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Abstract

Counterfactual fairness is a fundamental principle in machine learning that allows the anal-
ysis of the effects of sensitive attributes in each individual decision by integrating the knowl-
edge of causal graphs. An issue in dealing with counterfactual fairness is that unfair causal
effects are often context-specific, influenced by religious, cultural, and national differences,
making it difficult to create a universally applicable model. This leads to the challenge of
dealing with frequent adaptation to changes in fairness assessments when localizing a model.
Thus, applicability across a variety of models and efficiency becomes necessary to meet
this challenge. We propose the first efficient post-process approach to achieve path-specific
counterfactual fairness by adjusting a model’s outputs based on a given causal graph. This
approach is model-agnostic, prioritizing on flexibility and generalizability to deliver robust
results across various domains and model architectures. By means of the mathematical tools
in cooperative game, the Möbius inversion formula and dividends, we demonstrate that our
post-process approach can be executed efficiently. We empirically show that proposed al-
gorithm outperforms existing in-process approaches for path-specific counterfactual fairness
and a post-process approach for counterfactual fairness.

1 Introduction

The rise of machine learning has significantly transformed decision making processes in daily life. However,
in high-stakes applications such as healthcare (Ahsan et al., 2022), criminal justice (Brennan et al., 2009),
hiring (Hoffman et al., 2018), and lending (Khandani et al., 2010), fairness becomes a critical consideration.
As these domains directly impact individuals, it is essential to ensure that decisions made by machine
learning models are both fair and unbiased. Recently, the machine learning community has developed various
statistical criteria to formalize fairness notions (Dwork et al., 2012; Feldman et al., 2015; Hardt et al., 2016).
However, most criteria are enforced by introducing fairness constraints during the model training process,
often creating a trade-off between fairness and accuracy.

To relax this trade-off, Kusner et al. (2017) introduced counterfactual fairness, which aims to ensure fair
decisions without sacrificing accuracy too much by focusing on the causal relationship between a sensitive
attribute and an outcome. Their framework assumes that any causal effect of the sensitive attribute on the
outcome as inherently problematic and aims to eliminate any influence that the sensitive attribute might
have on the outcome. In many real-world scenarios, however, the sensitive attribute contributes both fair
and unfair causal effects. In cases involving physical strength, outcomes such as suitability for physically
demanding jobs may legitimately depend on sensitive attributes due to genuine biological differences. This
complexity highlights the limitation of conventional fairness notions, which struggle to distinguish between
fair and unfair causal pathways. The fairness in such scenarios cannot be adequately captured using tra-
ditional statistical metrics like demographic parity in group fairness (Dwork et al., 2012; Verma & Rubin,
2018) or even counterfactual fairness. To address this issue, Chiappa (2019); Wu et al. (2019b) introduced
path-specific counterfactual fairness, which aims to eliminate only the unfair causal effects of the sensitive
attribute while preserving the fair ones. This framework has inspired a range of fairness algorithms designed
to achieve path-specific counterfactual fairness (Zhang et al., 2017; Nabi & Shpitser, 2018; Chiappa, 2019;
Wu et al., 2019b; Chikahara et al., 2022).
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In this study, we propose a post-process method to achieve path-specific counterfactual fairness. A significant
challenge in achieving path-specific counterfactual fairness is that unfair pathways can be influenced by
specific religions, cultures, or countries, making it difficult to develop a universally applicable model. For
instance, fairness assessments often depend on regional ethical standards, such as General Data Protection
Regulation (GDPR) 1 in Europe, with different standards prevailing in other regions. This variability
requires adaptations of fairness assessments to local contexts, highlighting the need for an efficient and
flexible fairness method. In contrast, most counterfactual fairness methods rely on in-process approaches,
which require building fairness-aware models from scratch. To overcome this limitation, we propose a
method that achieves counterfactual fairness by post-processing the outputs of existing models, enhancing
the adaptability of fairness assessments across diverse cultural and religious settings.

In our method, we leverage the set function framework, as the predictive model’s output can be interpreted
as a set function when the sensitive attribute is binary. As conventional set functions cannot accurately
capture the causal effect of the sensitive attribute on the output, it is essential to implement a framework
that can isolate causal effects from correlations. By introducing an interior operator, we construct a causally-
aware set function that effectively capture causal dependencies. We then clarify the relationship between
the causally-aware set function and path-specific counterfactual fairness. To deconstruct the causally-aware
set function into meaningful parts, we introduce the Möbius inversion formula (Stanley, 2011), allowing us
to decompose it into the sum of dividends (Harsanyi, 1958). We elucidate each dividend corresponds to a
well-known causal effect and achieve fairness by removing 1dividends associated with unfair pathways.

Finally, our contributions are summarized as follows:

• Our research proposes the first post-process approach designed for path-specific counterfactual fair-
ness. The execution time is linear with respect to the size of the given causal graph, as it is based on
running the model inference a number of times proportional to the number of nodes in the graph.
Additionally the algorithm requires model training time for each mediator. Despite this additional
computation, our algorithm remains efficient compared to the existing in-process approaches, as
shown in the experimental evaluation.

• We newly introduce a novel causally aware set function by leveraging concepts from combinatorics
to handle precedence structures. Through the decomposition of this set function, we elucidate the
relationship between its components and various causal effects, corresponding to total direct effect,
path-specific effect, and mediated interaction. This decomposition enables a more precise analysis
of how individual causal pathways contribute to the overall effects.

2 Related work

Approaches for ensuring fairness in machine learning models typically fall into three main categories. (i)
Pre-processing approach entails modifying the training data to remove biases before the model training stage,
e.g., by group-wise data rescaling (Feldman et al., 2015), data re-labeling (Kamiran & Calders, 2012), and
instance re-weighting (Kamiran & Calders, 2012). This approach is model-agnostic because it focuses on the
input data rather than the structure of the model. However, pre-processing alone may not fully satisfy the
fairness condition in the final model prediction. (ii) In-processing approach adapts the learning algorithm
to prevent bias, e.g., by incorporating regularization terms to penalize unfair outcomes (Kamishima et al.,
2012; Fukuchi & Sakuma, 2014) or by introducing fairness constraints (Zafar et al., 2017; Donini et al., 2018;
Agarwal et al., 2018). In-process approaches are tend to be more complex and computationally expensive,
but can directly control biases in the learning process. They are often limited to models that support
gradient-based optimization, making them difficult to apply to certain models, such as decision trees. (iii)
Post-processing approach adjusts the predictions of the trained model to ensure fairness by modifying the
outputs (Kamiran et al., 2012; Hardt et al., 2016). This approach is computationally efficient and flexible,
as it modifies the output of a given model and can be applied to any learning model after training. However,
post-processing approaches often compromise accuracy more than in-process approaches.

1https://eur-lex.europa.eu/eli/reg/2016/679/oj
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Fairness studies within the context of causality have mainly concentrated on in-process approaches. Most
fairness criteria related to causality, such as counterfactual and path-specific counterfactual fairness, have
been developed within this framework. Some approaches try to ensure the fairness by integrating fairness
criteria into the model’s optimization process by adding fairness constraints during training (Kusner et al.,
2017; Nabi & Shpitser, 2018; Wu et al., 2019b; Chikahara et al., 2021). Another approach focuses on
modifying individual data points to ensure fair outcomes (Chiappa, 2019). Applying in-process approaches
in settings where unfair pathways require frequent modification presents several limitations: (i) Adding
fairness constraints during training makes the model optimization process more complex, which increases the
time required to train models. (ii) Fairness constraints restrict a model’s flexibility, especially when certain
learning models cannot easily accommodate these constraints within their optimization framework, such
as decision trees, k-NN, clustering algorithms, and ensemble models that lack gradient-based optimization
frameworks. Post-process approaches can overcome these limitations and do not alter the model training
phase, allowing for flexibility and computational efficiency. The only post-process approach was proposed
by Wu et al. (2019a) to address counterfactual effects, but it is limited to counterfactual fairness, and the
computational complexity of their LP-based approach increases exponentially with the size of a causal graph.
In contrast, our research presents a novel approach for achieving path-specific counterfactual fairness that
runs in linear time relative to the size of the causal graph.

Our main mathematical tools, the Möbius inversion formula and dividend, are widely used in the field of co-
operative game (Algaba et al., 2004; Ieong & Shoham, 2005). These notions are closely related to the Shapley
value (Shapley, 1953), which is now widely used in machine learning, e.g., for feature selection (Cohen et al.,
2005; Sun et al., 2012), data valuation (Jia et al., 2019; Ghorbani & Zou, 2019), and explainability (Lundberg
& Lee, 2017; Sundararajan & Najmi, 2020) (see (Rozemberczki et al., 2022)). Although these mathematical
tools are from the same field, the way we use the Möbius inversion formula and dividend are different from
the aforementioned studies. While we use the Möbius inversion formula and dividend for post-hoc model
correction, Shapley value is used to quantify the contribution of each individual (such as feature or data
instance) in the aforementioned studies. Our finding will provide a new possible connection between machine
learning and cooperative game beyond the Shapley value.

Feasible sets are a notion introduced in Antimatroids (Korte et al., 2012), and it also have been studied in
conjunction with the Möbius inversion formula (van den Brink, 2017; Algaba et al., 2004). Antimatroid is
used as a hierarchical structure among players called permission structure (van den Brink & Gilles, 1996;
van den Brink, 1997), and the Möbius inversion formula is used as a tool to analyze the properties of the
Shapley value. To our knowledge, we will be the first to employ antimatroids and the Möbius inversion
formula in the analyze of causality.

3 Preliminary

3.1 Path-specific counterfactual fairness

We introduce key notations to formalize concepts in causality and path-specific counterfactual fairness.
Causality is often expressed using a directed acyclic graph, known as a causal graph. Let G be a directed
acyclic graph, where a set of nodes corresponds to features X, and a set of directed edges indicates causal
relationships between them. For each direct edge i→ j where i, j ∈ X, i is referred to as a parent of j while
j is referred to as a child of i. The set of nodes that can reach node i is referred to as the ancestors of i.

Figure 1 displays an example of a causal graph illustrating hiring decisions for physically demanding positions.
In this graph, the endogenous variables A, Q, D, M ∈ X represent gender, quantification, faculty type, and
physical strength, respectively. Gender A is a sensitive attribute, while the features D and M are referred
to as mediators, which are influenced by A through causal pathways. Nodes eD and eM indicate exogenous
variables that work as error variables. Since we focus on the impact of the sensitive attribute, we only
consider exogenous variables that are not influenced by the sensitive attribute. For simplicity, we do not
show exogenous variables for each mediator in the following causal graphs. In the path-specific counterfactual
setting, not all influences from the sensitive attribute are necessarily unfair. In Figure 1, the causal path
through A→M → Y is considered fair, as it reflects a relationship influenced by innate factors between the
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gender A and the physical strength M . Conversely, the pathways A → Y and A → D → Y are considered
unfair, as they involve social or cultural factors that may lead to discriminatory outcomes. Note that every
edge in the causal graph belongs to either fair or unfair pathways. While the fairness of pathways may
frequently change depending not only on the location where the predictive model is applied, but also on the
specific context or situation, the unfair pathways in this setting are fixed.

A D M

eD eM

Y

Q

gender

quantification

faculty
strength

decision

Figure 1: An example of a causal graph in-
dicating hiring decisions for physically de-
manding jobs (Chikahara et al., 2022). The
two red paths denote unfair pathways.

We concentrate on path-specific counterfactual fairness as out-
lined by (Chiappa, 2019; Wu et al., 2019a), which seeks to iso-
late the effect of unfair pathways. The set of unfair pathways is
denoted as π, i.e., π = {A→ Y, A→ D → Y } in the example.
To establish the definition of path-specific counterfactual fair-
ness, we will examine path-specific causal effects as described
by (Avin et al., 2005; Albert & Nelson, 2011) that measures the
extent to which an attribute influences other features through
causal paths. The path-specific causal effect can be obtained by
comparing two predictions generated by modifying inputs X.
The focus is on a situation in which an individual accepts the
aforementioned fairness while being assessed for hiring based
on the prediction of a machine learning model. Let fD and fM

be causal models of the mediators D and M from which the
values of D and M can be estimated, i.e., D = fD(A, Q, eD), and M = fM (A, Q, eM ). In addition, the
value of Y can be obtained using the predictive model f , given by Y = f(A, Q, D, M). We can define a
path-specific counterfactual effect (PSE) as the difference between two predictions YA⇐1∥π − YA⇐0, when
the value of the sensitive attribute A flips from 0 to 1 under unfair pathways π, where YA⇐1∥π and YA⇐0
are called potential outcomes, expressed as follows:

YA⇐1∥π = f(1, Q, fD(1, Q, eD), fM (0, Q, eM )), YA⇐0 = f(0, Q, fD(0, Q, eD), fM (0, Q, eM )),

where YA⇐1∥π can be seen as a prediction when modification of A only affects unfair pathways. Employing
these notations, path-specific counterfactual fairness can be defined using PSE, given as follows:
Definition 3.1 (Path-specific counterfactual fairness (Chiappa, 2019; Wu et al., 2019b)). Given the un-
fair pathways π of a causal graph G and causal models fD and fM , a classifier f achieves path-specific
counterfactual fairness if for any value x of X, it holds that

EYA⇐1∥π,YA⇐0 [YA⇐1∥π − YA⇐0 | X = x] = 0. (1)

3.2 A decomposition of the total effect into path-specific effects

Using the notations of Figure 1, we introduce some causal effects and some of its decomposition. The total
effect of alternation on the sensitive attribute A is defined as

TE := YA←1 − YA←0 = f(1, Q, fD(1, Q, eD), fM (1, Q, eM ))− f(0, Q, fD(0, Q, eD), fM (0, Q, eM )).

For simplicity, we will write f(A, Q, fD(A, Q, eD), fM (A, Q, eM )) as YADAMA
, since Q, eD, and eM are not

affected by the change in A. TE can be decomposed as TE = {Y1D1M1 − Y0D1M1} + {Y0D1M1 − Y0D0M0},
where the first term is the total direct effect, denoted by TDE, and the second term is the pure indirect
effect, denoted by PIE (Robins & Greenland, 1992; VanderWeele, 2013). TDE is the effect of flipping
sensitive attribute A from 0 to 1 while considering the effect of changes in A on the mediators. This allows
us to capture the interaction effect between A and the mediators D and M . In contrast, PIE is the effect of
changing the values of the mediators while keeping A to 0. This means PIE represents the indirect effect,
excluding the interaction effect between A and the mediators D and M .

PIE can be further decomposed into path-specific effects. However, Avin et al. (2005) showed that the sum of
path-specific effects does not equivalent to the total effect, as certain components are missing. Taguri et al.
(2018) later proved the missing components are due to mediated interaction. By introducing this effect, PIE
can be decomposed into the sum of path-specific effects and mediated interaction, given by:

PIE := {Y0D1M1 − Y0D0M1}+ {Y0D1M1 − Y0D1M0} − {Y0D1M1 − Y0D1M0 − Y0D0M1 + Y0D0M0}, (2)
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where the fist term is the path-specific effect via the pathway A→ D → Y , the second term is the path-specific
effect via the pathway A → M → Y , and the third term is the mediated interaction between A → D and
A→M . The path-specific effect measures the effect of an intervention on an outcome along a specific causal
path involving mediators. For a pathway of A → D → Y and a target mediator D, the path-specific effect
can be calculated as the difference between the predicted values when M takes on a specific value influenced
by the the exposure and the predicted value when M is set to its original data point. Mathematically, the
path-specific effects via mediator D and M are defined by

PSED := Y0D1M1 − Y0D0M1 , PSEM := Y0D1M1 − Y0D1M0 ,

respectively2. The last term of equation 2 is referred to as the mediated interaction, given by

MIDM := −(Y0D1M1 − Y0D1M0 − Y0D0M1 + Y0D0M0).

Then PIE can be represented as PIE = PSED + PSEM + MIDM , and we have

TE = TDE + PSED + PSEM + MIDM .

4 Problem setting and motivating scenario

The motivating scenario is the release of an AI-based decision-making system that involves two main stake-
holders: an AI model publisher and an auditor. The publisher aims to deploy an AI-decision making service
built on their predictive model f . The auditor’s role is to assess this model to determine whether it meets
fairness criteria. To ensure the integrity and transparency of the service, the publisher must publicly dis-
close the causal graph G that underpins the predictive model f . The auditor will evaluate the fairness of f
based on this pre-registered causal graph G, regardless of its accuracy. In addition, the auditor should learn
the causal models of mediators, such as fD and fM , to accurately estimate their values when altering the
sensitive attribute. This is important because, when the publisher can define their causal models, the values
of mediators can be adjusted as desired when altering the sensitive attribute. For simplicity, we assume in
the following section that the sensitive attribute is flipped from 0 to 1, without loss of generality.

Therefore, in this paper, we define the following problem setup: (i) A causal graph G, unfair pathways π, and
a predictive model f are given, and (ii) Causal models of mediators, e.g., fD and fM , need to be prepared
by the auditor. With these settings, our objective is as follows.
Objective. Our aim is to develop a post-process approach that modifies the output f(x) of a given model
f for every individual data x, such that equation 1 holds.

5 Proposed algorithm

f(x) vF ∆vF

∆v′
F

v′Ff ′(x)

prediction set function dividends

fair dividendsfair set functionfair prediction

Step (i) Step (ii)
Step (iii)

Step (iv)Step (v)

Figure 2: The flow of our algorithm.

We first briefly describe the idea of our algo-
rithm. The proposed algorithm operates through
five steps, as shown in Figure 2. (i) A predic-
tion f(x) of a data point x is translated into a set
function vF that incorporates causal relationship,
as we focus on the binary state of a sensitive at-
tribute. To achieve this, we employ feasible sets
to represent causal relationships and an interior
operator to incorporate the feasible sets into the
set function. (ii) The value of vF is decomposed
into the causal effects of individual causal paths through the Möbius inversion formula, allowing us to de-
compose the value into the sum of dividends. We elucidate that the dividends of any subset in vF correspond
to TDE, PIE, or MI, as described in Section 3.2. (iii) Using this relationship, fair dividends ∆v′

F
are ob-

tained by nullifying dividends ∆vF of every unfair pathway. (iv) A fair set function v′F can be constructed
2PSE is alternatively defined as P SED := Y1D1M0 − Y1D0M0 or Y1D1M1 − Y1D0M1 in (Taguri et al., 2018; Huang & Cai,

2016; Huang & Yang, 2017; Steen et al., 2017)
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from the fair dividends ∆v′
F

, exploiting the property of the Möbius inversion formula, which ensures any set
function has a unique representation in terms of dividends. (v) Ensure that the value v′F obtained in Step
(iv) corresponds to the desired value f ′(x), given that the translation from a set function to a prediction on
x can be performed without loss.

5.1 Construction of causally aware set function

The aim of this section is to create a causally aware set function vF , using a given predictive model f and
a particular data point x, which is related to Steps (i) and (v) in Figure 2. We construct vF that satisfies
the following conditions: temporal precedence and unconfoundedness. These conditions are necessarily for
inferring causal effect, as described in Pearl (2009). Temporal precedence ensures that the cause occurs
before the effect, which requires for establishing a causal relationship. Unconfoundedness ensures that there
are no unmeasured confounders that influence both the cause and the effect. In other words, it means that
any confounders must either be measured and accounted for. Unfortunately, conventional set functions do
not hold the above properties. In the following, we describe how to construct a causally aware set function
vF to satisfy the desired properties.

We begin by creating a conventional set function vx,r : 2N → R of f(x), where N stands for a set of n features
in X excluding the target variable Y and x and r indicate feature values of a given data point and a point
of reference, respectively. For a given subset S ⊆ N , the value vx,r(S) can be represented by analyzing the
impact of the absence of features in the complement set N \S, given by vx,r(S) := f(rS , xSc) for any S ⊆ N ,
where r is an n-dimensional vector called a reference value, and (rS , xSc) indicates an n-dimensional vector
whose i-th component is ri if i ∈ S and xi otherwise3. Sc represents the complement of S, i.e., Sc = N \ S.
The value vx,r(N \ i) indicates the prediction obtained by changing the value of i from xi to ri. In what
follows, unless otherwise specified, we will abbreviate vx,r as v.

The set function v constructed above is not compatible in causal contexts because it does not accurately
present causal relationships. To implement the relationship into the set function, we employ an interior
operator (Korte et al., 2012), given by intF : 2N → F , where F is a family of subsets of N referred to
as feasible sets, which is often referred to as ancestral sets in the causal context. Every feasible set S ∈ F
satisfies the requirement that if a node is included in S, then all its parent nodes are also into S. The interior
operator is formally defined by

intF (S) :=
⋃
{T ⊆ S | T ∈ F}, ∀S ⊆ N. (3)

With these notations, a causally aware set function vF is defined as follows:

vF (S) := v(intF (S)), ∀S ⊆ N. (4)

Intuitively, the interior operator modifies an infeasible condition, where some children of absent features are
present, into a feasible condition, where no children of absent features are present. Hence, the causally aware
set function vF has a capacity to identify causal relationships.
Example 1. Feasible sets are given by F = {∅, {A}, {Q}, {A, Q}, {A, Q, D}, {A, Q, M}, N} in Figure 1. In
Figure 3 (b), given {Q, D, M}, the interior operator returns {Q}, and the value of vF ({Q, D, M}) corresponds
to v({Q}) = f(xA, rQ, xD, xM ).

Figure 3 (a) demonstrates the operation of a set function v and an interior operator when N \ {A} =
{Q, D, M} is given. Evaluating the value of {Q, D, M} on v does not reflect causality as nodes D and M
are children of the absent feature A. This implies that the values of the nodes D and M remain unchanged
unless the parent’s value A changes. Alternatively, the interior operator provides a feasible set {Q}, which
exhibits a causal relationship.

The reference value r plays an important role in the causally aware set function vF to measure the causal
effect size. The reference value should consider how modifying the sensitive attribute affects feature values,

3Although the set function is defined as vx,r(S) := f(xS , rSc ) in (Lundberg & Lee, 2017), in this paper, we swap the
positions of x and r for convenience.
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xA rD rM

rQ

(a) v(N \ {A}) = f(xA, rQ, rD, rM )

xA xD xM

rQ

(b) vF (N \ {A}) = v({Q}) = f(xA, rQ, xD, xM )

Figure 3: How the conventional set function v and the causally aware set function vF work.

specifically focusing on the case where the sensitive attribute shifts from 0 to 1. Accurate reference values for
mediators, which are children of the sensitive attribute, can be obtained from their respective causal models
fD and fM , which are learned through the following process. First, we estimate the value of the exogenous
variables for each data point x. Then we use these estimates to learn causal models for the mediators. For
estimating the exogenous variables, we can apply several estimation algorithms, such as Maximum Likelihood
Estimation (MLE) via the Expectation-Maximization (EM) algorithm and Bayesian inference using methods
like Gaussian approximation or the Markov chain Monte-Carlo (MCMC) method. The detailed approach
used in our experiments is written in Section C.3. After estimating the value of exogenous variables, causal
models for mediators can be learned using appropriate learning models, such as linear regression or neural
networks. As a result, the reference values for the mediators can be obtained from the learned causal models
and the estimated exogenous variables. For variables that are not affected by the sensitive attribute, their
reference values remain unchanged from the given data point x.
Example 2. In Figure 1, by changing A from 0 to 1, the values of D and M are also affected. They
determine their reference value by examining their causal models fD and fM , which are obtained by rA = 1,
rD = fD(rA, xQ), and rM = fM (rA, xQ). On the contrary, as the value of Q is not affected by the value of
A, and its reference value remains unchanged, i.e., rQ = xQ.

The causally aware set function vF satisfies the two conditions of temporal precedence and unconfoundedness.
Temporal precedence implies that a cause occur before its effect. We can easily check that vF supports the
temporal precedence from Figure 3, since the existence of child nodes, e.g., D and M , depends on the
existence of their parent nodes A and Q. In other words, changes in A or Q lead to changes in their children,
D and M , indicating a causal direction. Unconfoundedness means that the non-existence of unmeasured
confounders. In our problem setting, the reference values r of any confounder are equivalent to its data
point x. This implies that for any S \N and any confounder i ∈ N \S, vF (S) = vF (S ∪ i). This aligns with
ignorability by satisfying that confounders outside of S have no impact on the causal effect.

5.2 Decomposition into the sum of causal effects

The purpose of this section is to clarify the connection between vF and causal effects introduced in Section 3.2.
The connection allows us to ensure the path-specific counterfactual fairness by removing the corresponding
causal effects of unfair pathways, which falls under Steps (ii), (iii), and (iv) in Figure 2. We first show
that vF can be presented through the sum of causal effects by using the Möbius inversion formula (Stanley,
2011), to decompose an obtained set function v into the sum of dividends, which are a particular form of
synergy effect. The Möbius inversion formula of a set function structured by feasible sets vF was proposed
by Algaba et al. (2004), given by

vF (S) =
∑

T⊆S ∆vF (T ), ∀S ⊆ N, (5)

where ∆vF : 2N → R is called Möbius transformer of vF or is often referred to as (Harsanyi) dividend in the
cooperative game context (Harsanyi, 1958). For each T ⊆ N , the dividend ∆vF (T ) is computed by

∆vF (T ) =
{∑

T\en(T )⊆U⊆T (−1)t−uvF (U), if T ∈ F ,

0, otherwise,
(6)

where t := |T |, u := |U |, and en(T ) is a set of nodes that do not have no child in T . Intuitively, ∆vF (T )
indicates that the synergy effect of combining with T features.
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We then explore the relationship between path-specific counterfactual fairness and dividends. The lemma
suggests that the PSE can be computed leveraging the dividends representation.

Lemma 5.1. Let Fπ be a feasible set of a DAG induced by unfair pathways π. Then the prediction v(N) is
path-specific counterfactual fair if and only if its corresponding causally-aware set function vFπ

holds that∑
S∈Fπ\{∅}∆vFπ

(S) = 0. (7)

Proof sketch. To connect the dividend representation and the definition of PSCF, given in equation 1, we
define r′ as the reference value affected only through unfair pathways and Fπ as feasible sets of a DAG
induced by unfair pathways, as exemplified in Example 6. Let vx,r′,F denote a set function obtained by
replacing r into r′ from vF , and vx,r,Fπ denote a set function obtained by replacing F into Fπ from vF . We
show that

∑
S∈F ∆vx,r′,F (S) =

∑
S∈F ∆vx,r,Fπ

(S) using the binomial theorem. The statement is obtained
by using this relationship.

Lemma 5.1 indicates that we can obtain a fair prediction by computing the dividends of all feasible sets on
unfair pathways Fπ and setting the value of the dividends to zero. Thus, we obtain the next lemma.

Lemma 5.2. Given unfair pathways π, a modified prediction f ′(x) achieves path-specific counterfactual
fairness if it holds that

f ′(x) = f(x) +
∑

S∈Fπ\{∅}∆vFπ
(S). (8)

Proof. We first set the sum of dividends of f ′(x) as that of f(x), that is,
∑

S∈F ∆vF (S). By setting the
values of the dividends involving unfair pathways Fπ to zero, we satisfy the condition of Lemma 5.1, i.e.,
the value of f(x) matches f ′(x)−

∑
S∈Fπ\{∅}∆vFπ

(S). Hence, we achieve the desired result.

We can interpret each dividend as the notation of causal effects introduced in Section 3.2. The next propo-
sition outlines this interpretation.

Proposition 5.3. The dividend −∆vF (S) shows the total direct effect if S is a root node of G, the path-
specific effect if S indicates single pathway, and the mediated interaction if S is the union of multiple pathways.

Proof sketch. We can easily prove the proposition by correlating each equation of causal effects and the cal-
culations of corresponding dividends. Here, we demonstrate the causal effects of some specific subsets, using
Example 1. The total direct effects in altering the value of A is given by −∆vF ({A}) = vF (∅)− vF ({A}) =
Y1D1M1 − Y0D1M1 = TDE. When a feasible set is singleton, i.e., S ∈ F with |S| = 1, the correspond-
ing dividend corresponds to TDE. The path-specific effect through D is obtained by −∆vF ({A, D}) =
vF ({A})−vF ({A, D}) = Y0D1M1−Y0D0M1 = PSED. When a feasible set is constructed by a single pathway,
e.g., S = {A, D}, {A, M}, the corresponding dividend is equivalent to PSE. The mediated interaction between
M and D is calculated by −∆vF ({A, D, M}) = −(vF ({A})−vF ({A, D})−vF ({A, M})+vF ({A, D, M})) =
−(Y0D1M1 − Y0D1M0 − Y0D0M1 + Y0D0M0) = MIDM . When a feasible set is constructed by the union of
multiple pathways, e.g., S = {A, D, M}, the corresponding dividend is equivalent to MI. The details are
provided in the appendix.

With Lemma 5.1 and Proposition 5.3, a modified prediction f ′(x) is obtained by computing the dividends
of all feasible sets on unfair pathways Fπ. Intuitively, these statements indicate that the prediction f(x) is
path-specific counterfactual fair if causal effects from the sensitive attribute are ineffective to the prediction.
Furthermore, we note that our approach can independently quantify the influence of unfair pathways by
introducing specific parameters to represent their respective degrees of impact. By doing so, we enable to
adjust for the varying impact of unfair pathways, ensuring a more precise handling of fairness issues and
achieving a robust framework for mitigating unfairness.

8
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Algorithm 1 Dividend Correction
1: Input: a causal graph G, a causal model, a predictive model f , a data point x, and unfair pathways π,

a fairness parameter ϵ ∈ [0, 1]
2: Output: modified prediction f ′(x)
3: Estimate the values of exogenous variables and train predictive models for each mediator.
4: Compute a reference value r from the trained causal models.
5: Compute Punfair.
6: f ′(x)← f(x) + ϵ(v(Punfair)− v(∅)).
7: return f ′(x).

5.3 Simplification of computing dividends

Unfortunately, as the size of the causal graph increases, removing the dividends of all unfair pathways
and their unions using Lemma 5.1 can lead to an exponential increase in time complexity. However, the
computational time can be significantly reduced. As shown in equation 7, it suffices to compute the sum of
dividends over subsets S ∈ Fπ, corresponding to unfair pathways. We can rewrite it in a fairly simple form,
as shown in the next theorem.
Theorem 5.4. Let Punfair be a union of all unfair pathways, i.e., Punfair :=

⋃
S∈Fπ

S. Then it holds that

f ′(x) = f(x) + v(Punfair)− v(∅). (9)

Proof. It is evident that
∑

S∈Fπ
∆vFπ

(S) = vFπ (Punfair). Then we have
∑

S∈Fπ\{∅}∆vFπ
(S) = vFπ (Punfair)−

vFπ
(∅). Since vFπ

(S) returns v(S) when S ∈ Fπ and it is obvious that Punfair ∈ Fπ, we have f ′(x) =
f(x) + v(Punfair)− v(∅), and we complete the proof.

The key insight of Theorem 5.4 is that it is not necessary to treat the complex notions of feasible sets F
and the dividends ∆vF in the Möbius inversion formula. To proceed with our algorithm, it is sufficient to
construct Punfair by the depth-first search and predict v(∅) and v(Punfair).
Example 3. Considering the example in Figure 1, we have Fπ = {∅, {A}, {A, D}}, Punfair = {A, D}.
Consequently, f ′(x) = f(x) + v({A, D})− v(∅).

5.4 Overall algorithm

The overall algorithm, called dividend correction, is given by Algorithm 1, which modifies the prediction such
that the condition equation 7 is satisfied. A brief outline of the proposed algorithm is as follows: In line 3,
it estimates the values of exogenous variables of eahc mediator and predicts causal models for them using
the estimated values. In line 4, it creates a reference value r on the basis of the causal model to build a set
function v. The reference value of a sensitive attribute is considered 1, as the original value is 0. Features
that are not affected by the sensitive attribute, e.g., Q, maintain their original values, whereas those affected
by the sensitive attribute, e.g., M and D, obtained their values from the trained causal models. In line 5, it
computes a set Punfair, used in Theorem 5.4, from unfair pathways, which can be performed by proceeding a
depth-first search in a causal graph G. In line 6, it eliminates the predictions of subsets computed in line 5
from f(x) to produce a fair prediction f ′(x). A fairness parameter ϵ ∈ [0, 1] is included to adjust the degree
of fairness, where ϵ = 1 indicates that it completely removes the effects of unfair pathways.

The computational complexity of our algorithm involves the time of the union procedure to compute Punfair,
the time to compute a reference value r, the time to estimate exogenous variables, and the time to learn
causal models. The union procedure takes linear time based on the size of a DAG, as these are obtained by
scanning a segment of the DAG consists of the unfair pathways. Let d be the dimension of feature space
and g(d) be the time complexity of inference time by a causal model. The time complexity of computing the
reference value takes O(N · g(d)). Let h(d) be the time complexity of computing a learning model. The time
to compute causal models for mediators is O(N · h(d)). Let t be the iteration number of EM algorithm, and
let m be the number of data points. e(m|N |t) denotes the time complexity of running EM algorithm.

9
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Theorem 5.5. The computational complexity of Algorithm 1 is O(|E| + |N | · (g(d) + h(d)) + e(m|N |t)),
where N and E are the set of nodes and edges in a DAG, respectively.

6 Experiments

We demonstrate the effectiveness of the proposed algorithm by measuring the PSE, accuracy, and runtime
using synthetic, Adult (Bache & Lichman, 2013), and German datasets. The experiments were performed
using a Macbook Pro with Apple M1 Max and 64GB RAM.

6.1 Comparison with in-process approaches

A M L R

C

Y

gender

nationality

marital-status
education

occupation
income

Figure 4: The causal graph of Adult
dataset (Chikahara et al., 2021). The red
pathways denote unfair pathways.

We first evaluate the accuracy and PSE of our algorithm
compared with some in-process approaches because there
is no post-process approach for path-specific counterfac-
tual fairness settings. Recall that instances for path-
specific counterfactual fairness are parameterized by a
causal graph G, a set of features X, and a model f to
predict Y . The detailed setups for each dataset are de-
scribed in the appendix.

Our synthetic data setup was based on the configuration
used by (Chikahara et al., 2021), which focused on a hir-
ing decision scenario, as shown in Figure 1, indicating
a causal graph G with X = {A, D, Q, M} and A sym-
bolizing sensitive attribute. We used unfair pathways
π = {A→ Y, A→ D → Y } for the synthetic dataset.

Our Adult setup was based on the configuration established by (Nabi & Shpitser, 2018; Chikahara et al.,
2021), for which we used the source code provided on their Github repositories45. As shown in Figure 4, 5
attributes were examined: gender A, marital-status M , education L, occupation R, nationality C, from 11
attributes, because gender was identified as the sensitive attribute to be treated. A direct path from gender
to income and indirect paths from gender to income via marital-status to unfair pathways were established,
i.e., π = {A→ Y, A→M → Y, A→M → L→ Y, A→M → R→ Y, A→M → L→ R→ Y }.

Our German data setting was based on (Chikahara et al., 2021). Nine attributes were examined: sex A,
financial information S (including saving accounts, checking account, and housing), information about debts
R (including credit amount and duration), and others C (including age, job and purpose), as sex was defined
as the sensitive attribute, as shown in Figure 8 of the appendix. We prepared three unfair paths from sex
to each feature of financial information.

Given the absence of a post-processing approach specifically designed for path-specific counterfactual fair-
ness, we carried out a comparative analysis of the proposed algorithms against three established in-process
approaches: the probability of individual unfairness (PIU) (Chikahara et al., 2021; 2022), fair inference of
outcome (FIO) (Nabi & Shpitser, 2018), and Remove algorithm. PIU aims to minimize the probability of in-
dividual unfairness, and FIO tries to reduce the mean unfair effect, defined in Appendix. To create the basic
learning models for FIO and PIU, we employed logistic regression and neural network. In addition, we pre-
pared Remove algorithm that learns a model without considering features that appear on unfair pathways.
As learning models f , we implemented logistic regression (LR), random forest (RF), and neural network
(NN) for our algorithm. Algorithms without fairness assessments can be directly implemented within our
algorithm by setting ϵ = 0. It is worth mentioning that thanks to its model-agnostic nature, our algorithm
can adopt models where gradient-based learning does not work, such as RF.

Since the true causal models of mediators are unknown except for the synthetic dataset, we approximated
them using linear regression. We estimated the values of exogenous variables that are not present in the

4https://github.com/raziehna/fair-inference-on-outcomes/
5https://github.com/ychika/IndividualLevel-PathSpecific-Counterfactual-Fairness/
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Figure 5: Test Accuracy vs. PSE for Synthetic (1st column), Adult (2nd column), and German datasets
(3rd column), with runtime (in seconds) shown in the 4th column.

original dataset. To this end, we utilized expectation-maximization (EM) algorithm (Dempster et al., 1977) to
perform maximum likelihood estimation in latent variable models and to estimate the posterior distributions
of the exogenous variables, where we assumed the exogenous variables to be additive noise6. With these
estimated values, we then learned causal models for the mediators through linear regression. We applied
these learning models as the true causal models when computing YA⇐1∥π in evaluating PSE. The effect of the
model mismatch between the true causal model and learned causal model will be measured in Section 6.3.

Figure 5 shows the test accuracy and runtime of algorithms using neural networks as the base model,
plotted against PSE for synthetic, Adult, and German datasets. The error bars representing the standard
deviation. The results for other base models are given in Figure 11 in the Appendix. We varied the fairness-
related parameters for each algorithm, except for the Remove algorithm. Each plot illustrates the average
performance across 10 instances. The runtimes are averaged over the combinations of 10 instances and
fairness parameters.

For Algorithm 1, we proceeded line 6, where ϵ alters from 0 to 1 in increments of 0.05. For both FIO and
PIU, their penalty parameters were modified with respect to fairness from 0 to 2 in steps of 0.1. Figure 5
shows that superior results are characterized by higher accuracy and lower PSE. A notable result here is that
the our post-process approach is better than the existing in-process approaches when using logistic regression
and remains competitive when using a neural network, despite in-process approaches having access to the
causal graph during model training to achieve higher accuracy. Moreover, our algorithm achieves comparable
accuracy while requiring significantly less runtime. Our algorithm could attain the better PSEs and runtime
by utilizing the causal graph only in the post-process step but not during the model learning. The result
with the highest PSE (the rightmost point) indicates the accuracy without any modification. By examining
the gap between the accuracy at the highest PSE and the lowest PSE, one can assess the extent to which
a learning model f relies on unfair pathways. In the case of the Adult dataset, the random forest does not
rely on unfair pathways to achieve higher accuracy compared to logistic regression and neural networks.

6.2 Comparison with post-process approaches

For the same reason as in Section 6.1, we evaluated the test accuracy and counterfactual effect (CE) on the
synthetic dataset used in Section 6.2 and on the Adult dataset constructed in (Wu et al., 2019a), to compare
the performance with other post-process approaches. The comparisons focus on post-process approaches,
especially those for counterfactual fairness, which is a special case of path-specific counterfactual fairness. CE
was computed using the PSE equation by setting all pathways from a sensitive attribute as unfair pathways.
We leveraged the Adult dataset from their website7, which consists of 7 features extracted from the original
Adult dataset, shown in the appendix. We used unfair pathways π = {S → I, S → M → I, S → H →

6Other algorithms for estimating posterior distributions, such as Gaussian approximation, can also be applied to our settings,
as demonstrated in (Chiappa, 2019)

7https://www.yongkaiwu.com/publication/
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Figure 6: Averaged test accuracy v.s. averaged CE on syn-
thetic(left) and the Adult datasets(right).
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Figure 7: Accuracy v.s. PSE on the mis-
specification setting.

I, S → M → W → I, S → M → H → I, S → M → W → H → I}, where S, M, W, H, I denotes sex,
marital-status, workclass, hours, and income, respectively. The causal graph is given in the Appendix.

We compared the proposed algorithm with algorithms suggested by (Wu et al., 2019a) denoted by CF to
assess its performance and used LR and SVM as baseline models for post-process approaches. Similar to
experiments on in-process approaches, linear regression was used as a causal model of mediators.

Figure 6 presents the CE and accuracy, which includes error bars averaged across 20 instances for the
synthetic and Adult datasets. The runtime can be found in Figure 12 of the Appendix. The same fairness
parameter settings were used for the proposed algorithms as in the experiments in Section 6.1. The fairness
parameter of the CF was varied from 0 to 0.2 in steps of 0.01. Our algorithm with SVM outperforms other
existing algorithms on the synthetic dataset, and it also achieves superior performance with both LR and
SVM outperform on Adult dataset. Although our algorithm with LR on the synthetic dataset is an exception,
it always achieves a better CE, demonstrating its effectiveness in improving fairness.

6.3 Experiment on model mismatch

In Section 6.1, we assume trained predictive models for mediators to be true. In this section, we evaluate the
performance differences between scenarios where the true causal models of mediators are known and where
they are trained models. To this end, we adopted true causal models as mediator models when modifying
YA⇐0, meaning that our algorithm employs the trained model instead of true model when calculating a
reference value r. We then verified YA⇐1∥π using the true causal model. Figure 7 shows the average
accuracy against the PSE across 10 instances. We evaluated the proposed algorithm using neural network
as a base learning model. The results for the other base model can be found in Figure 13. The labels
(True) and (Lin) signify that the algorithm uses the true causal model and linear regression, respectively, in
the computation of a reference value r. These results indicate that the model mismatch had no significant
impact on accuracy and only a slight effect on PSE, up to 0.05. Furthermore, it is evident that using more
precise mediator models would lead to a smaller disparity.

7 Conclusion

We propose a new post-processing method to achieve path-specific counterfactual fairness. Our method
is based on a set function representation of a machine learning model. By applying the Möbius inversion
formula, we prove that every set function can be represented as the sum of causal effects discussed previously.
To elucidate the relationship between the causal effects and the path-specific counterfactual fairness, we
propose causally aware set function by incorporating feasible sets and interior operator. Despite introducing
the aforementioned complex concepts, the resulting algorithm is surprisingly simple and empirically works
efficiently. Furthermore, our algorithm is the first post-processing method that efficiently achieves path-
specific counterfactual fairness and it is a model-agnostic method that can handle any model architecture
and feature representation.

12



Under review as submission to TMLR

References

Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A reductions
approach to fair classification. In International Conference on Machine Learning, pp. 60–69. PMLR, 2018.

Md Manjurul Ahsan, Shahana Akter Luna, and Zahed Siddique. Machine-learning-based disease diagnosis:
A comprehensive review. In Healthcare, volume 10, pp. 541. MDPI, 2022.

Jeffrey M Albert and Suchitra Nelson. Generalized causal mediation analysis. Biometrics, 67(3):1028–1038,
2011.

Encarnación Algaba, Jesús Mario Bilbao, René van den Brink, and Andrés Jiménez-Losada. Cooperative
games on antimatroids. Discrete Math., 282(1-3):1–15, 2004.

Chen Avin, Ilya Shpitser, and Judea Pearl. Identifiability of Path-Specific effects. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence, pp. 357–363, 2005.

Kevin Bache and Moshe Lichman. UCI machine learning repository. 2013. URL http://archive.ics.uci.
edu/ml/datasets.

Tim Brennan, William Dieterich, and Beate Ehret. Evaluating the predictive validity of the compas risk
and needs assessment system. Criminal Justice and behavior, 36(1):21–40, 2009.

Silvia Chiappa. Path-Specific counterfactual fairness. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 7801–7808, July 2019.

Yoichi Chikahara, Shinsaku Sakaue, Akinori Fujino, and Hisashi Kashima. Learning individually fair classifier
with Path-Specific Causal-Effect constraint. In Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, volume 130, pp. 145–153, 2021.

Yoichi Chikahara, Shinsaku Sakaue, Akinori Fujino, and Hisashi Kashima. Making individually fair predic-
tions with causal pathways. Data Min. Knowl. Discov., 2022.

Shay B. Cohen, Eytan Ruppin, and Gideon Dror. Feature selection based on the shapley value. In Proceedings
of the Nineteenth International Joint Conference on Artificial Intelligence, pp. 665–670, 2005.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data via the
em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):1–22, 1977.

Michele Donini, Luca Oneto, Shai Ben-David, John Shawe-Taylor, and Massimiliano Pontil. Empirical risk
minimization under fairness constraints. In Advances in Neural Information Processing Systems, 2018.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 214–
226, 2012.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasubramanian.
Certifying and removing disparate impact. In proceedings of the 21th ACM SIGKDD international con-
ference on knowledge discovery and data mining, pp. 259–268, 2015.

Kazuto Fukuchi and Jun Sakuma. Neutralized empirical risk minimization with generalization neutrality
bound. In Machine Learning and Knowledge Discovery in Databases, pp. 418–433, 2014.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning. In
International Conference on Machine Learning, pp. 2242–2251. PMLR, 2019.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. Advances in
neural information processing systems, 29, 2016.

John C. Harsanyi. A bargaining model for the cooperative n-person game. Stanford University, 1958.

13

http://archive.ics.uci.edu/ml/datasets
http://archive.ics.uci.edu/ml/datasets


Under review as submission to TMLR

Mitchell Hoffman, Lisa B Kahn, and Danielle Li. Discretion in hiring. The Quarterly Journal of Economics,
133(2):765–800, 2018.

Yen-Tsung Huang and Tianxi Cai. Mediation analysis for survival data using semiparametric probit models.
Biometrics, 72(2):563–574, 2016.

Yen-Tsung Huang and Hwai-I Yang. Causal mediation analysis of survival outcome with multiple mediators.
Epidemiology, 28(3):370–378, 2017.

Samuel Ieong and Yoav Shoham. Marginal contribution nets: a compact representation scheme for coalitional
games. In Proceedings of the 6th ACM conference on Electronic commerce, pp. 193–202, 2005.

Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis, Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang,
Dawn Song, and Costas J Spanos. Towards efficient data valuation based on the shapley value. In The
22nd International Conference on Artificial Intelligence and Statistics, pp. 1167–1176. PMLR, 2019.

Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification without discrimination.
Knowledge and information systems, 33(1):1–33, 2012.

Faisal Kamiran, Asim Karim, and Xiangliang Zhang. Decision theory for discrimination-aware classification.
In 2012 IEEE 12th international conference on data mining, pp. 924–929, 2012.

Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier with prejudice
remover regularizer. In Machine Learning and Knowledge Discovery in Databases, pp. 35–50, 2012.

Amir E Khandani, Adlar J Kim, and Andrew W Lo. Consumer credit-risk models via machine-learning
algorithms. Journal of Banking & Finance, 34(11):2767–2787, 2010.

Bernhard Korte, László Lovász, and Rainer Schrader. Greedoids, volume 4. Springer Science & Business
Media, 2012.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. volume 30, 2017.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances in
neural information processing systems, volume 30, 2017.

Razieh Nabi and Ilya Shpitser. Fair inference on outcomes. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Judea Pearl. Causality. Cambridge university press, 2009.

James M Robins and Sander Greenland. Identifiability and exchangeability for direct and indirect effects.
Epidemiology, 3(2):143–155, 1992.

Benedek Rozemberczki, Lauren Watson, Péter Bayer, Hao-Tsung Yang, Olivér Kiss, Sebastian Nilsson, and
Rik Sarkar. The shapley value in machine learning. In The 31st International Joint Conference on Artificial
Intelligence and the 25th European Conference on Artificial Intelligence, 2022.

Lloyd S Shapley. A value for n-person games. In Contributions to the Theory of Games, 2:307–317, 1953.

Richard P. Stanley. Enumerative Combinatorics: Volume 1. Cambridge University Press, 2nd edition, 2011.

Johan Steen, Tom Loeys, Beatrijs Moerkerke, and Stijn Vansteelandt. Flexible mediation analysis with
multiple mediators. American journal of epidemiology, 186(2):184–193, 2017.

Xin Sun, Yanheng Liu, Jin Li, Jianqi Zhu, Huiling Chen, and Xuejie Liu. Feature evaluation and selection
with cooperative game theory. Pattern recognition, 45(8):2992–3002, 2012.

Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. In International
conference on machine learning, pp. 9269–9278. PMLR, 2020.

14



Under review as submission to TMLR

Masataka Taguri, John Featherstone, and Jing Cheng. Causal mediation analysis with multiple causally
non-ordered mediators. Statistical methods in medical research, 27(1):3–19, 2018.

René van den Brink. An axiomatization of the disjunctive permission value for games with a permission
structure. International Journal of Game Theory, 26(1):27–43, 1997.

René van den Brink. Games with a permission structure-a survey on generalizations and applications. TOP,
25(1):1–33, 2017.

René van den Brink and Robert P. Gilles. Axiomatizations of the conjunctive permission value for games
with permission structures. Games and Economic Behavior, 12(1):113–126, 1996.

Tyler J VanderWeele. A three-way decomposition of a total effect into direct, indirect, and interactive effects.
Epidemiology, 24(2):224–232, 2013.

Sahil Verma and Julia Rubin. Fairness definitions explained. In Proceedings of the International Workshop
on Software Fairness, pp. 1–7, 2018.

Yongkai Wu, Lu Zhang, and Xintao Wu. Counterfactual fairness: Unidentification, bound and algorithm.
In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019a.

Yongkai Wu, Lu Zhang, Xintao Wu, and Hanghang Tong. PC-fairness: A unified framework for measuring
causality-based fairness. 2019b.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi. Fairness con-
straints: Mechanisms for fair classification. In Artificial intelligence and statistics, pp. 962–970. PMLR,
2017.

Lu Zhang, Yongkai Wu, and Xintao Wu. A causal framework for discovering and removing direct and indirect
discrimination. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp.
3929–3935, 2017.

15



Under review as submission to TMLR

Appendix

A Broader Impact Statement

Using incorrect or inaccurate causal graphs or selecting wrong unfair pathways can result in discriminatory
effects, which in turn may have negative societal impacts, as highlighted by our research. A limitation of the
proposed method is that it ensures fairness within the context of the provided causal graph, although the
validity of the causal graph itself remains a separate concern, beyond the scope of our method. Therefore,
it is crucial to continually validate and update the causal graph’s validity through expert assessment. A
notable advantage of the post-processing approach is that it does not require model re-training when the
causal graph is updated.

B Examples

Example 4. Having Example 1, we shall compute ∆vF ({A, Q, D}). Suppose we have a set function v with
v(∅) = 0, v({A}) = 10, v({Q}) = 20, v({D}) = 30, v({A, Q}) = 40, v({A, D}) = 30, v({Q, D}) = 50,
and v({A, Q, D}) = 100. The dividend of {A, Q, D} on vF is given by ∆vF ({A, Q, D}) = v({A, Q, D}) −
v({A, Q}) = 60 because en({A, Q, D}) = {D}.

Lemma 5.3 can be easily understood by using linear causal models.

Example 5. In a simple case where models f , fD, and fM are linear, the PSE of Figure 1, when A
flips from a to a′, can be computed as follows. We can represent the models f , fD, and fM as fD(A, Q) =
cd+cd

aA+cd
qQ+ϵd, fM (A, Q) = cm+cm

a A+cm
q Q+ϵm, and f(A, Q, D, M) = cy +cy

aA+cy
qQ+cy

dD+cy
mM +ϵy,

where A ∈ {a, a′}, Q = ϵq, and cd, cd
a, cd

q , cm, cm
a , cm

q , cy, cy
a, cy

q , cy
d, cy

m, ϵd, ϵm, ϵy ∈ R. When we set π = {A→
Y, A→ D → Y } as unfair pathways, its PSE is given by cy

a(a′−a)+cy
dcd

a(a′−a). On the other hand, dividends
∆vF ({A}) and ∆vF ({A, D}) are given by ∆vF ({A}) = vF ({A})− vF (∅) = f(a, q′, d′, m′)− f(a′, q′, d′, m′) =
cy

a(a− a′) and ∆vF ({A, D}) = vF ({A, D})− vF ({A})− vF ({D}) + vF (∅) = f(a, q′, d, m′)− f(a, q′, d′, m′) =
cy

acd
a(a− a′), where vF ({D}) = vF (∅). Hence, the PSE can be rephrased as −∆vF ({A})−∆vF ({A, D}).

Example 6. Feasible sets on unfair pathways Fπ of Example 1 is given by Fπ = {∅, {A}, {A, D}}.

C Detailed experimental settings

C.1 Details of baseline algorithms

PIU (Chikahara et al., 2022) aims to minimize the probability of individual unfairness, which is defined by

P (YA⇐1∥π ̸= YA⇐0).

FIO (Nabi & Shpitser, 2018) seeks to minimize the mean unfair effect, defined by

EYA⇐1∥π,YA⇐0 [YA⇐1∥π − YA⇐0] = P (YA⇐1∥π = 1)− P (YA⇐0 = 1).

Remove algorithm learns a predictive model using base models (logistic regression and neural network) while
excluding features associated with unfair pathways.

C.2 Details of datasets on comparison with in-process approaches

synthetic Our synthetic data setup was based on the configuration used by (Chikahara et al., 2021),
which focused on a hiring decision scenario, as shown in Figure 1, indicating a causal graph G with X =
{A, D, Q, M} and A symbolizing sensitive attribute. The values of A, D, Q, and M were sampled from the
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following causal model:

A = UA, UA ∼ Bernoulli(0.6),
Q = ⌊UQ⌋, UQ ∼ U(0.1, 1),
D = A + ⌊0.5QUD⌋, UD ∼ TrN (2, 12, 0.1, 3.0),
M = 3A + 0.4QUM , UM ∼ TrN (3, 22, 0.1, 3.0),
Y = Bernoulli(ς(−10 + 5A + Q + D + M)),

where Bernoulli, U , and TrN denotes the Bernoulli, uniform, and truncated Gaussian distributions, respec-
tively, and ς(x) := 1/(1+exp(−x)) is a standard sigmoid function. We generated 10 instances, each of which
is sampled 6000 data points and separated them into 5000 as training data and 1000 as test data. We used
unfair pathways π = {A→ Y, A→ D → Y } for the synthetic dataset.

Adult Our experimental setup was based on the configuration established by (Nabi & Shpitser, 2018;
Chikahara et al., 2021), for which we used the source code provided on their Github repositories89. The
adult dataset is commonly used for predicting an individual’s income level by determining if their salary is
above or below $50,000. Five attributes were examined: gender A, marital-status M , education L, occupation
R, nationality C, from 11 attributes as shown in Figure 4, as gender was identified as the sensitive attribute
to be treated. To construct the datasets, 5000 records were selected for training and 1000 records for testing
from a total of 65,123 records. A direct path from gender to income and indirect paths from gender to income
via marital-status to unfair pathways were established, i.e., π = {A → Y, A → M → Y, A → M → L →
Y, A→M → R→ Y, A→M → L→ R→ Y }. Given unfair pathways, Punfair is given by {A, M, L, R}.

German Our german data setting was based on (Chikahara et al., 2021). Nine attributes were examined:
sex A, financial information S (including saving accounts, checking account, and housing), information about
debts R (including credit amount and duration), and others C(including age, job and purpose), as sex was
defined as the sensitive attribute, as shown in Figure 8. We prepared three unfair paths from sex to each
feature of financial information. To construct the dataset, we selected 900 records for training data and 100
records for testing from a total of 1000 records. Unfair pathways are set to π = {A → Y, A → S → Y }.
Given unfair pathways, we have Punfair = {sex, including saving accounts, checking account, housing}.

A S R

C

Y

sex
financial information

information about debts
others

default risk

Figure 8: The causal graph of German setting (Chikahara et al., 2022) for comparison with in-process
approach. The red paths from the sensitive attribute S to Y denote unfair paths.

S M N

A

Y

sensitive attribute target variable

Figure 9: The causal graph of the synthetic dataset (Wu et al., 2019a) for comparison with post-process
approach. The red paths from the sensitive attribute S to Y denote unfair paths.

8https://github.com/raziehna/fair-inference-on-outcomes/
9https://github.com/ychika/IndividualLevel-PathSpecific-Counterfactual-Fairness/
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E M

W

H
A S
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education marital-status
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age sex

income

Figure 10: The causal graph of Adult dataset (Wu et al., 2019a) for comparison with post process approaches.
The red paths from the sensitive attribute S to I denote unfair paths.

C.3 Estimation of exogenous variables

We estimated the values of exogenous variables through the EM algorithm. We setup the expectation
and maximization steps as the following: (i) In the expectation step, at each iteration, we use the current
parameter estimates to compute the expected value of the exogenous variable given the observed data (X, y),
expressed as:

Z = y −Xβ

γ
,

where Z represents the estimated exogenous variable, β is the coefficient parameter for a linear model, and
γ is a noise parameter. (ii) In the maximization step, we update the parameters β and γ as follows. We
find the best fit for β using the least square method. As for updating γ, we compute it with the following
formula:

γ =
∑

(y −Xβ)Z
∥Z∥2

2
.

The expectation and maximization steps are iterated T times. In our experiments, for each mediator, we
utilized all its observable parent attributes for X and set the value of the mediator as y, and we set T = 100
for the number of iterations of the EM algorithm.

C.4 Additional comparisons with in-process approaches

Figure 11 shows the test accuracy and runtime of algorithms using logistic regression, random forest, and
neural networks as the base model, plotted against PSE for synthetic, Adult, and German datasets. The
error bars representing the standard deviation. We varied the fairness-related parameters for each algorithm,
except for the Remove algorithm. Each plot illustrates the average performance across 10 instances. The
runtimes are averaged over the combinations of 10 instances and fairness parameters.

C.5 Comparisons with post-process approach

To compare the performance with other post-process approaches, we measured accuracy and counterfactual
effect (CE) on the synthetic dataset used in Section 6.2 and on the adult dataset used in (Wu et al., 2019a).
For both the synthetic and Adult datasets, we utilized dataset that was made available on their website10.
The causal graph of the synthetic data is shown in Figure 9. Each entry of the Adult dataset includes
7 features extracted from the original adult dataset as shown in Figure 10. We set direct path from sex
to income and indirected paths from sex to income via marital-status are set to unfair pathways, that is,
π = {S → I, S → M → I, S → H → I, S → M → W → I, S → M → H → I, S → M → W → H → I},
where S, M, W, H, I denotes sex, marital-status, workclass, hours, and income, respectively. With the unfair
pathway π, we have Punfair = {S, M, H, W}. We have 65,123 data points and divided them into an 80/20
training and test dataset split.

10https://www.yongkaiwu.com/publication/
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Figure 11: Test Accuracy vs. PSE for Synthetic (1st column), Adult (2nd column), and German datasets
(3rd column), with runtime (in seconds) shown in the 4th column. Rows represent base model: Logistic
Regression (1st row), Random Forest (2nd row), and Neural Network (3rd row). Error bars represent
standard deviation. In the middle row, the results of PIU and FIO do not appear because they cannot use
random forest as a base model.
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Figure 12: Averaged test accuracy v.s. averaged CE on the synthetic(left) and Adult datasets(center) and
runtime(right).
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Figure 13: Accuracy v.s. PSE on the misspecification setting.

Baselines & Proposed algorithm We compared proposed algorithm with algorithms proposed by (Wu
et al., 2019a) denoted by CF. We utilized logistic regression (LR) and support vector machine (SVM) as
baseline models of post-process approaches.

Result Figure 6 plots the test accuracy against CE and averaged runtime when changing the parameters
regarding fairness on the synthetic and the adult datasets. We used the same settings as those in the
comparisons for in-process approaches in Section 6.1, as per the proposed algorithm. As for CF, we altered a
fairness parameter τ from 0.01 to 0.3 in steps of 0.01. When we compute CE, i.e., P (YS⇐1 | z)−P (YS⇐0 | z),
for both synthetic and adult dataset and for both proposed algorithms and CF, we utilized a linear regression
models learned from data to calculate the value of each mediator in changing the sensitive attribute value to
compute the first term. For each parameter setting, we averaged CE over all data points and plots them in
Figure 6, and averaged runtime over all combinations of instances and fairness parameters. We can observe
that in the adult dataset, our algorithms clearly outperform existing algorithms. Conversely, our algorithm
with support vector machine outperforms existing algorithms, while the algorithm with logistic regression
achieves lower CE but also lower accuracy than existing one. Furthermore, our algorithm significantly
improve the runtime compared with the existing algorithm.

C.6 Additional experiments on model mismatch

Figure 13 shows the average accuracy against the PSE across 10 instances. We evaluated the proposed
algorithm using logistic regression(LR), random forest(RF), and neural network(NN) as a base learning
model. The labels (True) and (Lin) signify that the algorithm uses the true causal model and linear regression,
respectively, in the computation of reference value r. These results indicate that the model mismatch had
no significant impact on accuracy and only a slight effect on PSE, up to 0.05. Furthermore, it is evident
that using more precise mediator models would lead to a smaller disparity.
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D Proof of Lemma 5.1

Lemma 5.1. Let Fπ be a feasible set of a DAG induced by unfair pathways π. Then the prediction f ′(x) is
path-specific counterfactual fair if and only if it holds that∑

S∈Fπ\{∅}

∆vFπ
(S) = 0. (10)

Proof. In this proof, we will write a set function v given a data point x and a reference value r on feasible set
F as vx,r,F . Let Nπc be a set of nodes excluded in unfair pathways π, and let vx,r′ be a causally-aware set
function that considers only the effects of unfair pathways π for any v. The i-th element of the reference value
r′ holds r′i = ri if i is on unfair pathways and r′i = xi otherwise, where r is a reference value constructed in
Section 5.1. The resulting set function vx,r′ holds vx,r′,F (S \ T ) = vx,r,F (S) for all S ⊆ N and T ⊆ S ∩Nπc .
YA⇐1∥π and YA⇐0 can be written by using vx,r′ . For every S ∈ F , the dividend of vx,r′ can be represented
by that of vx,r, given by

∆vx,r′,F (S) =
∑

T⊆en(S)

(−1)s−tvx,r′,F (S \ T )

=
∑

T⊆en(S)\Nπc

∑
W⊆en(S)∩Nπc

(−1)s−(t′+w)vx,r′,F (S \ (T ∪W ))

=
∑

T⊆en(S)\Nπc

∑
W⊆en(S)∩Nπc

(−1)s−(t+w)vx,r,F (S \ T )

=
∑

W⊆en(S)∩Nπc

(−1)w
∑

T⊆en(S)\Nπc

(−1)s−tvx,r,F (S \ T )

= (1− 1)|en(S)∩Nπc |
∑

T⊆en(S)\Nπc

(−1)s−tvx,r,F (S \ T )

=
{∑

T⊆en(S)\Nπc
(−1)s−tvx,r,F (S \ T ) if |en(S) ∩Nπc | = 0,

0 otherwise.

=
{

vx,r,F (S \Nπc) if |en(S) ∩Nπc | = 0,

0 otherwise,

where s, t, w be the size of S, T, W , respectively, the third equality follows from the property of vx,r′,F , and
the fifth equality follows from the binomial theorem. The equation |en(S) ∩ Nπc | = 0 indicates that no
feature in Nπc is not the bottom of DAG induced by S, and the above equation shows that S \ Nπc is a
feasible set on vx,r′,F instead of S. This implies that feasible sets of v̂ are equivalent to that of a DAG
induced by unfair pathways π, i.e., Fπ. Then we have∑

S∈F
∆vx,r′,F (S) =

∑
S∈Fπ

∆vx,r,Fπ
(S).

By regarding a given data point x as a reference value and the data whose sensitive attribute’s value changed
to 1 as a baseline value, we have

EYA⇐1∥π,YA⇐0 [YA⇐1∥π − YA⇐0 | X = x] = vx,r′,F (N)− vx,r,F (∅)

=
∑
S∈F

∆vx,r′,F (S)−∆vx,r,F (∅)

=
∑

S∈Fπ

∆vx,r,Fπ
(S)−∆vx,r,F (∅)

=
∑

S∈Fπ\{∅}

∆vx,r,Fπ
(S),

where the last equality follows from that it always holds ∅ ∈ F ,Fπ. Hence, the proof is complete.
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E Proof of Proposition 5.3

Proposition 5.3. A dividend −∆vF (S) shows the direct causal effect if S is a root node of G, the indirect
causal effect if S is a pathway, and the effect of interaction if S is combined with multiple pathways.

Proof. Without loss of generality, let us consider a set of nodes denoted as N , with the top-most node being
A and the other nodes can be reached from A11. This implies that the effect of A influences all other nodes
within N \ {A}.

Every feasible set conforms to one of the following structural types: a singleton, a pathway and the combi-
nation of pathways. We prove that ∆vF for a singleton, a pathway, and the combination of pathways align
with total direct effect, path-specific effect, and mediated interaction, respectively. Recall that the total
effect by altering the sensitive attribute can be decomposed into the total direct effect, path-specific effects,
and mediated interactions, as defined in Section 3.2.

We begin by computing the direct causal effect A→ Y , i.e., S = {A}. In path-specific counterfactual fairness
settings, as only a sensitive attribute A is intervened, we treat a direct causal effect A → Y . It is evident
that −∆vF ({A}) represents the total direct effect, as shown by

−∆vF ({A}) = vF (∅)− vF ({A}).

This equation implies that −∆vF ({A}) is the difference between the predicted value when all features changes
due to the change in A and the predicted value when all features except for A change. This computation is
equivalent to the total direct effect. For the other features i ∈ N \A, we have

−∆vF ({i}) = vF (∅)− vF ({i}) = 0,

where vF ({i}) = vF (∅) since i is not the top-most node. In other words, i does not exist in a feasible set F
as a singleton, that is, {i} ̸∈ F .

Next, we show the computation about path-specific effects. Recall that the path-specific effect can be
computed as the difference between the predicted value when the mediator takes on a specific value influenced
by the treatment that the sensitive attribute changes from 0 to 1 and the predicted value when the value
of mediator remain unchanged. In our set function representation, every pathway S with |S| ≥ 2 has a
characteristic that S has a unique single node i that do not have any child, that is en(S) = {i}. This
indicates that a node i is the last mediator on the pathway S. In this case, the dividend can be computed
as follows.

−∆vF (S) = vF (S \ i)− vF (S).
This equation implies that −∆vF (S) is the difference between the predicted value when all features except
for i remain unchanged but the feature i takes the value influenced by the change of the sensitive attribute.
As a node i works as a mediator, this computation corresponds to the path-specific effect.

Finally, we provide the computation about the mediated interaction. Recall that the mediated interaction
among mediators can be computed by taking the sum of the predicted value when changing the value
of mediators but their signs alternate based on the number of changed mediators. In our set function
representation, the combination of pathways, e.g., S, has a characteristic that |en(S)| ≥ 2, which can be
seen as the number of mediators that do not have any child. Thus, we have

−∆vF (S) = −
∑

T⊆en(S)

(−1)|T |vF (S \ T ).

This implies that the dividend can be computed as the sum of predicted value vF (S \ T ), where T is the set
of mediators that changes its value influenced by the alternation of the sensitive attribute and its sign differs
based on the number of changed mediators T . This computation aligns with the mediated interaction.

11In cases where the causal graph does not have single top-most node, the same problem setting can be achieved by assigning
the same values to the nodes T that are not influenced by A, i.e., xT = rT .
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