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Abstract. Automatic segmentation of multiple organs is a challenging
topic. Most existing approaches are based on 2D network or 3D network,
which leads to insufficient contextual exploration in organ segmentation.
In recent years, many methods for automatic segmentation based on
fully supervised deep learning have been proposed. However, it is very
expensive and time-consuming for experienced medical practitioners to
annotate a large number of pixels. In this paper, we propose a new two-
dimensional multi slices semi-supervised method to perform the task
of abdominal organ segmentation. The network adopts the information
along the z-axis direction in CT images, preserves and exploits the use-
ful temporal information in adjacent slices. Besides, we combine Cross-
Entropy Loss and Dice Loss as loss functions to improve the performance
of our method. We apply a teacher-student model with Exponential Mov-
ing Average(EMA) strategy to leverage the unlabeled data. The student
model is trained with labeled data, and the teacher model is obtained
by smoothing the student model weights via EMA. The pseudo-labels
of unlabeled images predicted by the teacher model are used to train
the student model as the final model. The mean DSC for all cases we
obtained on the validation set was 0.5684, the mean NSD was 0.5971,
and the total run time was 783.14s.
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1 Introduction

Automatic segmentation of multiple organs is a challenging topic. The main
problems in medical segmentation can be outlined as follows: (1) Manual annota-
tion of organs from CT scans is time-consuming and laborious. (2) Medical data
involves patient privacy issues. In recent years, many proposed fully supervised
deep learning automatic segmentation methods rely on a large number of pixel-
level annotations, but the annotation of multiple organs is very expensive and
time-consuming. In addition, existing 2D methods cannot fully utilize spatial in-
formation, and 3D methods consume a lot of computational resources. This paper
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proposes a novel 2.5D multi-slice semi-supervised approach to perform abdom-
inal organ segmentation. Considering the limited labeled data, semi-supervised
learning is applied to explore useful information from unlabeled data.

Integrated learning and other power-hungry algorithms can achieve won-
derful segmentation results. However, it will eventually lead to a very bloated
model. In contrast, the lightweight model needs low requirements on device.
It is easier to be deployed in real-world applications. The main theme of the
Fast and Low-resource semi-supervised Abdominal Organ Segmentation in CT
2022(FLARE2022) Challenge is to propose a solution with high efficiency and
high accuracy as the benchmark while occupying low GPU and CPU resources.
It is important to have both lightweight model and low resource usage, as well
as high accuracy and efficiency. A representative of the current state-of-the-art
approaches is nnU-Net [5], which provides a fully automated end-to-end segmen-
tation method and comes out top in several competitions. The model has good
performance on segmentation, but it is also not light enough and requires a lot
of GPU memory.

In this paper, our contributions are listed as follows:
1. We propose a 2.5D semi-supervised multi-organ segmentation framework.

It introduces connected adjacent slices as input [7] to improve the utilization of
3D information with only a few increase in computational resources. It employs
a teacher-student semi-supervised strategy to use unlabeled data.

2. We use 2D U-Net [5] as the main network framework. The attention module
of Convolutional Block Attention Module (CBAM) [14] is added to improve the
data information mining.

3. EMA [6] is applied to optimize the teacher model, which makes the per-
formance of model more robust.

2 Method

2.1 Preprocessing

Threshold truncation According to our observation of CT files, the con-
trast between organ tissues is more obvious when the threshold is taken near
[-250,300], so we truncate the CT threshold on this basis.

Cropping strategy In the training phase, the images and labels are cropped
according to the slices containing labels and the slices without the labels are
discarded. In the inference phase, the area to be segmented in the CT image
is concentrated in the middle of z-axis. The larger the image size is, the more
unrelated areas exist in the CT. So we use center cropping to cut the num-
ber of z-axis slices to the nearest power 2. For example, a CT image size is
809×512×512(Z×H×W), we can cut it to 512×512×512 to speed up the subse-
quent data reading.



Multi-organ segmentation based on 2.5D semi-supervised 3

Fig. 1. The workflow of our method. The labeled data are fed into the student network
after data augmentation. The student network is passed through EMA to obtain a more
robust teacher model. The unlabeled data are pseudo-labeled by the teacher network
after data augmentation. The pseudo-labels are sent to the student network with the
corresponding unlabeled data.

Resampling method for anisotropic data We adjust the slice size during
data loading to reduce GPU memory usage. After testing with different sizes, the
2D slice size of 128×128 has an impact on model performance, while 256×256
takes up more memory without much performance improvement. So we resample
the 2D slice from the original 512×512 to a size of 192×192. Meanwhile, during
the scaling process, we use trilinear sampling to ensure that the variation of
image texture features is as small as possible. We use nearest neighbor sampling
on labels to ensure that the label values remain unchanged.

Intensity normalization method To make the data more easily compute and
improve the performance of model, we normalize and standardize the threshold
value to [0, 1].

2.2 Proposed Method

Figure 1 illustrates the general workflow of our semi-supervised segmentation
network.

Firstly, we train the student model on labeled data.
Secondly, we use the EMA method to obtain teacher model by smoothing

the student model weights. The loss curve of the model using EMA is smoother
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and has less jitter on the image [6]. The model does not fluctuate significantly
due to some abnormal loss values. So the robustness of the model after EMA
optimization is better.

Thirdly, the teacher model predicts the unlabeled data to generate pseudo-
labels. Then we continue to train the student model on the unlabeled data with
pseudo-labels. Finally, we get the final student model.

The teacher-student model uses the U-Net-CBAM network architecture. Fig-
ure 2 illustrates the Network architecture of our method.

We apply the attention mechanism to the U-Net segmentation network. The
CBAM allows better focus on prominent areas and suppress irrelevant back-
ground regions. It can be well embedded in the CNN framework. Compared
with other attention modules, the model performance can be improved without
adding too much computational effort [14].

Number setting of adjacent slices We investigated some papers [13]. It is
best to use 3 adjacent slices, while making full use of context information. In
terms of details, 3 adjacent slices are connected on the channel, fed into the model
for training and inference. It makes the best possible use of 3D information while
slightly increasing the GPU memory footprint.

Relevant principles of EMA In depth learning, the weight of the model will
shake at the actual best point in the last n steps of each training, and there will
be an abnormal value relative to the best point. Therefore, we take the average
of the last n steps to make the model more robust. Since the value of n is a
decreasing process, it is equivalent to a sliding average process.

Strategies to use the unlabelled cases We use the teacher model to predict
unlabeled data to get pseudo-labels and use consistency loss to allow student
models to learn the content of unlabeled data. We believe that too much un-
labeled data will magnify the error information in the pseudo-labels and bring
greater impact on the model. Therefore, only part of the unlabeled data is used
for training. We randomly selected 100 data before the start of the training.

Network architecture details description In Figure 2, our proposed U-Net-
CBAM network consists of a combination of U-Net network and CBAM. CBAM
includes the spatial attention module and the channel attention module. The
network input first goes through 5 convolution modules and 4 max pooling layers
to complete the downsampling process, and then passes through 5 convolution
modules and four upsampling to get the output. The output of each layer of the
downsampling path is connected by the features of the skip connection and the
upsampling path, respectively. The skip connection performs channel-wise and
spatial-wise feature correction via the CBAM.



Multi-organ segmentation based on 2.5D semi-supervised 5

Fig. 2. Network architecture. U-Net-CBAM is based on U-Net with additional CBAM
in the jump connection can better extract the image features and details.
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Loss function [8] We set up two loss functions on our method. They are
Supervised loss function and Unsupervised loss function.

1) Supervised loss function: It consists of Cross-Entropy Loss(Lce) [2] and
Dice Loss(Ldice) [11] with weights, and the percentages of both are α and 1−α,
respectively. The Ldice comes with weights to facilitate the adjustment of the
percentages between different categories.

Loss = α ∗ Lce(g, p) + (1− α) ∗ Ldice(g, p) (1)

where g is ground truth, p is prediction, we use α to balance the Lce and Ldice.
α is a constant weight to balance the Lce and Ldice. Here we set it to 0.5.

Ldice = 1−
k−1∑
i=0

βi ∗Dice(gi, pi) (2)

where gi is ground truth, pi is prediction, βi represents weight of every class.
The ratio between any two categories is set to 1:1.

Dice(g, p) =
2|g ∩ p|
|g|+ |p|

(3)

where g and p is what we want to compare by using dice.

Lce(g, p) = −
C∑
i=1

gi log (pi) (4)

where C denotes the number of classes, gi is ground truth, pi is prediction.
2) Unsupervised loss function: we use consistency loss(Lcsst) [6], which di-

rectly measures the consistency between prediction and pseudo-label.

Lcsst = ∥Ms (A1(x))−Mt (A2(x))∥22 (5)

where x is input image, A1(·) and A2(·) are different noise addition functions,
Ms(·) and Mt(·) denotes output of model of student and teacher.

Strategies to improve inference speed and reduce consumption Firstly,
we use U-Net network architecture and combine it with CBAM. Compared with
other attention modules, it has less parameters and consumes less computational
resources.

Secondly, we use multiple slices to avoid losing 3D information. Besides, we
resize the image as shown in the preprocessing stage to reduce the GPU memory
consumption without affecting the model performance.

2.3 Post-processing

Operation 1: We perform a median filtering operation with a convolution
kernel of 5×5×5 on the image. It can optimize the edges of the segmentation
results.
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Operation 2: We resize the image in preprocessing. After obtaining the seg-
mentation results, we scale the predicted values to the original size in post-
processing based on the nearest neighbor interpolation operation.

When we perform operation 1, some of the segmentation results disappear,
even if reducing the size of the convolution kernel. We finally abandon operation
1.

3 Experiments

3.1 Dataset and evaluation measures

The FLARE 2022 is an extension of the FLARE 2021 [9] with more segmen-
tation targets and more diverse abdomen CT scans. The dataset is curated from
more than 20 medical groups under the license permission, including MSD [12],
KiTS [3,4], AbdomenCT-1K [10], and TCIA [1]. The training set includes 50 la-
belled CT scans with pancreas disease and 2000 unlabelled CT scans with liver,
kidney, spleen, or pancreas diseases. The validation set includes 50 CT scans
with liver, kidney, spleen, or pancreas diseases. The testing set includes 200 CT
scans where 100 cases have liver, kidney, spleen, or pancreas diseases and the
other 100 cases have uterine corpus endometrial, urothelial bladder, stomach,
sarcomas, or ovarian diseases. All the CT scans only have image information,
while the center information is not available.

The evaluation measures consist of two accuracy measures: Dice Similarity
Coefficient (DSC) and Normalized Surface Dice (NSD), and three running effi-
ciency measures: running time, area under GPU memory-time curve, and area
under CPU utilization-time curve. All measures will be used to compute the
ranking. Moreover, the GPU memory consumption has a 2 GB tolerance.

3.2 Implementation details

Environment settings We performed the training and inference process based
on the environment of Table 1.

Table 1. Development environments and requirements.

Windows/Ubuntu version Ubuntu 18.04.6 LTS
CPU Intel(R) Core(TM) i5-7500 CPU@3.40GHz
RAM 4×4GB; 2400MT/s
GPU (number and type) 1 NVIDIA RTX 2080 (8G)
CUDA version 11.4
Programming language Python 3.8
Deep learning framework Pytorch (Torch 1.7.0, torchvision 0.8.2)
Specific dependencies medicaltorch, pandas, scipy, collections
(Optional) Link to code
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Training protocols In training the teacher and student models, we optimized
the models using the Adam optimizer with an initial learning rate of 0.001 and
a learning rate reduction strategy using CosineAnnealingLR. The training pro-
tocols are presented in Table 2 and Table 3.

Data augmentation In training teacher and student model, we used elastic
transformation, random horizontal and vertical flipping and random rotation for
data enhancement.

The elastic transformation is to generate a random standard deviation for
each dimension of the pixel in the (-1,1) interval. It filters the deviation matrix
of each dimension with a Gaussian filter (0, σ). The final amplification factor α
is used to control the deviation range. We set σ to fluctuate between (10.0, 20.0)
and α to fluctuate between (2.0, 4.0). We set the random possibility to 0.3.

Random horizontal and vertical flipping is to randomly rotate the image
vertically and horizontally. We set the random possibility to 0.5.

Random Rotation is to randomly select an angle (0, 90, 180, 270) to rotate
the image.

Table 2. Training protocols.

Network initialization Teacher Net
Batch size 16
Patch size 3×192×192
Total epochs 150
Optimizer Adam
Initial learning rate (lr) 0.001
Lr decay schedule CosineAnnealingLR
Training time 3.25 hours
Number of model parameters 74.1M1

Number of flops 8.22G2

CO2eq 1 Kg3

Loss function Cross-Entropy Loss and Dice Loss4

4 Results and discussion

4.1 Quantitative results on validation set

On the provided validation dataset, we perform ablation experiments and
the results are shown in Table 4. The purpose is to compare the model perfor-
mance on the validation set using only labeled data and using both labeled and
unlabeled data. When using only labeled dataset, the DSC reaches 0.5454, while
when using both labeled and unlabeled dataset, the DSC reaches 0.5684.
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Table 3. Training protocols for the refine model.

Network initialization Student Net
Batch size 8
Patch size 3×192×192
Total epochs 100
Optimizer Adam
Initial learning rate (lr) 0.001
Lr decay schedule CosineAnnealingLR
Training time 16 hours
Number of model parameters 74.1M5

Number of flops 8.65G6

CO2eq 1 Kg7

Loss function Consistence Loss8

After using unlabeled data, the segmentation results improve, and the pre-
viously under-segmented organs can be initially segmented. The improvement
in the DSC illustrates that using pseudo-labels to exploit unlabeled data can
improve model performance.

In this paper, the performance of the proposed method is evaluated using
the provided validation set with ground truth. The evaluation metrics are DSC
and NSD. The results are shown in Table 4. The average value of DSC is 0.5684
and the average value of NSD is 0.5971.

We can find that the model performs better in the segmentation of three
organs, the Liver, Spleen, and Aorta, but is slightly weak in the other organs.

4.2 Qualitative results on validation set

The segmentation excellence results are shown in the Figure 3 and the results
of the poor segmentation are shown in the Figure 4.

Our method makes excellent segmentation results on case #08 and #21,
but makes poorer segmentation results on case #30 and #48. The supervised
method on case #08, #21, #30, #48 have over-segmentation results than the
semi-supervised method.

We demonstrate ablation experiments in a visual manner. The experiment
results verity the effectiveness of semi-supervised method. They are all from the
provided validation set with ground truth.

Possible reasons for the failure of cases or organ segmentation are listed as
follows:

1) We use fewer adjacent slices for training and inference.
2) Some of the organ segments are lost in the preprocessing because some

information is lost in the scaling of the images.
3) The pseudo-labels from the teacher model may contain error information,

which the student model may have learned in training.
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Table 4. Overview of DSC and NSD metrics on validation set.

Name Mean(DSC) Mean(DSC) Mean(NSD) Mean(NSD)
Metohd w/o ssl w ssl w/o ssl w ssl
Liver 0.8079 0.8496 0.7320 0.7718
RK 0.4590 0.4816 0.3773 0.4022
Spleen 0.7169 0.7073 0.6400 0.6475
Pancreas 0.5177 0.5463 0.6109 0.6447
Aorta 0.8525 0.8703 0.8578 0.8811
IVC 0.6561 0.6671 0.6219 0.6424
RAG 0.4057 0.3968 0.5415 0.5458
LAG 0.3045 0.3750 0.4236 0.5130
Gallbladder 0.2460 0.3540 0.1918 0.3026
Esophagus 0.5981 0.5638 0.7202 0.6917
Stomach 0.5650 0.5890 0.5580 0.5736
Duodenum 0.3685 0.3957 0.5475 0.5911
LK 0.5916 0.5931 0.5307 0.5544
Average 0.5454 0.5684 0.5656 0.5971

4.3 Segmentation efficiency results on validation set

The segmentation efficiency results of the validation set are shown in Table 5.
It mainly includes various metrics such as CPU, GPU and runtime. The GPU-
Memory usage is 1455MB, which is smaller than 2048MB. The model has a good
level in Time, AUC-GPU-Time, and AUC-CPU-Time metrics, and the average
values are 15.66s, 17140.12, and 348.15 respectively. We can see that the model
fully meets the minimum requirements of the Challenge in terms of resource
usage and consumption.

Table 5. Overview of segmentation efficiency on validation set.

Time/s GPU-Memory/MB AUC-GPU-Time AUC-CPU-Time

Lowest 8.53 1455 94932 1661.84
Average 15.66 1455 17140.12 348.15
Highest 74.56 1455 7644 181.96

4.4 Results on final testing set

Our final results on the test set are shown in Table 6. The final average
DSC value is 0.6153, and the average NSD value is 0.6484. We can find that the
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(a) Image (b) Ground truth (c) Semi-Supervised (d) Supervised

Fig. 3. Excellent segmentation results on case #08(up) and #21(down)

(a) Image (b) Ground truth (c) Semi-Supervised (d) Supervised

Fig. 4. Poorer segmentation results on case #30(up) and #48(down)

model performs better in the segmentation of three organs, the Liver, Spleen,
and Aorta, but is slightly weak in the other organs. The results on the test set
are consistent with those of the validation set.

4.5 Limitation and future work

The limitation of our method is whether we can obtain good teacher models.
If the teacher model cannot be well pseudo-labeled for unlabeled data, it will
affect the results of semi-supervised training. This eventually leads to poor seg-
mentation. In future work, we can improve the effect of pseudo-labeling by opti-
mizing our method, such as improving the network architecture, post-processing
the pseudo-labeling, etc.
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Table 6. Overview of DSC and NSD metrics on test set.

Name Mean(DSC) Mean(NSD)
Liver 0.8723 0.8086
RK 0.4932 0.3722
Spleen 0.7976 0.7418
Pancreas 0.5579 0.6685
Aorta 0.8312 0.8506
IVC 0.7037 0.6813
RAG 0.4885 0.6723
LAG 0.4295 0.5873
Gallbladder 0.5232 0.4530
Esophagus 0.6180 0.7568
Stomach 0.6626 0.6699
Duodenum 0.3868 0.5915
LK 0.6350 0.5753
Average 0.6153 0.6484

5 Conclusion

In the work of abdominal multi-organ segmentation, we propose a 2.5D-based
semi-supervised segmentation method to achieve effective use of unlabeled data
and reduce the occupation of computing resources.

Findings The main findings are listed as follows:
1) The performance of the model is improved after using pseudo-labels to

exploit unlabelled data.
2) In some cases, it is able to segment each organ very well. However, in

some other cases, the segmentation of the corresponding organs is poor. After
observation, we found that in these cases, there was more noise in the CT images.

3) The quality of the pseudo-label depends on the supervised training phase.

Results The main results are listed as follows:
1) We believe that only a part of the data distribution of some cases is learned

during training. The generalization performance of the model is not very good.
2) The quality of the CT image files themselves is also important, i.e. the

equipment used to take the CT images should also be checked.
3) Our teacher-student model strategy is feasible, it improves the performance

of our model to some extent.
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