendix
	Task-Specific Reason Models
	Hyper-Parameter Analysis of Segment Length


