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Abstract

Thanks to their simple architecture, Restricted Boltzmann Machines (RBMs) are1

powerful tools for modeling complex systems and extracting interpretable insights2

from data. However, training RBMs, as other energy-based models, on highly3

structured data poses a major challenge, as effective training relies on mixing the4

Markov chain Monte Carlo simulations used to estimate the gradient. This process5

is often hindered by multiple second-order phase transitions and the associated6

critical slowdown. In this paper, we present an innovative method in which the7

principal directions of the dataset are integrated into a low-rank RBM through a8

convex optimization procedure. This approach enables efficient sampling of the9

equilibrium measure via a static Monte Carlo process. By starting the standard10

training process with a model that already accurately represents the main modes of11

the data, we bypass the initial phase transitions. Our results show that this strategy12

successfully trains RBMs to capture the full diversity of data in datasets where13

previous methods fail. Furthermore, we use the training trajectories to propose a14

new sampling method, parallel trajectory tempering, which allows us to sample15

the equilibrium measure of the trained model much faster than previous optimized16

MCMC approaches and a better estimation of the log-likelihood. We illustrate the17

success of the training method on several highly structured datasets.18

1 Introduction19

Energy-based models (EBMs) are a classic approach to generative modeling that has been studied for20

decades. They were introduced using the Restricted Boltzmann Machine formulation by Smolen-21

sky [1] and later further developed by Sejnowski et al. [2]. They provide a straightforward method for22

modeling effective interactions within complex data distributions and for sufficiently simple energy23

functions, such as the Boltzmann machine (BM) [3], it is also possible to interpret and infer the24

underlying constituent rules from the observed data. This inference strategy is often associated with25

the inverse Ising problem and pairwise interaction models [4], and it has found a great variety of26

applications in fields such as neuroscience [5] or computational biology [6]. A recent work has27

proposed replacing the use of pairwise models with the Restricted Boltzmann Machine (RBM) [7],28

as it allows the same direct interpretation of its energy function as an explicit many-body interaction29

model while greatly extending the expressive power of the model. RBMs are also very useful for30

grouping data into hierarchical families [8]. On the diametrically opposite side (on interpretability)31

are generative ConvNets [9, 10], where the energy function is formulated as a deep neural network,32

which are capable of synthesizing photorealistic images but are almost impossible to interpret as a33

physical model.34

The applications of simple EBMs in science are very diverse. For example, they are often used today35

to encode the Hamiltonian of physical many-body systems, such as Quantum wave functions [11]36

or the accurate determination of ground state wave functions of strongly interacting and entangled37
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quantum spins [12] or they have proven to be suitable for the representation of the AdS/CFT38

correspondence in theories of quantum gravity [13, 14]. Simple EBMs are also very common to39

encode the evolutionary constraints in protein families [6, 15], and to predict mutations [16], or to40

generate realistic synthetic sequences, such as fake human genomes [17, 18]. These examples show41

that, despite their somewhat old-fashioned architecture, shallow EBMs are increasingly seen as useful42

tools for better understanding modern physics/biology, as they allow for a certain level of analytical43

description.44

Despite the appealing modeling properties of RBMs, they are notoriously difficult to train, a challenge45

common to EBMs in general. The main difficulty arises from the computation of the log-likelihood46

gradient, which requires an ergodic exploration of a dynamically evolving and potentially complex47

free energy landscape using Markov Chain Monte Carlo (MCMC) processes. Recent studies have48

shown that models trained with non-convergent MCMC processes suffer from out-of-equilibrium49

dynamic memory effects [19, 20, 21]. This dynamical behavior can be explained analytically using50

moment-matching arguments [19, 22]. While exploiting these effects can yield fast and accurate51

generative models, even for highly structured data [23] or high-quality images with RBMs [24], this52

approach results in a sharp separation between the model’s Gibbs-Boltzmann distribution and the53

dataset distribution, thereby undermining the interpretability of the model parameters [22, 7]. Thus,54

to extract meaningful information from datasets using RBMs, it is essential to ensure proper mixing55

of the chains during training, in short, one needs equilibrium models.56

Both the ability to train an RBM in equilibrium and to generate convincing new samples from its57

equilibrium measure strongly depend on the dataset in question. For typical image datasets such58

as MNIST or CIFAR-10, good RBMs can be obtained by increasing the number of MCMC steps.59

However, this approach is no longer feasible for highly structured datasets [25]. Datasets from60

which one seeks scientific insights are often highly structured, such as genomics/proteomics data61

or low-temperature many-body physical systems. These datasets typically exhibit distinct clusters,62

identifiable via principal component analysis (PCA) which form distant groups of similar entries.63

We show an example of the PCA of 4 clustered dataset we will be studying in this work in Fig. 1;64

details about these datasets are given in the caption and in the Supplemental Information (SI). During65

training, the model must evolve from an initial normal distribution to an increasingly multimodal66

distribution. Sampling from multimodal distributions is particularly challenging because the mixing67

times are determined by the transition times between modes. But this is not the only difficulty. These68

distant modes are encoded by second-order phase transitions during training [26, 27, 28], leading to69

diverging mixing times in these regions — a phenomenon known as critical slowdown —, which70

means that mixing times are expected to grow with a power of their system size. This sampling71

challenge not only hinders the training process, but also limits the model’s ability to generate new72

samples. Obtaining new and independent configurations would require an impractically large number73

of sampling steps.74

2 Related work75

Training EBMs by maximizing log-likelihood has long been a challenge in the community [29, 10].76

EBMs gained popularity with the introduction of the contrastive divergence algorithm [30], in which77

a set of parallel chains is initialized on independent examples in the minibatch and the MCMC78

process iterates for a few steps. Despite its widespread use, this algorithm yields models with poor79

equilibrium properties that are ineffective as generative models [31, 32, 21]. An improvement is the80

persistent contrastive divergence (PCD) algorithm [33], which maintains a permanent chain in which81

the last configurations used to estimate the previous gradient update are reused. PCD acts like a82

slow annealing process improving gradient estimation quality. However, it often fails on clustered83

data as the statistical properties of the permanent chain quickly move away from the equilibrium84

measure and degrade the model [25]. This problem, which is primarily related to phase coexistence,85

can be addressed with constrained MCMC methods if appropriate order parameters are identified.86

For RBMs, these order parameters are related to the singular value decomposition of the model87

coupling matrix, which enables efficient reconstruction of multimodal distributions [25]. Although88

this method is effective for evaluating model quality, it is too computationally intensive to be used89

in training, even if it leads to models with good equilibrium properties. Other optimized MCMC90

methods, such as the Parallel Tempering (PT) [34] algorithm, simulate multiple models at different91

temperatures, facilitating mixing through temperature exchange [35, 32]. However, PT is costly and92
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Figure 1: Clustered datasets. In A-C we show the 4 different clustered data sets that we will consider
in this paper, projected onto their first two PCA components. In A we show the data of the MNIST
01 dataset (both projected and some instances), which contains only the 0-1 images of the complete
MNIST dataset. In B, we show the Mickey dataset, an artificial dataset whose PCA forms a “Mickey"”
face shape. In C, we show data from the Human Genome Dataset (HGD), which contains binary
vectors each corresponding to a human individual and whose sites correspond to selected genes. A
value of 1 at a particular position means that a mutation was observed there compared to an individual
reference sequence. Details of these data sets can be found in the SI. In D-F we show the samples we
generate with the low-rank RBMs that are used as initial point of a standard training.

often ineffective, especially because EBMs undergo first-order phase transitions at the temperature93

where PT typically fails because one needs too many temperatures to make the moves accepted. We94

will see below that a more appropriate approach exchanges the models at different training times,95

which only implies crossing second-order phase transitions.96

The population annealing algorithm, which reweights parallel chains during learning based on their97

relative weight changes during parameter updates, was proposed as an alternative [36]. Similarly,98

reweighting chains using non-equilibrium physics concepts such as the Jarzynski equality has been99

proposed [37]. Both approaches struggle with highly structured data sets. To prevent the different100

chains to get too correlated around the training phase transitions, one must either increase the101

number of sampling steps or decrease the learning rate, which in practice means very long training102

processes to ensure a proper equilibrium training. Another strategy is to use EBMs as corrections103

for straightforward-to-sample flow-based models [38]. This simplifies sampling and learning, but104

sacrifices the interpretability of the energy function, which was our goal. An evolving flow model105

can be used as a fast sampling moves proposer for the EBM [39] objective. This method requires the106

training of two different networks in parallel and may result in the drop of the move acceptancy as107

the EBM becomes specialized.108

For RBMs, a recent method called “stacked tempering" [40] dramatically speeds up sampling by109

training smaller RBMs with latent variables from previous models, allowing fast updates to be110

proposed using a PT like algorithm. Authors also showed that this algorithm was much faster than111

the standard PT. While effective, it is too cumbersome for use in training. Also for RBMs, it has112
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recently been shown that it is possible to train a low-rank RBM that accurately reproduces the113

statistics of the data projected along the d first data principal directions through a convex and very114

fast optimization process (see [41] and the discussion below). This low-rank model can be seen as a115

good approximation to the correct RBM needed to describe the data, and has the nice property that it116

can be efficiently sampled via a static Monte Carlo process.117

In this paper, we will show how to drastically reduce training times by starting the RBM training118

process at this low-rank RBM, as this means that the first and strongest dynamic effects associated119

with them are directly bypassed. We also show that one can exploit the training trajectory to develop120

an effective sampling method, the parallel trajectory tempering (PTT) that outperforms the “stacked121

tempering" [40] and only requires saving a reduced number of models during the training. This122

strategy also allows to obtain reliable estimations for the log-likelihood in well-trained models, much123

better than those obtained with the standard Annealing Important Sampling (AIS) techniques [42].124

Using both strategies, we show that we are able to train and evaluate methods that accurately represent125

the different modes in the dataset, where standard methods lead to mode collapse effects.126

3 The Restricted Boltzmann Machine127

The RBM is composed by Nv visible nodes and Nh hidden nodes. In our study, we primarily use128

binary variables {0, 1} or ±1 for both layers. The two layers (visible and hidden) interact via a129

weight matrix w, with no direct couplings within a given layer. Variables are also adjusted by visible130

and hidden local biases, θ and η, respectively. The Gibbs-Boltzmann distribution for this model is131

expressed as132

p(v,h) =
1

Z
exp [−H(v,h)] where H(v,h) = −

∑
ia

viwiaha −
∑
i

θivi −
∑
a

ηaha, (1)

where Z is the partition function of the system. As with other models containing hidden variables, the133

training objective is to minimize the distance between the empirical distribution of the data, pD(v),134

and the model’s marginal distribution over the visible variables, p(v) =
∑

h exp [−H(v,h)] /Z =135

exp [−H(v)] /Z. Minimizing the Kullback-Leibler divergence is equivalent to maximizing the136

likelihood of observing the dataset in the model. Thus, the log-likelihood L = ⟨−H(v)⟩D −137

logZ can be maximized using the classical stochastic gradient ascent. For a training dataset D =138

{v(m)}m=1,...,M , the log-likelihood gradient is given by139

∂L
∂wia

= ⟨viha⟩D − ⟨viha⟩RBM,
∂L
∂θi

= ⟨vi⟩D − ⟨vi⟩RBM,
∂L
∂ηa

= ⟨ha⟩D − ⟨ha⟩RBM, (2)

where ⟨·⟩D denotes the average with respect to the entries in the dataset, and ⟨·⟩RBM with respect140

to p(v,h). Since Z is intractable, the model averages in the gradient are typically estimated us-141

ing Ns independent MCMC processes, and observable averages ⟨o(v,h)⟩RBM are replaced by142 ∑R
r=1 o(v

(r),h(r))/R, with (v(r),h(r)) being the last configurations reached with each of the143

r = 1, . . . , R parallel chains. To obtain reliable estimates, it should be ensured that each of the144

Markov chains mix well before each parameter update. However, ensuring equilibrium at each update145

is impractical, slow and tedious. The common use of non-convergent MCMC processes is the cause146

of most difficulties and weird dynamical behaviors encountered in training RBMs [21].147

Typical MCMC mixing times in RBMs are very small at the beginning of the training and grow as148

it progresses [21], suffering with sharp increases every-time the training trajectory crosses each of149

the critical transitions that give birth to new modes [28]. In order to minimize out-of-equilibrium150

effects, it is often useful to keep R permanent (or persistent) chains, which means that the last151

configurations reached with the MCMC process used to estimate the gradient at a given parameter152

update t, Pt ≡ {(v(r)
t ,h

(r)
t )}Rr=1, are used to initialize the chains of the subsequent update t + 1.153

This algorithm is typically referred as PCD. In this scheme, the process of training can be mimicked154

to a slow cooling process, only that instead of varying a single parameter, the temperature, a whole155

set of parameters Θt = (wt,θt,ηt) are updated at every step to Θt+1 = Θt + γ∇Lt with ∇Lt156

being the gradient in Eq. (2) estimated using the configurations in Pt, and γ being the learning rate.157
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4 The low-rank RBM pretrained158

In Ref. [41], it was shown that it is possible to train exactly (i.e. by direct numerical integration159

instead of MCMC sampling) an RBM containing a reduced number of modes in the weight matrix160

W by exploiting a mapping between the RBM and a Restricted Coulomb Machine and solving a161

convex optimization problem, see the SI. In other words, it is possible to train a RBM with a coupling162

matrix of this simplified form163

W =

d∑
α=1

wαūαu
⊤
α , with (uα, ūα) ∈ RNv × RNh , (3)

and where the right singular vectors {uα}dα=1 correspond exactly to the first d principal directions164

of the data set. Under this assumption, it is possible to write p(v) only as a function of d order165

parameters given by the magnetizations along each of the uα components, mα(v) = uα · v/
√
Nv,166

and in particular,167

H(v) = −
∑
a

log cosh

(√
Nvūa

d∑
α=1

wαmα + ηa

)
= H(m(v)), (4)

where m = (m1, . . . ,mα). As proposed in [41], the optimal parameters of such a model can168

basically be determined by solving a regression problem. We describe this method in details in the169

SI. This means that once the model is trained, we obtain a probability p(m) defined on a much170

lower dimension than the original p(v). Such a probability can be straightforwardly sampled using171

inverse transform sampling. Since this method requires a discretization of the m-space both for172

training and generation, we cannot consider intrinsic space dimension d > 4 dimensions in practice.173

These low-rank RBMs are then trained to reproduce the statistics of the dataset projected in its first d174

principal components. Despite their simplicity, the low-rank models are already able to generate an175

approximate version of the dataset, as shown in Fig. 1–D-F for the 4 datasets previously presented.176

In the initial stage of the standard learning process, the model encodes the strongest PCA components177

of the data through multiple critical transitions [26, 27, 28]. Pre-training with the low-rank construc-178

tion allows us to bypass these transitions and avoid out-of-equilibrium effects caused by critical179

slowing down associated to these transitions. Once the main directions are incorporated, training can180

efficiently continue with standard algorithms like PCD, as the mixing times of pre-trained machines181

tend to be much shorter. In particular, in the PCD-100 training with MNIST01, relaxation times for182

the visible variables’ time correlation reach 5 · 105 MCMC steps at the first three transitions, coincid-183

ing with the growth of singular values in the model weight matrix W . In contrast, the pre-trained184

machine has a much shorter relaxation time of ∼ 103, allowing us to safely restart the PCD process185

from a set of equilibrium samples generated by static sampling of the low-rank RBM.186

Overcoming these transitions has dramatic implications for the quality of the models we can train187

and how accurately they reproduce the statistics of the data. In Fig. 2, we show for 3 datasets the188

equilibrium samples drawn from 3 RBMs trained with identical number of samples, minibatch size,189

k = 100 Gibbs steps, and learning rate γ = 0.01, but different training strategies. In particular,190

we consider 2 RBMs trained from scratch with the standard PCD [33] and the recently proposed191

Jarzynski reweighing method [23] (see SI for our specific implementation in the RBM), and a final192

machine trained with PCD and pre-trained with a low-rank RBM. In all cases, the quality of the193

generated samples is significantly better when pre-training is used. For the Mickey dataset, neither194

JarRBM nor normal PCD are able to generate convincing data. For the MNIST01 dataset, all 3195

methods are able to generate convincing data, but only Pretrain+PCD is able to correctly balance all196

modes, as can be seen in Fig. 3, where we compare the histograms of the generated data projected197

onto the first 3 PCA directions with those of the dataset and a random selection of the generated198

samples. We see that the pre-training+PCD training perfectly balances the different modes (here we199

show the first 3 directions, but it goes much further), unlike the other 2 methods, and also generates200

more diverse images. We can also compare the log-likelihood of all 3 models and find that the201

pre-trained RBM achieves higher values. At this point, it is important to emphasize that in order to202

properly quantify the increase in log-likelihood, we need to use the PTT algorithm (see section 5) to203

correctly thermalize in these well-trained machines. For comparison, we show our PTT measure in204

dark and solid lines, while the standard AIS [42] estimate is shown in light dashed lines.205

Already from the scatter plots we see that the pre-training has a dramatic effect in obtaining models206

where all modes are properly balanced, but also has important effects in the maximum test-likelihood207
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Figure 2: We compare the equilibrium samples generated by RBMs trained on the Mickey, MNIST01,
and HGD datasets using three different training schemes: Jarzynski (JarRBM), PCD, and PCD
initialized on low-rank RBMs (used to generate the samples in Fig. 1–D-F). To assess the fitting of
the modes, we show a density plot of the projections of the data in the first two principal directions
of each dataset. We compare these results with the density plot of the original datasets in the first
column.

we can achieve. In all cases, these equilibrium samples are drawn using the trajectory PT algorithm208

that will be explained in the next section, and the log-likelihood obtained using the equilibrium209

configurations obtained at different epochs as a result of the trajectory PT flow.210

5 Standard Gibbs sampling vs. Parallel Trajectory Tempering (PTT)211

One major challenge with structured datasets is quantifying the model’s quality, since sampling the212

equilibrium measure of a well-trained model is often too time-consuming. This affects the reliability of213

generated samples and indirect measures as log-likelihood’s estimation through Annealing Importance214

Sampling (AIS) [42], making them inaccurate and meaningless.215

To illustrate this problem, let us consider the MNIST01 and the HGD datasets. MNIST01 dataset is216

bimodal and the HGD highly multimodal as shown in their PCA in Figs. 1–A and C. Let us consider217

that we want to sample the equilibrium measure of the RBMs trained using low-rank RBM pretraining.218

In order to draw new samples from these models, one would typically run MCMC processes from219

random initialization and iterate them until convergence. The mixing time is controlled by the220

jumping time between clusters. To accurately estimate the relative weight between modes, the221

MCMC processes must be ergodic, requiring many back-and-forth jumps. However, as shown in222

Figs. 4–A and C for the MNIST01 and HGD datasets, Gibbs sampling dynamics are extremely slow,223

rarely producing jumps even after 104 MCMC steps. The yellow curves in Figs. 4–B and D show the224

mean number of jumps over 100 independent chains as a function of MCMC steps, indicating that a225

proper equilibrium generation would require at least 106 − 107 MCMC steps.226

One effective way to accelerate the dynamics is to exploit the training trajectory, where the model227

progressively specializes through second-order phase transitions. To achieve this, we save RBMs228

trained at various epochs and propose swaps between configurations of similarly trained models. We229

6



pre-train+PCD

JarRBM

PCD

A

B
−0.4 −0.2 0.0

PC1

0.0

2.5

5.0

7.5

10.0

12.5 Dataset

PCD

Jar-RBM

pre-train+PCD

−0.1 0.0 0.1 0.2
PC2

0

1

2

3

4

5

−0.1 0.0 0.1 0.2
PC3

0

2

4

6

101 103

Training time (epochs)

−200

−150

−100

−50

L
L

(n
at

s)

LL AIS on the MNIST-01 dataset

PCD

JarRBM

RCM+PCD

C

Figure 3: We compare the samples generated by the 3 RBMs (JarRBM, PCD, pretrain+PCD) trained
with MNIST01 data. In A, we show the histograms of the generated data projected on the first, second
and third principal directions with those of the dataset. We see that only the pretrain+PCD correctly
balances the different modes. In B we show 10 images generated by each machine. In C, we compare
the log-likelihood of each model’s dataset as a function of training time. The dark and full curves
were obtained using the PTT algorithm discussed in section 5, and the lighter and dashed curves
using the AIS method [42].

call this the Parallel Trajectory Tempering (PTT) algorithm. Unlike the standard Parallel Tempering230

(PT) algorithm, which attempts swaps configurations between different temperatures, the PTT swaps231

between model parameters with different degrees of specialization. This approach is more natural232

for this problem because it involves crossing only second-order transitions, unlike the first-order233

transitions occurring in temperature annealing. And in fact, we show in Figs. 4–A and C, that this234

approach allows us to sharply accelerate the dynamics, as opposed to the standard PT algorithm235

(studied in detail for the MNIST dataset in [40]).236

In the PTT algorithm, the configurations x = (v,h) of neighboring machines indexed by t and t− 1237

are interchanged with the probability238

pacc(x
t ↔ xt−1) = min

(
1, exp

(
∆Ht(xt)−∆Ht(xt−1)

))
.

This move satisfies detailed balance with our target equilibrium distribution p(x) = exp(−H(x))/Z,239

ensuring that the moves lead to the same equilibrium measure. As “nonspecialized" models mix240

very quickly, either because the distribution is essentially Gaussian at the initialisation of a standard241

training, or because the low-rank RBM can be sampled with a static Monte Carlo process (yielding242

independent configurations each time), the trajectory flow significantly accelerates convergence243

to equilibrium. The time interval between successive machines is selected in such a way that the244

probability of accepting interchanges between neighboring machines remains around 0.3. Pre-trained245

machines require a significant fewer number of models to be effective, because most selected models246

are positioned at the most prominent phase transitions. We give the number of machines used for247

each sampling process in the SI. We also provide there a specific and detailed description of the248

algorithm used.249

In the red curves in Fig. (4)–B and D, we show the number of jumps between clusters as a function250

of the number of elementary MCMC steps, which in the PTT scheme refer to 1 Gibbs sampling step251

+ one swap proposal. For the DNA dataset, we have two measures corresponding to jumps along the252

two principal component directions. We observe at 104 MCMC steps an increase of the number of253

jumps by a factor of 80 for MNIST01 and by a factor of 1350 for the HGD in this machine, although254
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Figure 4: Comparison between PTT and classical Gibbs sampling for the MNIST01 dataset (A and
B, respectively) and the human genome dataset (C and D, respectively). In A and C, we show the
trajectory of two independent chains (red and orange) projected onto the PCA along the sampling
process of the pretraining+PCD model for 104 MCMC steps. The black contour represents the density
profile of the dataset and the position of the chains is plotted every 10 steps. In B and D we show the
average number of jumps from one cluster to another as a function of the MCMC steps performed.
The average is calculated over a population of 100 chains. In D, we show the average jump time
between clusters along the first (solid line) and second (dashed line) principal components of the data.

we achieve higher factors in other machines, as we show in the SI. The sampling of RBMs training255

on the MNIST01 dataset was the subject of the study of the “stacked tempering" algorithm in [40].256

If we compare the numbers with their work, we see that we achieve a 3-4 times higher speedup factor,257

where our model has the advantage that it does not need additional training, but simply uses the stored258

machines correctly.259

Another desirable advantage of our PTT algorithm is that we can easily use it to compute an improved260

estimate of the AIS log-likelihood, except that in our case we consider the training trajectory instead261

of a cooling process and use the equilibrium samples obtained for each of the models to compute the262

model averages. In Figs. 3–C 5–A we compare the log-likelihood estimates obtained with our method263

(AIS-PTT) in full and dark lines and in light and dashed lines the AIS estimate (AIS). We see that264

both measures coincide for most parts of the training and that they split when the sampling becomes265

too long to thermalize along the temperature annealing curve in AIS. This effect is particularly evident266

for the JarRBM run in 5–A, where AIS takes a long time to recognize that the model suffers from a267

strong mode-collapse effect.268

6 Overfitting and privacy loss as quality indicators269

In this section, we examine the quality of the samples generated, regarding overfitting and privacy270

criteria which have been defined for genomic data in particular. We look at this on the models trained271

with PCD with and without pre-training. We do not include the Jarzysnki method here, as this method272

fails to obtain a reliable model as clearly shown in the evolution of the Log-likelihood in Fig. 5. We273

focus on the human genome dataset, as shown in Fig. 1–C, to evaluate the ability of various state-274

of-the-art generative models to generate realistic fake genomes while minimizing privacy concerns275

(i.e., reducing overfitting). Recent studies [17, 18] have thoroughly investigated this for a variety of276

generative models. Both studies concluded that the RBM was the most accurate method for generating277

high-quality and private synthetic genomes. The comparison between models relies primarily on the278

Nearest Neighbor Adversarial Accuracy (AATS) and privacy loss indicators, introduced in Ref. [43],279

which quantify the similarity and the level of "privacy" of the data generated by a model w.r.t. the280

training set. We have AATS = 1
2

(
AATrue + AASynth

)
where AATrue [resp. AASynth] are two281
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Figure 5: We compare the quality of the RBMs trained with the human genome data (HGD). In A,
we show the log-likelihood as a function of the training epochs for the 3 training procedures. Solid
lines correspond to AIS-PTT and dashed lines to AIS. The JarRBM falls down because the training
breaks eventually. In B and C we compare privacy and overfitting based on the AATS indicator.

quantities in [0, 1] obtained by merging two sets of real and synthetic data of equal size Ns and282

measuring respectively the frequency that a real [rep. synthetic] has a synthetic [resp. real] as283

nearest neighbor. If the generated samples are statistically indistinguishable from real samples, both284

frequencies AATrue and AASynth should converge to 0.5 at large Ns. AATS can be evaluated both285

with train or test samples and the privacy loss indicator is defined as Privacy loss = AAtest
TS −AAtrain

TS286

and is expected to be strictly positive. Fig. 5 shows the comparison of AATS and privacy loss values287

obtained with our two models, demonstrating that the pre-trained RBM clearly outperforms the288

other model, and even achieves better results (AATS values much closer to 0.5) than those discussed289

in [17, 18].290

7 Conclusions291

We have shown that the strategy of initiating the training on a pre-trained low-rank RBM is an292

extremely effective strategy to obtain high quality models for structured datasets that accurately293

represent all the modes in the datasets and with significantly higher log-likelihoods. We have also294

shown that the models obtained in that way are: (i) better generative models than those obtained295

with standard trainings, both, in the sense that they over-fit less at the same time they are more296

indistinguishable from the test samples, (ii) they display faster relaxational dynamics.297

We have also proposed a new fast sampling method that exploits the progressive learning of features298

in the training of RBMs to design an efficient trajectory PT strategy that allows accelerating the299

parallel Gibbs sampling dynamics by many orders of magnitude and overcome the performance300

of recent efficient sampling methods without adding any extra cost than saving models during the301

training.302

Both strategies for training and sampling are very general, and could be generalized to more complex303

EBMs. In this sense, the low-rank RBM model could be used as a more efficient pre-initialisation304

in deeper structures, and the trajectory PT algorithm is suitable to be directly used in any EBM no305

matter how complex it is.306

8 Code availability307

The code and datasets are available at https://github.com/nbereux/fast-RBM.308
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A Details of the pre-training of a low rank RBM420

A.1 The low-rank RBM and its sampling procedure421

Our goal is to pre-train an RBM to directly encode the first d principal modes of the dataset in the422

model’s coupling matrix. This approach avoids the standard procedure of progressively encoding423

these modes through a series of second-order phase transitions, which negatively impact the quality424

of gradient estimates during standard training. It also helps prevent critical relaxation slowdown of425

MCMC dynamics in the presence of many separated clusters.426

Given a dataset, we want to find a good set of model parameters (w, θ and η) for which the statistics427

of the generated samples exactly match the statistics of the data projected onto the first d directions428

of the PCA decomposition of the training set. Let us call each of these α = 1, . . . , d projections429

mα = uα · v/
√
Nv the magnetizations along the mode α, where uα is the α-th mode of the PCA430

decomposition of the dataset. A simple way to encode these d-modes is to parameterize the w-matrix431

as:432

w =

d∑
α=1

wαūαu
⊤
α , with (uα, ūα) ∈ RNv × RNh , (5)

where u and û are respectively the right-hand and left-hand singular vectors of w, the former being433

directly given by the PCA, while wα are the singular values of w. Using this decomposition, the434

marginal energy on the visible variables, H(v) = log
∑

h expH(v,h) can be rewritten in terms of435

these magnetizations m ≡ (m1, . . . ,md)436

H(v) = −
∑
a

log cosh

(√
Nvūa

d∑
α=1

wαmα + ηa

)
= H(m(v)). (6)

Now, the goal of our pre-training is not to match the entire statistics of the data set, but only the437

marginal probability of these magnetizations. In other words, we want to model the marginal438

distribution439

pemp(m) ≡
∑
v

pemp(v)

d∏
α=1

δ

(
mα − 1√

Nv

uT
αv

)
, (7)
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where δ is the Dirac δ-distristribution. In this formulation, the distribution of the model over the440

magnetization m can be easily characterized441

p(m) =
1

Z

∑
v

e−H(v)
d∏

α=1

δ

(
mα − 1√

Nv

uT
αv

)
(8)

=
1

Z
N (m) exp

∑
a

log cosh

(
ūa

d∑
α=1

wαmα + ηa

)
(9)

=
1

Z
e−H(m)+Nvs(m) =

1

Z
e−Nvf(m) (10)

where N (m) =
∑

v

∏d
α=1 δ

(
mα − 1√

Nv
uT
αv
)

is the number of configurations with magnetiza-442

tions m, and thus S(m) = logN(m)/Nv is the associated entropy. Now, for large Nv the entropic443

term can be determined using large deviation theory, and in particular the Gärtner-Ellis theorem:444

pprior(m) =
eNvs(m)

2Nv
≈ exp (−NvI(m)) , (11)

with the rate function445

I(m) = sup
µ

[
mTµ− ϕ(µ)

]
= mTµ∗ − ϕ(µ∗), (12)

and446

ϕ(µ) = lim
Nv→∞

1

Nv
log
〈
eNvm

Tµ
〉
= lim

Nv→∞

1

Nv
log

1

2Nv

∑
v

e
√
Nv

∑d
α=1 µα

∑
i uα,ivi (13)

= lim
Nv→∞

1

Nv

Nv∑
i=1

log cosh

(√
Nv

d∑
α=1

µαuα,i

)
. (14)

Then, given a magnetization m, we can compute the minimizer µ∗(m) of ϕ(µ)−mTµ which is447

convex, using e.g. Newton method which converge really fast since we are in small dimension. Note448

that in practice we will obviously use finite estimates of ϕ, assuming Nv is large enough. As a result449

we get µ∗(m) satisfying implicit equations given by the constraints given at given Nv:450

mα =
1√
Nv

Nv∑
i=1

uα
i tanh

√Nv

d∑
β=1

uβ
i µ

∗
β

 . (15)

It is then straightforward to check that spins distributed as451

pprior(v|m) ∝ eNvµ
∗Tm(v) (16)

fulfill well the requirement, as
〈
uT
αv/

√
Nv

〉
pprior

= mα. In other words, we can generate samples452

having mean magnetization mα just by choosing vi as453

pprior(vi = 1|m) = sigmoid

(
2
√
Nv

d∑
α=1

uα,iµ
∗
α(m)

)
(17)

The training can therefore be done directly in the subspace of dimension d. In Ref. [41], it has been454

shown that such RBM can be trained by mean of the Restricted Coulomb Machine, where the gradient455

is actually convex in the parameter’s space. It is then possible to do a mapping from the RCM to456

the RBM to recover the RBM’s parameters. In brief, the training of the low-dimensional RBM is457

performed by the RCM, and then the parameters are obtrained via a direct relation between the RCM458

and the RBM’s parameters. The detail of the definition and of the training of the RCM is detailed in459

the appendix A.2.460
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A.2 The Restricted Coulomb Machine461

As introduced in [41], it is possible to exactly train a surrogate model for the RBM, called the462

Restricted Coulomb Machine (RCM), on a low dimensional dataset without explicitly sampling the463

machine allowing to learn even heavily clustered datasets. We will briefly outline the main steps to464

train the RCM. A more detailed explanation can be found in Appendix A.2.465

The RCM is an approximation of the marginal distribution of the RBM with {−1, 1} binary variables:466

H(v) = −
∑
i

viθi −
∑
a

log cosh

(∑
i

wiavi + ηa

)
. (18)

We then project both the parameters and variables of the RBM on the first d principal components of467

the dataset:468

mα :=
1√
Nv

Nv∑
i=1

siuiα, wαa :=

Nv∑
i=1

wiauiα, θα :=
1√
Nv

Nv∑
i=1

θiuiα (19)

with α ∈ {1, . . . , d} and v the projection matrix of the PCA. The projected distribution of the model469

is then given by470

pRBM(m) =
exp

(
Nv

[
S(m) +

∑d
α=1 θαmα + 1

Nv

∑Nh

a=1 log cosh
(√

Nv

∑d
α=1 mαwαa + ηa

)])
Z

(20)
where we ignore the fluctuations related to the transverse directions and S[m] accounts for the471

non-uniform prior on m due to the projection of the uniform prior on s for the way to compute it.472

The RCM is then built by approximating473

log cosh(x) ≃ |x| − log 2, (21)

which is valid for x large enough. The probability of the RCM is thus given by:474

pRCM(m) =
exp

(
Nv

[
S(m) +

∑d
α=1 θαmα +

∑Nh

a=1 qa

∣∣∣∑d
α=1 nαmα + za

∣∣∣])
Z

(22)

where475

qa =

√√√√Nv

d∑
α=1

w2
αa, na =

wαa√∑d
α=1 w

2
αa

, za =
ηa√

Nv

∑d
α=1 w

2
αa

. (23)

This can be easily inverted as476

wαa =
1√
Nv

qana and ηa = qaza,

in order to obtain the RBM from the RCM. The model is then trained through log-likelihood477

maximization over its parameters. However, this objective is non-convex if all the parameters are478

trained through gradient ascent. To relax the problem, since we’re in low dimension, we can define a479

family of hyperplanes (n, z) covering the space and let the model only learn the weights of each to480

the hyperplane. We can then discard the ones with a weight low enough for the approximation (21) to481

be bad.482

The gradients are given by483

∂J(Θ)

∂qa
= Em∼pD(m)

[
|nT

am+ za|
]
− Em∼pRCM(m)

[
|nT

am+ za|
]
, (24)

484
∂J(Θ)

∂θα
= Em∼pD(m) [mα]− Em∼pRCM(m) [mα] . (25)

The positive term is straightforward to compute. For the negative term, we rely on a discretization of485

the longitudinal space to estimate the probability density of the model and compute the averages.486
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(only pre-train+PCD)
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(only JarRBM and PCD)

Figure 6: Scheme of PTT. We Initialize the chains of the models by starting from a configuration x
(0)
0

and passing it through the machines along the training trajectory, each time performing k̃ mcmc steps.
For pre-train+PCD, x(0)

0 is a sampling from the RCM, otherwise it is a uniform random initialization.
The sampling consists of alternating one mcmc step for each model with a swap attempt between
adjacent machines. For pre-train+PCD, at each step we sample a new independent configuration for
RBM0 using the RCM.

Model Dataset # of machines Alg. # of steps acc. factor @ 104 steps

pre-train+PCD MNIST01 6 (+1) 10000 80
JarJar MNIST01 28 10000 50
PCD MNIST01 13 10000 30

pre-train+PCD Human Genome 6 (+1) 10000 1350
PCD Human Genome 13 10000 7100

Table 1: Performance comparison of different models on various datasets for the sampling using
PTT versus Gibbs sampling for 104 mcmc steps. The acceleration factor is defined as the ratio
of the average number of jumps obtained until 104 steps between PTT and Gibbs sampling. For
pre-train+PCD, the RCM machine has not to be counted among the list of models (hence the +1)
because it is very fast to sample from.

B Sampling via Parallel Tempering using the learning trajectory487

Assuming we have successfully trained a robust equilibrium model, there remains the challenge of488

efficiently generating equilibrium configurations from this model. Although models trained at equi-489

librium exhibit faster and more ergodic dynamics compared to poorly trained models, the sampling490

time can still be excessively long when navigating a highly rugged data landscape. Consequently,491

we devised a novel method for sampling equilibrium configurations that draws inspiration from492

the well-established parallel tempering approach. In this traditional method, multiple simulations493

are conducted in parallel at various temperatures, and configurations are exchanged among them494

using the Metropolis rule. Unlike this conventional technique, our method involves simultaneously495

simulating different models that are selected from various points along the training trajectory. This496

approach is motivated by the perspective that learning represents an annealing process for the model,497

encountering second-order type phase transitions during training. In contrast, annealing related to498

temperature changes involves first-order phase transitions, making traditional parallel tempering less499

effective for sampling from clustered multimodal distributions.500

A sketch of the Parallel Trajectory Tempering (PTT) is represented in fig. 6. Specifically, we save501

tf models at checkpoints t = 1, . . . , tf along the training trajectory. We denote the Hamiltonian of502

the model at checkpoint t as Ht, and refer to the Hamiltonian of the RCM model as H0. We define503

GibbsSampling(H,x, k) as the operation of performing k Gibbs sampling updates using the model504

H starting from the state x. In all our sampling simulations we used k = 1.505
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The first step is to initialize the models’ configurations efficiently. This involves sampling N506

chains from the RCM model, x(0)
0 ∼ RCMSampling(H0), and then passing the chains through507

all the models from t = 1 to t = tf , performing k Gibbs steps at each stage: x
(0)
t ∼508

GibbsSampling(Ht,x
(0)
t−1, k).509

The sampling process proceeds in steps where we update the configuration of each model except H0510

with k Gibbs steps, and sample a completely new configuration for the RCM model H0. Following511

this update step, we propose swapping chains between adjacent models with an acceptance probability512

given by:513

pacc(xt ↔ xt−1) = min (1, exp (∆Ht(xt)−∆Ht(xt−1))) , (26)

where ∆Ht(x) = Ht(x)−Ht−1(x).514

We continue alternating between the update step and the swap step until a total of Nmcmc steps is515

reached. The sampling procedure is illustrated in the following pseudo-code:516

Input: Set of models {Ht}, t = 0, . . . , tf , Number of Gibbs steps k, Number of MCMC steps517

Nmcmc518

Output: Configurations xt for t = 1, . . . , tf519

Initialize: Sample N chains from the RCM model x(0)
0 ∼ RCMSampling(H0)520

for t = 1 to tf do521

x
(0)
t ∼ GibbsSampling(Ht,x

(0)
t−1, k̃)522

end for523

for n = 1 to ⌊Nmcmc/k⌋ do524

for t = 1 to tf do525

x
(n)
t ∼ GibbsSampling(Ht,x

(n−1)
t , k)526

end for527

Resample x
(n)
0 ∼ RCMSampling(H0)528

for t = 1 to tf do529

Compute acceptance probability530

pacc(x
(n)
t ↔ x

(n)
t−1) = min

(
1, exp

(
∆Ht(x

(n)
t )−∆Ht(x

(n)
t−1)

))
Swap x

(n)
t and x

(n)
t−1 with probability pacc(x

(n)
t ↔ x

(n)
t−1)531

end for532

end for533

A comparison of performances between PTT and standard Gibbs sampling is reported in Tab. 1.534

C Training details535

We describe in Tables 2 and 3 the datasets and hyperparameters used during training. The test set536

was used to evaluate the metrics. All experiments were run on a RTX 4090 with an AMD Ryzen 9

Table 2: Details of the datasets used during training.

Name #Samples #Dimensions Train size Test size

Human Genome Dataset (HGD) 4500 805 60% 40%
MNIST-01 10 610 784 60% 40%
Mickey 16 000 1000 60% 40%

537
5950X.538

D Training of the RBM using the Jarzynski equation539

In this section, we describe a procedure similar to the one introduced in [37] for training the RBM540

by leveraging the Jarzynki equation. In one of its formulations, the Jarzynski equation states that541

we can relate the ensemble average of an observable O with the average obtained through many542
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D

Ja
rR
BM

Figure 7: Comparison between PTT and standard Gibbs Sampling for RBMs trained using PCD (A
and B) and JarRBM (C and D) on the MNIST01 dataset. A and C show the sampling trajectory of
two chains recorded every 10 steps for a total of 104 mcmc steps. B and D show the average number
of jumps of a population of 100 chains as a function of the sampling time.

PC
D

A) B)

Figure 8: Comparison between PTT and standard Gibbs Sampling for RBMs trained using PCD on
the Human Genome dataset. The sampling has been performed under the same conditions of fig. 7.

repetitions of an out-of-equilibrium dynamical process. If we consider the training trajectory of an543

RBM, p0 → p1 → · · · → pt−1 → pt, we can write544

⟨O⟩t =

〈
Oe−Wt

〉
traj

⟨e−Wt⟩traj
, (27)

where the average on the lhs is done over the last model pt, the averages on the rhs are taken545

across many different trajectory realizations and Wt is a trajectory-dependent importance factor. By546

all practical means, under the assumption of having quasi-adiabatic parameters updates, namely547

p(Θt−1 → Θt) = p(Θt → Θt−1), this means that we can assign to each Markov chain of the548

simulation x(r), r = 1, . . . , R, an importance weight given by:549

W
(r)
t =

t∑
τ=1

[Hτ (x
(r)
τ−1)−Hτ−1(x

(r)
τ−1)] (28)

and then compute the gradient of the log-likelihood by means of a weighted average over the chains:550

⟨O⟩t ≃
∑R

r=1 O(x(r)) e−W
(r)
t∑R

r=1 e
−W

(r)
t

. (29)
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Table 3: Hyperparameters used for the training of RBMs.

Name Batch size #Chains #Epochs Learning rate #MCMC steps #Hidden nodes

HGD

PCD 2000 2000 10 000 0.01 100 185
Jar-RBM 2000 10 000 10 000 0.01 100 185
Pre-train+PCD 2000 2000 10 000 0.01 100 185

MNIST-01

PCD 2000 2000 10 000 0.01 100 200
Jar-RBM 2000 10 000 10 000 0.01 100 200
Pre-train+PCD 2000 2000 10 000 0.01 100 200

Mickey

PCD 2000 2000 10 000 0.01 100 100
Jar-RBM 2000 10 000 10 000 0.01 100 100
Pre-train+PCD 2000 2000 10 000 0.01 100 100

Notice that, since Eq. (27) is an exact result, the importance weights should, in principle, eliminate551

the bias brought by the non-convergent chains used for approximating the log-likelihood gradient in552

the classical PCD scheme. However, after many updates of the importance weights, one finds that553

only a few chains carry almost all the importance mass. In other words, the vast majority of the chains554

we are simulating are statistically irrelevant, and we expect to get large fluctuations in the estimate of555

the gradient because of the small effective number of chains contributing to the statistical average. A556

good observable for monitoring this effect is the Effective Sample Size (ESS), defined as [37]557

ESS =

(
R−1

∑R
r=1 e

−W (r)
)2

R−1
∑R

r=1 e
−2W (r)

∈ [0, 1], (30)

which measures the relative dispersion of the weights distribution. A way of circumventing the weight558

concentration on a few chains, then, is to resample the chain population according to the importance559

weights every time the ESS drops below a certain threshold, for instance 0.5. After this resampling,560

all the chain weights have to be set to 1 (W (r) = 0 ∀r = 1, . . . , R).561
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NeurIPS Paper Checklist562

The checklist is designed to encourage best practices for responsible machine learning research,563

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove564

the checklist: The papers not including the checklist will be desk rejected. The checklist should565

follow the references and precede the (optional) supplemental material. The checklist does NOT566

count towards the page limit.567

Please read the checklist guidelines carefully for information on how to answer these questions. For568

each question in the checklist:569

• You should answer [Yes] , [No] , or [NA] .570

• [NA] means either that the question is Not Applicable for that particular paper or the571

relevant information is Not Available.572

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).573

The checklist answers are an integral part of your paper submission. They are visible to the574

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it575

(after eventual revisions) with the final version of your paper, and its final version will be published576

with the paper.577

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.578

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a579

proper justification is given (e.g., "error bars are not reported because it would be too computationally580

expensive" or "we were unable to find the license for the dataset we used"). In general, answering581

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we582

acknowledge that the true answer is often more nuanced, so please just use your best judgment and583

write a justification to elaborate. All supporting evidence can appear either in the main paper or the584

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification585

please point to the section(s) where related material for the question can be found.586

1. Claims587

Question: Do the main claims made in the abstract and introduction accurately reflect the588

paper’s contributions and scope?589

Answer: [Yes]590

Justification:591

Guidelines:592

• The answer NA means that the abstract and introduction do not include the claims593

made in the paper.594

• The abstract and/or introduction should clearly state the claims made, including the595

contributions made in the paper and important assumptions and limitations. A No or596

NA answer to this question will not be perceived well by the reviewers.597

• The claims made should match theoretical and experimental results, and reflect how598

much the results can be expected to generalize to other settings.599

• It is fine to include aspirational goals as motivation as long as it is clear that these goals600

are not attained by the paper.601

2. Limitations602

Question: Does the paper discuss the limitations of the work performed by the authors?603

Answer: [Yes]604

Justification:605

Guidelines:606

• The answer NA means that the paper has no limitation while the answer No means that607

the paper has limitations, but those are not discussed in the paper.608

• The authors are encouraged to create a separate "Limitations" section in their paper.609
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• The paper should point out any strong assumptions and how robust the results are to610

violations of these assumptions (e.g., independence assumptions, noiseless settings,611

model well-specification, asymptotic approximations only holding locally). The authors612

should reflect on how these assumptions might be violated in practice and what the613

implications would be.614

• The authors should reflect on the scope of the claims made, e.g., if the approach was615

only tested on a few datasets or with a few runs. In general, empirical results often616

depend on implicit assumptions, which should be articulated.617

• The authors should reflect on the factors that influence the performance of the approach.618

For example, a facial recognition algorithm may perform poorly when image resolution619

is low or images are taken in low lighting. Or a speech-to-text system might not be620

used reliably to provide closed captions for online lectures because it fails to handle621

technical jargon.622

• The authors should discuss the computational efficiency of the proposed algorithms623

and how they scale with dataset size.624

• If applicable, the authors should discuss possible limitations of their approach to625

address problems of privacy and fairness.626

• While the authors might fear that complete honesty about limitations might be used by627

reviewers as grounds for rejection, a worse outcome might be that reviewers discover628

limitations that aren’t acknowledged in the paper. The authors should use their best629

judgment and recognize that individual actions in favor of transparency play an impor-630

tant role in developing norms that preserve the integrity of the community. Reviewers631

will be specifically instructed to not penalize honesty concerning limitations.632

3. Theory Assumptions and Proofs633

Question: For each theoretical result, does the paper provide the full set of assumptions and634

a complete (and correct) proof?635

Answer: [NA]636

Justification:637

Guidelines:638

• The answer NA means that the paper does not include theoretical results.639

• All the theorems, formulas, and proofs in the paper should be numbered and cross-640

referenced.641

• All assumptions should be clearly stated or referenced in the statement of any theorems.642

• The proofs can either appear in the main paper or the supplemental material, but if643

they appear in the supplemental material, the authors are encouraged to provide a short644

proof sketch to provide intuition.645

• Inversely, any informal proof provided in the core of the paper should be complemented646

by formal proofs provided in appendix or supplemental material.647

• Theorems and Lemmas that the proof relies upon should be properly referenced.648

4. Experimental Result Reproducibility649

Question: Does the paper fully disclose all the information needed to reproduce the main ex-650

perimental results of the paper to the extent that it affects the main claims and/or conclusions651

of the paper (regardless of whether the code and data are provided or not)?652

Answer: [Yes]653

Justification:654

Guidelines:655

• The answer NA means that the paper does not include experiments.656

• If the paper includes experiments, a No answer to this question will not be perceived657

well by the reviewers: Making the paper reproducible is important, regardless of658

whether the code and data are provided or not.659

• If the contribution is a dataset and/or model, the authors should describe the steps taken660

to make their results reproducible or verifiable.661
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• Depending on the contribution, reproducibility can be accomplished in various ways.662

For example, if the contribution is a novel architecture, describing the architecture fully663

might suffice, or if the contribution is a specific model and empirical evaluation, it may664

be necessary to either make it possible for others to replicate the model with the same665

dataset, or provide access to the model. In general. releasing code and data is often666

one good way to accomplish this, but reproducibility can also be provided via detailed667

instructions for how to replicate the results, access to a hosted model (e.g., in the case668

of a large language model), releasing of a model checkpoint, or other means that are669

appropriate to the research performed.670

• While NeurIPS does not require releasing code, the conference does require all submis-671

sions to provide some reasonable avenue for reproducibility, which may depend on the672

nature of the contribution. For example673

(a) If the contribution is primarily a new algorithm, the paper should make it clear how674

to reproduce that algorithm.675

(b) If the contribution is primarily a new model architecture, the paper should describe676

the architecture clearly and fully.677

(c) If the contribution is a new model (e.g., a large language model), then there should678

either be a way to access this model for reproducing the results or a way to reproduce679

the model (e.g., with an open-source dataset or instructions for how to construct680

the dataset).681

(d) We recognize that reproducibility may be tricky in some cases, in which case682

authors are welcome to describe the particular way they provide for reproducibility.683

In the case of closed-source models, it may be that access to the model is limited in684

some way (e.g., to registered users), but it should be possible for other researchers685

to have some path to reproducing or verifying the results.686

5. Open access to data and code687

Question: Does the paper provide open access to the data and code, with sufficient instruc-688

tions to faithfully reproduce the main experimental results, as described in supplemental689

material?690

Answer: [Yes]691

Justification:692

Guidelines:693

• The answer NA means that paper does not include experiments requiring code.694

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/695

public/guides/CodeSubmissionPolicy) for more details.696

• While we encourage the release of code and data, we understand that this might not be697

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not698

including code, unless this is central to the contribution (e.g., for a new open-source699

benchmark).700

• The instructions should contain the exact command and environment needed to run to701

reproduce the results. See the NeurIPS code and data submission guidelines (https:702

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.703

• The authors should provide instructions on data access and preparation, including how704

to access the raw data, preprocessed data, intermediate data, and generated data, etc.705

• The authors should provide scripts to reproduce all experimental results for the new706

proposed method and baselines. If only a subset of experiments are reproducible, they707

should state which ones are omitted from the script and why.708

• At submission time, to preserve anonymity, the authors should release anonymized709

versions (if applicable).710

• Providing as much information as possible in supplemental material (appended to the711

paper) is recommended, but including URLs to data and code is permitted.712

6. Experimental Setting/Details713

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-714

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the715

results?716
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Answer: [Yes]717

Justification:718

Guidelines:719

• The answer NA means that the paper does not include experiments.720

• The experimental setting should be presented in the core of the paper to a level of detail721

that is necessary to appreciate the results and make sense of them.722

• The full details can be provided either with the code, in appendix, or as supplemental723

material.724

7. Experiment Statistical Significance725

Question: Does the paper report error bars suitably and correctly defined or other appropriate726

information about the statistical significance of the experiments?727

Answer: [No]728

Justification:729

Guidelines:730

• The answer NA means that the paper does not include experiments.731

• The authors should answer "Yes" if the results are accompanied by error bars, confi-732

dence intervals, or statistical significance tests, at least for the experiments that support733

the main claims of the paper.734

• The factors of variability that the error bars are capturing should be clearly stated (for735

example, train/test split, initialization, random drawing of some parameter, or overall736

run with given experimental conditions).737

• The method for calculating the error bars should be explained (closed form formula,738

call to a library function, bootstrap, etc.)739

• The assumptions made should be given (e.g., Normally distributed errors).740

• It should be clear whether the error bar is the standard deviation or the standard error741

of the mean.742

• It is OK to report 1-sigma error bars, but one should state it. The authors should743

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis744

of Normality of errors is not verified.745

• For asymmetric distributions, the authors should be careful not to show in tables or746

figures symmetric error bars that would yield results that are out of range (e.g. negative747

error rates).748

• If error bars are reported in tables or plots, The authors should explain in the text how749

they were calculated and reference the corresponding figures or tables in the text.750

8. Experiments Compute Resources751

Question: For each experiment, does the paper provide sufficient information on the com-752

puter resources (type of compute workers, memory, time of execution) needed to reproduce753

the experiments?754

Answer: [Yes]755

Justification:756

Guidelines:757

• The answer NA means that the paper does not include experiments.758

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,759

or cloud provider, including relevant memory and storage.760

• The paper should provide the amount of compute required for each of the individual761

experimental runs as well as estimate the total compute.762

• The paper should disclose whether the full research project required more compute763

than the experiments reported in the paper (e.g., preliminary or failed experiments that764

didn’t make it into the paper).765

9. Code Of Ethics766
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Question: Does the research conducted in the paper conform, in every respect, with the767

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?768

Answer: [Yes]769

Justification:770

Guidelines:771

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.772

• If the authors answer No, they should explain the special circumstances that require a773

deviation from the Code of Ethics.774

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-775

eration due to laws or regulations in their jurisdiction).776

10. Broader Impacts777

Question: Does the paper discuss both potential positive societal impacts and negative778

societal impacts of the work performed?779

Answer: [NA]780

Justification:781

Guidelines:782

• The answer NA means that there is no societal impact of the work performed.783

• If the authors answer NA or No, they should explain why their work has no societal784

impact or why the paper does not address societal impact.785

• Examples of negative societal impacts include potential malicious or unintended uses786

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations787

(e.g., deployment of technologies that could make decisions that unfairly impact specific788

groups), privacy considerations, and security considerations.789

• The conference expects that many papers will be foundational research and not tied790

to particular applications, let alone deployments. However, if there is a direct path to791

any negative applications, the authors should point it out. For example, it is legitimate792

to point out that an improvement in the quality of generative models could be used to793

generate deepfakes for disinformation. On the other hand, it is not needed to point out794

that a generic algorithm for optimizing neural networks could enable people to train795

models that generate Deepfakes faster.796

• The authors should consider possible harms that could arise when the technology is797

being used as intended and functioning correctly, harms that could arise when the798

technology is being used as intended but gives incorrect results, and harms following799

from (intentional or unintentional) misuse of the technology.800

• If there are negative societal impacts, the authors could also discuss possible mitigation801

strategies (e.g., gated release of models, providing defenses in addition to attacks,802

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from803

feedback over time, improving the efficiency and accessibility of ML).804

11. Safeguards805

Question: Does the paper describe safeguards that have been put in place for responsible806

release of data or models that have a high risk for misuse (e.g., pretrained language models,807

image generators, or scraped datasets)?808

Answer: [NA]809

Justification:810

Guidelines:811

• The answer NA means that the paper poses no such risks.812

• Released models that have a high risk for misuse or dual-use should be released with813

necessary safeguards to allow for controlled use of the model, for example by requiring814

that users adhere to usage guidelines or restrictions to access the model or implementing815

safety filters.816

• Datasets that have been scraped from the Internet could pose safety risks. The authors817

should describe how they avoided releasing unsafe images.818
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• We recognize that providing effective safeguards is challenging, and many papers do819

not require this, but we encourage authors to take this into account and make a best820

faith effort.821

12. Licenses for existing assets822

Question: Are the creators or original owners of assets (e.g., code, data, models), used in823

the paper, properly credited and are the license and terms of use explicitly mentioned and824

properly respected?825

Answer: [NA]826

Justification:827

Guidelines:828

• The answer NA means that the paper does not use existing assets.829

• The authors should cite the original paper that produced the code package or dataset.830

• The authors should state which version of the asset is used and, if possible, include a831

URL.832

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.833

• For scraped data from a particular source (e.g., website), the copyright and terms of834

service of that source should be provided.835

• If assets are released, the license, copyright information, and terms of use in the836

package should be provided. For popular datasets, paperswithcode.com/datasets837

has curated licenses for some datasets. Their licensing guide can help determine the838

license of a dataset.839

• For existing datasets that are re-packaged, both the original license and the license of840

the derived asset (if it has changed) should be provided.841

• If this information is not available online, the authors are encouraged to reach out to842

the asset’s creators.843

13. New Assets844

Question: Are new assets introduced in the paper well documented and is the documentation845

provided alongside the assets?846

Answer: [NA]847

Justification:848

Guidelines:849

• The answer NA means that the paper does not release new assets.850

• Researchers should communicate the details of the dataset/code/model as part of their851

submissions via structured templates. This includes details about training, license,852

limitations, etc.853

• The paper should discuss whether and how consent was obtained from people whose854

asset is used.855

• At submission time, remember to anonymize your assets (if applicable). You can either856

create an anonymized URL or include an anonymized zip file.857

14. Crowdsourcing and Research with Human Subjects858

Question: For crowdsourcing experiments and research with human subjects, does the paper859

include the full text of instructions given to participants and screenshots, if applicable, as860

well as details about compensation (if any)?861

Answer: [No]862

Justification:863

Guidelines:864

• The answer NA means that the paper does not involve crowdsourcing nor research with865

human subjects.866

• Including this information in the supplemental material is fine, but if the main contribu-867

tion of the paper involves human subjects, then as much detail as possible should be868

included in the main paper.869
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,870

or other labor should be paid at least the minimum wage in the country of the data871

collector.872

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human873

Subjects874

Question: Does the paper describe potential risks incurred by study participants, whether875

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)876

approvals (or an equivalent approval/review based on the requirements of your country or877

institution) were obtained?878

Answer: [NA]879

Justification:880

Guidelines:881

• The answer NA means that the paper does not involve crowdsourcing nor research with882

human subjects.883

• Depending on the country in which research is conducted, IRB approval (or equivalent)884

may be required for any human subjects research. If you obtained IRB approval, you885

should clearly state this in the paper.886

• We recognize that the procedures for this may vary significantly between institutions887

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the888

guidelines for their institution.889

• For initial submissions, do not include any information that would break anonymity (if890

applicable), such as the institution conducting the review.891
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