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Abstract Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive,

broad search spaces that enable architectural innovationwith the need for efficient evaluation

of architectures to effectively search such spaces. We investigate surrogate model training for

improving search in highly expressive NAS search spaces based on context-free grammars.

We show that i) surrogate models trained either using zero-cost-proxy metrics and neural

graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power

for the performance of architectures both within and across datasets, ii) these surrogates can

be used to filter out bad architectures when searching on novel datasets, thereby significantly

speeding up search and achieving better final performances, and iii) the surrogates can be

further used directly as the search objective for huge speed-ups.

1 Introduction

Neural architecture search (NAS) promises to find high performing architectures for diverse tasks,

but the field has so far struggled to discover truly novel architectures. This challenge arises from

the inherent trade-off between designing focused search spaces for specific architectural families,

such as ConvNets (Dong and Yang, 2020), transformers (Chen et al., 2021a,b) and hybrids (Li et al.,

2021; Thomas et al., 2025)—and the need for broader, more expressive search spaces that can enable

true architectural innovation.

Recent work has proposed large and expressive search spaces based on context-free gram-

mars (Schrodi et al., 2023; Ericsson et al., 2024). However, searching these spaces becomes more

difficult as the size increases, meaning that efficient evaluation is more important that ever. Tech-

niques such as performance predictors (White et al., 2021; Dudziak et al., 2020; Lukasik et al., 2024;

Jawahar et al., 2024), surrogatemodels (Ning et al., 2021; Zela et al., 2020; Yan et al., 2021) and zero-cost

proxies (Krishnakumar et al., 2022; Kadlecová et al., 2024; Mellor et al., 2021) offer a promising

direction for this. While these techniques have shown impressive results on constrained search

spaces, their performance in more expressive, complex spaces remains unknown. Many zero-cost

proxies (ZCPs) rely on simple heuristics (e.g. Mellor et al. (2021) effectively counts convolutions)

which may fail to capture the nuances of fundamentally different architectures like transformers.

In this work, we demonstrate that existing ZCPs struggle in expressive search spaces, but

more recent methods that incorporate topology-based features yield better predictive performance.

Additionally, we explore the capabilities of large language models (LLMs), which can interpret
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structured, context-free grammar (CFG)-based representations of architectures. We show that these

models can effectively predict architecture performance, significantly accelerating search across

multiple datasets. Furthermore, while seeding search from known baseline architectures—such as

ResNets—has proven useful (Ericsson et al., 2024), it introduces a bias toward specific architectural

directions. Unseeded search has the potential to explore a broader solution space, yet improving

search speed is necessary tomake it feasible. Our surrogatemodels not only enhance search efficiency

but also exhibit strong generalisation to unseen tasks, allowing them to function as global surrogates

acrossdiverse tasks. Finally,weexplore thepotentialofusing these surrogatemodelsdirectlyas search

objectives, paving the way for more efficient and effective NAS. Our contributions are as follows:

• We evaluate a broad set of performance predictors in an expressive search space, and to our

knowledge, we are the first to do so.

• Weintroduceanovel surrogatebasedonafine-tunedLMwhich takes in string representationsof the

architecture derivations, achieving the highest correlations with real architecture performances.

• When using the surrogates during evolutionary search, we find that we can speed up the search

significantly while consistently achieving stronger final architecture performances than baseline

search without a surrogate.

• We can even use our surrogates directly as the search objective of NAS, offering huge speed

improvements, and at times even beating the baseline that takes many times longer to run.

2 RelatedWork

2.1 Neural Architecture Search

Cell-based search spaces have been the dominant design type in NAS research. These search

spaces are restricted to a single cell with only a few nodes and edges, and the architecture is

created by repeatedly stacking the same cell. Examples include NAS-Bench-101 (Ying et al., 2019),

NAS-Bench-201 (Dong and Yang, 2020), and DARTS (Liu et al., 2019a). The main advantage of this

design is reduced search costs compared to searching in unrestricted spaces. However, this also

means the design of architectures is limited, and truly novel architectures cannot be discovered.

Recently, focus has shifted to more flexible search-spaces with potential to discover novel

architectures tailored to diverse datasets. These search spaces are defined by a grammar that enforces
a specific structure. The first such search space, Hierarchical NAS (Schrodi et al., 2023), introduced

a grammar for a flexible cell structure and macro architecture. The second was einspace—a search
space with a flexible grammar focused on a basic set of operations (such as branching or routing).

This flexibility enabled it to represent a wide range of architectures—convolutional networks, vision

transformers andMLPmixers—as well as novel unexplored architectures (Ericsson et al., 2024).

2.2 Performance Predictors in NAS

Performance predictor models have been widely used in NAS to speed up the evaluation of

architectures. A performance predictor is a function that estimates the performance of unseen

architectures after being trained on a collection of architecture-performance pairs. Instead of

needing to train each architecture from scratch, this allows us to predict its performance almost

instantaneously (White et al., 2021, 2023). Performance predictors are based on three components: (i)

the architecture-performance dataset, (ii) the prediction method, and (iii) the architecture encoding,

which transforms the architecture into a suitable input format for the prediction method.

Most works combine the latter two components into a model-based prediction method (Dudziak

et al., 2020). To further increase the evaluation speed during search, zero-cost proxieswere introduced

as target metrics for prediction methods and as the input for model-based prediction methods (Ab-

delfattah et al., 2021; Krishnakumar et al., 2022). More recently, FLAN (Akhauri andAbdelfattah, 2024)
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combines a learned encoding of an architecture cell (Ning et al., 2023; Velickovic et al., 2018) with

zero-cost-proxies, and an unsupervised learned latent space (Yan et al., 2020) as architecture encod-

ings, which are fed into anMLP prediction. Lukasik et al. (2024) used zero-cost proxies as architecture

encodings combined with a random forest prediction method for single and multi-objective tasks

(accuracy and robustness). GRAF (Kadlecová et al., 2024) proposes graph features based on the archi-

tecture topology as encodings in combination with tabular predictors and shows improvements over

using solely zero-cost proxies for both single andmulti-objectives. Thesemethods focus on cell-based

search spaces, which are not easily transferable to other search spaces and overall lack flexibility.

In this work we are the first to show how performance prediction can speed up the search in

larger, non-cell-based, more complex search spaces like einspace.

2.3 Large LanguageModels in NAS

Many studies have begun using the strong text comprehension and generation capabilities of large

language models (LLMs) to tackle various aspects of NAS. LLMs can act as surrogate models to score

each search candidate. In particular, GPT-4 (OpenAI, 2023) has shown promise in accelerating and

potentially improving search results (Chen et al., 2024), while compact regression models distilled

from GPT-4’s predictions have also demonstrated comparable performance (Jawahar et al., 2024).

Moreover, LLMs—especially those designed for code generation—can be used to produce new

candidate architectures by either directly outputting network structures (Yu et al., 2023; Wang

et al., 2023) or serving as mutation and crossover operators (Nasir et al., 2024; Chen et al., 2023).

Other research directions include pruning the search space by using GPT-4 to identify key design

principles from existing architectures (Zhou et al., 2024).

Although these studies suggest that LLMs exhibit an understanding of architectural structures,

most experiments have been conducted within relatively constrained or well-studied search space

domains likely included in the model’s training corpora. Moreover, while large, closed-source

models such as GPT-4 excel as performance predictors, smaller and more cost-effective open-source

models often fail to achieve comparable results (Jawahar et al., 2024). This discrepancy motivates

further investigation into how open-source language models can be effectively applied to more

expressive, large-scale search spaces.

3 Method

In this section, we present novel surrogate models for large and expressive NAS search spaces. Using

surrogates to speed-up and improve search in these spaces is non-trivial due to their expressivity.

We will focus our development towards the einspace search space as an example in this area. While

most existing surrogates were designed for cell-based spaces and rely on a fixed one-hot encoding of

the architecture, this is not possible in einspace, as the search space does not predefine the maximal

depth or the number of nodes and edges in the network graph. To overcome the limits of existing

surrogate-based predictors, we present two performance predictors that enable a more flexible

architecture design. The first predictor is a random forest trained on a combination of zero-cost

proxies and GRAF features (Kadlecová et al., 2024). In Section 3.2, we describe how we adapt this

method towards einspace and how our implementation differs from the original cell-based GRAF

variant. The second surrogate model, presented in Section 3.3, is an language model (LM)-based

predictor that learns from the grammar-derived string representation of architectures.

3.1 Surrogate Models

Performance predictors rely on three key components: (i) an architecture-performance dataset, (ii) a

prediction model, and (iii) an architecture encoding. We now formalise these components. Let 𝑎 ∈A
be an architecture from the search spaceA. Its true accuracy on a dataset𝐷 is obtained by training

and evaluating it via an expensive process, denoted as 𝑃 (𝑎,𝐷). Our goal is to approximate 𝑃 (𝑎,𝐷)
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Figure 1: The encodings used by our language models (left) and our random forest and XGBoost models

(right). A derivation tree is obtained from the grammar by sampling or mutation, and encoded

into a string representation. The derivation tree can be compiled into a neural network, from

which we can extract ZCP scores and GRAF encodings that are ultimately concatenated to

form a descriptor for the RF and XGBoost models.

with a surrogatemodel to reduce computational cost. To achieve this, we train amodel 𝑓𝜃 on a dataset

of architecture-accuracy pairs: 𝑆 = {(𝑎𝑖 ,𝑃 (𝑎𝑖 ,𝐷))}𝑁𝑖=1. Before an architecture 𝑎 is input to 𝑓𝜃 , it is first

encoded using a function 𝐸, yielding its representation 𝐸 (𝑎). The surrogate model is then trained

by minimizing a loss functionL, typically the mean squared error (MSE): 𝜃 ∗=argmin𝜃L(𝑆,𝐸;𝜃 ) .

3.2 Surrogates FromGRAF and ZCP Descriptors

In the previous section, we introduced a surrogate model 𝑓𝜃 trained on encoded architecture-

performance data. Here, we explore a specific instantiation where the encoding function 𝐸 (𝑎) is
constructed using a combination of topological features from GRAF and zero-cost proxies (ZCPs).

Kadlecová et al. (2024) demonstrated that tabular performance predictors—such as random

forests and XGBoost—achieve state-of-the-art results on cell-based search spaces when trained

on a combination of GRAF descriptors and ZCPs. However, their effectiveness in more flexible,

grammar-based search spaces remains unexplored. To integrate GRAF features into our setting, we

adapt them to accommodate the broader expressivity of einspace.
We include all original GRAF features, such as operation counts, max/min path lengths, and

node degrees. In the original formulation, GRAF computes all possible subsets of certain features

(e.g., path lengths and node degrees). However, due to the large number of operations in einspace,
computing these subsets exhaustively is intractable. To address this, we redefine path lengths: the

minimum path length is the shortest path containing a given operation from input to output, and

the maximum path length follows a similar definition. For node degrees, we restrict our analysis

to a single operation type and consider only input/output node degrees, as our initial experiments

found no benefit in including average degrees. In addition to GRAF features, we incorporate the

zero-cost proxies introduced by Abdelfattah et al. (2021), including grad_norm, snip, grasp, fisher,
jacob_cov, plain, and synflow. The final architecture encoding, which serves as the input to our
surrogate model 𝑓𝜃 , is defined as: 𝐸 (𝑎)=concat(GRAF(𝑎),ZCP(𝑎))

3.3 LanguageModels as Surrogates

While computing graph features and proxies on the networks can provide useful information on the

performance of an architecture, we have another alternative natural representation that comes from

our grammar-based search space—the derivation tree. This is a direct description of the architecture
and its properties, that can be efficiently expressed in a string format due to its tree structure.
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Therefore, we will consider using language models (LMs) directly on this string representation. To

give the model more information of the inner workings of the architecture, we enrich the encoded

string with additional metadata, such as the tensor sizes at the output of operations. A more detailed

discussion and an ablation study of different encoding choices can be found in Section C.1. For a

visual representation of this encoding and the previous, see Figure 1.

To train this surrogate, we start by initialising the parameters of the model with pre-trained lan-

guagemodel weights. We then further fine-tune it using the followingmean squared error (MSE) loss:

LMSE(𝜃 )=
1

|𝑆 |
∑︁

(𝑎,𝑃 (𝑎,𝐷 ) ) ∈𝑆

(
𝑓𝜃 (𝐸 (𝑎))−𝑃 (𝑎,𝐷)

)
2

. (1)

Additionally, we evaluate the few-shot learning abilities of open-source LLMs to predict the

accuracy from the architecture string representation 𝐸 (𝑎), with the prompts structured as PP prompts
(Jawahar et al., 2024). Please see the appendix for more details.

3.4 Using Surrogates in Search

The surrogates described above will be used to speed up and improve architecture search. To do this,

we build on the search method used in einspace (Ericsson et al., 2024), a regularised evolution algo-
rithm (Real et al., 2019) restricted tomutation as the strategy for evolving individuals. The algorithm is

modified to includeour surrogates at key stages to improve the evaluation speedand selection strategy.

Improving selection. The updated algorithmworks as follows. We first randomly sample an initial

population, which is evaluated and used for fitting the surrogate model. The surrogate predictions

are then used in the next iteration to select the new individuals to add to the population, from a pool

of 𝑛mutated architectures. We use the same search routine as in einspace (detailed in Algorithm
1 in the appendix) with the following changes – instead of sampling 1 individual and immediately

updating the population, we sample 𝑘 ≥ 1 individuals from the 𝑛mutated architectures. This step

is important, due to the inherent inaccuracy of the surrogates – the surrogates only approximate

the accuracy, and the individual with the highest predicted accuracy is not necessarily the best one.

By sampling more than 1 individual, we increase the chance of sampling the top offspring.

Along with our ZCP + GRAF + random forest and LLM surrogates, we evaluate a ‘random’

baseline – we create 𝑘 mutated offspring and add them directly to the population. This baseline

is similar to the search in einspace, allowing for a fair comparison between a complete evaluation

from scratch of each sampled individual and the introduced surrogate models.

Replacing objective. In addition to using surrogates for selection, we explore a surrogate-based

objective function, where the surrogate fully replaces the evaluation step during search. Instead

of training and evaluating architectures at every step, we rely entirely on the surrogate’s predictions

to rank and select individuals, thereby massively speeding up the search process. After the search

has completed, the top-k running best performing architectures identified throughout the search

are evaluated through full training and evaluation on the training and validation set, respectively.

Then we perform the final models selection and evaluate the best model eval on the test set.

4 Experiments

In our experiments, we evaluate the following list of surrogate models.
Random Forest: We train a random forest (RF) regression model on the zero-cost proxy (ZCP)

and GRAF feature set, as described in Section 3.2. The RF model serves as a feature-based baseline,

using manually extracted architecture descriptors to predict the performance.

BERT: For our fine-tuning experiments, we make use of the RoBERTa (Liu et al., 2019b) and Mod-

ernBERT (Warner et al., 2024) model families. Both model families contain a base version (RoBERTa:

125M parameters, ModernBERT: 150M parameters) and a large version (RoBERTa: 355M parameters,
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Figure 2: Search results using different surrogates. We plot the validation accuracies of the best models

at each iteration of search, with the mean and standard error across three seeds.

ModernBERT: 396M parameters). We fine-tune both size variants of these models using the string

representations of architectures from their derivation trees in einspace, as described in Section 3.3.
Open-source LLM:We additionally use Llama3.2 (Grattafiori et al., 2024), with its 1B, 1B Instruct,

and 3B variants, as well as both Qwen2.5 (Yang et al., 2024) 7B and 14B Instruct version. We fine-tune

these model in the same manner as the BERT-based models, or learn them in a few-shot manner

for performance prediction.

Evaluation settingsAssumingwe have access to architecture-accuracy pairs for𝑁 different datasets,

we will use this data to fit and evaluate surrogate models in a few different ways.

IID: In this setting, we train and evaluate on data from the same dataset. This means we treat

the first datapoints from a search as the training set, and the future as the evaluation set. To simulate

the search setting we train on the first𝑚 datapoints, predict on the next 𝑘 . For example, we fit the

first version of our surrogate on the initial population on AddNIST (Geada et al., 2024) and use it to

predict the performance of the next 20 architectures. Then we can refit the surrogate every so often

to evaluate throughout the search. This setting helps us to evaluate how the surrogate generalises

to the immediate future of the evolution process.

OOD/Leave-one-out: In this setting, we train our surrogate models on 𝑁 −1 datasets and evaluate
on the single leftover dataset. As an example, we can train on all data from CIFAR10 + 7 Unseen NAS

datasets and then evaluate on all data from AddNIST. This tests the surrogate’s zero-shot transfer

ability. In order to make this work, we need to standardise the label space (accuracy distributions)

across the datasets.

Both: In the final setting, we combine the above two approaches. We treat all data from the other

𝑁 −1 datasets as training data, along with any datapoints from the start of the search on the target

dataset. Then as search progresses, we continue training/fine-tuning on the search data as it arrives.

The implementation of this may differ between the LLM compared to RF/XGB due to the SGD vs

batch training.
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Table 1: Rankcorrelationbetweensurrogate rewardandground truthaccuracyonCIFAR10architectures

evaluation set for different surrogate models. Correlation averaged across three different seeds

are given for few-shot learning surrogates with standard error. Correlation of ZCPs can be

found in Table 7.

Model Input Spearman Kendall

RF ZCP + GRAF 0.663 0.514
XGBRegressor ZCP + GRAF 0.600 0.449

RoBERTa-base String Encoding 0.723 0.575

RoBERTa-large String Encoding 0.679 0.523

ModernBERT-base String Encoding 0.746 0.597

ModernBERT-large String Encoding 0.745 0.612

ModernBERT-large String Encoding+aug 0.769 0.628

Llama3.2 1B String Encoding 0.722 0.588

Llama3.2 1B Instruct String Encoding 0.726 0.593

Llama3.2 3B String Encoding 0.682 0.552

Llama3.2 3B Instruct PP Prompt (3 shot) -0.087 (0.030) -0.067 (0.023)

Qwen2.5 7B Instruct PP Prompt (3 shot) 0.319 (0.014) 0.235 (0.012)

Qwen2.5 14B Instruct PP Prompt (3 shot) 0.356 (0.018) 0.256 (0.014)

ReportedMetricsWithin each of these settings, we will report multiple metrics to understand the

quality of the surrogate models. We report the rank correlation values (Spearman’s rho, Kendall’s

tau) between the ground-truth and predicted performances. We use the surrogate model to guide the

search by improving the selection of new individuals, and report the accuracy of the final architecture.

For each iteration in the search, we generate a pool of𝑛 candidate architectures and accept the best 𝑘 .

In addition we also replace the objective in the actual search, and use the surrogate model

directly as the objective to be optimised. Therefore, we do not include any additional training and

evaluation of any networks, making this approach even faster.

Data In this work, we train and evaluate surrogate models using both the CIFAR10 dataset

(Krizhevsky, 2009) and the tasks from the Unseen NAS benchmark (Geada et al., 2024). We use

architecture-accuracy pairs obtained from searches on these datasets to form the datasets used for

fitting our surrogate models. For CIFAR10, we conducted 8 NAS runs with different random seeds

with same setting as in Ericsson et al. (2024) (which is also equivalent to our baseline evolution),

yielding around 9k architecture-accuracy pairs. Of these 8 runs, 6 serve as training set, 1 as validation

set and 1 as test set. For each of the 8 Unseen NAS tasks, we generate two runs per seed, which

results in 2k pairs per dataset. One of which serves as training set and the other one as validation set.

Search Algorithms We run the regularised evolution variant described in Section 3.4. We use a

randomly initialised initial population of 100 architectures sampled from the grammar. We set 𝑛 to

20 – this gives us a diverse selection of possible offspring while still being cheap, as subtree mutation

can be costly for some operators in the grammar. As for the number of individuals chosen, we set

𝑘 to 5 as a compromise between selecting good offspring and updating the population often enough.

4.1 Experimental Results

Correlation Results. To identify the best-performing surrogate model and optimal setting for NAS

searches, we evaluate rank correlations in multiple scenarios, which measures both the surrogate’s

ability to fit on the trained tasks, and the transferability to unseen tasks. See Appendix B for detailed

implementation.

Correlations on CIFAR10: We first focus on the case in which we train and evaluate the surrogate

on CIFAR10 data, to assess the model’s ability to capture and generalise to new architectures within

the same dataset. For the few-shot learning settings, examples are chosen uniformly based on

the accuracy from training set. As shown in Table 1, the fine-tuned ModernBERT-large achieves

the highest correlation on the evaluation set, which can be further improved by adding data

augmentation (cf. Appendix B). Among the Llama3.2 models in the fine-tuning setting, the 1B and

7



Table 2: Kendall-Tau correlation on the Unseen NAS datasets for surrogate ModernBERT-large and

random forest. For CIFAR10 we use 7k architectures to train the surrogate on, while on the

other datasets we use 1 000. For a fair comparison, one seed is randomly chosen from CIFAR10

training set to be comparable to other tasks.

CIFAR10 AddNIST Language MultNIST CIFARTile Gutenberg Isabella GeoClassing Chesseract Avg

CIFAR10 0.612 / 0.648 0.470 / 0.516 0.408 / 0.326 0.604 / 0.447 0.470 / 0.374 0.577 / 0.525 0.189 / 0.239 0.581 / 0.284 0.280 / 0.424 0.466 / 0.420

CIFAR10(1k) 0.524/ 0.582 0.479 / 0.370 0.374 / 0.380 0.507 / 0.434 0.320 / 0.379 0.439 / 0.586 0.254 / 0.236 0.360 / 0.375 0.157 / 0.414 0.379 / 0.417

AddNIST 0.331 / 0.526 0.589 / 0.577 0.271 / 0.342 0.460 / 0.478 0.387 / 0.336 0.362 / 0.577 0.223 / 0.163 0.459 / 0.230 0.179 / 0.412 0.362 / 0.405

Language 0.370 / 0.486 0.443 / 0.229 0.388 / 0.200 0.463 / 0.128 0.393 / 0.126 0.467/ 0.133 0.268/ 0.268 0.262 / 0.219 0.271 / 0.430 0.369 / 0.246

MultNIST 0.371 / 0.497 0.369 / 0.280 0.264 / 0.401 0.394 / 0.445 0.285 / 0.307 0.423 / 0.500 0.229 / 0.241 0.245 / 0.307 0.300 / 0.335 0.320 / 0.368

CIFARTile 0.233 / 0.553 0.522 / 0.575 0.114 / 0.236 0.336 / 0.365 0.397 / 0.332 0.286 / 0.495 0.212 / -0.056 0.484/ 0.219 0.256 / 0.257 0.316 / 0.331

Gutenberg 0.232 / -0.055 0.165 / 0.425 0.404 / 0.358 0.345 / 0.315 0.163 / 0.234 0.411 / 0.295 0.191 / 0.225 0.118 / 0.205 0.306/ 0.360 0.259 / 0.262

Isabella 0.250 / 0.054 0.364 / 0.174 0.305 / 0.184 0.440 / 0.160 0.281 / 0.233 0.278 / 0.414 0.240 / 0.298 0.244 / 0.381 0.202 / 0.218 0.267 / 0.235

GeoClassing 0.277 / 0.559 0.506/ 0.547 0.296 / 0.251 0.361 / 0.464 0.407 / 0.315 0.424 / 0.578 0.285 / 0.233 0.437 / 0.007 0.136 / 0.316 0.313 / 0.363

Chesseract 0.285 / 0.254 0.142 / -0.020 0.220 / 0.253 0.363 / 0.216 0.246 / 0.226 0.432 / 0.128 0.116 / 0.158 -0.021 / 0.089 0.404 / 0.405 0.243 / 0.190

1B Instruct models also achieve moderately high correlations. However, few-shot learning models

result in noticeable drop in performance. The ZCPs perform poorly overall, with jacov_cov and
synflow being the strongest ones. They still lag behind the more complex models, showing the

need for more complex heuristics in this expressive search space. Tree-based models trained on

ZCPs and GRAF give moderate correlations which are lower compared to the best-performing LMs;

however, they require no pre-training, which is an advantage. Based on these results, we choose

ModernBERT-large and the random forest regression as the surrogate models going forward.

Transfer Across Tasks: As shown in Table 2, training on the 1 000 samples from CIFAR10

gives overall the highest transfer correlations among that group. This may be due to its generic

image classification task or a greater diversity compared to other datasets. Due to this we also

consider training models with more data from CIFAR10, for a total of 7k samples. From this data,

we see ModernBERT-large reaching the highest average correlation (0.466). CIFAR10-trained

surrogates excel onMultNIST (0.604), Gutenberg (0.577), and GeoClassing (0.581), demonstrating

strong cross-task generalisation. Language-based datasets like Gutenberg transfer well within

their domain (0.404 on Language) but struggle with vision tasks, highlighting modality transfer

challenges. Isabella and Chesseract yield the lowest correlations, indicating limited generalisation.

ModernBERT-large consistently outperforms the random forest model, underscoring the advantage

of deep LMs in capturing complex relationships. However, tree-based models remain competitive

in well-aligned tasks, such as CIFARTile to CIFAR10 (0.553).

Table 3: Correlation on the Unseen NAS datasets for Leave-

one-out surrogates with percentile normalisation.

ModernBERT-large Random Forest

Eval Tasks Spearman Kendall Spearman Kendall

AddNIST 0.773 0.625 0.671 0.500

Language 0.610 0.433 0.623 0.450

MultNIST 0.798 0.625 0.722 0.533

CIFARTile 0.629 0.444 0.558 0.374

Gutenberg 0.835 0.658 0.816 0.643

Isabella 0.273 0.186 0.308 0.211

GeoClassing 0.661 0.475 0.693 0.504

Chesseract 0.545 0.384 0.599 0.423

Leave-one-out Correlations:We now as-

sess howwell surrogates trained on all but

one dataset generalise to the excluded task

(Table 3). ModernBERT-large achieves the

highest Kendall correlation on Gutenberg

(0.658) andMultNIST (0.625), reinforcing

its ability togeneralise across diverse tasks.

With more data available for training, we

observe a general improvement in Kendall

correlations across tasks. Compared to the

single-dataset transfer setting, leave-one-

out training leads to higher correlations,

particularly on complex tasks like Guten-

berg (0.658 vs. 0.577) and MultNIST (0.625

vs. 0.604) for ModernBERT-large. However, Isabella remains a challenging dataset (0.186–0.211),

indicating that increasing training diversity does not always guarantee better generalization if the

task is inherently misaligned.
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Search Results. We now present our results from using the surrogate models to guide search. From

Table 4 we see that surrogate-assisted evolution generally outperforms the baseline across most

tasks, with ModernBERT-large (Evolution(BERT)) achieving the highest average accuracies. This

suggests that deep learning-based surrogates provide more effective guidance during architecture

search compared to both random selection and tree-based models like the Random Forest (RF). The

Evolution(BERT) variant outperforms the baseline evolution approach on nearly every task, with

particularly strong gains on CIFAR10, AddNIST, Language, and Isabella, demonstrating the model’s

ability to generalize across diverse datasets.

The Random Forest-based approaches (Evolution(RF) and Evolution(RF Transfer)) showmixed

results, with Evolution(RF) performing better than the baseline in some cases (e.g., CIFAR10 and

Gutenberg) but struggling in others. The transfer learning variant (RF Transfer) does well on

MultNIST but is less consistent overall, suggesting that while transfer learning can help in some

scenarios, it does not always lead to better search performance.

In Figure 2, we show the validation accuracies of the best models at each point in the search runs.

We can see from this that our surrogate-based searches often continuously outperforms the baseline>

Furthermore, the best baseline performance is often reached in many fewer iterations, highlighting

that the surrogates greatly improve search efficiency. This is most prominent on CIFAR10, Gutenberg

and Isabella, where all our surrogates improve upon the baseline. The ModernBERT-large variant

also shines on AddNIST and Chesseract where it dominates the others significantly.

The final row of Table 4 show the performance when using the ModernBERT-large variant

directly as the search objective. This method is competitive in some instances, even outperforming

the baseline Evolution on CIFAR10 and Chesseract. However, it is still far behind the best surrogate-

guided search. We are interested to see how the performance of this style of method improves with

better future surrogate models, and its potential use for initialising search populations.

Overall, these results show that surrogate-assisted evolution significantly enhances architecture

search performance, with ModernBERT-large proving to be the strongest surrogate model. It consis-

tently outperforms the baseline evolution approach, demonstrating the value of deep learningmodels

for guiding search. Random Forest-based surrogates provide some benefits, but their effectiveness

varies depending on the dataset. While using the surrogate directly as the search objective does not

yet match full evaluations, its competitive performance on some tasks suggests promise for future

improvements in surrogate-driven search methods.

Table 4: Search results using regularised evolution on the Unseen NAS datasets. For each version we

run on 3 random seeds and report the average best accuracy found along with the standard

error of the mean. Refer to Appendix B.4 for detailed evolution settings.

CIFAR10 AddNIST Langauge MultNIST CIFARTile Gutenberg Isabella GeoClassing Chesseract

Evolution 0.624(0.096) 0.706(0.160) 0.899(0.020) 0.841(0.080) 0.358(0.002) 0.406(0.039) 0.449(0.038) 0.725(0.030) 0.595(0.016)

Evolution(RF) 0.735(0.025) 0.591(0.197) 0.881(0.006) 0.690(0.160) 0.331(0.004) 0.433(0.009) 0.470(0.013) 0.497(0.117) 0.601(0.014)

Evolution(RF Transfer) 0.680(0.063) 0.656(0.229) 0.860(0.015) 0.877(0.070) 0.336(0.012) 0.422(0.006) 0.451(0.029) 0.687(0.023) 0.595(0.012)

Evolution(BERT) 0.828(0.006) 0.846(0.088) 0.910(0.017) 0.765(0.019) 0.341(0.010) 0.425(0.005) 0.512(0.040) 0.735(0.024) 0.606(0.008)

Evolution(BERT as obj) 0.656(0.046) 0.479(0.165) 0.857(0.013) 0.557(0.169) 0.290(0.007) 0.359(0.038) 0.440(0.029) 0.512(0.061) 0.597(0.028)

5 Conclusion
In this paper, we have demonstrated the effectiveness of surrogate models, particularly fine-tuned

large language models (LLMs), in accelerating neural architecture search (NAS) within expressive

search spaces. Our results show that these surrogates can significantly reduce search costs, with

performance predictors helping to guide evolutionary search and improve efficiency across diverse

tasks. However, the overall performance of the searches in einspace can still be improved, especially
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from randomly seeded population. We think there is room for pushing this further by leveraging

these surrogate models. Additionally, continued development of performance predictors, combined

with the advancements in LLMs, promises even stronger improvements in search efficiency. As these

techniques evolve, we anticipate a future where NAS can more effectively explore large, complex

search spaces, uncovering novel and high-performing architectures with greater speed and precision.

Limitations. Our inclusion of surrogates in large, expressive search spaces reduced search costs by
minimizing the need for full evaluations. We adapted a high-performing prediction method (GRAF)

and incorporated large language models, but there is still room for optimization through custom

evolutionary operators. This paper focuses on a single objective (image classification accuracy), but

future work will explore multi-objective searches (e.g., hardware, robustness) and hardware-aware

surrogates. While our predictionmethod showspromising speed-ups, it does not outperformbaseline

search on all unseen data, a challenge for future research.

Broader Impact. Search in expressive search spaces is inherently more expensive than in limited

search spaces, which is a potential negative effect on the environment. However, discovering

novel architectures with an efficient design could have a positive effect on both humanity and the

environment. To get there, it is essential to reduce the high training and evaluation costs. We believe

our method brings us closer to this goal – future work can focus on improving the surrogates we

introduced, and lessen the evaluation costs even more.
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Figure 3: We apply four forms of augmentation to the architecture dataset to increase the effective data

size for LM training. Three of our augmentations preserve the same exact network, while

the last causes minor changes: (1) We swap the nesting order of sequentialmodels; (2) We

swap the two branches in a branching(2)module; (3) We add components that reduce to the

identity operation; and (4) We change the output dimensionality to a neighbouring option in

the list [16, 32, 64, 128, 256, 512, 1024, 2048]. For each augmented architecture, we

adjust the corresponding accuracy by adding Gaussian noise fromN (0,0.0052).

A Algorithmic Details

A.1 Architecture Augmentation

To enhance generalisation and increase the effective dataset size for LM training, we apply four forms

of data augmentation to our architecture dataset. These augmentations aim to provide diverse yet

functionally equivalent architectures:

1. Reordering Sequential Modules –We swap the nesting order of operations within sequential
models while maintaining the same computation.

2. Reordering Branching Modules – For architectures containing branching(2)modules, we swap

the order of the branches without affecting functionality.

3. Identity-PreservingModifications –We introduce additional components that mathematically

reduce to the identity operation, ensuring no impact on functionality while diversifying repre-

sentations.

4. Perturbing Output Dimensionality – We slightly modify the output tensor size by selecting a

neighbouring value from the list [16, 32, 64, 128, 256, 512, 1024, 2048]. This augmentation

changes the the architecture functionally, although from our experiments the change is relatively

minor.

To maintain some diversity in the label space we also adjust the corresponding accuracy of

augmentedarchitecturesbyaverysmall amount, byaddingGaussiannoise sampled fromN (0,0.0052).
These augmentations provide synthetic diversity, helping the LM surrogate learn a more robust

mapping from architecture representations to performance estimates. Figure 3 visualises these

augmentation techniques.

B Implementation Details

B.1 Random Seeds

We use random seeds 0 through 7 to generate architecture-accuracy pairs (for tasks that only require

two seeds, we use seeds 0 and 1). For the actual searches, we use seeds 42, 43, and 44.

B.2 LanguageModels Implementation Details

Settings for fine-tuning LMs include: learning rate set to 10
−5
, batch size to 2, weight decay to

0.01, cosine learning rate scheduler and 0.06 warmup ratio. We train the model for 5 epochs on
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Algorithm 1 Regularised Evolution with Mutation and a Surrogate

Input: Architecture space A, sampling function Sample : {∗} →A, mutation functionMutate :

A→A, evaluation function TrainAndEval :A→R+, surrogate function Surrogate :A→R+,
population size 𝑝 , tournament size 𝜏 , number of offspring samples 𝑐 , number of chosen offspring

per iteration 𝑘 , and number of iterations 𝑛.

Output: best_individual.arch
1: population=∅
2: for 𝑖 =1 to 𝑝 do
3: individual.arch=Sample() ⊲ Sample random architecture

4: individual.accuracy=TrainAndEval(individual.arch)
5: add individual to population
6: end for
7: for 𝑖 =𝑝+1 to 𝑛 do
8: offspring =∅
9: for 𝑗 =1 to 𝑐 do
10: parent = TournamentSelection(population, 𝜏)
11: child.arch =Mutate(parent.arch)
12: child.prediction=Surrogate(child.arch) ⊲ Predict performance (cheap)

13: add child to offspring
14: end for
15: offspring=TopK(offspring,𝑘) ⊲ Select best based on predicted performance

16: for child in offspring do
17: child.accuracy=TrainAndEval(child.arch) ⊲Actual performance (expensive)

18: add child to population
19: pop oldest individual from population ⊲Aging

20: end for
21: Fit Surrogate function on population ⊲ Continuously train the surrogate

22: end for
23: best_individual=argmaxindividual∈populationindividual.accuracy

Algorithm 2 TournamentSelection
Input: Population of architectures population, tournament size 𝜏

Output: Selected individual
1: tournament← RandomSubset(population, 𝜏) ⊲ Uniformly at random

2: individual=argmaxindividual∈tournamentindividual.accuracy ⊲ Return best
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leave-one-out experiments and 15 epochs on all other experiments. The best checkpoint is saved

based on Kendall Tau correlation on the evaluation set.

For few-shot learning, we set the temperature to 0.7 and maximum new tokens to 50, the first

floating number is extracted as prediction; if no floating number is found, we retry with maximum

new tokens as 500. The prompt follows the structure of the PP prompts (Jawahar et al., 2024). Prompt

details are presented in Appendix E.

B.3 Random Forest (XGBoost) Implementation Details

For the random forest regressor, we used the default settings of scikit-learn (Pedregosa et al., 2011).

For the XGBoost Regressor model, we used optimised parameters from Autogluon (Erickson et al.,

2020).

B.4 Evolutionary AlgorithmHyperparameters

The evolutionary algorithm generates 20 independently mutated individuals per iteration. The

surrogate variants use a model to rank and chooses the top 5 to fully train and test and include in the

population, while the base version chooses 5 randomly. The population size is 100, and the search

runs for 300 iterations
1
. For each version, we run on 3 random seeds.

The BERT based surrogate model is re-fit every 100 iterations, the random forest based models

are refit every 20 iterations.

B.5 Compute Resources

All our experiments ran on 7 clusters with the following infrastructure:

• AMD EPYC 7552 48-Core Processor with 1000GB RAM and 8 ×NVIDIA RTX A5500 with 24GB of

memory

• AMD EPYC 7262 8-Core Processor with 125GB RAM and 7 ×NVIDIA A100 with 40GB of memory

• AMD EPYC 7543 64-Core Processor with 512GB RAM and 4 ×NVIDIA A40 with 48GB of memory

• 2 ×AMD EPYC 9454 48-Core Processor with 1536GB RAM and 2 ×NVIDIA H100 with 94GB of

memory

• 2 ×AMD EPYC 7662 64-Core Processor with 1000GB RAM and 4 ×NVIDIA A100 with 40GB of

memory

• 2 × AMD EPYC 9554 64-Core Processor with 1536GB RAM and 2 × NVIDIA L40 with 48GB of

memory

• 2 × AMD EPYC 7513 32-Core Processor with 512GB RAM and 1 × NVIDIA A40 with 48GB of

memory

C Ablation Study

C.1 Encoding for LMs

We conducted an ablation study on three different encodings used as input to the language model:

1
Shortly before the deadline, we found and fixed an inconsistency (different scaling of synflow values) in the handling

of transfer learning data compared to the data from the current run in the transfer version of the RF surrogate. We were

unable to re-run 7 out of the 27 experiments to the full 300 iterations (two seeds on addnist and multnist, one seed on

chesseract, gutenberg, geoclassing, and language). All of the runs achieved at least 200 iterations. For these runs, we use

the best value they found as the value for the rest of the iterations. We will update the results for the final version of the

paper.
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Table 5: Correlation on CIFAR10 architectures evaluation set for different architecture encodings.

Encoding Spearman Kendall

Derivation tree str 0.621 0.448

Derivation tree str (+ shape) 0.745 0.612
PyTorch str 0.698 0.535

• Derivation tree string
The string representation of architecture’s derivation tree (e.g., routing[im2col(3,2,1),
computation<linear(128)>, col2im]

• Derivation tree string + shape
Derivation tree string augmented with output feature shape information (e.g.,

routing[im2col(3,2,1) {’out_feature_shape’: [256, 3]} computation<linear(128)>
{’out_feature_shape’: [256, 32]}, col2im {’out_feature_shape’: [32, 16, 16]}])

• PyTorch modules
The string representation of built PyTorch model. (e.g., nn.Conv2d(out_channels=128,
kernel_size=3, stride=2, padding=1))

We evaluated these encodings on the CIFAR10 architecture dataset usingModernBERT-large

as the surrogate, and the results are summarised in Table 5. The derivation tree stringwith shape
information achieved the highest Spearman (0.745) and Kendall (0.612) correlation, outperforming

both the simple derivation tree string and the PyTorch modules representation. These findings

suggest that including feature shape information is crucial for capturing architecture characteristics

that help the language model make more accurate predictions. Furthermore, the strong influence of

architecture encodings on surrogate performance highlights the potential for further improvements

through better encoding strategies.

C.2 NormalizationMethods

The model accuracies have different ranges on different datasets this may affect the performance of

the surrogate models, therefore, we considered different ways how to aggregate the data:

minmax. The target values from all the datasets are first scaled between 0 and 1. Only then the

datasets are merged to create a single training set.

percentile. The target values from all the datasets are first replaced by their percentiles among the

values on the same dataset (essentially normalizing their ranks to 0-1). Only then the datasets are

merged.

The ablation of normalization methods for surrogate models are shown in Table 6.

D Additional Results

Search with longer iteration
To see whether the surrogate keeps improving search for longer runs, we continue our searches

to 500 iterations for the AddNIST and Language datasets, comparing our EvolutiON(BERT) baseline

models. Figure 4 shows how in the case of AddNIST, we see continuous improvements until the vali-

dation accuracies cap out around 100%, while on Language we see moderate continued improvement.

Overall this suggests the surrogates can help throughout long searches, though we hypothesise that

they will provide the strongest boosts in the beginning and middle of search.
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Table 6: Leave-one-out surrogate correlations for different normalization methods.

BERT Random Forest XGB Regressor

Spearman Kendall Spearman Kendall Spearman Kendall

Dataset Normalisation

AddNIST minmax 0.768 0.617 0.599 0.433 0.541 0.397

CIFARTile minmax 0.609 0.433 0.494 0.327 0.563 0.393

AddNIST percentile 0.773 0.624 0.671 0.500 0.551 0.409

CIFARTile percentile 0.629 0.444 0.558 0.374 0.557 0.388
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Figure 4: Extended runs for ModernBERT-large surrogates.

Table 7: Rank correlation between ZCP reward and ground truth accuracy on CIFAR10 architectures

evaluation set.

ZCP Spearman Kendall

grad_norm 0.040 0.036

snip 0.094 0.078

grasp -0.072 -0.053

fisher -0.037 -0.020

jacob_cov 0.381 0.243

plain -0.189 -0.126

synflow 0.465 0.362

Continual training during search:We evaluate how the correlations change when we continu-

ously refit or fine-tune the models as data comes in during the search. Table 8 shows that continued

training helps the BERT, RF and XGBoost models significantly. We refit every 100 iterations.
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Table 8: Continual training resultswith “✓” indicates themodelwas trainedduringevaluation; “✗”means

it was not. We use BERT in short for ModernBERT-large and report average the correlation

across each 100 iterations across 2 different seeds.

Model Train AddNIST Langauge MultNIST CIFARTile Gutenberg Isabella GeoClassing Chesseract Avg

BERT ✓ 0.203 0.412 0.288 0.273 0.416 0.233 0.383 0.390 0.325

BERT + Cifar10

✓ 0.386 0.557 0.510 0.380 0.553 0.423 0.581 0.541 0.491

✗ 0.258 0.313 0.396 0.274 0.350 0.052 0.381 0.199 0.278

BERT + 8 Others

✓ 0.394 0.467 0.513 0.398 0.558 0.391 0.582 0.494 0.475

✗ 0.318 0.296 0.418 0.264 0.431 0.111 0.259 0.284 0.298

RF ✓ 0.246 0.551 0.393 0.360 0.550 0.472 0.521 0.561 0.457

RF + Cifar10 ✓ 0.250 0.494 0.367 0.383 0.480 0.461 0.489 0.500 0.428

✗ 0.234 0.272 0.280 0.271 0.327 0.032 0.291 0.332 0.255

RF + 8 Others ✓ 0.263 0.437 0.362 0.368 0.471 0.480 0.492 0.526 0.425

✗ 0.246 0.286 0.304 0.297 0.397 0.187 0.312 0.373 0.300

XGB ✓ 0.253 0.560 0.404 0.350 0.543 0.474 0.530 0.563 0.460

XGB + Cifar10 ✓ 0.279 0.507 0.376 0.380 0.485 0.470 0.517 0.519 0.442

✗ 0.244 0.266 0.213 0.306 0.341 0.029 0.246 0.322 0.246

XGB + 8 Others ✓ 0.298 0.516 0.378 0.376 0.510 0.480 0.499 0.533 0.449

✗ 0.260 0.336 0.315 0.246 0.429 0.119 0.290 0.379 0.297

Table 9: Correlation on the Unseen NAS datasets for Leave-one-out surrogates with percentile normali-

sation.

ModernBERT-large Random Forest XGB Regressor

Eval Tasks Spearman Kendall Spearman Kendall Spearman Kendall

AddNIST 0.773 0.625 0.671 0.500 0.551 0.409

Language 0.610 0.433 0.623 0.450 0.622 0.456

MultNIST 0.798 0.625 0.722 0.533 0.749 0.561

CIFARTile 0.629 0.444 0.558 0.374 0.557 0.388

Gutenberg 0.835 0.658 0.816 0.643 0.839 0.669

Isabella 0.273 0.186 0.308 0.211 0.278 0.187

GeoClassing 0.661 0.475 0.693 0.504 0.667 0.475

Chesseract 0.545 0.384 0.599 0.423 0.626 0.445

D.1 Transfer Learning Surrogate Selection

We consider two different possible machine learning models for the transfer surrogates —- the

XGBoost regressor and the random forest regressor. In order to decide which of them to use, we

evaluated them in different scenarios using the static data obtained from a number of evolutionary

runs. We were interested to see how they perform under different conditions, both in cases where

we use them separately only on the single dataset (in the RF surrogate runs), and together with data

from the other datasets in the transfer learning settings. In this section, for the transfer learning

experiments, we consider cases where only the cifar10 data are used, only the data from the other

Unseen datasets are used, or all the data are used.

Additionally, we evaluated the difference in the cases when the model was trained only once

using the transfer data and used for the whole run, or when it was retrained after every 100 iterations

to predict the next 100 values.

Finally, in some rare cases some networks cannot be evaluated, these are assigned zero accuracy.

We investigate, how keeping them or removing them affects the final performance of the models.

The results of these experiments are summarized in Tables 13-16. For brevity and consistency

with the language model tables, we show only the combinations of parameters where training on
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Table 10: Kendall-Tau correlation on the Unseen NAS datasets for the XGBoost regressor surrogate

CIFAR10 AddNIST Language MultNIST CIFARTile Gutenberg Isabella GeoClassing Chesseract Avg

CIFAR10 0.639 0.466 0.349 0.459 0.381 0.599 0.281 0.174 0.405 0.417

CIFAR10(1k) 0.535 0.187 0.365 0.409 0.391 0.506 0.254 0.354 0.332 0.370

AddNIST 0.488 0.596 0.337 0.489 0.423 0.503 0.248 0.261 0.421 0.418

Language 0.443 0.125 0.277 0.216 0.087 0.205 0.255 0.306 0.386 0.255

MultNIST 0.495 0.330 0.366 0.416 0.301 0.450 0.183 0.153 0.304 0.333

CIFARTile 0.523 0.508 0.247 0.368 0.280 0.437 -0.082 0.105 0.222 0.290

Gutenberg -0.091 0.262 0.298 0.293 0.098 0.277 0.153 0.115 0.309 0.190

Isabella -0.006 0.150 0.224 0.332 0.362 0.364 0.225 0.390 0.233 0.253

GeoClassing 0.544 0.549 0.177 0.466 0.302 0.557 0.245 0.118 0.340 0.367

Chesseract 0.046 0.019 0.239 0.287 0.237 0.172 0.143 0.074 0.372 0.177

cifar is performed and additionally with removing of zero accuracy networks. All the tables show

Kendall tau between the predicted values for the next 100 iterations and the real values.

The performance of both the models aggregated over all the different number of iterations for

all datasets is in Table 8. Aggregation over different datasets together with different normalization

techniques and removing or not removing zero accuracy networks for all the different iterations is in

Tables 17 and 18.

In these tables, we can see that removing the zero accuracy networks has almost no effect in

the case without transfer learning (Table 17). In the transfer learning case (cf. Table 18) the effect

of removing these networks is almost always positive. The different normalization methods again

do not have any significant effect in the case without transfer learning, but significantly improve

the results in the transfer learning case. The differences between the two methods are rather small

when compared over the different number of iterations, but in the initial part (after 100 iterations)

the minmax seems to be slightly better than the percentile normalization.

The difference between the two models is also quite small when evaluated over the different

number of iterations, but random forest seems to be slightly better in the initial phase (after 100

iterations). Later, XGBoost tends to be a bit better.

Based on these comparisons, and also the fact that our optimization runs are relatively short

with only 300 iterations, we decided to use random forest without removing the zero-accuracy

networks and any normalization for the baseline run without transfer learning, and random forest

with removing zero-cost networks and minmax normalization for the transfer learning experiments.

For longer runs, using XGBoost might be beneficial, although we believe that the performance in

the beginning of the search may be still more important than the relatively small difference in the

performance later.
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Table 11: Results of the ModernBERT-large models in simulated surrogate runs, seed=0

Task Model Train 1 2 3 4 5 6 7 8 9 Avg

AddNIST

BERT ✓ 0.11 0.41 0.16 0.02 0.46 0.13 0.06 0.21 0.09 0.18

BERT + Cifar10

✓ 0.66 0.62 0.42 0.37 0.66 0.36 0.27 0.38 0.28 0.45

✗ 0.54 0.60 0.31 0.27 0.44 0.12 -0.01 0.28 0.14 0.30

BERT + 8 Others

✓ 0.66 0.62 0.39 0.34 0.58 0.40 0.27 0.40 0.28 0.44

✗ 0.71 0.62 0.36 0.15 0.56 0.18 0.14 0.34 0.24 0.37

Chesseract

BERT ✓ 0.41 0.33 0.26 0.38 0.45 0.65 0.38 0.40 0.51 0.42

BERT + Cifar10

✓ 0.33 0.50 0.54 0.62 0.55 0.76 0.57 0.57 0.63 0.56

✗ 0.13 0.07 0.17 0.23 0.10 0.09 0.07 0.08 0.16 0.12

BERT + 8 Others

✓ 0.24 0.50 0.45 0.41 0.47 0.67 0.55 0.52 0.59 0.49

✗ 0.26 0.30 0.31 0.34 0.33 0.34 0.21 0.16 0.17 0.27

CIFARTile

BERT ✓ 0.39 0.18 0.19 0.23 0.41 0.29 0.22 0.33 0.34 0.29

BERT + Cifar10

✓ 0.43 0.41 0.46 0.37 0.59 0.26 0.48 0.49 0.45 0.44

✗ 0.41 0.33 0.27 0.30 0.32 0.30 0.41 0.34 0.32 0.33

BERT + 8 Others

✓ 0.44 0.38 0.56 0.49 0.58 0.30 0.41 0.41 0.53 0.46

✗ 0.41 0.41 0.25 0.25 0.26 0.21 0.39 0.35 0.33 0.32

GeoClassing

BERT ✓ 0.18 0.35 0.14 0.15 0.31 0.28 0.42 0.48 0.46 0.31

BERT + Cifar10

✓ 0.32 0.46 0.59 0.65 0.71 0.52 0.75 0.76 0.68 0.60

✗ 0.33 0.41 0.47 0.37 0.35 0.31 0.47 0.60 0.49 0.42

BERT + 8 Others

✓ 0.37 0.19 0.53 0.63 0.74 0.56 0.78 0.78 0.68 0.58

✗ 0.12 0.12 0.33 0.20 0.21 0.15 0.21 0.41 0.37 0.24

Gutenberg

BERT ✓ 0.38 0.34 0.39 0.22 0.15 0.19 0.46 0.50 0.54 0.35

BERT + Cifar10

✓ 0.55 0.55 0.55 0.49 0.49 0.40 0.50 0.55 0.51 0.51

✗ 0.45 0.46 0.35 0.36 0.34 0.16 0.32 0.32 0.34 0.34

BERT + 8 Others

✓ 0.50 0.59 0.60 0.50 0.43 0.43 0.45 0.60 0.57 0.52

✗ 0.56 0.57 0.52 0.42 0.36 0.24 0.24 0.34 0.31 0.40

Isabella

BERT ✓ 0.26 0.22 0.25 0.19 0.28 0.22 0.24 0.18 0.24 0.23

BERT + Cifar10

✓ 0.31 0.19 0.34 0.23 0.33 0.44 0.39 0.42 0.52 0.35

✗ 0.22 0.06 0.11 0.10 0.09 0.16 -0.01 -0.08 -0.03 0.07

BERT + 8 Others

✓ 0.34 0.20 0.26 0.14 0.27 0.29 0.34 0.34 0.45 0.29

✗ 0.32 0.09 0.26 0.08 0.04 0.05 0.03 0.04 0.04 0.11

Language

BERT ✓ 0.22 0.18 0.46 0.50 0.47 0.46 0.51 0.60 0.58 0.44

BERT + Cifar10

✓ 0.49 0.55 0.52 0.64 0.64 0.63 0.66 0.66 0.68 0.61

✗ 0.43 0.22 0.37 0.26 0.05 0.20 0.28 0.22 0.40 0.27

BERT + 8 Others

✓ 0.42 0.52 0.48 0.46 0.51 0.43 0.43 0.53 0.52 0.48

✗ 0.43 0.30 0.21 0.20 0.05 0.23 0.23 0.22 0.21 0.23

MultNIST

BERT ✓ 0.30 0.33 0.20 0.35 0.48 0.19 0.33 0.41 0.39 0.33

BERT + Cifar10

✓ 0.47 0.32 0.48 0.54 0.54 0.53 0.54 0.55 0.69 0.52

✗ 0.59 0.32 0.30 0.30 0.47 0.43 0.35 0.39 0.38 0.39

BERT + 8 Others

✓ 0.65 0.43 0.52 0.55 0.61 0.63 0.58 0.61 0.58 0.57

✗ 0.64 0.35 0.30 0.37 0.50 0.42 0.33 0.39 0.44 0.42
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Table 12: Results of the ModernBERT-large models in simulated surrogate runs, seed=1

Task Model Train 100 200 300 400 500 600 700 800 900 Avg

AddNIST

BERT ✓ 0.19 0.36 0.13 0.16 0.24 0.10 0.12 0.39 0.31 0.22

BERT + Cifar10

✓ 0.11 0.44 0.39 0.29 0.36 0.26 0.33 0.46 0.28 0.32

✗ 0.35 0.49 0.14 0.21 0.34 0.04 0.01 0.39 -0.02 0.22

BERT + 8 Others

✓ 0.45 0.53 0.29 0.30 0.33 0.26 0.23 0.47 0.29 0.35

✗ 0.60 0.51 0.20 0.17 0.30 0.07 0.11 0.38 0.09 0.27

Chesseract

BERT ✓ 0.36 0.24 0.36 0.22 0.39 0.28 0.44 0.45 0.51 0.36

BERT + Cifar10

✓ 0.48 0.43 0.55 0.39 0.40 0.57 0.62 0.54 0.69 0.52

✗ 0.40 0.24 0.31 0.26 0.24 0.08 0.27 0.32 0.37 0.28

BERT + 8 Others

✓ 0.48 0.44 0.55 0.41 0.33 0.55 0.59 0.55 0.59 0.50

✗ 0.42 0.29 0.41 0.26 0.18 0.05 0.34 0.37 0.37 0.30

CIFARTile

BERT ✓ 0.06 0.28 0.42 0.37 0.30 0.30 0.07 0.28 0.25 0.26

BERT + Cifar10

✓ 0.13 0.42 0.47 0.52 0.24 0.22 0.25 0.45 0.20 0.32

✗ 0.24 0.29 0.04 0.20 0.29 0.11 0.22 0.32 0.23 0.22

BERT + 8 Others

✓ 0.30 0.38 0.40 0.56 0.34 0.24 0.22 0.47 0.15 0.34

✗ 0.14 0.24 -0.05 0.21 0.36 0.21 0.34 0.33 0.12 0.21

GeoClassing

BERT ✓ 0.46 0.41 0.41 0.36 0.30 0.51 0.50 0.52 0.66 0.46

BERT + Cifar10

✓ 0.57 0.55 0.59 0.49 0.49 0.55 0.56 0.57 0.65 0.56

✗ 0.56 0.49 0.51 0.27 0.13 0.15 0.39 0.25 0.31 0.34

BERT + 8 Others

✓ 0.66 0.58 0.57 0.43 0.51 0.60 0.56 0.61 0.70 0.58

✗ 0.62 0.54 0.45 0.10 0.08 0.08 0.23 0.23 0.22 0.28

Gutenberg

BERT ✓ 0.17 0.56 0.59 0.56 0.49 0.49 0.41 0.54 0.50 0.48

BERT + Cifar10

✓ 0.52 0.68 0.68 0.66 0.58 0.51 0.52 0.59 0.62 0.60

✗ 0.27 0.44 0.47 0.52 0.36 0.25 0.18 0.39 0.32 0.36

BERT + 8 Others

✓ 0.73 0.71 0.69 0.63 0.52 0.48 0.51 0.55 0.56 0.60

✗ 0.68 0.66 0.62 0.50 0.34 0.36 0.26 0.43 0.35 0.47

Isabella

BERT ✓ 0.18 0.14 -0.02 0.13 0.27 0.21 0.39 0.35 0.47 0.24

BERT + Cifar10

✓ 0.34 0.27 0.29 0.42 0.59 0.62 0.62 0.66 0.63 0.49

✗ 0.26 0.05 -0.03 -0.14 -0.06 0.06 -0.01 0.05 0.14 0.04

BERT + 8 Others

✓ 0.30 0.14 0.27 0.44 0.63 0.69 0.64 0.63 0.66 0.49

✗ 0.27 0.05 0.02 0.05 0.11 0.16 0.10 0.12 0.16 0.12

Language

BERT ✓ 0.26 0.52 0.46 0.57 0.43 0.38 0.32 0.25 0.25 0.38

BERT + Cifar10

✓ 0.49 0.60 0.61 0.66 0.62 0.56 0.26 0.31 0.44 0.51

✗ 0.41 0.38 0.41 0.33 0.35 0.44 0.21 0.29 0.39 0.36

BERT + 8 Others

✓ 0.33 0.56 0.53 0.70 0.47 0.49 0.30 0.35 0.38 0.46

✗ 0.34 0.47 0.43 0.38 0.40 0.46 0.25 0.24 0.27 0.36

MultNIST

BERT ✓ 0.22 0.37 0.28 0.23 0.05 0.34 0.08 0.32 0.32 0.25

BERT + Cifar10

✓ 0.41 0.46 0.42 0.72 0.40 0.56 0.54 0.54 0.47 0.50

✗ 0.38 0.32 0.39 0.59 0.38 0.48 0.26 0.39 0.40 0.40

BERT + 8 Others

✓ 0.52 0.44 0.40 0.61 0.31 0.52 0.19 0.53 0.55 0.45

✗ 0.56 0.39 0.35 0.53 0.35 0.45 0.34 0.43 0.39 0.42
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Table 13: Results of the RF Regressor models in simulated surrogate runs, seed=0

Task Model Train 100 200 300 400 500 600 700 800 900 AVG

AddNIST RF ✓ 0.41 0.58 0.27 0.19 0.50 0.26 0.24 0.30 0.16 0.32

RF + CIFAR10 ✗ 0.40 0.22 0.29 0.15 0.49 0.13 0.21 0.17 0.02 0.23

✓ 0.40 0.56 0.25 0.23 0.56 0.30 0.28 0.29 0.20 0.34

RF + 8 Others ✗ 0.45 0.19 0.28 0.15 0.39 0.21 0.10 0.04 0.01 0.20

✓ 0.40 0.47 0.28 0.36 0.52 0.30 0.25 0.24 0.17 0.33

Chesseract RF ✓ 0.32 0.49 0.58 0.61 0.62 0.71 0.57 0.56 0.56 0.56

RF + CIFAR10 ✗ 0.37 0.42 0.44 0.40 0.32 0.46 0.33 0.39 0.34 0.39

✓ 0.42 0.47 0.43 0.61 0.62 0.70 0.59 0.54 0.54 0.55

RF + 8 Others ✗ 0.39 0.48 0.60 0.56 0.49 0.53 0.46 0.39 0.42 0.48

✓ 0.44 0.42 0.55 0.57 0.59 0.65 0.52 0.48 0.52 0.53

CIFARTile RF ✓ 0.45 0.28 0.40 0.37 0.44 0.23 0.40 0.53 0.54 0.41

RF + CIFAR10 ✗ 0.43 0.20 0.06 0.22 0.28 0.26 0.34 0.36 0.31 0.27

✓ 0.46 0.29 0.42 0.43 0.46 0.22 0.37 0.42 0.52 0.40

RF + 8 Others ✗ 0.38 0.12 0.01 0.03 0.04 0.10 0.41 0.44 0.40 0.21

✓ 0.41 0.17 0.35 0.37 0.38 0.17 0.35 0.48 0.46 0.35

GeoClassing RF ✓ 0.17 0.06 0.17 0.51 0.51 0.51 0.66 0.75 0.57 0.44

RF + CIFAR10 ✗ 0.18 0.16 0.24 0.21 0.08 0.08 -0.02 0.21 0.33 0.16

✓ 0.25 0.27 0.16 0.43 0.51 0.51 0.63 0.71 0.57 0.45

RF + 8 Others ✗ 0.29 0.37 0.19 0.25 0.18 0.12 0.13 0.22 0.26 0.22

✓ 0.30 0.32 0.04 0.41 0.57 0.56 0.64 0.70 0.62 0.46

Gutenberg RF ✓ 0.53 0.54 0.53 0.43 0.38 0.47 0.61 0.70 0.66 0.54

RF + CIFAR10 ✗ 0.50 0.56 0.51 0.42 0.25 0.23 0.42 0.37 0.44 0.41

✓ 0.56 0.59 0.53 0.41 0.29 0.39 0.57 0.69 0.63 0.52

RF + 8 Others ✗ 0.52 0.19 0.15 0.28 0.16 0.14 0.25 0.26 0.38 0.26

✓ 0.54 0.37 0.48 0.35 0.12 0.32 0.59 0.72 0.61 0.46

Isabella RF ✓ 0.40 0.30 0.28 0.46 0.41 0.52 0.42 0.46 0.54 0.42

RF + CIFAR10 ✗ 0.37 0.13 0.09 0.13 0.17 0.32 0.01 0.03 0.16 0.16

✓ 0.40 0.36 0.25 0.31 0.32 0.43 0.37 0.46 0.43 0.37

RF + 8 Others ✗ 0.30 0.19 0.04 0.13 0.16 0.21 0.04 0.01 0.08 0.13

✓ 0.48 0.29 0.27 0.35 0.32 0.41 0.36 0.48 0.46 0.38

Language RF ✓ 0.26 0.49 0.52 0.60 0.72 0.57 0.60 0.61 0.67 0.56

RF + CIFAR10 ✗ 0.27 0.00 0.29 0.26 0.08 0.10 0.18 0.24 0.35 0.20

✓ 0.28 0.30 0.44 0.59 0.66 0.47 0.39 0.44 0.59 0.46

RF + 8 Others ✗ 0.35 0.17 0.32 0.18 0.07 0.12 0.21 0.24 0.29 0.22

✓ 0.36 0.30 0.41 0.38 0.35 0.34 0.47 0.47 0.53 0.40

MultNIST RF ✓ 0.42 0.25 0.39 0.50 0.27 0.37 0.41 0.51 0.58 0.41

RF + CIFAR10 ✗ 0.48 0.14 -0.01 0.07 0.26 0.26 0.27 0.26 0.36 0.23

✓ 0.30 0.29 0.30 0.40 0.36 0.40 0.45 0.42 0.64 0.40

RF + 8 Others ✗ 0.46 0.27 0.15 0.08 0.37 0.35 0.28 0.13 0.43 0.28

✓ 0.35 0.28 0.43 0.37 0.47 0.44 0.46 0.37 0.61 0.42
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Table 14: Results of the RF Regressor models in simulated surrogate runs, seed=1

Task Model Train 100 200 300 400 500 600 700 800 900 AVG

AddNIST RF ✓ 0.35 0.33 0.25 0.11 0.03 0.17 0.06 0.36 0.25 0.21

RF + CIFAR10 ✗ 0.13 0.52 0.11 0.21 0.35 0.25 0.30 0.23 0.26 0.26

✓ 0.41 0.42 0.24 0.20 0.01 0.15 0.19 0.33 0.28 0.25

RF + 8 Others ✗ 0.19 0.16 -0.03 0.01 0.28 0.01 0.09 0.25 0.17 0.13

✓ 0.20 0.07 0.29 0.22 0.09 0.21 0.12 0.29 0.27 0.19

Chesseract RF ✓ 0.50 0.48 0.46 0.53 0.48 0.52 0.60 0.64 0.66 0.54

RF + CIFAR10 ✗ 0.52 0.27 0.15 0.25 0.25 0.16 0.22 0.33 0.32 0.27

✓ 0.42 0.34 0.49 0.39 0.41 0.46 0.61 0.58 0.63 0.48

RF + 8 Others ✗ 0.49 0.24 0.30 0.24 0.25 0.26 0.26 0.14 0.41 0.29

✓ 0.52 0.42 0.45 0.34 0.37 0.49 0.52 0.55 0.59 0.47

CIFARTile RF ✓ 0.34 0.37 0.46 0.51 0.33 0.28 0.35 0.41 0.18 0.36

RF + CIFAR10 ✗ 0.31 0.34 0.28 0.41 0.37 0.35 0.33 0.23 0.26 0.32

✓ 0.37 0.50 0.43 0.58 0.32 0.32 0.38 0.37 0.29 0.40

RF + 8 Others ✗ 0.27 0.33 0.14 0.36 0.33 0.36 0.41 0.39 0.28 0.32

✓ 0.30 0.51 0.46 0.55 0.32 0.36 0.41 0.39 0.28 0.40

GeoClassing RF ✓ 0.49 0.51 0.61 0.57 0.55 0.57 0.58 0.67 0.68 0.58

RF + CIFAR10 ✗ 0.50 0.53 0.46 0.28 0.24 0.27 0.15 0.18 0.30 0.32

✓ 0.48 0.58 0.55 0.61 0.55 0.55 0.58 0.62 0.73 0.58

RF + 8 Others ✗ 0.35 0.27 0.27 0.40 0.21 0.30 0.33 0.36 0.42 0.32

✓ 0.44 0.49 0.52 0.54 0.46 0.49 0.53 0.58 0.70 0.53

Gutenberg RF ✓ 0.52 0.60 0.62 0.60 0.54 0.39 0.54 0.65 0.66 0.57

RF + CIFAR10 ✗ 0.36 0.31 0.22 0.45 0.31 0.14 -0.01 0.34 0.31 0.27

✓ 0.42 0.55 0.62 0.54 0.49 0.39 0.53 0.64 0.66 0.54

RF + 8 Others ✗ 0.39 0.44 0.37 0.47 0.30 0.16 0.26 0.45 0.32 0.35

✓ 0.42 0.50 0.61 0.51 0.48 0.33 0.44 0.57 0.57 0.49

Isabella RF ✓ 0.34 0.33 0.27 0.66 0.67 0.69 0.69 0.70 0.57 0.55

RF + CIFAR10 ✗ 0.33 0.16 -0.05 0.09 0.18 0.21 0.18 0.20 0.11 0.16

✓ 0.30 0.38 0.28 0.56 0.68 0.71 0.66 0.69 0.70 0.55

RF + 8 Others ✗ 0.35 0.14 0.10 0.12 0.19 0.27 0.27 0.32 0.19 0.22

✓ 0.32 0.34 0.30 0.61 0.68 0.72 0.66 0.65 0.67 0.55

Language RF ✓ 0.41 0.54 0.61 0.72 0.55 0.32 0.45 0.42 0.46 0.50

RF + CIFAR10 ✗ 0.32 0.41 0.37 0.37 0.37 0.41 0.16 0.34 0.37 0.35

✓ 0.39 0.60 0.51 0.70 0.57 0.35 0.41 0.45 0.45 0.49

RF + 8 Others ✗ 0.36 0.41 0.28 0.38 0.30 0.36 0.15 0.13 0.35 0.30

✓ 0.41 0.56 0.52 0.67 0.54 0.31 0.37 0.41 0.34 0.46

MultNIST RF ✓ 0.38 0.48 0.42 0.39 0.23 0.37 0.06 0.39 0.37 0.34

RF + CIFAR10 ✗ 0.32 0.21 0.21 0.43 0.26 0.37 0.24 0.31 0.25 0.29

✓ 0.50 0.43 0.39 0.53 0.22 0.31 0.11 0.34 0.41 0.36

RF + 8 Others ✗ 0.17 -0.05 0.06 0.29 0.23 0.38 0.43 0.41 0.33 0.25

✓ 0.19 0.30 0.39 0.35 0.21 0.38 0.23 0.42 0.40 0.32
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Table 15: Results of the XGB Regressor models in simulated surrogate runs, seed=0

Task Model Train 100 200 300 400 500 600 700 800 900 AVG

AddNIST XGB ✓ 0.35 0.56 0.29 0.27 0.53 0.22 0.27 0.36 0.16 0.33

XGB + CIFAR10 ✗ 0.40 0.22 0.28 0.10 0.39 0.10 0.18 0.07 0.01 0.19

✓ 0.38 0.56 0.26 0.27 0.57 0.22 0.29 0.32 0.13 0.33

XGB + 8 Others ✗ 0.43 0.34 0.25 0.03 0.39 0.14 0.26 0.14 -0.00 0.22

✓ 0.45 0.53 0.30 0.41 0.59 0.25 0.27 0.27 0.16 0.36

Chesseract XGB ✓ 0.38 0.47 0.60 0.53 0.60 0.67 0.55 0.53 0.55 0.54

XGB + CIFAR10 ✗ 0.36 0.32 0.38 0.38 0.36 0.38 0.25 0.33 0.28 0.34

✓ 0.36 0.56 0.57 0.61 0.61 0.69 0.53 0.52 0.54 0.55

XGB + 8 Others ✗ 0.32 0.48 0.44 0.51 0.50 0.44 0.38 0.30 0.30 0.41

✓ 0.40 0.59 0.57 0.59 0.59 0.69 0.52 0.53 0.50 0.55

CIFARTile XGB ✓ 0.19 0.31 0.44 0.40 0.40 0.24 0.37 0.50 0.53 0.38

XGB + CIFAR10 ✗ 0.41 0.27 0.02 0.24 0.24 0.29 0.36 0.28 0.39 0.28

✓ 0.48 0.36 0.40 0.39 0.42 0.19 0.34 0.41 0.54 0.39

XGB + 8 Others ✗ 0.32 0.02 -0.14 -0.08 -0.14 0.04 0.26 0.23 0.28 0.09

✓ 0.35 0.15 0.26 0.39 0.34 0.13 0.36 0.40 0.53 0.32

GeoClassing XGB ✓ 0.21 0.04 0.25 0.52 0.52 0.54 0.68 0.74 0.63 0.46

XGB + CIFAR10 ✗ 0.09 -0.05 0.14 0.12 0.01 0.00 -0.16 -0.03 0.32 0.05

✓ 0.25 0.08 0.15 0.52 0.58 0.56 0.70 0.79 0.68 0.48

XGB + 8 Others ✗ 0.28 0.42 -0.00 0.22 0.14 0.15 0.15 0.27 0.35 0.22

✓ 0.29 0.32 -0.00 0.51 0.59 0.52 0.69 0.75 0.66 0.48

Gutenberg XGB ✓ 0.43 0.44 0.50 0.42 0.30 0.41 0.59 0.71 0.65 0.49

XGB + CIFAR10 ✗ 0.52 0.58 0.53 0.47 0.43 0.27 0.49 0.39 0.41 0.46

✓ 0.55 0.57 0.53 0.43 0.28 0.41 0.63 0.67 0.62 0.52

XGB + 8 Others ✗ 0.43 0.38 0.26 0.32 0.24 0.17 0.25 0.28 0.40 0.30

✓ 0.57 0.47 0.43 0.33 0.23 0.41 0.55 0.64 0.63 0.47

Isabella XGB ✓ 0.40 0.27 0.31 0.40 0.38 0.52 0.41 0.48 0.51 0.41

XGB + CIFAR10 ✗ 0.23 0.18 0.07 0.20 0.11 0.21 0.01 0.17 0.23 0.16

✓ 0.36 0.37 0.19 0.34 0.30 0.47 0.40 0.41 0.46 0.37

XGB + 8 Others ✗ 0.24 0.15 0.14 0.11 0.11 0.20 0.02 0.09 0.17 0.14

✓ 0.37 0.30 0.22 0.29 0.30 0.36 0.38 0.42 0.50 0.35

Language XGB ✓ 0.33 0.50 0.50 0.49 0.71 0.58 0.58 0.57 0.67 0.55

XGB + CIFAR10 ✗ 0.35 0.06 0.29 0.25 0.07 0.15 0.18 0.26 0.34 0.22

✓ 0.31 0.38 0.42 0.56 0.61 0.48 0.49 0.59 0.65 0.50

XGB + 8 Others ✗ 0.40 0.21 0.36 0.25 0.09 0.12 0.23 0.29 0.31 0.25

✓ 0.38 0.36 0.50 0.46 0.42 0.43 0.45 0.55 0.62 0.46

MultNIST XGB ✓ 0.30 0.24 0.46 0.50 0.36 0.39 0.44 0.52 0.57 0.42

XGB + CIFAR10 ✗ 0.44 0.16 -0.05 -0.02 0.19 0.35 0.35 0.25 0.43 0.23

✓ 0.23 0.28 0.44 0.47 0.36 0.41 0.51 0.46 0.60 0.42

XGB + 8 Others ✗ 0.50 0.25 0.22 0.00 0.42 0.37 0.33 0.21 0.49 0.31

✓ 0.39 0.21 0.40 0.40 0.51 0.44 0.47 0.42 0.60 0.43
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Table 16: Results of the XGB Regressor models in simulated surrogate runs, seed=1

Task Model Train 100 200 300 400 500 600 700 800 900 AVG

AddNIST XGB ✓ 0.34 0.42 0.24 0.11 -0.02 0.26 0.23 0.37 0.26 0.24

XGB + CIFAR10 ✗ -0.13 0.50 0.11 0.22 0.35 0.26 0.32 0.26 0.24 0.24

✓ 0.37 0.45 0.27 0.21 0.09 0.25 0.34 0.37 0.27 0.29

XGB + 8 Others ✗ 0.26 0.29 0.16 0.28 0.39 0.28 0.22 0.29 0.22 0.26

✓ 0.24 0.36 0.28 0.21 0.19 0.22 0.31 0.38 0.29 0.28

Chesseract XGB ✓ 0.52 0.51 0.50 0.50 0.48 0.52 0.60 0.60 0.65 0.54

XGB + CIFAR10 ✗ 0.50 0.33 0.17 0.17 0.25 0.21 0.27 0.36 0.35 0.29

✓ 0.41 0.38 0.49 0.39 0.42 0.50 0.59 0.59 0.60 0.48

XGB + 8 Others ✗ 0.54 0.29 0.31 0.17 0.22 0.35 0.31 0.35 0.52 0.34

✓ 0.54 0.43 0.52 0.37 0.44 0.50 0.44 0.57 0.56 0.49

CIFARTile XGB ✓ 0.29 0.34 0.46 0.50 0.30 0.27 0.31 0.43 0.16 0.34

XGB + CIFAR10 ✗ 0.22 0.31 0.11 0.34 0.30 0.21 0.28 0.25 0.37 0.27

✓ 0.29 0.52 0.46 0.54 0.33 0.28 0.38 0.47 0.25 0.39

XGB + 8 Others ✗ 0.34 0.33 0.27 0.41 0.27 0.19 0.32 0.29 0.30 0.30

✓ 0.34 0.47 0.46 0.57 0.29 0.28 0.40 0.45 0.25 0.39

GeoClassing XGB ✓ 0.51 0.51 0.54 0.59 0.57 0.57 0.60 0.62 0.70 0.58

XGB + CIFAR10 ✗ 0.52 0.45 0.40 0.37 0.23 0.27 0.27 0.22 0.32 0.34

✓ 0.50 0.62 0.56 0.60 0.57 0.60 0.63 0.67 0.72 0.61

XGB + 8 Others ✗ 0.33 0.34 0.32 0.35 0.24 0.37 0.36 0.31 0.33 0.33

✓ 0.40 0.54 0.53 0.52 0.52 0.59 0.57 0.64 0.72 0.56

Gutenberg XGB ✓ 0.56 0.63 0.65 0.57 0.56 0.40 0.54 0.65 0.65 0.58

XGB + CIFAR10 ✗ 0.30 0.35 0.16 0.44 0.29 0.03 0.01 0.33 0.35 0.25

✓ 0.37 0.63 0.66 0.56 0.56 0.42 0.55 0.62 0.60 0.55

XGB + 8 Others ✗ 0.39 0.54 0.49 0.51 0.23 0.21 0.24 0.31 0.31 0.36

✓ 0.43 0.64 0.67 0.58 0.52 0.40 0.53 0.57 0.60 0.55

Isabella XGB ✓ 0.25 0.32 0.42 0.69 0.68 0.70 0.69 0.71 0.60 0.56

XGB + CIFAR10 ✗ 0.33 0.24 -0.01 0.02 0.07 0.09 0.05 0.18 0.08 0.12

✓ 0.30 0.41 0.38 0.63 0.70 0.72 0.65 0.71 0.68 0.58

XGB + 8 Others ✗ 0.32 0.29 0.14 0.08 0.08 0.12 0.11 0.25 0.14 0.17

✓ 0.31 0.38 0.36 0.67 0.73 0.72 0.65 0.68 0.66 0.57

Language XGB ✓ 0.47 0.54 0.56 0.70 0.57 0.32 0.33 0.36 0.53 0.49

XGB + CIFAR10 ✗ 0.41 0.36 0.37 0.37 0.39 0.39 0.16 0.33 0.38 0.35

✓ 0.37 0.56 0.60 0.64 0.60 0.35 0.33 0.34 0.42 0.47

XGB + 8 Others ✗ 0.40 0.41 0.46 0.41 0.36 0.35 0.18 0.28 0.35 0.36

✓ 0.46 0.55 0.56 0.65 0.52 0.31 0.40 0.36 0.36 0.46

MultNIST XGB ✓ 0.44 0.46 0.45 0.42 0.20 0.47 0.12 0.41 0.41 0.37

XGB + CIFAR10 ✗ 0.10 -0.05 -0.03 0.36 0.21 0.35 0.26 0.38 0.32 0.21

✓ 0.35 0.46 0.39 0.37 0.26 0.42 0.13 0.42 0.42 0.36

XGB + 8 Others ✗ 0.06 -0.02 0.04 0.42 0.22 0.40 0.32 0.35 0.21 0.22

✓ 0.07 0.33 0.38 0.30 0.21 0.46 0.17 0.45 0.43 0.31
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Table 17: Comparison of RF and XGBoost without transfer. Average Kendall tau over all Unseen datasets

and seedswhen trained on data fromfirst iterations. Only the given dataset is used for training.

RF

limit 100 200 300 400 500 600 700 800 900

Remove zero acc. Aggregation

False minmax 0.39 0.42 0.44 0.50 0.46 0.44 0.47 0.54 0.49

none 0.39 0.42 0.44 0.50 0.46 0.44 0.47 0.54 0.49

percentile 0.37 0.42 0.44 0.51 0.46 0.45 0.46 0.54 0.51

True minmax 0.39 0.41 0.43 0.49 0.45 0.43 0.45 0.54 0.51

none 0.39 0.41 0.43 0.49 0.45 0.43 0.45 0.54 0.51

percentile 0.37 0.41 0.42 0.50 0.46 0.45 0.46 0.54 0.50

XGB

limit 100 200 300 400 500 600 700 800 900

Remove zero acc. Aggregation

False minmax 0.37 0.41 0.44 0.48 0.47 0.44 0.46 0.52 0.50

none 0.37 0.41 0.44 0.48 0.47 0.44 0.46 0.52 0.50

percentile 0.35 0.40 0.44 0.50 0.47 0.45 0.48 0.55 0.52

True minmax 0.37 0.41 0.45 0.48 0.45 0.44 0.46 0.54 0.51

none 0.37 0.41 0.45 0.48 0.45 0.44 0.46 0.54 0.51

percentile 0.36 0.42 0.43 0.49 0.45 0.46 0.47 0.55 0.51

Table 18: Comparison of RF and XGBoost with transfer. Average Kendall tau over all Unseen datasets

and seeds when trained on data from first iterations. Data from the initial part of the current

dataset and Cifar10, the other Unseen datasets, or both are used for training.

RF

limit 100 200 300 400 500 600 700 800 900

Remove zero acc. Aggregation

False minmax 0.28 0.31 0.28 0.31 0.33 0.31 0.33 0.36 0.37

none 0.31 0.30 0.27 0.32 0.33 0.31 0.31 0.35 0.35

percentile 0.35 0.33 0.31 0.36 0.36 0.35 0.37 0.40 0.41

True minmax 0.37 0.33 0.31 0.35 0.34 0.33 0.33 0.37 0.39

none 0.33 0.29 0.26 0.31 0.33 0.30 0.29 0.34 0.35

percentile 0.36 0.32 0.31 0.35 0.35 0.34 0.35 0.40 0.41

XGB

limit 100 200 300 400 500 600 700 800 900

Remove zero acc. Aggregation

False minmax 0.29 0.31 0.29 0.32 0.32 0.31 0.33 0.35 0.35

none 0.29 0.31 0.26 0.31 0.31 0.30 0.31 0.33 0.33

percentile 0.32 0.34 0.31 0.36 0.37 0.35 0.36 0.40 0.40

True minmax 0.35 0.35 0.31 0.35 0.34 0.34 0.35 0.38 0.40

none 0.32 0.32 0.27 0.32 0.32 0.31 0.31 0.34 0.36

percentile 0.34 0.35 0.31 0.36 0.37 0.35 0.36 0.41 0.40
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E Prompt

An example prompt for CIFAR10 few-shot learning is provided below. We followed the PP Prompt

format (Jawahar et al., 2024) and changed the component name hyperparameters to definitions

because einspace requires more explanation in this section.

Role

You are a performance estimator for image classification task, where you will estimate the accuracy

for the test architecture. Please output the accuracy directly without anything else.

Instruction

You should follow these instructions: 1. You should understand that the image classification task is

CIFAR10 and the quality of a configuration is measured based on validation accuracy. 2. The CIFAR-10

dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are

40000 training images, 10000 validation images and 10000 test images. The 10 classes are airplane,

automobile, bird, cat, deer, dog, frog, horse, ship and truck. 3. You should concentrate on the example

configurations provided below along with their accuracies to understand the complex relationships

between architecture configuration and accuracies.

Definition

Search Space Definition: The search space includes groups of operations which can represent many

state-of-the-art neural architectures. The search space is based on context free grammar and each

candidate represents a syntax tree of the architecture.

The four fundamental operations are: 1. Branching: One-to-many functions that direct the flow of

information through the network by cloning or splitting tensors. Examples include the branching

within self-attention modules into queries, keys and values. 2. Aggregation: Many-to-one functions

that merge the information frommultiple tensors into one. Examples include matrix multiplication,

summation and concatenation. 3. Routing: One-to-one functions that change the shape or the order of

the content in a tensor without altering its information. Examples include axis permutations as well as

the im2col and col2im operations. 4. Computation: One-to-one functions that alter the information

of the tensor, either by parametrised operations, normalisation or non-linearities. Examples include

linear layers, batchnorm and activations like ReLU and softmax.

The two feature modes are: 1. Im mode: Maintains a 3D tensor of shape (C, H, W), where C is the

number of channels, H is the height andW is the width. Most convolutional architectures operate in

this mode. 2. Col mode: Maintains a 2D tensor of shape(S, D),where S is the sequence length and D is

the token dimensionality. This is the mode in which most transformer architectures operate.

For each candidate in the search space, its format is described using functions formatted as below: 1.

Branching functions: branching(b)[M] - where b is the number of splits/clones, M is a set of other

operations. clone(b) - cloning b copies of the tensor. group(b,dim) - splitting tensor into b parts along

dimension dim. 2. Aggregation functions: dot_product(scaled) - matrix multiplication with optional

scaling add - summation of multiple tensors. concat(b,dim) - concatenate b tensors along dimension d.

3. Routing functions: routing[M] - where M is a set of other operations. im2col(k,s,p) - convert from

immode to col mode, where k is kernel size, s is the stride and p the padding. col2im - convert from col

mode to immode. permute(o) - same as permute function in pytorch. identity - keep original tensor. 4.

Computation functions: computation<o> - where o could be any functions listed below. linear(d) -

linear layers with d as the output dimension. norm - batch-norm functionality in the Im mode and

layer-norm in Col mode. softmax - softmax operation applied to the final dimension. relu - leaky relu

activation function. pos-enc -positional encoding.

An example representation of a traditional convolutional block with a skip connection: ...
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Demonstrations

Architecture 1: ...

Accuracy: ...

Architecture 2: ...

...

Test

Architecture: ...

Accuracy:

29


	Introduction
	Related Work
	Neural Architecture Search
	Performance Predictors in NAS
	Large Language Models in NAS

	Method
	Surrogate Models
	Surrogates From GRAF and ZCP Descriptors
	Language Models as Surrogates
	Using Surrogates in Search

	Experiments
	Experimental Results

	Conclusion
	Algorithmic Details
	Architecture Augmentation

	Implementation Details
	Random Seeds
	Language Models Implementation Details
	Random Forest (XGBoost) Implementation Details
	Evolutionary Algorithm Hyperparameters
	Compute Resources

	Ablation Study
	Encoding for LMs
	Normalization Methods

	Additional Results
	Transfer Learning Surrogate Selection

	Prompt

