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Abstract—We consider the problem of training a neural net
over a decentralized scenario with a low communication over-
head. The problem is addressed by adapting a recently proposed
incremental learning approach, called ‘learning without forget-
ting’. While an incremental learning approach assumes data
availability in a sequence, nodes of the decentralized scenario
can not share data between them and there is no master node.
Nodes can communicate information about model parameters
among neighbors. Communication of model parameters is the
key to adapt the ‘learning without forgetting’ approach to the
decentralized scenario. We use random walk based communica-
tion to handle a highly limited communication resource.

Index Terms—Decentralized learning, feedforward neural net,
learning without forgetting, low communication overhead

I. INTRODUCTION

Decentralized learning has received a high interest in signal
processing, machine learning, and data analysis [1]-[4]. Pri-
vacy, security and unavailability of all data in a single place
are primary reasons for decentralized learning where data are
distributed over several places (or nodes). We consider a de-
centralized scenario where nodes are not allowed to share data
and no master node has access to all nodes. Important aspects
of decentralized learning are low computational complexity
and low communication overhead to efficiently handle large
scale data across nodes.

Decentralized learning is part of the area of distributed
learning. Many distributed scenarios assume the existence
of a master node. Distributed learning of neural networks
mainly uses distributed optimization techniques. In the gamut
of distributed learning of neural networks, there exists a
considerable focus on distributed gradient descent algorithms
for solving non-convex optimization problems [5]-[7]. There
are concepts and various implementations of model parallelism
and data parallelism [8]-[10]. There are few attempts to
design a decentralized learning algorithm to achieve the same
performance as that of a centralized setup. The main hindrance
is that neural networks often result in non-convex optimization
problems with respect to their parameters. We had prior
attempts to design distributed neural networks with centralized
equivalence [11], [12]. Our strategy was based on the structure
of a recently proposed neural network that uses layer-wise
convex optimization for training [13]. Alternating-method-of-
multipliers (ADMM) was used to handle the layer-wise convex
optimization in our past attempts. Instead of layer-wise convex
optimization, ADMM was successfully shown to be useful for

learning parameters of the last layer in a distributed extreme
learning machine [14].

For distributed learning, both gradient descent and ADMM
provide good performance while the computational complexity
suffers from frequent broadcast or peer-to-peer communication
with neighbor nodes. In case of a low communication resource
availability, there are efforts to use asynchronous computation
and communication for information exchange between nodes
[15], [16], asynchronous distributed learning enjoys improved
communication efficiency but still suffers when communica-
tion resource availability is highly limited.

We now digress to the topic of incremental learning. This
topic considers improving a learning model using a new
dataset by utilizing the model learned from an old dataset [17].
An incremental learning is defined as one that generates on
a given stream of training data Dy, Do, ..., Dy, a sequence
of model parameters 01,05, ...60,;. The model parameter 6,,
depends on 60,,_1 and D,,. Many efforts have been made to
prevent the newly learned model from the issue of catastrophic
forgetting [18]. There are three main categories for incremental
learning. In the first category, some examples from the old
dataset need to be available [19]. The second category uses
generative models such as generative adversarial networks
(GANSs) to generate synthetic data related to the old dataset
to train and validate the new learning model [20]. The third
category does not require the old dataset or any example from
the old dataset. In this category, access to the old dataset is
not permitted. A prominent example of the third category is
‘learning without forgetting’ [21]. The method tries to mimic
behavior for the old dataset using a new dataset.

Our contribution in this article is to develop a decentralized
learning algorithm for training neural networks based on
‘learning without forgetting” approach of incremental learning.
Neither nodes are allowed to share data, parameters of data,
or any data example, nor any master node exists. Model
parameters, that means the parameters of the neural networks,
such as weight matrices are allowed to share. Besides we
consider the scenario with the availability of a highly limited
communication resource. That means we can not communicate
model parameters frequently among nodes.

II. LEARNING WITHOUT FORGETTING FOR A

DECENTRALIZED SETUP
Let us consider a decentralized setup with M nodes. In

a decentralized setup, we assume that the m-th node has J,,



Algorithm 1 : Concept of learning without forgetting for decentralized setup (LwFd)

Model update when the m-th node receives parameters from a neighbour node in random walk based transmission

Start with:

1: Training dataset D,, for the m-th node; D,,, comprises input X,,, and target T,

2: 0, is the initial parameter of neural net at the m-th node

Definition:
1: HT’m
2: 9u7m

(Parameter received at the m-th node from a transmitting neighbour node in random walk)
(Parameter updated at the m-th node using learning without forgetting (LwF) approach)

3: L denotes a loss function and R denotes an appropriate regularization

Training and learning of neural net (NN) parameters:
1: Compute T, = NN(X;0rm)
2: Define Ty, = NN(X,504.m)

(Compute output at the ‘transmitting neighbour node’ with local data X,,,)
(Output at the m-th node using updated parameter 6, ,,,) and local data X,,)

3: LwF strategy: BZ,m = argming {L(Tm7 T%m) + )\E(Tnm,’i‘u,m) + R(Gum)}

training samples. Let us write the data matrix X and the target

matrix T as below
X=[X;1X5...
T=[T;T:...

Xon . X,
Ty ... Tadl, M

where X,,, € RP*Jm ig the input data matrix in the m-th
node and T,, € R®*/m is the target data matrix accordingly.
We assume that X,,, and T, together form the dataset D,,.
The total data is D = UM_,D,,. In the decentralized setup,
nodes can not share data and there is no master node. If it is
possible to design a learning algorithm for the decentralized
setup such that the algorithm provides the same solution
for availability of the total data D in a single place then
the decentralized algorithm has a centralized equivalence.
Centralized equivalence is a challenging aspect to achieve
and often requires suitable optimization problems, sufficient
communication resource and tractable information exchange
protocols. For example, if the distributed learning algorithm
solves a convex optimization problem over a doubly stochastic
communication network.

We here consider a highly limited communication scenario
and propose a decentralized learning algorithm for a neural
network. In addition, the neural network may not have a
convex loss function for optimization. The proposed scheme
is called ‘learning without forgetting for decentralized setup’
(LwFd). To represent a highly limited information commu-
nication, we assume that a node can only transmit relevant
information to a single neighbor node. To this end, we can
use a random walk based information transmission strategy,
which perfectly fits with the LwFd scheme. In a random walk
based strategy, information transmission starts from a node
and the node transmits information to a randomly chosen
neighbor node. The transmission process repeats until all the
nodes are traversed. With random walk based model parameter
transmission, our main technical contribution is the algo-
rithmic formalization of the LwFd scheme. The algorithmic
formalization of the LwFd concept is proposed in Algorithm
1. Readers are encouraged to compare the proposed LwFd in
Algorithm 1 with Figure 3 of [21] where the concept of ‘learn-
ing without forgetting” (LwWF) is mentioned. Note similarities

and differences between LwF used for incremental learning in
[21] and the proposed LwF used for the decentralized setup
(LwFd).

The LwFd scheme in Algorithm 1 is sufficiently general
to use for many types of neural networks, for example,
convolutional neural network (CNN) [22]. CNNs use non-
convex loss function for optimization, typically by stochastic
gradient search. To demonstrate the efficiency of LwFd, we use
progressive neural network (PLN) [13]. The prime motivation
for using PLN is its low computational complexity. The second
motivation is our prior experience in developing decentralized
PLN with centralized equivalence [11], [12] and hence re-
alizing a direct performance comparison with a centralized
setup. Decentralized PLN with centralized equivalence was
possible to engineer due to the use of convex optimization
based learning in forming PLN structure.

III. DECENTRALIZED PLN USING LWFD

In this section, we first briefly discuss the progressive
learning network (PLN) as preliminaries, and then propose
its realization in a decentralized setup using ‘learning without
forgetting’ approach as per Algorithm 1. Note that the PLN is
used as an example in the LwFd approach. The LwFd approach
could be extended for many other kinds of neural networks
including CNN.

A. Preliminaries about PLN

PLN is a feed-forward neural network that uses a layer-
wise learning strategy [13]. Weight matrices are set using
a judicious combination of convex optimization and random
matrix instances. PLN has a low computational advantage. For
demonstrating the decentralized solution of PLN using LwFd,
we use a fixed size - which means the PLN has a fixed number
of layers and a fixed number of nodes per layer. PLN was
shown to self-estimate its own size, while we refrain from size
estimation in this article. Estimation of size is not our prime
concern in this article. Here we continue with the fixed-size
PLN to demonstrate the efficiency of the proposed LwFd.

The PLN addresses the optimization of the network weights
in a suboptimal manner. Consider the dataset (x,t) € D,



containing data sample x € R and target vector t € R?.
Let us define the feature vector of the [-th layer as

yi=g(W;g(...g(W2g(W1x))...)) € R". 2)

The layer-by-layer sequential learning approach starts with
layer number [ = 0 and then the layers are increased one-by-
one until we reach [ = L. We set yo = x. Let us first assume
that we have an [-layer network. The (I 4+ 1)-layer network
will be built on the [-layer network. For designing the (I +1)-
layer network given the [-layer network, the steps for finding
parameter W1 at the (I + 1)-th layer are as follows:
1) For all the samples in the training dataset D, we compute
v =g(Wig(...g(Wag(Wix9))..)).
2) Using the samples {yl(]) 7_,. we solve the following
convex optimization problem
J
Oj=argmin _[[t©—0,y”|? s.t. |Olllr <er. (3)
l j:l
It is shown that we can choose the regularization pa-
rameters ¢, = € = (2Q)%,l =0,1,2,...,L to avoid
cross-validation. Note that Og is @Q x P-dimensional,
and every O; for I =1,2,...,L is @ X h-dimensional.
3) We form the weight matrix for the (I 4 1)’th layer

VqOf }

Ry @

Wi = {
where Vg = [Ig —Ig]7 is a fixed matrix of dimension
2Q) x @, Oy is learned by convex optimization (3), and
R;+; is an instance of random matrix. The matrix Ry
is (h — 2Q) x P-dimensional, and every R; for [ =
1,2,...,Lis (h — 2Q) x h-dimensional. Note that we
only learn Of to form W;. We do not learn R; and
it can be pre-fixed before training of PLN. Deciding
the weight matrix, the (I + 1)-layer network is y; 41 =
g(Wig(...g(W2g(W1x))...)) = g(Wiy).

It is shown in [13] that the three steps mentioned above guar-
antees monotonically decreasing cost Y [[t7) — 0,y
with increasing the layer number [. This property is the key
to design a low-complexity architecture as we continue to add
new layers one-by-one and set the weight matrix in each layer
using (4). It is shown in [13] that the use of gradient descent-
based methods for further optimization of parameters in PLN
could not provide a reasonable performance improvement.

B. Decentralized PLN using learning without forgetting

Let us consider the decentralized setup of M nodes. The m-
th node has J,,, training samples, that means |D,,| = J,,. Let
us introduce the observation data matrix X,,, € R”*/= and
the target data matrix T, € R@*Jm using the dataset D,,.
Here X, is formed by the x) € D,, and T,, is formed by
the corresponding t\9) € D,,,.

If no communication happens between the neighboring
nodes, the optimal weight parameters at the [-th layer of node
m is obtained by solving

O, = glinHTm - Ol,mYl,mH%a st [[Oumllr <6 5)
I,m

where Y, ,,, is the matrix of feature vectors in equation (2)
at the [-th layer of PLN. To solve this optimization problem
using ADMM, auxiliary variable Z,, is introduced to each
processing node. The original problem can be rewritten as

Of = min [T, — O Y1l
l,m

(6)
st. Oum =Z,||O1ml|lr <e

After solving problem (6) for every layer, every node obtains
{O7,,, i=F» which is the optimal model parameters for learn-
ing the PLN based on the local data. To improve the PLN
learned on m-th node, we apply learning without forgetting
(LwF) [21] to design a new decentralized learning algorithm
using random walk based communication. The random walk
starts from a random processing node, if m-th node receives
the model parameter set {Of,r,m}”zg from a neighboring
node, LwF is activated at m-th node. Then we reformulate
the problem (6) adapting LwF [21] as follows

o= Omin 1T — Otum Yiml

liu,m \
2
+ A0 Yim = Ot Y7 ()
s.t. Ol,u,m = Za ‘Iol,u,m||F < &
where O7 ., Y, ,, is the new generalized target based on the

knowledge transmitted from a neighboring node to node m,
and A is a knowledge balance factor. A larger A favors the
knowledge received from the neighboring node, while setting
A = 0, results in the local optimization in (6).
Using ADMM to solve (7), we break the problem into three
parts, and solve them iteratively

Ok+1

lLau,m = (TmYZJ:m + )\Of,r,mYlme?:m
L2 A (YYD

Z8 = PO, + AY),
AR = AR L Oyl - ZR

Here, P, is the projection onto the space of matrices with
|| - |7 < € to avoid overfitting, which is

Z-(1zr7) :lZllr > e
Z : otherwise.

Pe(Z) =

The above three ADMM updates are executed when the pro-
cessing node m receives model parameters from neighboring
node and activates LwF. This implies that the random walk
based communication only happens once in one random walk
iteration, and only one node updates its model parameters
using the received knowledge. When m-th node finishes up-
dating, it transmits its model parameters to one of its neighbors
randomly, and the random walk iteration proceeds. We show
the algorithm for LwF for decentralized PLN (LwF-dPLN) in
Algorithm 2. Note that Algorithm 2 is an implementation of
Algorithm 1 in the context of designing a decentralized PLN.
The parameters {O7,.,.}i=} and {O},, , }/=§ in Algorithm
2 correspond to ;. ,,, and 027m in Algorithm 1, respectively.



Algorithm 2 : Algorithm for LwF for decentralized PLN
(LwF-dPLN)
Input:

1: Training dataset D,,, for the m-th node
2: Parameters to set manually: L, y;, A
3: Random matrices {R;}, are shared between all nodes
4: Local learning model parameters {Of, }[|=f learned
from local training dataset
Initialization:
1:1=0
Random walk iterates:

(Index for i-th random walk)

1: repeat

2 i+ 1+1

3:  node m receives the model parameters {O
from a neighboring node

(One walk proceed)
* =L
lL,rymJ1=0

4:  Activates learning without forgetting on m-th node

5 1=-1 (Index for [-th layer)
6: repeat

7 l+1+1

8 Compute Y., =g(WY_1.)

9 Solve Oj,, ,,, using (8)

100 wuntil =L
11: until ¢ = 7,4,

IV. EXPERIMENTAL RESULTS

We provide simulation results to evaluate the performance
of three datasets, Vowel, NORB, and MNIST. Note that we
include Vowel as it is challenging for LwWF-dPLN due to the
limited number of training samples. We use the ()-dimensional
target vector t in a classification task as a discrete variable
with an indexed representation of 1-out-of-Q)-classes. A target
variable (vector) instance has only one scalar component that
is 1, and the other scalar components are zero. For the local
PLN, we set the number of layers L = 10, the number of
hidden neurons & = 2Q + 100, and € = (2Q)2 for each layer.
We randomly distribute training data among processing nodes
in the network and test the proposed learning algorithm in
various conditions.

We use a circular communication network system for the
experiments, we denote N, as the set of neighbors with whom
the m-th node is connected. Note that m ¢ N, In this setup,
we assume that there is no master node and no node is isolated
either. This implies the network policy matrix is chosen in
such a way that every node is connected to its neighbors with
communication resources. That means every neighbor of m-th
node has the same possibility to receive parameters from m-th
node, which is Py, = lTlm\’ where |\;,,| denotes cardinality
of the set N,,. In a circular communication network, every
node has the same number of neighbors. Therefore we can
denote d as the network degree, which has the follow relation
with p,,_,, and [Ny,

1

—_1 _J)ad
Pm—sn = Nl — 1
M-1>

d < dmax
d= dmax

TABLE I: Classification performance comparison between
dPLN with centralized equivalence, LwF-dPLN, and local
PLN on a circular graph where M = 10, d = 2, K = 100

dPLN LwF-dPLN local PLN
Dataset
Test Training Test Training Test
Accuracy | Time(s) | Accuracy | Time(s) | Accuracy
Vowel | 56.0+£0.3 10.86 | 38.0+2.6 1.63 24.84£2.9
NORB | 82.5+0.3 | 36.07 | 81.6+£0.9 | 2594 80.440.5
MNIST | 91.5+0.2 | 38.07 | 89.7+£0.2 | 14.45 87.7+0.3
NORB
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Fig. 1: Average test accuracy versus random walk iterations
for d = 2, d = 5, NORB dataset, M = 10.

We test the algorithm with a different number of processing
nodes, and different network degree d, i.e., each processing
node has exactly d neighbors. The classification performance
results are reported in Table I, the corresponding hyperpa-
rameters are found by cross-validation using local data. We
compare the performance of LwF-dPLN with local PLN when
no knowledge communication happens in the network. We also
provide the upper bound of the performance for distributed
PLN, which has the centralized equivalence, i.e. the case
where all the data is available at one processing node.
Progressive performance. From the simulation results shown
in Table I, we observe that the proposed algorithm provides a
reasonable performance drop comparing with dPLN with cen-
tralized equivalence, and outperforms the local PLN without
random communications. For efficiency concern, compared
with dPLN, LwF-dPLN enjoys efficient computation by al-
lowing real-time utilization of the local learning model and
releasing nodes from waiting for up-to-date information from
neighbors.

Efficient communication. We fix the number of nodes M =
10, and test the performance of LwF-dPLN on different
network degree d for NORB dataset. The test accuracy versus
random walk iteration is shown in Figure 1. The average test
accuracy requires a very similar number of random walk iter-
ations to converge, which implies that the proposed algorithm
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Fig. 2: Best local test accuracy versus random walk iterations
for M =2, M =5, M = 10, Vowel dataset, ring network.

relaxes the condition of communication.

Behaviour for limited data. The Vowel dataset is challenging
because it contains a limited amount of training data. The total
number of training data points is 594. Therefore when M is 10,
each node has around 60 data points. From Table I, we observe
performance improvement for LwF-dPLN than the local PLN.
Still there is a significant loss compared to the centralized
dPLN. In this respect, we show an interesting observation
- how local performance among the nodes improves over
random walk iteration for information exchange in training
LwF-dPLN. We test the learning performance for the Vowel
dataset, on a ring network for different numbers of nodes. A
ring network has d = 1. As shown in figure 2, the best local
PLN converges to a satisfying level of 54%, which is close to
the centralized performance. That means random walk helps
to generate a few good models in some nodes.

V. CONCLUSION

We develop an incremental learning algorithm This work
adapts learning without forgetting (LwF) to a decentralized
setup by random walk based communication. We apply the
algorithm on a feed forward neural network PLN, the ex-
periments show that learning without forgetting decentralized
PLN (LwF-dPLN) step-wisely improves the local learning
model and converges to a competitive level as the centralized
equivalent dPLN. The proposed algorithm requires very few
communication resources and releases individual nodes from
waiting for knowledge exchange from neighboring nodes.
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