
Transferrable Surrogates in 1

Expressive Neural Architecture Search Spaces 2

Anonymous1 3

1
Anonymous Institution 4

Abstract Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, 5

broad search spaces that enable architectural innovationwith the need for efficient evaluation 6

of architectures to effectively search such spaces. We investigate surrogate model training for 7

improving search in highly expressive NAS search spaces based on context-free grammars. 8

We show that i) surrogate models trained either using zero-cost-proxy metrics and neural 9

graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power 10

for the performance of architectures both within and across datasets, ii) these surrogates can 11

be used to filter out bad architectures when searching on novel datasets, thereby significantly 12

speeding up search and achieving better final performances, and iii) the surrogates can be 13

further used directly as the search objective for huge speed-ups. 14

1 Introduction 15

Neural architecture search (NAS) promises to find high performing architectures for diverse tasks, 16

but the field has so far struggled to discover truly novel architectures. This challenge arises from 17

the inherent trade-off between designing focused search spaces for specific architectural families, 18

such as ConvNets (Dong and Yang, 2020), transformers (Chen et al., 2021a,b) and hybrids (Li et al., 19

2021; Thomas et al., 2025)—and the need for broader, more expressive search spaces that can enable 20

true architectural innovation. 21

Recent work has proposed large and expressive search spaces based on context-free gram- 22

mars (Schrodi et al., 2023; Ericsson et al., 2024). However, searching these spaces becomes more 23

difficult as the size increases, meaning that efficient evaluation is more important that ever. Tech- 24

niques such as performance predictors (White et al., 2021; Dudziak et al., 2020; Lukasik et al., 2024; 25

Jawahar et al., 2024), surrogatemodels (Ning et al., 2021; Zela et al., 2020; Yan et al., 2021) and zero-cost 26

proxies (Krishnakumar et al., 2022; Kadlecová et al., 2024; Mellor et al., 2021) offer a promising 27

direction for this. While these techniques have shown impressive results on constrained search 28

spaces, their performance in more expressive, complex spaces remains unknown. Many zero-cost 29

proxies (ZCPs) rely on simple heuristics (e.g. Mellor et al. (2021) effectively counts convolutions) 30

which may fail to capture the nuances of fundamentally different architectures like transformers. 31

In this work, we demonstrate that existing ZCPs struggle in expressive search spaces, but 32

more recent methods that incorporate topology-based features yield better predictive performance. 33

Additionally, we explore the capabilities of large language models (LLMs), which can interpret 34

structured, context-free grammar (CFG)-based representations of architectures. We show that these 35

models can effectively predict architecture performance, significantly accelerating search across 36

multiple datasets. Furthermore, while seeding search from known baseline architectures—such as 37

ResNets—has proven useful (Ericsson et al., 2024), it introduces a bias toward specific architectural 38

directions. Unseeded search has the potential to explore a broader solution space, yet improving 39

search speed is necessary tomake it feasible. Our surrogatemodels not only enhance search efficiency 40

but also exhibit strong generalisation to unseen tasks, allowing them to function as global surrogates 41

acrossdiverse tasks. Finally,weexplore thepotentialofusing these surrogatemodelsdirectlyas search 42

objectives, paving the way for more efficient and effective NAS. Our contributions are as follows: 43

Submitted to AutoML 2025 © 2025 the authors, released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

• We evaluate a broad set of performance predictors in an expressive search space, and to our 44

knowledge, we are the first to do so. 45

• We introduceanovel surrogatebasedonafine-tunedLMwhich takes in string representationsof the 46

architecture derivations, achieving the highest correlations with real architecture performances. 47

• When using the surrogates during evolutionary search, we find that we can speed up the search 48

significantly while consistently achieving stronger final architecture performances than baseline 49

search without a surrogate. 50

• We can even use our surrogates directly as the search objective of NAS, offering huge speed 51

improvements, and at times even beating the baseline that takes many times longer to run. 52

2 RelatedWork 53

2.1 Neural Architecture Search 54

Cell-based search spaces have been the dominant design type in NAS research. These search 55

spaces are restricted to a single cell with only a few nodes and edges, and the architecture is 56

created by repeatedly stacking the same cell. Examples include NAS-Bench-101 (Ying et al., 2019), 57

NAS-Bench-201 (Dong and Yang, 2020), and DARTS (Liu et al., 2019a). The main advantage of this 58

design is reduced search costs compared to searching in unrestricted spaces. However, this also 59

means the design of architectures is limited, and truly novel architectures cannot be discovered. 60

Recently, focus has shifted to more flexible search-spaces with potential to discover novel 61

architectures tailored to diverse datasets. These search spaces are defined by a grammar that enforces 62

a specific structure. The first such search space, Hierarchical NAS (Schrodi et al., 2023), introduced 63

a grammar for a flexible cell structure and macro architecture. The second was einspace—a search 64

space with a flexible grammar focused on a basic set of operations (such as branching or routing). 65

This flexibility enabled it to represent a wide range of architectures—convolutional networks, vision 66

transformers andMLPmixers—as well as novel unexplored architectures (Ericsson et al., 2024). 67

2.2 Performance Predictors in NAS 68

Performance predictor models have been widely used in NAS to speed up the evaluation of 69

architectures. A performance predictor is a function that estimates the performance of unseen 70

architectures after being trained on a collection of architecture-performance pairs. Instead of 71

needing to train each architecture from scratch, this allows us to predict its performance almost 72

instantaneously (White et al., 2021, 2023). Performance predictors are based on three components: (i) 73

the architecture-performance dataset, (ii) the prediction method, and (iii) the architecture encoding, 74

which transforms the architecture into a suitable input format for the prediction method. 75

Most works combine the latter two components into a model-based prediction method (Dudziak 76

et al., 2020). To further increase the evaluation speed during search, zero-cost proxieswere introduced 77

as target metrics for prediction methods and as the input for model-based prediction methods (Ab- 78

delfattah et al., 2021; Krishnakumar et al., 2022). More recently, FLAN (Akhauri andAbdelfattah, 2024) 79

combines a learned encoding of an architecture cell (Ning et al., 2023; Velickovic et al., 2018) with 80

zero-cost-proxies, and an unsupervised learned latent space (Yan et al., 2020) as architecture encod- 81

ings, which are fed into anMLP prediction. Lukasik et al. (2024) used zero-cost proxies as architecture 82

encodings combined with a random forest prediction method for single and multi-objective tasks 83

(accuracy and robustness). GRAF (Kadlecová et al., 2024) proposes graph features based on the archi- 84

tecture topology as encodings in combination with tabular predictors and shows improvements over 85

using solely zero-cost proxies for both single andmulti-objectives. Thesemethods focus on cell-based 86

search spaces, which are not easily transferable to other search spaces and overall lack flexibility. 87

In this work we are the first to show how performance prediction can speed up the search in 88

larger, non-cell-based, more complex search spaces like einspace. 89

2

2.3 Large LanguageModels in NAS 90

Many studies have begun using the strong text comprehension and generation capabilities of large 91

language models (LLMs) to tackle various aspects of NAS. LLMs can act as surrogate models to score 92

each search candidate. In particular, GPT-4 (OpenAI, 2023) has shown promise in accelerating and 93

potentially improving search results (Chen et al., 2024), while compact regression models distilled 94

from GPT-4’s predictions have also demonstrated comparable performance (Jawahar et al., 2024). 95

Moreover, LLMs—especially those designed for code generation—can be used to produce new 96

candidate architectures by either directly outputting network structures (Yu et al., 2023; Wang 97

et al., 2023) or serving as mutation and crossover operators (Nasir et al., 2024; Chen et al., 2023). 98

Other research directions include pruning the search space by using GPT-4 to identify key design 99

principles from existing architectures (Zhou et al., 2024). 100

Although these studies suggest that LLMs exhibit an understanding of architectural structures, 101

most experiments have been conducted within relatively constrained or well-studied search space 102

domains likely included in the model’s training corpora. Moreover, while large, closed-source 103

models such as GPT-4 excel as performance predictors, smaller and more cost-effective open-source 104

models often fail to achieve comparable results (Jawahar et al., 2024). This discrepancy motivates 105

further investigation into how open-source language models can be effectively applied to more 106

expressive, large-scale search spaces. 107

3 Method 108

In this section, we present novel surrogate models for large and expressive NAS search spaces. Using 109

surrogates to speed-up and improve search in these spaces is non-trivial due to their expressivity. 110

Wewill focus our development towards the einspace search space as an example in this area. While 111

most existing surrogates were designed for cell-based spaces and rely on a fixed one-hot encoding of 112

the architecture, this is not possible in einspace, as the search space does not predefine the maximal 113

depth or the number of nodes and edges in the network graph. To overcome the limits of existing 114

surrogate-based predictors, we present two performance predictors that enable a more flexible 115

architecture design. The first predictor is a random forest trained on a combination of zero-cost 116

proxies and GRAF features (Kadlecová et al., 2024). In Section 3.2, we describe how we adapt this 117

method towards einspace and how our implementation differs from the original cell-based GRAF 118

variant. The second surrogate model, presented in Section 3.3, is an language model (LM)-based 119

predictor that learns from the grammar-derived string representation of architectures. 120

3.1 Surrogate Models 121

Performance predictors rely on three key components: (i) an architecture-performance dataset, (ii) a 122

prediction model, and (iii) an architecture encoding. We now formalise these components. Let 𝑎 ∈A 123

be an architecture from the search spaceA. Its true accuracy on a dataset𝐷 is obtained by training 124

and evaluating it via an expensive process, denoted as 𝑃 (𝑎,𝐷). Our goal is to approximate 𝑃 (𝑎,𝐷) 125

with a surrogatemodel to reduce computational cost. To achieve this, we train amodel 𝑓𝜃 on a dataset 126

of architecture-accuracy pairs: 𝑆 = {(𝑎𝑖 ,𝑃 (𝑎𝑖 ,𝐷))}𝑁𝑖=1. Before an architecture 𝑎 is input to 𝑓𝜃 , it is first 127

encoded using a function 𝐸, yielding its representation 𝐸 (𝑎). The surrogate model is then trained 128

by minimizing a loss functionL, typically the mean squared error (MSE): 𝜃 ∗=argmin𝜃L(𝑆,𝐸;𝜃) . 129

3.2 Surrogates FromGRAF and ZCP Descriptors 130

In the previous section, we introduced a surrogate model 𝑓𝜃 trained on encoded architecture- 131

performance data. Here, we explore a specific instantiation where the encoding function 𝐸 (𝑎) is 132

constructed using a combination of topological features from GRAF and zero-cost proxies (ZCPs). 133

Kadlecová et al. (2024) demonstrated that tabular performance predictors—such as random 134

forests and XGBoost—achieve state-of-the-art results on cell-based search spaces when trained 135

3

S

B AM

P RM

C

branching(4)[
 clone(4),
 routing[
 im2col3k1s1p,
 computation[linear64],
 col2im
],
 add(4)
]

[0.67, 0.95, 0.14, …, 4, 12, 0, 1]

ZCPs GRAF

BI

P C R

A

P C R

P C R

P C R

O
sample from

grammar

derivation tree neural network

Figure 1: The encodings used by our language models (left) and our random forest and XGBoost models

(right). A derivation tree is obtained from the grammar by sampling or mutation, and encoded

into a string representation. The derivation tree can be compiled into a neural network, from

which we can extract ZCP scores and GRAF encodings that are ultimately concatenated to

form a descriptor for the RF and XGBoost models.

on a combination of GRAF descriptors and ZCPs. However, their effectiveness in more flexible, 136

grammar-based search spaces remains unexplored. To integrate GRAF features into our setting, we 137

adapt them to accommodate the broader expressivity of einspace. 138

We include all original GRAF features, such as operation counts, max/min path lengths, and 139

node degrees. In the original formulation, GRAF computes all possible subsets of certain features 140

(e.g., path lengths and node degrees). However, due to the large number of operations in einspace, 141

computing these subsets exhaustively is intractable. To address this, we redefine path lengths: the 142

minimum path length is the shortest path containing a given operation from input to output, and 143

the maximum path length follows a similar definition. For node degrees, we restrict our analysis 144

to a single operation type and consider only input/output node degrees, as our initial experiments 145

found no benefit in including average degrees. In addition to GRAF features, we incorporate the 146

zero-cost proxies introduced by Abdelfattah et al. (2021), including grad_norm, snip, grasp, fisher, 147

jacob_cov, plain, and synflow. The final architecture encoding, which serves as the input to our 148

surrogate model 𝑓𝜃 , is defined as: 𝐸 (𝑎)=concat(GRAF(𝑎),ZCP(𝑎)) 149

3.3 LanguageModels as Surrogates 150

While computing graph features and proxies on the networks can provide useful information on the 151

performance of an architecture, we have another alternative natural representation that comes from 152

our grammar-based search space—the derivation tree. This is a direct description of the architecture 153

and its properties, that can be efficiently expressed in a string format due to its tree structure. 154

Therefore, we will consider using language models (LMs) directly on this string representation. To 155

give the model more information of the inner workings of the architecture, we enrich the encoded 156

string with additional metadata, such as the tensor sizes at the output of operations. A more detailed 157

discussion and an ablation study of different encoding choices can be found in Section C.1. For a 158

visual representation of this encoding and the previous, see Figure 1. 159

To train this surrogate, we start by initialising the parameters of the model with pre-trained lan- 160

guagemodel weights. We then further fine-tune it using the followingmean squared error (MSE) loss: 161

LMSE(𝜃)=
1

|𝑆 |
∑︁

(𝑎,𝑃 (𝑎,𝐷)) ∈𝑆

(
𝑓𝜃 (𝐸 (𝑎))−𝑃 (𝑎,𝐷)

)
2

. (1)

Additionally, we evaluate the few-shot learning abilities of open-source LLMs to predict the 162

accuracy from the architecture string representation 𝐸 (𝑎), with the prompts structured as PP prompts 163

(Jawahar et al., 2024). Please see the appendix for more details. 164

4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AddNIST

0.61

0.62

0.63

0.64

0.65

0.66

Chesseract

0.45

0.50

0.55

0.60

0.65

0.70

0.75

CIFAR10

0.28

0.30

0.32

0.34

0.36

0.38

CIFARTile

0.3

0.4

0.5

0.6

0.7

GeoClassing

0.32

0.34

0.36

0.38

0.40

0.42

Gutenberg

100 125 150 175 200 225 250 275 300

0.37

0.38

0.39

0.40

0.41

Isabella

100 125 150 175 200 225 250 275 300
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88
0.89

Language

100 125 150 175 200 225 250 275 300

0.4

0.5

0.6

0.7

0.8

0.9

MultNIST

Evolution Evolution(RF) Evolution(RF Transfer) Evolution(BERT)

Iteration

Ac
cu

ra
cy

Evolution Evolution(RF) Evolution(RF Transfer) Evolution(BERT)

Figure 2: Search results using different surrogates. We plot the validation accuracies of the best models

at each iteration of search, with the mean and standard error across three seeds.

3.4 Using Surrogates in Search 165

The surrogates described above will be used to speed up and improve architecture search. To do this, 166

we build on the search method used in einspace (Ericsson et al., 2024), a regularised evolution algo- 167

rithm (Real et al., 2019) restricted tomutation as the strategy for evolving individuals. The algorithm is 168

modified to includeour surrogates at key stages to improve the evaluation speedand selection strategy. 169

Improving selection. The updated algorithmworks as follows. We first randomly sample an initial 170

population, which is evaluated and used for fitting the surrogate model. The surrogate predictions 171

are then used in the next iteration to select the new individuals to add to the population, from a pool 172

of 𝑛mutated architectures. We use the same search routine as in einspace (detailed in Algorithm 173

1 in the appendix) with the following changes – instead of sampling 1 individual and immediately 174

updating the population, we sample 𝑘 ≥ 1 individuals from the 𝑛mutated architectures. This step 175

is important, due to the inherent inaccuracy of the surrogates – the surrogates only approximate 176

the accuracy, and the individual with the highest predicted accuracy is not necessarily the best one. 177

By sampling more than 1 individual, we increase the chance of sampling the top offspring. 178

Along with our ZCP + GRAF + random forest and LLM surrogates, we evaluate a ‘random’ 179

baseline – we create 𝑘 mutated offspring and add them directly to the population. This baseline 180

is similar to the search in einspace, allowing for a fair comparison between a complete evaluation 181

from scratch of each sampled individual and the introduced surrogate models. 182

Replacing objective. In addition to using surrogates for selection, we explore a surrogate-based 183

objective function, where the surrogate fully replaces the evaluation step during search. Instead 184

of training and evaluating architectures at every step, we rely entirely on the surrogate’s predictions 185

to rank and select individuals, thereby massively speeding up the search process. After the search 186

has completed, the top-k running best performing architectures identified throughout the search 187

are evaluated through full training and evaluation on the training and validation set, respectively. 188

Then we perform the final models selection and evaluate the best model eval on the test set. 189

5

Table 1: Rankcorrelationbetweensurrogate rewardandground truthaccuracyonCIFAR10architectures

evaluation set for different surrogate models. Correlation averaged across three different seeds

are given for few-shot learning surrogates with standard error. Correlation of ZCPs can be

found in Table 7

Model Input Spearman Kendall

RF ZCP + GRAF 0.663 0.514
XGBRegressor ZCP + GRAF 0.600 0.449

RoBERTa-base String Encoding 0.723 0.575

RoBERTa-large String Encoding 0.679 0.523

ModernBERT-base String Encoding 0.746 0.597

ModernBERT-large String Encoding 0.745 0.612

ModernBERT-large String Encoding+aug 0.769 0.628

Llama3.2 1B String Encoding 0.722 0.588

Llama3.2 1B Instruct String Encoding 0.726 0.593

Llama3.2 3B String Encoding 0.682 0.552

Llama3.2 3B Instruct PP Prompt (3 shot) -0.087 (0.030) -0.067 (0.023)

Qwen2.5 7B Instruct PP Prompt (3 shot) 0.319 (0.014) 0.235 (0.012)

Qwen2.5 14B Instruct PP Prompt (3 shot) 0.356 (0.018) 0.256 (0.014)

4 Experiments 190

In our experiments, we evaluate the following list of surrogate models. 191

Random Forest: We train a random forest (RF) regression model on the zero-cost proxy (ZCP) 192

and GRAF feature set, as described in Section 3.2. The RF model serves as a feature-based baseline, 193

using manually extracted architecture descriptors to predict the performance. 194

BERT: For our fine-tuning experiments, we make use of the RoBERTa (Liu et al., 2019b) and 195

ModernBERT (Warner et al., 2024) model families. Both model families contain a base network 196

version (RoBERTa: 125M parameters, ModernBERT: 150M parameters) and a large network version 197

(RoBERTa: 355M parameters, ModernBERT 396M parameters). We fine-tune both size variants 198

of these models using the string representations of architectures from their derivation trees in 199

einspace, as described in Section 3.3. 200

Evaluation settingsAssumingwe have access to architecture-accuracy pairs for𝑁 different datasets, 201

wewill use this data to fit and evaluate surrogate models in a few different ways. 202

IID: In this setting, we train and evaluate on data from the same dataset. This means we treat the 203

first datapoints from a search as the training set, and the future as the evaluation set. To simulate the 204

search setting we train on the first𝑚 datapoints, predict on the next 𝑘 . For example, we fit the first 205

version of our surrogate on the initial population on AddNIST and use it to predict the performance 206

of the next 20 architectures. Then we can refit the surrogate every so often to evaluate throughout 207

the search. This setting helps us to evaluate how the surrogate generalises to the immediate future 208

of the evolution process. 209

OOD/Leave-one-out: In this setting, we train our surrogate models on 𝑁 −1 datasets and evaluate 210

on the single leftover dataset. As an example, we can train on all data from CIFAR10 + 7 Unseen NAS 211

datasets and then evaluate on all data from AddNIST. This tests the surrogate’s zero-shot transfer 212

ability. In order to make this work, we need to standardise the label space (accuracy distributions) 213

across the datasets. 214

Both: In the final setting, we combine the above two approaches. We treat all data from the other 215

𝑁 −1 datasets as training data, along with any datapoints from the start of the search on the target 216

dataset. Then as search progresses, we continue training/fine-tuning on the search data as it arrives. 217

The implementation of this may differ between the LLM compared to RF/XGB due to the SGD vs 218

batch training. 219

ReportedMetricsWithin each of these settings, we will report multiple metrics to understand the 220

quality of the surrogate models. We report the rank correlation values (Spearman’s rho, Kendall’s 221

6

tau) between the ground-truth and predicted performances. We use the surrogate model to guide 222

the search by improving the selection of new individuals, and report the accuracy of the final 223

architecture. For each iteration in the search, we generate a pool of 𝑛 candidate architectures and 224

accept the best 𝑘 . In addition we also replace the objective in the actual search, and use the surrogate 225

model directly as the objective to be optimised. Therefore, we do not include any additional training 226

and evaluation of any networks, making this approach even faster. 227

Data In this work, we train and evaluate surrogate models using both the CIFAR10 dataset 228

(Krizhevsky, 2009) and the tasks from the Unseen NAS benchmark (Geada et al., 2024). We use 229

architecture-accuracy pairs obtained from searches on these datasets to form the datasets used for 230

fitting our surrogate models. For CIFAR10, we conducted 8 NAS runs with different random seeds 231

with same setting as in Ericsson et al. (2024) (which is also equivalent to our baseline evolution), 232

yielding around 9k architecture-accuracy pairs. Of these 8 runs, 6 serve as training set, 1 as validation 233

set and 1 as test set. For each of the 8 Unseen NAS tasks, we generate two runs per seed, which 234

results in 2k pairs per dataset. One of which serves as training set and the other one as validation set. 235

Search Algorithms We run the regularised evolution variant described in Section 3.4. We use a 236

randomly initialised initial population of 100 architectures sampled from the grammar. We set 𝑛 to 237

20 – this gives us a diverse selection of possible offspring while still being cheap, as subtree mutation 238

can be costly for some operators in the grammar. As for the number of individuals chosen, we set 239

𝑘 to 5 as a compromise between selecting good offspring and updating the population often enough. 240

4.1 Experimental Results 241

Correlation Results. To identify the best-performing surrogate model and optimal setting for NAS 242

searches, we evaluate rank correlations in multiple scenarios, which measures both the surrogate’s 243

ability to fit on the trained tasks, and the transferability to unseen tasks. See Appendix B for detailed 244

implementation. 245

Correlations on CIFAR10: We first focus on the case in which we train and evaluate the surrogate 246

on CIFAR10 data, to asses the model’s ability to capture and generalise to new architectures within 247

the same dataset. For the few-shot learning settings, examples are chosen uniformly based on 248

the accuracy from training set. As shown in Table 1, the fine-tuned ModernBERT-large achieves 249

the highest correlation on the evaluation set, which can be further improved by adding data 250

augmentation (cf. Appendix B). Among the Llama3.2 models in the fine-tuning setting, the 1B and 251

1B Instruct models also achieve moderately high correlations. However, few-shot learning models 252

result in noticeable drop in performance. The ZCPs perform poorly overall, with jacov_cov and 253

synflow being the strongest ones. They still lag behind the more complex models, showing the 254

need for more complex heuristics in this expressive search space. Tree-based models trained on 255

ZCPs and GRAF give moderate correlations which are lower compared to the best-performing LMs; 256

however, they require no pre-training, which is an advantage. Based on these results, we choose 257

ModernBERT-large and the random forest regression as the surrogate models going forward. 258

Transfer Across Tasks: As shown in Table 2, training on the 1 000 samples from CIFAR10 259

gives overall the highest transfer correlations among that group. This may be due to its generic 260

image classification task or a greater diversity compared to other datasets. Due to this we also 261

consider training models with more data from CIFAR10, for a total of 7k samples. From this data, 262

we see ModernBERT-large reaching the highest average correlation (0.466). CIFAR10-trained 263

surrogates excel onMultNIST (0.604), Gutenberg (0.577), and GeoClassing (0.581), demonstrating 264

strong cross-task generalisation. Language-based datasets like Gutenberg transfer well within 265

their domain (0.404 on Language) but struggle with vision tasks, highlighting modality transfer 266

challenges. Isabella and Chesseract yield the lowest correlations, indicating limited generalisation. 267

ModernBERT-large consistently outperforms the random forest model, underscoring the advantage 268

of deep LMs in capturing complex relationships. However, tree-based models remain competitive 269

in well-aligned tasks, such as CIFARTile to CIFAR10 (0.553). 270

7

Table 2: Kendall-Tau correlation on the Unseen NAS datasets for surrogate ModernBERT-large and

random forest. For CIFAR10 we use 7k architectures to train the surrogate on, while on the

other datasets we use 1 000. For a fair comparison, one seed is randomly chosen from CIFAR10

training set to be comparable to other tasks.

CIFAR10 AddNIST Language MultNIST CIFARTile Gutenberg Isabella GeoClassing Chesseract Avg

CIFAR10 0.612 / 0.648 0.470 / 0.516 0.408 / 0.326 0.604 / 0.447 0.470 / 0.374 0.577 / 0.525 0.189 / 0.239 0.581 / 0.284 0.280 / 0.424 0.466 / 0.420

CIFAR10(1k) 0.524/ 0.582 0.479 / 0.370 0.374 / 0.380 0.507 / 0.434 0.320 / 0.379 0.439 / 0.586 0.254 / 0.236 0.360 / 0.375 0.157 / 0.414 0.379 / 0.417

AddNIST 0.331 / 0.526 0.589 / 0.577 0.271 / 0.342 0.460 / 0.478 0.387 / 0.336 0.362 / 0.577 0.223 / 0.163 0.459 / 0.230 0.179 / 0.412 0.362 / 0.405

Language 0.370 / 0.486 0.443 / 0.229 0.388 / 0.200 0.463 / 0.128 0.393 / 0.126 0.467/ 0.133 0.268/ 0.268 0.262 / 0.219 0.271 / 0.430 0.369 / 0.246

MultNIST 0.371 / 0.497 0.369 / 0.280 0.264 / 0.401 0.394 / 0.445 0.285 / 0.307 0.423 / 0.500 0.229 / 0.241 0.245 / 0.307 0.300 / 0.335 0.320 / 0.368

CIFARTile 0.233 / 0.553 0.522 / 0.575 0.114 / 0.236 0.336 / 0.365 0.397 / 0.332 0.286 / 0.495 0.212 / -0.056 0.484/ 0.219 0.256 / 0.257 0.316 / 0.331

Gutenberg 0.232 / -0.055 0.165 / 0.425 0.404 / 0.358 0.345 / 0.315 0.163 / 0.234 0.411 / 0.295 0.191 / 0.225 0.118 / 0.205 0.306/ 0.360 0.259 / 0.262

Isabella 0.250 / 0.054 0.364 / 0.174 0.305 / 0.184 0.440 / 0.160 0.281 / 0.233 0.278 / 0.414 0.240 / 0.298 0.244 / 0.381 0.202 / 0.218 0.267 / 0.235

GeoClassing 0.277 / 0.559 0.506/ 0.547 0.296 / 0.251 0.361 / 0.464 0.407 / 0.315 0.424 / 0.578 0.285 / 0.233 0.437 / 0.007 0.136 / 0.316 0.313 / 0.363

Chesseract 0.285 / 0.254 0.142 / -0.020 0.220 / 0.253 0.363 / 0.216 0.246 / 0.226 0.432 / 0.128 0.116 / 0.158 -0.021 / 0.089 0.404 / 0.405 0.243 / 0.190

Table 3: Correlationon theUnseenNASdatasets forLeave-

one-out surrogateswithpercentilenormalisation.

ModernBERT-large Random Forest

Eval Tasks Spearman Kendall Spearman Kendall

AddNIST 0.773 0.625 0.671 0.500

Language 0.610 0.433 0.623 0.450

MultNIST 0.798 0.625 0.722 0.533

CIFARTile 0.629 0.444 0.558 0.374

Gutenberg 0.835 0.658 0.816 0.643

Isabella 0.273 0.186 0.308 0.211

GeoClassing 0.661 0.475 0.693 0.504

Chesseract 0.545 0.384 0.599 0.423

Leave-one-out Correlations:We now assess 271

how well surrogates trained on all but one 272

dataset generalise to the excluded task (Table 273

3). ModernBERT-large achieves the highest 274

Kendall correlation on Gutenberg (0.658) and 275

MultNIST (0.625), reinforcing its ability togen- 276

eralise across diverse tasks. With more data 277

available for training, we observe a general 278

improvement in Kendall correlations across 279

tasks. Compared to the single-dataset transfer 280

setting, leave-one-out training leads to higher 281

correlations, particularly on complex tasks 282

like Gutenberg (0.658 vs. 0.577) andMultNIST 283

(0.625 vs. 0.604) forModernBERT-large. How- 284

ever, Isabella remains a challenging dataset (0.186–0.211), indicating that increasing training diversity 285

does not always guarantee better generalization if the task is inherently misaligned. 286

Search Results. We now present our results from using the surrogate models to guide search. From 287

Table 4 we see that surrogate-assisted evolution generally outperforms the baseline across most 288

tasks, with ModernBERT-large (Evolution(BERT)) achieving the highest average accuracies. This 289

suggests that deep learning-based surrogates provide more effective guidance during architecture 290

search compared to both random selection and tree-based models like the Random Forest (RF). The 291

Evolution(BERT) variant outperforms the baseline evolution approach on nearly every task, with 292

particularly strong gains on CIFAR10, AddNIST, Language, and Isabella, demonstrating the model’s 293

ability to generalize across diverse datasets. 294

The Random Forest-based approaches (Evolution(RF) and Evolution(RF Transfer)) showmixed 295

results, with Evolution(RF) performing better than the baseline in some cases (e.g., CIFAR10 and 296

Gutenberg) but struggling in others. The transfer learning variant (RF Transfer) does well on 297

MultNIST but is less consistent overall, suggesting that while transfer learning can help in some 298

scenarios, it does not always lead to better search performance. 299

In Figure 2, we show the validation accuracies of the best models at each point in the search runs. 300

We can see from this that our surrogate-based searches often continuously outperforms the baseline> 301

Furthermore, the best baseline performance is often reached in many fewer iterations, highlighting 302

that the surrogates greatly improve search efficiency. This is most prominent on CIFAR10, Gutenberg 303

and Isabella, where all our surrogates improve upon the baseline. The ModernBERT-large variant 304

also shines on AddNIST and Chesseract where it dominates the others significantly. 305

8

The final row of Table 4 show the performance when using the ModernBERT-large variant 306

directly as the search objective. This method is competitive in some instances, even outperforming 307

the baseline Evolution on CIFAR1- and Chesseract. However, it is still far behind the best surrogate- 308

guided search. We are interested to see how the performance of this style of method improves with 309

better future surrogate models, and its potential use for initialising search populations. 310

Overall, these results show that surrogate-assisted evolution significantly enhances architecture 311

search performance, with ModernBERT-large proving to be the strongest surrogate model. It consis- 312

tently outperforms the baseline evolution approach, demonstrating the value of deep learningmodels 313

for guiding search. Random Forest-based surrogates provide some benefits, but their effectiveness 314

varies depending on the dataset. While using the surrogate directly as the search objective does not 315

yet match full evaluations, its competitive performance on some tasks suggests promise for future 316

improvements in surrogate-driven search methods. 317

Table 4: Search results using regularised evolution on the Unseen NAS datasets. For each version we

run on 3 random seeds and report the average best accuracy found along with the standard

error of the mean. Refer to Appendix B.4 for detailed evolution settings.

CIFAR10 AddNIST Langauge MultNIST CIFARTile Gutenberg Isabella GeoClassing Chesseract

Evolution 0.624(0.096) 0.706(0.160) 0.899(0.020) 0.841(0.080) 0.358(0.002) 0.406(0.039) 0.449(0.038) 0.725(0.030) 0.595(0.016)

Evolution(RF) 0.735(0.025) 0.591(0.197) 0.881(0.006) 0.690(0.160) 0.331(0.004) 0.433(0.009) 0.470(0.013) 0.497(0.117) 0.601(0.014)

Evolution(RF Transfer) 0.680(0.062) 0.498(0.187) 0.860(0.015) 0.875(0.040) 0.336(0.012) 0.422(0.006) 0.451(0.029) 0.687(0.023) 0.595(0.011)

Evolution(BERT) 0.828(0.006) 0.846(0.088) 0.910(0.017) 0.765(0.019) 0.341(0.010) 0.425(0.005) 0.512(0.040) 0.735(0.024) 0.606(0.008)

Evolution(BERT as obj) 0.656(0.046) 0.479(0.165) 0.857(0.013) 0.557(0.169) 0.290(0.007) 0.359(0.038) 0.440(0.029) 0.512(0.061) 0.597(0.028)

5 Conclusion 318

In this paper, we have demonstrated the effectiveness of surrogate models, particularly fine-tuned 319

large language models (LLMs), in accelerating neural architecture search (NAS) within expressive 320

search spaces. Our results show that these surrogates can significantly reduce search costs, with 321

performance predictors helping to guide evolutionary search and improve efficiency across diverse 322

tasks. However, the overall performance of the searches in einspace can still be improved, especially 323

from randomly seeded population. We think there is room for pushing this further by leveraging 324

these surrogate models. Additionally, continued development of performance predictors, combined 325

with the advancements in LLMs, promises even stronger improvements in search efficiency. As these 326

techniques evolve, we anticipate a future where NAS can more effectively explore large, complex 327

search spaces, uncovering novel and high-performing architectures with greater speed and precision. 328

Limitations. Our inclusion of surrogates in large, expressive search spaces reduced search costs by 329

minimizing the need for full evaluations. We adapted a high-performing prediction method (GRAF) 330

and incorporated large language models, but there is still room for optimization through custom 331

evolutionary operators. This paper focuses on a single objective (image classification accuracy), but 332

future work will explore multi-objective searches (e.g., hardware, robustness) and hardware-aware 333

surrogates. While our predictionmethod showspromising speed-ups, it does not outperformbaseline 334

search on all unseen data, a challenge for future research. 335

Broader Impact. Search in expressive search spaces is inherently more expensive than in limited 336

search spaces, which is a potential negative effect on the environment. However, discovering 337

novel architectures with an efficient design could have a positive effect on both humanity and the 338

environment. To get there, it is essential to reduce the high training and evaluation costs. We believe 339

our method brings us closer to this goal – future work can focus on improving the surrogates we 340

introduced, and lessen the evaluation costs even more. 341

9

References 342

Abdelfattah,M. S.,Mehrotra,A., Dudziak, Ł., andLane,N.D. (2021). Zero-CostProxies forLightweight 343

NAS. In International Conference on Learning Representations (ICLR). 344

Akhauri, Y. and Abdelfattah, M. S. (2024). Encodings for prediction-based neural architecture search. 345

In Forty-first International Conference on Machine Learning, ICML. 346

Chen, A., Dohan, D., and So, D. (2023). Evoprompting: Language models for code-level neural 347

architecture search. Advances in neural information processing systems, 36:7787–7817. 348

Chen, L., Xu, F., Li, N., Han, Z., Wang, M., Li, Y., and Hui, P. (2024). Large language model-driven 349

meta-structure discovery in heterogeneous information network. In Proceedings of the 30th ACM 350

SIGKDD Conference on Knowledge Discovery and Data Mining, pages 307–318. 351

Chen, M., Peng, H., Fu, J., and Ling, H. (2021a). Autoformer: Searching transformers for visual 352

recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 353

pages 12270–12280. 354

Chen, M., Wu, K., Ni, B., Peng, H., Liu, B., Fu, J., Chao, H., and Ling, H. (2021b). Searching the search 355

space of vision transformer. InAdvances in Neural Information Processing Systems. 356

Dong, X. and Yang, Y. (2020). Nas-bench-201: Extending the scope of reproducible neural architecture 357

search. In International Conference on Learning Representations (ICLR). 358

Dudziak, L., Chau, T., Abdelfattah,M. S., Lee, R., Kim, H., and Lane, N. D. (2020). BRP-NAS: prediction- 359

based NAS using gcns. InAdvances in Neural Information Processing Systems. 360

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., and Smola, A. (2020). Autogluon- 361

tabular: Robust and accurate automl for structured data. arXiv preprint arXiv:2003.06505. 362

Ericsson, L., Espinosa, M., Yang, C., Antoniou, A., Storkey, A. J., Cohen, S. B., McDonagh, S., and 363

Crowley, E. J. (2024). einspace: Searching for neural architectures from fundamental operations. 364

In Advances in Neural Information Processing Systems 38: Annual Conference on Neural Information 365

Processing Systems. 366

Geada, R., Towers, D., Forshaw,M., Atapour-Abarghouei, A., andMcGough,A. S. (2024). Insights from 367

the use of previously unseen neural architecture search datasets. In Proceedings of the IEEE/CVF 368

Conference on Computer Vision and Pattern Recognition, pages 22541–22550. 369

Jawahar, G., Abdul-Mageed,M., Lakshmanan, L.V. S., andDing,D. (2024). Llmperformancepredictors 370

are good initializers for architecture search. 371

Kadlecová, G., Lukasik, J., Pilát, M., Vidnerová, P., Safari, M., Neruda, R., and Hutter, F. (2024). 372

Surprisingly strong performance prediction with neural graph features. In Forty-first International 373

Conference on Machine Learning, ICML. OpenReview.net. 374

Krishnakumar, A., White, C., Zela, A., Tu, R., Safari, M., and Hutter, F. (2022). NAS-bench-suite-zero: 375

Accelerating research on zero cost proxies. In Thirty-sixth Conference on Neural Information 376

Processing Systems Datasets and Benchmarks Track. 377

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical report. 378

10

Li, C., Tang, T., Wang, G., Peng, J., Wang, B., Liang, X., and Chang, X. (2021). BossNAS: Exploring 379

Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search. 2021 380

IEEE/CVF International Conference on Computer Vision (ICCV), pages 12261–12271. Conference 381

Name: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) ISBN: 9781665428125 382

Place: Montreal, QC, Canada Publisher: IEEE. 383

Liu,H., Simonyan, K., andYang, Y. (2019a). DARTS:Differentiable architecture search. In International 384

Conference on Learning Representations. 385

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., and 386

Stoyanov, V. (2019b). Roberta: A robustly optimized bert pretraining approach. arXiv preprint 387

arXiv:1907.11692. 388

Lukasik, J., Moeller, M., and Keuper, M. (2024). An evaluation of zero-cost proxies – from neural 389

architecture performance to model robustness. In International Journal of Computer Vision. 390

Mellor, J., Turner, J., Storkey, A., andCrowley, E. J. (2021). Neural architecture searchwithout training. 391

In ICML. 392

Nasir, M. U., Earle, S., Togelius, J., James, S., and Cleghorn, C. (2024). Llmatic: neural architecture 393

search via large language models and quality diversity optimization. In proceedings of the Genetic 394

and Evolutionary Computation Conference, pages 1110–1118. 395

Ning, X., Tang, C., Li, W., Zhou, Z., Liang, S., Yang, H., and Wang, Y. (2021). Evaluating efficient 396

performance estimators of neural architectures. In Advances in Neural Information Processing 397

Systems. 398

Ning, X., Zheng, Y., Zhou, Z., Zhao, T., Yang, H., andWang, Y. (2023). A generic graph-based neural 399

architecture encoding scheme with multifaceted information. IEEE Trans. Pattern Anal. Mach. 400

Intell., 45(7):7955–7969. 401

OpenAI (2023). GPT-4 Technical Report. 402

Pedregosa, F., Varoquaux, G., Gramfort, A.,Michel, V., Thirion, B., Grisel, O., Blondel,M., Prettenhofer, 403

P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and 404

Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning 405

Research, 12:2825–2830. 406

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. (2019). Regularized evolution for image classifier 407

architecture search. In Proceedings of the Thirty-Third AAAI Conference onArtificial Intelligence and 408

Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium 409

on Educational Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI Press. 410

Schrodi, S., Stoll, D., Ru, B., Sukthanker, R. S., Brox, T., and Hutter, F. (2023). Construction of 411

hierarchical neural architecture search spaces based on context-free grammars. In Thirty-seventh 412

Conference on Neural Information Processing Systems. 413

Thomas, A. W., Parnichkun, R., Amini, A., Massaroli, S., and Poli, M. (2025). STAR: Synthesis of 414

Tailored Architectures. In ICLR. 415

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018). Graph attention 416

networks. In 6th International Conference on Learning Representations, ICLR. 417

Wang, H., Gao, Y., Zheng, X., Zhang, P., Chen, H., Bu, J., and Yu, P. S. (2023). Graph neural architecture 418

search with gpt-4. arXiv preprint arXiv:2310.01436. 419

11

Warner, B., Chaffin, A., Clavié, B., Weller, O., Hallström, O., Taghadouini, S., Gallagher, A., Biswas, 420

R., Ladhak, F., Aarsen, T., et al. (2024). Smarter, better, faster, longer: A modern bidirectional 421

encoder for fast, memory efficient, and long context finetuning and inference. arXiv preprint 422

arXiv:2412.13663. 423

White, C., Safari, M., Sukthanker, R., Ru, B., Elsken, T., Zela, A., Dey, D., and Hutter, F. (2023). Neural 424

architecture search: Insights from 1000 papers. 425

White, C., Zela, A., Ru, R., Liu, Y., and Hutter, F. (2021). How powerful are performance predictors in 426

neural architecture search? Advances in Neural Information Processing Systems, 34. 427

Yan, S., White, C., Savani, Y., and Hutter, F. (2021). Nas-bench-x11 and the power of learning curves. 428

InAdvances in Neural Information Processing Systems. 429

Yan, S., Zheng, Y., Ao, W., Zeng, X., and Zhang, M. (2020). Does unsupervised architecture repre- 430

sentation learning help neural architecture search? In Advances in Neural Information Processing 431

Systems 33: Annual Conference on Neural Information Processing Systems. 432

Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K., and Hutter, F. (2019). NAS-bench-101: 433

Towards reproducible neural architecture search. In Chaudhuri, K. and Salakhutdinov, R., editors, 434

Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of 435

Machine Learning Research, pages 7105–7114, Long Beach, California, USA. PMLR. 436

Yu, C., Liu, X., Wang, Y., Liu, Y., Feng, W., Deng, X., Tang, C., and Lv, J. (2023). Gpt-nas: Evolutionary 437

neural architecture search with the generative pre-trained model. arXiv preprint arXiv:2305.05351. 438

Zela, A., Siems, J. N., Zimmer, L., Lukasik, J., Keuper, M., and Hutter, F. (2020). Surrogate nas 439

benchmarks: Going beyond the limited search spaces of tabular nas benchmarks. In International 440

Conference on Learning Representations. 441

Zhou, X.,Wu, X., Feng, L., Lu, Z., andTan, K. C. (2024). Design principle transfer in neural architecture 442

search via large language models. 443

12

Submission Checklist 444

1. For all authors. . . 445

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 446

contributions and scope? [Yes] 447

(b) Did you describe the limitations of your work? [Yes] 448

(c) Did you discuss any potential negative societal impacts of your work? [Yes] 449

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them? 450

https://2022.automl.cc/ethics-accessibility/ [Yes] 451

2. If you ran experiments. . . 452

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same bench- 453

marks, data (sub)sets, available resources)? [Yes] 454

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing, 455

search spaces, hyperparameter tuning)? [Yes] 456

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account for 457

the impact of randomness in your methods or data? [Yes] 458

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or 459

splits)? [Yes] 460

(e) Did you report the statistical significance of your results? [No] Due to the long running 461

times of the experiments, we were only able to repeat them 3 times. We report the mean and 462

standard error of the results in the experiments. 463

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [No] Our surrogates 464

are the first step for creating surrogate benchmarks of einspace and other expressive search 465

spaces 466

(g) Did you compare performance over time and describe how you selected the maximum 467

duration? [Yes] 468

(h) Did you include the total amount of compute and the type of resources used (e.g., type of 469

gpus, internal cluster, or cloud provider)? [Yes] 470

(i) Did you run ablation studies to assess the impact of different components of your approach? 471

[Yes] 472

3. With respect to the code used to obtain your results. . . 473

(a) Did you include the code, data, and instructions needed to reproduce the main experimental 474

results, including all requirements (e.g., requirements.txtwith explicit versions), random 475

seeds, an instructive READMEwith installation, and execution commands (either in the supple- 476

mental material or as a url)? [Yes] 477

(b) Did you include aminimal example to replicate results on a small subset of the experiments or 478

on toy data? [Yes] We provide commands how to run the full 300 iterations, but it is possible 479

to terminate the search any time, as the results are saved after each generation, and every 10 480

individuals the plot is updated. 481

(c) Did you ensure sufficient code quality and documentation so that someone else can execute 482

and understand your code? [Yes] 483

13

https://2022.automl.cc/ethics-accessibility/

(d) Did you include the raw results of running your experiments with the given code, data, and 484

instructions? [Yes] 485

(e) Did you include the code, additional data, and instructions needed to generate the figures 486

and tables in your paper based on the raw results? [Yes] 487

4. If you used existing assets (e.g., code, data, models). . . 488

(a) Did you cite the creators of used assets? [Yes] 489

(b) Did you discuss whether and how consent was obtained from people whose data you’re 490

using/curating if the license requires it? [Yes] 491

(c) Did you discuss whether the data you are using/curating contains personally identifiable 492

information or offensive content? [N/A] 493

5. If you created/released new assets (e.g., code, data, models). . . 494

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [N/A] 495

(b) Did you include the new assets either in the supplementalmaterial or as a url (to, e.g., GitHub 496

or Hugging Face)? [N/A] 497

6. If you used crowdsourcing or conducted research with human subjects. . . 498

(a) Didyou include the full textof instructionsgiven toparticipants andscreenshots, if applicable? 499

[N/A] 500

(b) Did you describe any potential participant risks, with links to Institutional Review Board 501

(irb) approvals, if applicable? [N/A] 502

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 503

on participant compensation? [N/A] 504

7. If you included theoretical results. . . 505

(a) Did you state the full set of assumptions of all theoretical results? [N/A] 506

(b) Did you include complete proofs of all theoretical results? [N/A] 507

14

S

B AM

P RM

C

M

C

S

B AM

P RM

C

M

C

swap branches

S

P RM

64

S

P RM

32

swap linear

S

M

M M

M

C

swap sequential

CC

S

M

C

M

M M

CC

S

P RM

C

S

P RM

add identity

M M

CI

Figure 3: We apply four forms of augmentation to the architecture dataset to increase the effective data

size for LM training. Three of our augmentations preserve the same exact network, while

the last causes minor changes: (1) We swap the nesting order of sequentialmodels; (2) We

swap the two branches in a branching(2)module; (3) We add components that reduce to the

identity operation; and (4) We change the output dimensionality to a neighbouring option in

the list [16, 32, 64, 128, 256, 512, 1024, 2048]. For each augmented architecture, we

adjust the corresponding accuracy by adding Gaussian noise fromN (0,0.0052).

A Algorithmic Details 508

A.1 Architecture Augmentation 509

To enhance generalisation and increase the effective dataset size for LM training, we apply four forms 510

of data augmentation to our architecture dataset. These augmentations aim to provide diverse yet 511

functionally equivalent architectures: 512

1. Reordering Sequential Modules –We swap the nesting order of operations within sequential 513

models while maintaining the same computation. 514

2. Reordering Branching Modules – For architectures containing branching(2)modules, we swap 515

the order of the branches without affecting functionality. 516

3. Identity-PreservingModifications –We introduce additional components that mathematically 517

reduce to the identity operation, ensuring no impact on functionality while diversifying repre- 518

sentations. 519

4. Perturbing Output Dimensionality – We slightly modify the output tensor size by selecting a 520

neighbouring value from the list [16, 32, 64, 128, 256, 512, 1024, 2048]. This augmentation 521

changes the the architecture functionally, although from our experiments the change is relatively 522

minor. 523

To maintain some diversity in the label space we also adjust the corresponding accuracy of 524

augmentedarchitecturesbyaverysmall amount, byaddingGaussiannoise sampled fromN (0,0.0052). 525

These augmentations provide synthetic diversity, helping the LM surrogate learn a more robust 526

mapping from architecture representations to performance estimates. Figure 3 visualises these 527

augmentation techniques. 528

B Implementation Details 529

B.1 Random Seeds 530

We use random seeds 0 through 7 to generate architecture-accuracy pairs (for tasks that only require 531

two seeds, we use seeds 0 and 1). For the actual searches, we use seeds 42, 43, and 44. 532

B.2 LanguageModels Implementation Details 533

Settings for fine-tuning LMs include: learning rate set to 10
−5
, batch size to 2, weight decay to 534

0.01, cosine learning rate scheduler and 0.06 warmup ratio. We train the model for 5 epochs on 535

15

Algorithm 1 Regularised Evolution with Mutation and a Surrogate

Input: Architecture space A, sampling function Sample : {∗} →A, mutation function Mutate :

A→A, evaluation function TrainAndEval :A→R+, surrogate function Surrogate :A→R+,
population size 𝑝 , tournament size 𝜏 , number of offspring samples 𝑐 , number of chosen offspring

per iteration 𝑘 , and number of iterations 𝑛.

Output: best_individual.arch
1: population=∅
2: for 𝑖 =1 to 𝑝 do
3: individual.arch=Sample() ⊲ Sample random architecture

4: individual.accuracy=TrainAndEval(individual.arch)
5: add individual to population
6: end for
7: for 𝑖 =𝑝+1 to 𝑛 do
8: offspring =∅
9: for 𝑗 =1 to 𝑐 do
10: parent = TournamentSelection(population, 𝜏)
11: child.arch =Mutate(parent.arch)
12: child.prediction=Surrogate(child.arch) ⊲ Predict performance (cheap)

13: add child to offspring
14: end for
15: offspring=TopK(offspring,𝑘) ⊲ Select best based on predicted performance

16: for child in offspring do
17: child.accuracy=TrainAndEval(child.arch) ⊲Actual performance (expensive)

18: add child to population
19: pop oldest individual from population ⊲Aging

20: end for
21: Fit Surrogate function on population ⊲ Continuously train the surrogate

22: end for
23: best_individual=argmaxindividual∈populationindividual.accuracy

Algorithm 2 TournamentSelection
Input: Population of architectures population, tournament size 𝜏

Output: Selected individual
1: tournament← RandomSubset(population, 𝜏) ⊲ Uniformly at random

2: individual=argmaxindividual∈tournamentindividual.accuracy ⊲ Return best

16

leave-one-out experiments and 15 epochs on all other experiments. The best checkpoint is saved 536

based on Kendall Tau correlation on the evaluation set. 537

For few-shot learning, we set the temperature to 0.7 and maximum new tokens to 50, the first 538

floating number is extracted as prediction; if no floating number is found, we retry with maximum 539

new tokens as 500. The prompt follows the structure of the PP prompts (Jawahar et al., 2024). Prompt 540

details are presented in Appendix E. 541

B.3 Random Forest (XGBoost) Implementation Details 542

For the random forest regressor, we used the default settings of scikit-learn (Pedregosa et al., 2011). 543

For the XGBoost Regressor model, we used optimised parameters from Autogluon (Erickson et al., 544

2020). 545

B.4 Evolutionary AlgorithmHyperparameters 546

The evolutionary algorithm generates 20 independently mutated individuals per iteration. The 547

surrogate variants use a model to rank and chooses the top 5 to fully train and test and include in the 548

population, while the base version chooses 5 randomly. The population size is 100, and the search 549

runs for 300 iterations
1
. All of the runs achieved at least 200 iterations. For these runs, we use the 550

best value they found as the value for the rest of the iterations. We will update the results for the 551

final version of the paper.. For each version, we run on 3 random seeds. 552

The BERT based surrogate model is re-fit every 100 iterations, the random forest based models 553

are refit every 20 iterations. 554

B.5 Compute Resources 555

All our experiments ran on 7 clusters with the following infrastructure: 556

• AMD EPYC 7552 48-Core Processor with 1000GB RAM and 8 × NVIDIA RTX A5500 with 24GB of 557

memory 558

• AMD EPYC 7262 8-Core Processor with 125GB RAM and 7 × NVIDIA A100 with 40GB of memory 559

• AMD EPYC 7543 64-Core Processor with 512GB RAM and 4 × NVIDIA A40 with 48GB of memory 560

• 2 × AMD EPYC 9454 48-Core Processor with 1536GB RAM and 2 × NVIDIA H100 with 94GB of 561

memory 562

• 2 × AMD EPYC 7662 64-Core Processor with 1000GB RAM and 4 × NVIDIA A100 with 40GB of 563

memory 564

• 2 × AMD EPYC 9554 64-Core Processor with 1536GB RAM and 2 × NVIDIA L40 with 48GB of 565

memory 566

• 2 × AMD EPYC 7513 32-Core Processor with 512GB RAM and 1 × NVIDIA A40 with 48GB of 567

memory 568

C Ablation Study 569

C.1 Encoding for LMs 570

We conducted an ablation study on three different encodings used as input to the language model: 571

1
Shortly before the deadline, we found and fixed an inconsistency (different scaling of synflow values) in the handling

of transfer learning data compared to the data from the current run in the transfer version of the RF surrogate. We were

unable to re-run 7 out of the 27 experiments to the full 300 iterations (two seeds on addnist and multnist, one seed on

chesseract, gutenberg, geoclassing, and language

17

Table 5: Correlation on CIFAR10 architectures evaluation set for different architecture encodings.

Encoding Spearman Kendall

Derivation tree str 0.621 0.448

Derivation tree str (+ shape) 0.745 0.612
PyTorch str 0.698 0.535

• Derivation tree string 572

The string representation of architecture’s derivation tree (e.g., routing[im2col(3,2,1), 573

computation<linear(128)>, col2im] 574

• Derivation tree string + shape 575

Derivation tree string augmented with output feature shape information (e.g., 576

routing[im2col(3,2,1) {’out_feature_shape’: [256, 3]} computation<linear(128)> 577

{’out_feature_shape’: [256, 32]}, col2im {’out_feature_shape’: [32, 16, 16]}]) 578

• PyTorch modules 579

The string representation of built PyTorch model. (e.g., nn.Conv2d(out_channels=128, 580

kernel_size=3, stride=2, padding=1)) 581

We evaluated these encodings on the CIFAR10 architecture dataset usingModernBERT-large 582

as the surrogate, and the results are summarised in Table 5. The derivation tree stringwith shape 583

information achieved the highest Spearman (0.745) and Kendall (0.612) correlation, outperforming 584

both the simple derivation tree string and the PyTorch modules representation. These findings 585

suggest that including feature shape information is crucial for capturing architecture characteristics 586

that help the language model make more accurate predictions. Furthermore, the strong influence of 587

architecture encodings on surrogate performance highlights the potential for further improvements 588

through better encoding strategies. 589

C.2 NormalizationMethods 590

The modela accuracies have different ranges on different datasets this may affect the performance of 591

the surrogate models, therefore, we considered different ways how to aggregate the data: 592

minmax. The target values from all the datasets are first scaled between 0 and 1. Only then the 593

datasets are merged to create a single training set. 594

percentile. The target values from all the datasets are first replaced by their percentiles among the 595

values on he same dataset (essentially normalizing their ranks to 0-1). Only then he datasets are 596

merged. 597

none. The target values from all the datasets are taken as they are without any preprocessing and 598

the datasets are merged. 599

The ablation of normalization methods for surrogate models are shown in Table 6. 600

D Additional Results 601

Search with longer iteration 602

To see whether the surrogate keeps improving search for longer runs, we continue our searches 603

to 500 iterations for the AddNIST and Language datasets, comparing our EvolutiON(BERT) baseline 604

models. Figure 4 shows how in the case of AddNIST, we see continuous improvements until the vali- 605

dation accuracies cap out around 100%, while on Language we see moderate continued improvement. 606

18

Table 6: Leave-one-out surrogate correlations for different normalization methods.

BERT Random Forest XGB Regressor

Spearman Kendall Spearman Kendall Spearman Kendall

Dataset Normalisation

AddNIST minmax 0.768 0.617 0.599 0.433 0.541 0.397

CIFARTile minmax 0.609 0.433 0.494 0.327 0.563 0.393

AddNIST percentile 0.773 0.624 0.671 0.500 0.551 0.409

CIFARTile percentile 0.629 0.444 0.558 0.374 0.557 0.388

100 150 200 250 300 350 400 450 500

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

AddNIST

100 150 200 250 300 350 400 450 500

0.82

0.84

0.86

0.88

0.90
Language

Evolution Evolution(BERT)

Iteration

Ac
cu

ra
cy

Evolution Evolution(BERT)

Figure 4: Extended runs for ModernBERT-large surrogates.

Table 7: Rank correlation between ZCP reward and ground truth accuracy on CIFAR10 architectures

evaluation set.

ZCP Spearman Kendall

grad_norm 0.040 0.036

snip 0.094 0.078

grasp -0.072 -0.053

fisher -0.037 -0.020

jacob_cov 0.381 0.243

plain -0.189 -0.126

synflow 0.465 0.362

Overall this suggests the surrogates can help throughout long searches, though we hypothesise that 607

they will provide the strongest boosts in the beginning and middle of search. 608

Continual training during search:We evaluate how the correlations change when we continu- 609

ously refit or fine-tune the models as data comes in during the search. Table 8 shows that continued 610

training helps the BERT, RF and XGBoost models significantly. We refit every 100 iterations. 611

19

Table 8: Continual training resultswith “✓” indicates themodelwas trainedduringevaluation; “✗”means

it was not. We use BERT in short for ModernBERT-large and report average the correlation

across each 100 iterations across 2 different seeds.

Model Train AddNIST Langauge MultNIST CIFARTile Gutenberg Isabella GeoClassing Chesseract Avg

BERT ✓ 0.203 0.412 0.288 0.273 0.416 0.233 0.383 0.390 0.325

BERT + Cifar10

✓ 0.386 0.557 0.510 0.380 0.553 0.423 0.581 0.541 0.491

✗ 0.258 0.313 0.396 0.274 0.350 0.052 0.381 0.199 0.278

BERT + 8 Others

✓ 0.394 0.467 0.513 0.398 0.558 0.391 0.582 0.494 0.475

✗ 0.318 0.296 0.418 0.264 0.431 0.111 0.259 0.284 0.298

RF ✓ 0.246 0.551 0.393 0.360 0.550 0.472 0.521 0.561 0.457

RF + Cifar10 ✓ 0.250 0.494 0.367 0.383 0.480 0.461 0.489 0.500 0.428

✗ 0.234 0.272 0.280 0.271 0.327 0.032 0.291 0.332 0.255

RF + 8 Others ✓ 0.263 0.437 0.362 0.368 0.471 0.480 0.492 0.526 0.425

✗ 0.246 0.286 0.304 0.297 0.397 0.187 0.312 0.373 0.300

XGB ✓ 0.253 0.560 0.404 0.350 0.543 0.474 0.530 0.563 0.460

XGB + Cifar10 ✓ 0.279 0.507 0.376 0.380 0.485 0.470 0.517 0.519 0.442

✗ 0.244 0.266 0.213 0.306 0.341 0.029 0.246 0.322 0.246

XGB + 8 Others ✓ 0.298 0.516 0.378 0.376 0.510 0.480 0.499 0.533 0.449

✗ 0.260 0.336 0.315 0.246 0.429 0.119 0.290 0.379 0.297

Table 9: Correlation on the Unseen NAS datasets for Leave-one-out surrogates with percentile normali-

sation.

ModernBERT-large Random Forest XGB Regressor

Eval Tasks Spearman Kendall Spearman Kendall Spearman Kendall

AddNIST 0.773 0.625 0.671 0.500 0.551 0.409

Language 0.610 0.433 0.623 0.450 0.622 0.456

MultNIST 0.798 0.625 0.722 0.533 0.749 0.561

CIFARTile 0.629 0.444 0.558 0.374 0.557 0.388

Gutenberg 0.835 0.658 0.816 0.643 0.839 0.669

Isabella 0.273 0.186 0.308 0.211 0.278 0.187

GeoClassing 0.661 0.475 0.693 0.504 0.667 0.475

Chesseract 0.545 0.384 0.599 0.423 0.626 0.445

D.1 Transfer Learning Surrogate Selection 612

We consider two different possible machine learning models for the transfer surrogates —- the 613

XGBoost regressor and the random forest regressor. In order to decide which of them to use, we 614

evaluated them in different scenarios using the static data obtained from a number of evolutionary 615

runs. We were interested to see how they perform under different conditions, both in cases where 616

we use them separaterly only on he single dataset (in the RF surrogate runs), and together with data 617

from the other datasets in the transfer learning settings. In this section, for the transfer learning 618

experiments, we consider cases where only the cifar10 data are used, only the data from the other 619

Unseen datasets are used, or all the data are used. 620

Additionally, we evaluated the difference in the cases when the model was trained only once 621

using the transfer data and used for the whole run, or when it was retrained after every 100 iterations 622

to predict the next 100 values. 623

Finally, in some rare cases some networks cannot be evaluated, these are assigned zero accuracy. 624

We investigate, how keeping them or removing them affects the final performance of the models. 625

The results of these experiments are summarized in Tables 13-16. For brevity and consistency 626

with the language model tables, we show only the combinations of parameters where training on 627

20

Table 10: Kendall-Tau correlation on the Unseen NAS datasets for the XGBoost regressor surrogate

CIFAR10 AddNIST Language MultNIST CIFARTile Gutenberg Isabella GeoClassing Chesseract Avg

CIFAR10 0.639 0.466 0.349 0.459 0.381 0.599 0.281 0.174 0.405 0.417

CIFAR10(1k) 0.535 0.187 0.365 0.409 0.391 0.506 0.254 0.354 0.332 0.370

AddNIST 0.488 0.596 0.337 0.489 0.423 0.503 0.248 0.261 0.421 0.418

Language 0.443 0.125 0.277 0.216 0.087 0.205 0.255 0.306 0.386 0.255

MultNIST 0.495 0.330 0.366 0.416 0.301 0.450 0.183 0.153 0.304 0.333

CIFARTile 0.523 0.508 0.247 0.368 0.280 0.437 -0.082 0.105 0.222 0.290

Gutenberg -0.091 0.262 0.298 0.293 0.098 0.277 0.153 0.115 0.309 0.190

Isabella -0.006 0.150 0.224 0.332 0.362 0.364 0.225 0.390 0.233 0.253

GeoClassing 0.544 0.549 0.177 0.466 0.302 0.557 0.245 0.118 0.340 0.367

Chesseract 0.046 0.019 0.239 0.287 0.237 0.172 0.143 0.074 0.372 0.177

cifar is performed and additionally with removing of zero accuracy networks. All the tables show 628

Kendall tau between the predicted values for the next 100 iterations and the real values. 629

The performance of both the models aggregated over all the different number of iterations for 630

all datasets is in Table 8. Aggregation over different datasets together with different normalization 631

techniques and removing or not removing zero accuracy networks for all the different iterations is in 632

Tables 17 and 18. 633

In these tables, we can see that removing the zero accuracy networks has almos no effect in the 634

case without transfer learning (Table 17). In the transfer learning case (cf. Table 18) the effect of 635

removing these networks is almost always positive. The different normalization methods again do 636

not have any significant effect in the case without transfer learning, but significantly improve the 637

results in the transfer learning case. The differences between the two methods are rather small when 638

compared over the different number of iterations, but in the initial part (after 100 iterations) the 639

minmax seems to be slightly better than the percentile normalization. 640

The difference between the two models is also quite small when evaluated over the different 641

number of iterations, but random forest seems to be slightly better in the initial phase (after 100 642

iterations). Later, XGBoost tends to be a bit better. 643

Based on these comparisons, and also the fact that our optimization runs are relatively short 644

with only 300 iterations, we decided to use random forest without removing the zero-accuracy 645

networks and any normalization for the baseline run without transfer learning, and random forest 646

with removing zero-cost networks and minmax normalization for the transfer learning experiments. 647

For longer runs, using XGBoost might be beneficial, although we believe that the performance in 648

the beginning of the search may be still more important than the relatively small difference in the 649

performance later. 650

E Prompt 651

An example prompt for CIFAR10 few-shot learning is given below. 652

Role

You are a performance estimator for image classification task, where you will estimate the

accuracy for the test architecture. Please output the accuracy directly without anything else.

653

21

Table 11: Results of the ModernBERT-large models in simulated surrogate runs, seed=0

Task Model Train 1 2 3 4 5 6 7 8 9 Avg

AddNIST

BERT ✓ 0.11 0.41 0.16 0.02 0.46 0.13 0.06 0.21 0.09 0.18

BERT + Cifar10

✓ 0.66 0.62 0.42 0.37 0.66 0.36 0.27 0.38 0.28 0.45

✗ 0.54 0.60 0.31 0.27 0.44 0.12 -0.01 0.28 0.14 0.30

BERT + 8 Others

✓ 0.66 0.62 0.39 0.34 0.58 0.40 0.27 0.40 0.28 0.44

✗ 0.71 0.62 0.36 0.15 0.56 0.18 0.14 0.34 0.24 0.37

Chesseract

BERT ✓ 0.41 0.33 0.26 0.38 0.45 0.65 0.38 0.40 0.51 0.42

BERT + Cifar10

✓ 0.33 0.50 0.54 0.62 0.55 0.76 0.57 0.57 0.63 0.56

✗ 0.13 0.07 0.17 0.23 0.10 0.09 0.07 0.08 0.16 0.12

BERT + 8 Others

✓ 0.24 0.50 0.45 0.41 0.47 0.67 0.55 0.52 0.59 0.49

✗ 0.26 0.30 0.31 0.34 0.33 0.34 0.21 0.16 0.17 0.27

CIFARTile

BERT ✓ 0.39 0.18 0.19 0.23 0.41 0.29 0.22 0.33 0.34 0.29

BERT + Cifar10

✓ 0.43 0.41 0.46 0.37 0.59 0.26 0.48 0.49 0.45 0.44

✗ 0.41 0.33 0.27 0.30 0.32 0.30 0.41 0.34 0.32 0.33

BERT + 8 Others

✓ 0.44 0.38 0.56 0.49 0.58 0.30 0.41 0.41 0.53 0.46

✗ 0.41 0.41 0.25 0.25 0.26 0.21 0.39 0.35 0.33 0.32

GeoClassing

BERT ✓ 0.18 0.35 0.14 0.15 0.31 0.28 0.42 0.48 0.46 0.31

BERT + Cifar10

✓ 0.32 0.46 0.59 0.65 0.71 0.52 0.75 0.76 0.68 0.60

✗ 0.33 0.41 0.47 0.37 0.35 0.31 0.47 0.60 0.49 0.42

BERT + 8 Others

✓ 0.37 0.19 0.53 0.63 0.74 0.56 0.78 0.78 0.68 0.58

✗ 0.12 0.12 0.33 0.20 0.21 0.15 0.21 0.41 0.37 0.24

Gutenberg

BERT ✓ 0.38 0.34 0.39 0.22 0.15 0.19 0.46 0.50 0.54 0.35

BERT + Cifar10

✓ 0.55 0.55 0.55 0.49 0.49 0.40 0.50 0.55 0.51 0.51

✗ 0.45 0.46 0.35 0.36 0.34 0.16 0.32 0.32 0.34 0.34

BERT + 8 Others

✓ 0.50 0.59 0.60 0.50 0.43 0.43 0.45 0.60 0.57 0.52

✗ 0.56 0.57 0.52 0.42 0.36 0.24 0.24 0.34 0.31 0.40

Isabella

BERT ✓ 0.26 0.22 0.25 0.19 0.28 0.22 0.24 0.18 0.24 0.23

BERT + Cifar10

✓ 0.31 0.19 0.34 0.23 0.33 0.44 0.39 0.42 0.52 0.35

✗ 0.22 0.06 0.11 0.10 0.09 0.16 -0.01 -0.08 -0.03 0.07

BERT + 8 Others

✓ 0.34 0.20 0.26 0.14 0.27 0.29 0.34 0.34 0.45 0.29

✗ 0.32 0.09 0.26 0.08 0.04 0.05 0.03 0.04 0.04 0.11

Language

BERT ✓ 0.22 0.18 0.46 0.50 0.47 0.46 0.51 0.60 0.58 0.44

BERT + Cifar10

✓ 0.49 0.55 0.52 0.64 0.64 0.63 0.66 0.66 0.68 0.61

✗ 0.43 0.22 0.37 0.26 0.05 0.20 0.28 0.22 0.40 0.27

BERT + 8 Others

✓ 0.42 0.52 0.48 0.46 0.51 0.43 0.43 0.53 0.52 0.48

✗ 0.43 0.30 0.21 0.20 0.05 0.23 0.23 0.22 0.21 0.23

MultNIST

BERT ✓ 0.30 0.33 0.20 0.35 0.48 0.19 0.33 0.41 0.39 0.33

BERT + Cifar10

✓ 0.47 0.32 0.48 0.54 0.54 0.53 0.54 0.55 0.69 0.52

✗ 0.59 0.32 0.30 0.30 0.47 0.43 0.35 0.39 0.38 0.39

BERT + 8 Others

✓ 0.65 0.43 0.52 0.55 0.61 0.63 0.58 0.61 0.58 0.57

✗ 0.64 0.35 0.30 0.37 0.50 0.42 0.33 0.39 0.44 0.42

22

Table 12: Results of the ModernBERT-large models in simulated surrogate runs, seed=1

Task Model Train 100 200 300 400 500 600 700 800 900 Avg

AddNIST

BERT ✓ 0.19 0.36 0.13 0.16 0.24 0.10 0.12 0.39 0.31 0.22

BERT + Cifar10

✓ 0.11 0.44 0.39 0.29 0.36 0.26 0.33 0.46 0.28 0.32

✗ 0.35 0.49 0.14 0.21 0.34 0.04 0.01 0.39 -0.02 0.22

BERT + 8 Others

✓ 0.45 0.53 0.29 0.30 0.33 0.26 0.23 0.47 0.29 0.35

✗ 0.60 0.51 0.20 0.17 0.30 0.07 0.11 0.38 0.09 0.27

Chesseract

BERT ✓ 0.36 0.24 0.36 0.22 0.39 0.28 0.44 0.45 0.51 0.36

BERT + Cifar10

✓ 0.48 0.43 0.55 0.39 0.40 0.57 0.62 0.54 0.69 0.52

✗ 0.40 0.24 0.31 0.26 0.24 0.08 0.27 0.32 0.37 0.28

BERT + 8 Others

✓ 0.48 0.44 0.55 0.41 0.33 0.55 0.59 0.55 0.59 0.50

✗ 0.42 0.29 0.41 0.26 0.18 0.05 0.34 0.37 0.37 0.30

CIFARTile

BERT ✓ 0.06 0.28 0.42 0.37 0.30 0.30 0.07 0.28 0.25 0.26

BERT + Cifar10

✓ 0.13 0.42 0.47 0.52 0.24 0.22 0.25 0.45 0.20 0.32

✗ 0.24 0.29 0.04 0.20 0.29 0.11 0.22 0.32 0.23 0.22

BERT + 8 Others

✓ 0.30 0.38 0.40 0.56 0.34 0.24 0.22 0.47 0.15 0.34

✗ 0.14 0.24 -0.05 0.21 0.36 0.21 0.34 0.33 0.12 0.21

GeoClassing

BERT ✓ 0.46 0.41 0.41 0.36 0.30 0.51 0.50 0.52 0.66 0.46

BERT + Cifar10

✓ 0.57 0.55 0.59 0.49 0.49 0.55 0.56 0.57 0.65 0.56

✗ 0.56 0.49 0.51 0.27 0.13 0.15 0.39 0.25 0.31 0.34

BERT + 8 Others

✓ 0.66 0.58 0.57 0.43 0.51 0.60 0.56 0.61 0.70 0.58

✗ 0.62 0.54 0.45 0.10 0.08 0.08 0.23 0.23 0.22 0.28

Gutenberg

BERT ✓ 0.17 0.56 0.59 0.56 0.49 0.49 0.41 0.54 0.50 0.48

BERT + Cifar10

✓ 0.52 0.68 0.68 0.66 0.58 0.51 0.52 0.59 0.62 0.60

✗ 0.27 0.44 0.47 0.52 0.36 0.25 0.18 0.39 0.32 0.36

BERT + 8 Others

✓ 0.73 0.71 0.69 0.63 0.52 0.48 0.51 0.55 0.56 0.60

✗ 0.68 0.66 0.62 0.50 0.34 0.36 0.26 0.43 0.35 0.47

Isabella

BERT ✓ 0.18 0.14 -0.02 0.13 0.27 0.21 0.39 0.35 0.47 0.24

BERT + Cifar10

✓ 0.34 0.27 0.29 0.42 0.59 0.62 0.62 0.66 0.63 0.49

✗ 0.26 0.05 -0.03 -0.14 -0.06 0.06 -0.01 0.05 0.14 0.04

BERT + 8 Others

✓ 0.30 0.14 0.27 0.44 0.63 0.69 0.64 0.63 0.66 0.49

✗ 0.27 0.05 0.02 0.05 0.11 0.16 0.10 0.12 0.16 0.12

Language

BERT ✓ 0.26 0.52 0.46 0.57 0.43 0.38 0.32 0.25 0.25 0.38

BERT + Cifar10

✓ 0.49 0.60 0.61 0.66 0.62 0.56 0.26 0.31 0.44 0.51

✗ 0.41 0.38 0.41 0.33 0.35 0.44 0.21 0.29 0.39 0.36

BERT + 8 Others

✓ 0.33 0.56 0.53 0.70 0.47 0.49 0.30 0.35 0.38 0.46

✗ 0.34 0.47 0.43 0.38 0.40 0.46 0.25 0.24 0.27 0.36

MultNIST

BERT ✓ 0.22 0.37 0.28 0.23 0.05 0.34 0.08 0.32 0.32 0.25

BERT + Cifar10

✓ 0.41 0.46 0.42 0.72 0.40 0.56 0.54 0.54 0.47 0.50

✗ 0.38 0.32 0.39 0.59 0.38 0.48 0.26 0.39 0.40 0.40

BERT + 8 Others

✓ 0.52 0.44 0.40 0.61 0.31 0.52 0.19 0.53 0.55 0.45

✗ 0.56 0.39 0.35 0.53 0.35 0.45 0.34 0.43 0.39 0.42

23

Table 13: Results of the RF Regressor models in simulated surrogate runs, seed=0

Task Model Train 100 200 300 400 500 600 700 800 900 AVG

AddNIST RF ✓ 0.41 0.58 0.27 0.19 0.50 0.26 0.24 0.30 0.16 0.32

RF + CIFAR10 ✗ 0.40 0.22 0.29 0.15 0.49 0.13 0.21 0.17 0.02 0.23

✓ 0.40 0.56 0.25 0.23 0.56 0.30 0.28 0.29 0.20 0.34

RF + 8 Others ✗ 0.45 0.19 0.28 0.15 0.39 0.21 0.10 0.04 0.01 0.20

✓ 0.40 0.47 0.28 0.36 0.52 0.30 0.25 0.24 0.17 0.33

Chesseract RF ✓ 0.32 0.49 0.58 0.61 0.62 0.71 0.57 0.56 0.56 0.56

RF + CIFAR10 ✗ 0.37 0.42 0.44 0.40 0.32 0.46 0.33 0.39 0.34 0.39

✓ 0.42 0.47 0.43 0.61 0.62 0.70 0.59 0.54 0.54 0.55

RF + 8 Others ✗ 0.39 0.48 0.60 0.56 0.49 0.53 0.46 0.39 0.42 0.48

✓ 0.44 0.42 0.55 0.57 0.59 0.65 0.52 0.48 0.52 0.53

CIFARTile RF ✓ 0.45 0.28 0.40 0.37 0.44 0.23 0.40 0.53 0.54 0.41

RF + CIFAR10 ✗ 0.43 0.20 0.06 0.22 0.28 0.26 0.34 0.36 0.31 0.27

✓ 0.46 0.29 0.42 0.43 0.46 0.22 0.37 0.42 0.52 0.40

RF + 8 Others ✗ 0.38 0.12 0.01 0.03 0.04 0.10 0.41 0.44 0.40 0.21

✓ 0.41 0.17 0.35 0.37 0.38 0.17 0.35 0.48 0.46 0.35

GeoClassing RF ✓ 0.17 0.06 0.17 0.51 0.51 0.51 0.66 0.75 0.57 0.44

RF + CIFAR10 ✗ 0.18 0.16 0.24 0.21 0.08 0.08 -0.02 0.21 0.33 0.16

✓ 0.25 0.27 0.16 0.43 0.51 0.51 0.63 0.71 0.57 0.45

RF + 8 Others ✗ 0.29 0.37 0.19 0.25 0.18 0.12 0.13 0.22 0.26 0.22

✓ 0.30 0.32 0.04 0.41 0.57 0.56 0.64 0.70 0.62 0.46

Gutenberg RF ✓ 0.53 0.54 0.53 0.43 0.38 0.47 0.61 0.70 0.66 0.54

RF + CIFAR10 ✗ 0.50 0.56 0.51 0.42 0.25 0.23 0.42 0.37 0.44 0.41

✓ 0.56 0.59 0.53 0.41 0.29 0.39 0.57 0.69 0.63 0.52

RF + 8 Others ✗ 0.52 0.19 0.15 0.28 0.16 0.14 0.25 0.26 0.38 0.26

✓ 0.54 0.37 0.48 0.35 0.12 0.32 0.59 0.72 0.61 0.46

Isabella RF ✓ 0.40 0.30 0.28 0.46 0.41 0.52 0.42 0.46 0.54 0.42

RF + CIFAR10 ✗ 0.37 0.13 0.09 0.13 0.17 0.32 0.01 0.03 0.16 0.16

✓ 0.40 0.36 0.25 0.31 0.32 0.43 0.37 0.46 0.43 0.37

RF + 8 Others ✗ 0.30 0.19 0.04 0.13 0.16 0.21 0.04 0.01 0.08 0.13

✓ 0.48 0.29 0.27 0.35 0.32 0.41 0.36 0.48 0.46 0.38

Language RF ✓ 0.26 0.49 0.52 0.60 0.72 0.57 0.60 0.61 0.67 0.56

RF + CIFAR10 ✗ 0.27 0.00 0.29 0.26 0.08 0.10 0.18 0.24 0.35 0.20

✓ 0.28 0.30 0.44 0.59 0.66 0.47 0.39 0.44 0.59 0.46

RF + 8 Others ✗ 0.35 0.17 0.32 0.18 0.07 0.12 0.21 0.24 0.29 0.22

✓ 0.36 0.30 0.41 0.38 0.35 0.34 0.47 0.47 0.53 0.40

MultNIST RF ✓ 0.42 0.25 0.39 0.50 0.27 0.37 0.41 0.51 0.58 0.41

RF + CIFAR10 ✗ 0.48 0.14 -0.01 0.07 0.26 0.26 0.27 0.26 0.36 0.23

✓ 0.30 0.29 0.30 0.40 0.36 0.40 0.45 0.42 0.64 0.40

RF + 8 Others ✗ 0.46 0.27 0.15 0.08 0.37 0.35 0.28 0.13 0.43 0.28

✓ 0.35 0.28 0.43 0.37 0.47 0.44 0.46 0.37 0.61 0.42

24

Table 14: Results of the RF Regressor models in simulated surrogate runs, seed=1

Task Model Train 100 200 300 400 500 600 700 800 900 AVG

AddNIST RF ✓ 0.35 0.33 0.25 0.11 0.03 0.17 0.06 0.36 0.25 0.21

RF + CIFAR10 ✗ 0.13 0.52 0.11 0.21 0.35 0.25 0.30 0.23 0.26 0.26

✓ 0.41 0.42 0.24 0.20 0.01 0.15 0.19 0.33 0.28 0.25

RF + 8 Others ✗ 0.19 0.16 -0.03 0.01 0.28 0.01 0.09 0.25 0.17 0.13

✓ 0.20 0.07 0.29 0.22 0.09 0.21 0.12 0.29 0.27 0.19

Chesseract RF ✓ 0.50 0.48 0.46 0.53 0.48 0.52 0.60 0.64 0.66 0.54

RF + CIFAR10 ✗ 0.52 0.27 0.15 0.25 0.25 0.16 0.22 0.33 0.32 0.27

✓ 0.42 0.34 0.49 0.39 0.41 0.46 0.61 0.58 0.63 0.48

RF + 8 Others ✗ 0.49 0.24 0.30 0.24 0.25 0.26 0.26 0.14 0.41 0.29

✓ 0.52 0.42 0.45 0.34 0.37 0.49 0.52 0.55 0.59 0.47

CIFARTile RF ✓ 0.34 0.37 0.46 0.51 0.33 0.28 0.35 0.41 0.18 0.36

RF + CIFAR10 ✗ 0.31 0.34 0.28 0.41 0.37 0.35 0.33 0.23 0.26 0.32

✓ 0.37 0.50 0.43 0.58 0.32 0.32 0.38 0.37 0.29 0.40

RF + 8 Others ✗ 0.27 0.33 0.14 0.36 0.33 0.36 0.41 0.39 0.28 0.32

✓ 0.30 0.51 0.46 0.55 0.32 0.36 0.41 0.39 0.28 0.40

GeoClassing RF ✓ 0.49 0.51 0.61 0.57 0.55 0.57 0.58 0.67 0.68 0.58

RF + CIFAR10 ✗ 0.50 0.53 0.46 0.28 0.24 0.27 0.15 0.18 0.30 0.32

✓ 0.48 0.58 0.55 0.61 0.55 0.55 0.58 0.62 0.73 0.58

RF + 8 Others ✗ 0.35 0.27 0.27 0.40 0.21 0.30 0.33 0.36 0.42 0.32

✓ 0.44 0.49 0.52 0.54 0.46 0.49 0.53 0.58 0.70 0.53

Gutenberg RF ✓ 0.52 0.60 0.62 0.60 0.54 0.39 0.54 0.65 0.66 0.57

RF + CIFAR10 ✗ 0.36 0.31 0.22 0.45 0.31 0.14 -0.01 0.34 0.31 0.27

✓ 0.42 0.55 0.62 0.54 0.49 0.39 0.53 0.64 0.66 0.54

RF + 8 Others ✗ 0.39 0.44 0.37 0.47 0.30 0.16 0.26 0.45 0.32 0.35

✓ 0.42 0.50 0.61 0.51 0.48 0.33 0.44 0.57 0.57 0.49

Isabella RF ✓ 0.34 0.33 0.27 0.66 0.67 0.69 0.69 0.70 0.57 0.55

RF + CIFAR10 ✗ 0.33 0.16 -0.05 0.09 0.18 0.21 0.18 0.20 0.11 0.16

✓ 0.30 0.38 0.28 0.56 0.68 0.71 0.66 0.69 0.70 0.55

RF + 8 Others ✗ 0.35 0.14 0.10 0.12 0.19 0.27 0.27 0.32 0.19 0.22

✓ 0.32 0.34 0.30 0.61 0.68 0.72 0.66 0.65 0.67 0.55

Language RF ✓ 0.41 0.54 0.61 0.72 0.55 0.32 0.45 0.42 0.46 0.50

RF + CIFAR10 ✗ 0.32 0.41 0.37 0.37 0.37 0.41 0.16 0.34 0.37 0.35

✓ 0.39 0.60 0.51 0.70 0.57 0.35 0.41 0.45 0.45 0.49

RF + 8 Others ✗ 0.36 0.41 0.28 0.38 0.30 0.36 0.15 0.13 0.35 0.30

✓ 0.41 0.56 0.52 0.67 0.54 0.31 0.37 0.41 0.34 0.46

MultNIST RF ✓ 0.38 0.48 0.42 0.39 0.23 0.37 0.06 0.39 0.37 0.34

RF + CIFAR10 ✗ 0.32 0.21 0.21 0.43 0.26 0.37 0.24 0.31 0.25 0.29

✓ 0.50 0.43 0.39 0.53 0.22 0.31 0.11 0.34 0.41 0.36

RF + 8 Others ✗ 0.17 -0.05 0.06 0.29 0.23 0.38 0.43 0.41 0.33 0.25

✓ 0.19 0.30 0.39 0.35 0.21 0.38 0.23 0.42 0.40 0.32

25

Table 15: Results of the XGB Regressor models in simulated surrogate runs, seed=0

Task Model Train 100 200 300 400 500 600 700 800 900 AVG

AddNIST XGB ✓ 0.35 0.56 0.29 0.27 0.53 0.22 0.27 0.36 0.16 0.33

XGB + CIFAR10 ✗ 0.40 0.22 0.28 0.10 0.39 0.10 0.18 0.07 0.01 0.19

✓ 0.38 0.56 0.26 0.27 0.57 0.22 0.29 0.32 0.13 0.33

XGB + 8 Others ✗ 0.43 0.34 0.25 0.03 0.39 0.14 0.26 0.14 -0.00 0.22

✓ 0.45 0.53 0.30 0.41 0.59 0.25 0.27 0.27 0.16 0.36

Chesseract XGB ✓ 0.38 0.47 0.60 0.53 0.60 0.67 0.55 0.53 0.55 0.54

XGB + CIFAR10 ✗ 0.36 0.32 0.38 0.38 0.36 0.38 0.25 0.33 0.28 0.34

✓ 0.36 0.56 0.57 0.61 0.61 0.69 0.53 0.52 0.54 0.55

XGB + 8 Others ✗ 0.32 0.48 0.44 0.51 0.50 0.44 0.38 0.30 0.30 0.41

✓ 0.40 0.59 0.57 0.59 0.59 0.69 0.52 0.53 0.50 0.55

CIFARTile XGB ✓ 0.19 0.31 0.44 0.40 0.40 0.24 0.37 0.50 0.53 0.38

XGB + CIFAR10 ✗ 0.41 0.27 0.02 0.24 0.24 0.29 0.36 0.28 0.39 0.28

✓ 0.48 0.36 0.40 0.39 0.42 0.19 0.34 0.41 0.54 0.39

XGB + 8 Others ✗ 0.32 0.02 -0.14 -0.08 -0.14 0.04 0.26 0.23 0.28 0.09

✓ 0.35 0.15 0.26 0.39 0.34 0.13 0.36 0.40 0.53 0.32

GeoClassing XGB ✓ 0.21 0.04 0.25 0.52 0.52 0.54 0.68 0.74 0.63 0.46

XGB + CIFAR10 ✗ 0.09 -0.05 0.14 0.12 0.01 0.00 -0.16 -0.03 0.32 0.05

✓ 0.25 0.08 0.15 0.52 0.58 0.56 0.70 0.79 0.68 0.48

XGB + 8 Others ✗ 0.28 0.42 -0.00 0.22 0.14 0.15 0.15 0.27 0.35 0.22

✓ 0.29 0.32 -0.00 0.51 0.59 0.52 0.69 0.75 0.66 0.48

Gutenberg XGB ✓ 0.43 0.44 0.50 0.42 0.30 0.41 0.59 0.71 0.65 0.49

XGB + CIFAR10 ✗ 0.52 0.58 0.53 0.47 0.43 0.27 0.49 0.39 0.41 0.46

✓ 0.55 0.57 0.53 0.43 0.28 0.41 0.63 0.67 0.62 0.52

XGB + 8 Others ✗ 0.43 0.38 0.26 0.32 0.24 0.17 0.25 0.28 0.40 0.30

✓ 0.57 0.47 0.43 0.33 0.23 0.41 0.55 0.64 0.63 0.47

Isabella XGB ✓ 0.40 0.27 0.31 0.40 0.38 0.52 0.41 0.48 0.51 0.41

XGB + CIFAR10 ✗ 0.23 0.18 0.07 0.20 0.11 0.21 0.01 0.17 0.23 0.16

✓ 0.36 0.37 0.19 0.34 0.30 0.47 0.40 0.41 0.46 0.37

XGB + 8 Others ✗ 0.24 0.15 0.14 0.11 0.11 0.20 0.02 0.09 0.17 0.14

✓ 0.37 0.30 0.22 0.29 0.30 0.36 0.38 0.42 0.50 0.35

Language XGB ✓ 0.33 0.50 0.50 0.49 0.71 0.58 0.58 0.57 0.67 0.55

XGB + CIFAR10 ✗ 0.35 0.06 0.29 0.25 0.07 0.15 0.18 0.26 0.34 0.22

✓ 0.31 0.38 0.42 0.56 0.61 0.48 0.49 0.59 0.65 0.50

XGB + 8 Others ✗ 0.40 0.21 0.36 0.25 0.09 0.12 0.23 0.29 0.31 0.25

✓ 0.38 0.36 0.50 0.46 0.42 0.43 0.45 0.55 0.62 0.46

MultNIST XGB ✓ 0.30 0.24 0.46 0.50 0.36 0.39 0.44 0.52 0.57 0.42

XGB + CIFAR10 ✗ 0.44 0.16 -0.05 -0.02 0.19 0.35 0.35 0.25 0.43 0.23

✓ 0.23 0.28 0.44 0.47 0.36 0.41 0.51 0.46 0.60 0.42

XGB + 8 Others ✗ 0.50 0.25 0.22 0.00 0.42 0.37 0.33 0.21 0.49 0.31

✓ 0.39 0.21 0.40 0.40 0.51 0.44 0.47 0.42 0.60 0.43

26

Table 16: Results of the XGB Regressor models in simulated surrogate runs, seed=1

Task Model Train 100 200 300 400 500 600 700 800 900 AVG

AddNIST XGB ✓ 0.34 0.42 0.24 0.11 -0.02 0.26 0.23 0.37 0.26 0.24

XGB + CIFAR10 ✗ -0.13 0.50 0.11 0.22 0.35 0.26 0.32 0.26 0.24 0.24

✓ 0.37 0.45 0.27 0.21 0.09 0.25 0.34 0.37 0.27 0.29

XGB + 8 Others ✗ 0.26 0.29 0.16 0.28 0.39 0.28 0.22 0.29 0.22 0.26

✓ 0.24 0.36 0.28 0.21 0.19 0.22 0.31 0.38 0.29 0.28

Chesseract XGB ✓ 0.52 0.51 0.50 0.50 0.48 0.52 0.60 0.60 0.65 0.54

XGB + CIFAR10 ✗ 0.50 0.33 0.17 0.17 0.25 0.21 0.27 0.36 0.35 0.29

✓ 0.41 0.38 0.49 0.39 0.42 0.50 0.59 0.59 0.60 0.48

XGB + 8 Others ✗ 0.54 0.29 0.31 0.17 0.22 0.35 0.31 0.35 0.52 0.34

✓ 0.54 0.43 0.52 0.37 0.44 0.50 0.44 0.57 0.56 0.49

CIFARTile XGB ✓ 0.29 0.34 0.46 0.50 0.30 0.27 0.31 0.43 0.16 0.34

XGB + CIFAR10 ✗ 0.22 0.31 0.11 0.34 0.30 0.21 0.28 0.25 0.37 0.27

✓ 0.29 0.52 0.46 0.54 0.33 0.28 0.38 0.47 0.25 0.39

XGB + 8 Others ✗ 0.34 0.33 0.27 0.41 0.27 0.19 0.32 0.29 0.30 0.30

✓ 0.34 0.47 0.46 0.57 0.29 0.28 0.40 0.45 0.25 0.39

GeoClassing XGB ✓ 0.51 0.51 0.54 0.59 0.57 0.57 0.60 0.62 0.70 0.58

XGB + CIFAR10 ✗ 0.52 0.45 0.40 0.37 0.23 0.27 0.27 0.22 0.32 0.34

✓ 0.50 0.62 0.56 0.60 0.57 0.60 0.63 0.67 0.72 0.61

XGB + 8 Others ✗ 0.33 0.34 0.32 0.35 0.24 0.37 0.36 0.31 0.33 0.33

✓ 0.40 0.54 0.53 0.52 0.52 0.59 0.57 0.64 0.72 0.56

Gutenberg XGB ✓ 0.56 0.63 0.65 0.57 0.56 0.40 0.54 0.65 0.65 0.58

XGB + CIFAR10 ✗ 0.30 0.35 0.16 0.44 0.29 0.03 0.01 0.33 0.35 0.25

✓ 0.37 0.63 0.66 0.56 0.56 0.42 0.55 0.62 0.60 0.55

XGB + 8 Others ✗ 0.39 0.54 0.49 0.51 0.23 0.21 0.24 0.31 0.31 0.36

✓ 0.43 0.64 0.67 0.58 0.52 0.40 0.53 0.57 0.60 0.55

Isabella XGB ✓ 0.25 0.32 0.42 0.69 0.68 0.70 0.69 0.71 0.60 0.56

XGB + CIFAR10 ✗ 0.33 0.24 -0.01 0.02 0.07 0.09 0.05 0.18 0.08 0.12

✓ 0.30 0.41 0.38 0.63 0.70 0.72 0.65 0.71 0.68 0.58

XGB + 8 Others ✗ 0.32 0.29 0.14 0.08 0.08 0.12 0.11 0.25 0.14 0.17

✓ 0.31 0.38 0.36 0.67 0.73 0.72 0.65 0.68 0.66 0.57

Language XGB ✓ 0.47 0.54 0.56 0.70 0.57 0.32 0.33 0.36 0.53 0.49

XGB + CIFAR10 ✗ 0.41 0.36 0.37 0.37 0.39 0.39 0.16 0.33 0.38 0.35

✓ 0.37 0.56 0.60 0.64 0.60 0.35 0.33 0.34 0.42 0.47

XGB + 8 Others ✗ 0.40 0.41 0.46 0.41 0.36 0.35 0.18 0.28 0.35 0.36

✓ 0.46 0.55 0.56 0.65 0.52 0.31 0.40 0.36 0.36 0.46

MultNIST XGB ✓ 0.44 0.46 0.45 0.42 0.20 0.47 0.12 0.41 0.41 0.37

XGB + CIFAR10 ✗ 0.10 -0.05 -0.03 0.36 0.21 0.35 0.26 0.38 0.32 0.21

✓ 0.35 0.46 0.39 0.37 0.26 0.42 0.13 0.42 0.42 0.36

XGB + 8 Others ✗ 0.06 -0.02 0.04 0.42 0.22 0.40 0.32 0.35 0.21 0.22

✓ 0.07 0.33 0.38 0.30 0.21 0.46 0.17 0.45 0.43 0.31

27

Table 17: Comparison of RF and XGBoost without transfer. Average Kendall tau over all Unseen datasets

and seedswhen trained on data fromfirst iterations. Only the given dataset is used for training.

RF

limit 100 200 300 400 500 600 700 800 900

Remove zero acc. Aggregation

False minmax 0.39 0.42 0.44 0.50 0.46 0.44 0.47 0.54 0.49

none 0.39 0.42 0.44 0.50 0.46 0.44 0.47 0.54 0.49

percentile 0.37 0.42 0.44 0.51 0.46 0.45 0.46 0.54 0.51

True minmax 0.39 0.41 0.43 0.49 0.45 0.43 0.45 0.54 0.51

none 0.39 0.41 0.43 0.49 0.45 0.43 0.45 0.54 0.51

percentile 0.37 0.41 0.42 0.50 0.46 0.45 0.46 0.54 0.50

XGB

limit 100 200 300 400 500 600 700 800 900

Remove zero acc. Aggregation

False minmax 0.37 0.41 0.44 0.48 0.47 0.44 0.46 0.52 0.50

none 0.37 0.41 0.44 0.48 0.47 0.44 0.46 0.52 0.50

percentile 0.35 0.40 0.44 0.50 0.47 0.45 0.48 0.55 0.52

True minmax 0.37 0.41 0.45 0.48 0.45 0.44 0.46 0.54 0.51

none 0.37 0.41 0.45 0.48 0.45 0.44 0.46 0.54 0.51

percentile 0.36 0.42 0.43 0.49 0.45 0.46 0.47 0.55 0.51

Table 18: Comparison of RF and XGBoost with transfer. Average Kendall tau over all Unseen datasets

and seeds when trained on data from first iterations. Data from the initial part of the current

dataset and Cifar10, the other Unseen datasets, or both are used for training.

RF

limit 100 200 300 400 500 600 700 800 900

Remove zero acc. Aggregation

False minmax 0.28 0.31 0.28 0.31 0.33 0.31 0.33 0.36 0.37

none 0.31 0.30 0.27 0.32 0.33 0.31 0.31 0.35 0.35

percentile 0.35 0.33 0.31 0.36 0.36 0.35 0.37 0.40 0.41

True minmax 0.37 0.33 0.31 0.35 0.34 0.33 0.33 0.37 0.39

none 0.33 0.29 0.26 0.31 0.33 0.30 0.29 0.34 0.35

percentile 0.36 0.32 0.31 0.35 0.35 0.34 0.35 0.40 0.41

XGB

limit 100 200 300 400 500 600 700 800 900

Remove zero acc. Aggregation

False minmax 0.29 0.31 0.29 0.32 0.32 0.31 0.33 0.35 0.35

none 0.29 0.31 0.26 0.31 0.31 0.30 0.31 0.33 0.33

percentile 0.32 0.34 0.31 0.36 0.37 0.35 0.36 0.40 0.40

True minmax 0.35 0.35 0.31 0.35 0.34 0.34 0.35 0.38 0.40

none 0.32 0.32 0.27 0.32 0.32 0.31 0.31 0.34 0.36

percentile 0.34 0.35 0.31 0.36 0.37 0.35 0.36 0.41 0.40

28

Instruction

You should follow these instructions: 1. You should understand that the image classification

task is CIFAR10 and the quality of a configuration is measured based on validation accuracy.

2. The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images

per class. There are 40000 training images, 10000 validation images and 10000 test images.

The 10 classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. 3. You

should concentrate on the example configurations provided below alongwith their accuracies

to understand the complex relationships between architecture configuration and accuracies.

654

Definition

Search Space Definition: The search space includes groups of operations which can represent

many state-of-the-art neural architectures. The search space is based on context free grammar

and each candidate represents a syntax tree of the architecture.

The four fundamental operations are: 1. Branching: One-to-many functions that direct the

flow of information through the network by cloning or splitting tensors. Examples include

the branching within self-attention modules into queries, keys and values. 2. Aggregation:

Many-to-one functions that merge the information frommultiple tensors into one. Exam-

ples include matrix multiplication, summation and concatenation. 3. Routing: One-to-one

functions that change the shape or the order of the content in a tensor without altering its

information. Examples include axis permutations as well as the im2col and col2im operations.

4. Computation: One-to-one functions that alter the information of the tensor, either by

parametrised operations, normalisation or non-linearities. Examples include linear layers,

batchnorm and activations like ReLU and softmax.

The two feature modes are: 1. Im mode: Maintains a 3D tensor of shape (C, H, W), where C is

the number of channels, H is the height andW is the width. Most convolutional architectures

operate in this mode. 2. Col mode: Maintains a 2D tensor of shape(S, D),where S is the

sequence length andD is the tokendimensionality. This is themode inwhichmost transformer

architectures operate.

For each candidate in the search space, its format is described using functions formatted as

below: 1. Branching functions: branching(b)[M] -where b is thenumber of splits/clones,M is a

set of other operations. clone(b) - cloning b copies of the tensor. group(b,dim) - splitting tensor

into b parts along dimension dim. 2. Aggregation functions: dot_product(scaled) - matrix

multiplication with optional scaling add - summation of multiple tensors. concat(b,dim) -

concatenate b tensors along dimension d. 3. Routing functions: routing[M] - where M is a set

of other operations. im2col(k,s,p) - convert from immode to col mode, where k is kernel size, s

is the stride and p the padding. col2im - convert from col mode to immode. permute(o) - same

as permute function in pytorch. identity - keep original tensor. 4. Computation functions:

computation<o> - where o could be any functions listed below. linear(d) - linear layers with d

as the output dimension. norm - batch-norm functionality in the Immode and layer-norm

in Col mode. softmax - softmax operation applied to the final dimension. relu - leaky relu

activation function. pos-enc -positional encoding.

Anexample representationof a traditional convolutional blockwith a skip connection: branch-

ing(2)clone(2),sequential(sequential(routing[im2col(8,8,0), computation<linear>, col2im]),

sequential(computation<norm>, computation<relu>)), computation<identity>, add(2)

655

29

Demonstrations

Architecture 1: ...

Accuracy: ...

Architecture 2: ...

...

656

Test

Architecture: ...

Accuracy:

657

30

	Introduction
	Related Work
	Neural Architecture Search
	Performance Predictors in NAS
	Large Language Models in NAS

	Method
	Surrogate Models
	Surrogates From GRAF and ZCP Descriptors
	Language Models as Surrogates
	Using Surrogates in Search

	Experiments
	Experimental Results

	Conclusion
	Algorithmic Details
	Architecture Augmentation

	Implementation Details
	Random Seeds
	Language Models Implementation Details
	Random Forest (XGBoost) Implementation Details
	Evolutionary Algorithm Hyperparameters
	Compute Resources

	Ablation Study
	Encoding for LMs
	Normalization Methods

	Additional Results
	Transfer Learning Surrogate Selection

	Prompt

