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Abstract
We study the mean estimation problem under
communication and local differential privacy con-
straints. While previous work has proposed or-
der-optimal algorithms for the same problem (i.e.,
asymptotically optimal as we spend more bits),
exact optimality (in the non-asymptotic setting)
still has not been achieved. We take a step to-
wards characterizing the exact-optimal approach
in the presence of shared randomness and identify
several necessary conditions for exact optimality.
We prove that one of the necessary conditions is
to utilize a rotationally symmetric shared random
codebook. Based on this, we propose a random-
ization mechanism where the codebook is a ran-
domly rotated simplex – satisfying the necessary
properties of the exact-optimal codebook. The
proposed mechanism is based on a k-closest en-
coding which we prove to be exact-optimal for the
randomly rotated simplex codebook. (See (Isik
et al., 2023a) for the full version.)

1. Introduction
The distributed mean estimation problem has attracted at-
tention from the machine learning community as it is a
canonical statistical formulation for many stochastic opti-
mization problems such as distributed SGD (Agarwal et al.,
2018; Barnes et al., 2020; Suresh et al., 2017; 2022) and
federated learning (Vargaftik et al., 2022; 2021). As these
tasks require data collection from the users, the mean esti-
mation problem has often been studied under privacy con-
straints to protect users’ sensitive information. More specif-
ically, several works (Asi et al., 2022; Bhowmick et al.,
2018; Duchi & Rogers, 2019; Duchi et al., 2013; 2018;
Nguyên et al., 2016; Wang et al., 2019) have analyzed and
improved the tradeoff between the utility and ε-local dif-
ferential privacy (ε-LDP) – the predominant paradigm in
privacy mechanisms, which guarantees that an adversary
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cannot distinguish the user data from the outcome of the pri-
vacy mechanism (Dwork et al., 2006; Kasiviswanathan et al.,
2011). Among them, (Bhowmick et al., 2018; Duchi et al.,
2013; 2018) developed algorithms that are asymptotically
optimal, achieving an optimal mean squared error (MSE)
proportional to Θ

(
d

nmin(ε,ε2)

)
, where n is the number of

users, and d is the input dimension. Later, (Duchi & Rogers,
2019) proved the corresponding lower bounds that hold for
all privacy regimes. However, only PrivUnit (Bhowmick
et al., 2018) enjoys exact optimality among a large family
of mechanisms, as proved by (Asi et al., 2022), while oth-
ers provide only order optimality and their performance in
practice depends heavily on the constant factors.

Another important consideration in the applications of mean
estimation (such as federated learning) is the communica-
tion cost during user data collection. This has motivated
extensive research on mean estimation (Suresh et al., 2017;
Vargaftik et al., 2021; Zhang et al., 2013) and distributed
SGD (Agarwal et al., 2018; Barnes et al., 2020; Gandikota
et al., 2021; Lin et al., 2018; Wen et al., 2017) under commu-
nication constraints; and communication-efficient federated
learning (Isik et al., 2023b;c; 2022; Vargaftik et al., 2022).

In addition to the lines of work that studied these constraints
(either privacy or communication) separately, recently, there
has also been advancement in the joint problem of mean es-
timation under both privacy and communication constraints.
(Chen et al., 2020) introduced an order-optimal mechanism
SQKR requiring only O(ε) bits by using shared random-
ness – a random variable shared between the server and the
user (see Section 2 for the formal definition). Later, (Shah
et al., 2022) demonstrated better MSE with another order-
optimal algorithm, MMRC, by simulating PrivUnit using
an importance sampling technique (Chatterjee & Diaconis,
2018; Havasi et al., 2019) – again with shared randomness.
In the absence of shared randomness, the order-optimal
mechanisms proposed by (Chen et al., 2020) do not achieve
the best-known accuracy under this setting and are outper-
formed by the lossless compression approach in (Feldman &
Talwar, 2021) that compresses PrivUnit using a pseudo-
random generator (PRG). Due to not using shared random-
ness, these mechanisms require more bits than others (Chen
et al., 2020; Shah et al., 2022) that use shared randomness
in the scenarios where it is actually available.
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To our knowledge, no existing mechanism achieves exact op-
timality under both privacy and communication constraints
with shared randomness1. In this work, we address this
gap by treating the joint problem as a lossy compression
problem under ε-LDP constraints. Our first contribution is
to demonstrate that the exact optimal scheme with shared
randomness can be represented as random coding with a
codebook-generating distribution. Specifically, under b bits
of communication constraint, the server and the user gener-
ate a codebook consisting of M = 2b vectors (codewords)
using shared randomness. The user then selects an index of
a vector under a distribution that satisfies ε-LDP, and the
server claims the corresponding vector upon receiving the
index. We show that this approach, “random coding with a
codebook”, is the optimal way to use shared randomness.

Next, we prove that the exact-optimal codebook-generating
distribution must be rotationally symmetric. Based on this
insight, we propose Random Rotating Simplex Coding
(RRSC), where the codebook-generating distribution is a uni-
formly randomly rotating simplex. This choice of codebook
distribution is reasonable as it maximizes the separation be-
tween codewords, which efficiently covers the sphere. The
corresponding encoding scheme is the k-closest encoding,
where the top-k closest codewords to the input obtain high
sampling probability, and the remaining ones are assigned
low probabilities. We show that this scheme is exact-optimal
for the random rotating simplex codebook. As the number
of bits b for communication increases, we demonstrate that
the proposed scheme approaches PrivUnit, which is the
exact-optimal scheme without communication constraints.

Finally, through simulations, we demonstrate that RRSC
outperforms the existing order-optimal methods such as
SQKR (Chen et al., 2020) and MMRC (Shah et al., 2022); and
observe that the performance of RRSC is remarkably close
to that of PrivUnit when b = ϵ.

2. Problem Setting and Preliminaries
Local Differential Privacy (LDP). A randomized algo-
rithm Q : X → Y is ε-LDP if ∀x, x′ ∈ X , y ∈
Y, Q(y|x)

Q(y|x′) ≤ eε.

In this work, we assume that the encoder and the decoder
have access to a shared source of randomness U ∈ U , where
the random encoder (randomizer) Q privatizes x with ad-
ditional randomness U . Then, the corresponding ε-LDP
constraint is ∀x, x′ ∈ X , y ∈ Y, Q(y|x,u)

Q(y|x′,u) ≤ eε.

Notation. Sd−1 = {u ∈ Rd : ||u||2 = 1} denotes the unit
sphere, ei ∈ Rd the standard basis vector, ⌊k⌋ the greatest
integer less than or equal to k, and [M ] = {1, . . . ,M}.

1Note that we can also eliminate shared randomness with a
private coin setting. See Appendix J for a discussion.

Problem Setting. We consider the ℓ2 mean estimation prob-
lem with n users where each user i has a private unit vector
vi ∈ Sd−1 for 1 ≤ i ≤ n. The server wants to recover
the mean 1

n

∑n
i=1 vi after each user sends a message us-

ing up to b bits under ε-LDP constraint. We allow shared
randomness between each user and the server. More con-
cretely, the i-th user and the server both have access to
a random variable Ui ∈ Rt (which is independent of the
private local vector vi) for some t ≥ 1 and the i-th user
has a random encoder (randomizer) fi : Sd−1 × Rt →
[M ], where M = 2b. We denote by Qfi(mi|vi, ui) the
transition probability induced by the random encoder fi.
We require that the random encoder fi satisfies ε-LDP,
i.e., Qfi

(mi|vi,ui)

Qfi
(mi|v′

i,ui)
≤ eε for all vi, v

′
i ∈ Sd−1,mi ∈

[M ] and PUi
-almost all ui ∈ Rt. The server receives

mi = fi(vi, Ui) from all users and generates unbiased esti-
mate of the meanA(m1, . . . ,mn, U1, . . . , Un) that satisfies
E [A(m1, . . . ,mn, U1, . . . , Un)] =

1
n

∑n
i=1 vi. Then, the

goal is to minimize the worst-case error Errn(f,A, PUn)

sup
v1,...,vn∈Sd−1

E

∥∥∥∥∥A(m1, . . . ,mn, U1, . . . , Un)−
1

n

n∑
i=1

vi

∥∥∥∥∥
2

2

,
(1)

where f denotes the collection of all encoders (f1, . . . , fn).
We note that the error is also a function of the distribution of
shared randomness, which was not the case for PrivUnit
(Asi et al., 2022; Bhowmick et al., 2018).

3. Main Results
3.1. Canonical Protocols

Similar to (Asi et al., 2022), we first define the canonical
protocol under both communication and privacy constraints.
The canonical protocols are where the server recovers each
user’s vector and estimates the mean by averaging them. In
other words, the server has a decoder gi : [M ]×Rt → Sd−1

for 1 ≤ i ≤ M dedicated to the i-th user’s encoder fi,
where the mean estimation is a simple additive aggregation,
i.e., A+(m1, . . . ,mn, U1, . . . , Un) = 1

n

∑n
i=1 gi(mi, Ui).

Our first result is that the exact-optimal mean estimation
scheme should follow this canonical protocol.
Lemma 3.1. For any n-user mean estimation protocol
(f,A, PUn) satisfying unbiasedness and ε-LDP, there ex-
ists an unbiased canonical protocol with decoders g =
(g1, . . . , gn), ε-LDP and lower MSE: Errn(f,A, PUn) ≥
1
n2

∑n
i=1 Err1(fi, gi, PUi

), where Err1(f, g, PU ) is the
worst-case error for a single user with a decoder g. (We
provide the proof in Appendix B.)

Since the exact-optimal n-user mean estimation scheme
is simply additively aggregating user-wise exact-optimal
scheme, throughout the paper, we will focus on the
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single-user case and drop the index i when it is
clear from the context. In this simpler formula-
tion, we want the server to have an unbiased estimate
v̂ = g(m,U), i.e., v = EPU ,f [g(f(v, U), U)] =

EPU

[∑M
m=1 g(m,U)Qf (m|v, U)

]
for all v ∈ Sd−1.

We assume a deterministic decoder g : [M ] ×
Rt → Rd, since the randomized decoder does not im-
prove the performance. Then, the corresponding er-
ror is D(v, f, g, PU ) = EPU ,f

[
∥g(f(U, v), U)− v∥2

]
=

EPU

[∑M
m=1 ∥g(m,U)− v∥2Qf (m|v, U)

]
. Finally, we

want to minimize the following worst-case error over
all (f, g) pairs that satisfy the unbiasedness condition:
Err1(f, g, PU ) = supv∈Sd−1 D(v, f, g, PU ).

3.2. Exact Optimality of the Codebook

We propose a special way of leveraging shared randomness,
which we term as random codebook. First, we define a
codebook UM = (U1, . . . , UM ) ∈ (Rd)M , consisting of
M number of d-dimensional random vectors generated via
shared randomness. We then define the corresponding sim-
ple selecting decoder g+ : [M ] × (Rd)M → Rd, which
simply picks the m-th vector of the codebook upon receiv-
ing the message m from the user: g+(m,UM ) = Um. Our
first theorem shows that there exists a scheme with a random
codebook and a simple selecting decoder that achieves the
exact-optimal error. More precisely, instead of considering
the general class of shared randomness (with general dimen-
sion t) and the decoder, it is enough to consider the random
codebook UM ∈ (Rd)M as the shared randomness and the
simple selector g+ as the decoder.

Lemma 3.2. For any f, g, PU with U ∈ Rt that are
unbiased and that satisfy ε-LDP, there exists a shared
randomness ŨM ∈ (Rd)M and random encoder f0 :
Sd−1 × (Rd)M → [M ] such that D(v, f, g, PU ) =
D(v, f0, g

+, PŨM ) for all v ∈ Sd−1, where f0, g
+, PũM

also satisfy unbiasedness and ε-LDP. (The proof is given in
Appendix C.)

Thus, without loss of generality, we can assume t = M × d
and the random codebook UM is the new shared random-
ness, where the decoder is a simple selector. Since we
fix the decoder, we drop g to simplify our notation. We
say the random encoder f satisfies unbiasedness condi-
tion if EPU

[∑M
m=1 UmQf (m|v, UM )

]
= v, and the worst-

case error is Err(f, PUM ) = supv∈Sd−1 D(v, f, PUM ) =

supv∈Sd−1 EPUM

[∑M
m=1 ∥Um − v∥2Qf (m|v, U)

]
. Thus,

the goal is now to find the exact-optimum codebook gener-
ating distribution PUM , and the random encoder f (or the
probability assignment Qf (·|v, U)). We then argue that the
exact-optimal codebook should be rotationally symmetric.

Definition 3.3. Random codebook UM ∈ (Rd)M

is rotationally symmetric if (U1, . . . , UM )
(d)
=

(A0U1, . . . , A0UM ) for any d× d orthonormal A0.
Lemma 3.4. Let PUM be a codebook generating distribu-
tion, and suppose random encoder f satisfies unbiasedness
and ε-LDP. Then, there exists an random encoder f1 and
rotationally symmetric random codebook ŪM such that
Err(f, PUM ) ≥ Err(f1, PŪM ), which also satisfies unbi-
asedness and ε-LDP.

This is mainly because the goal is to minimize the worst-
case error, and the codebook-generating distribution should
be symmetric in all directions. The proof is provided in
Appendix D. The next lemma shows that the exact-optimal
scheme has constant error for all v ∈ Sd−1.
Lemma 3.5. For any rotationally symmetric codebook gen-
erating distribution PUM and an unbiased randomized en-
coder f that satisfies ε-LDP, there exists a random en-
coder f2 such that Err(f, PUM ) ≥ Err(f2, PUM ), where
D(v, f2, PUM ) = D(v′, f2, PUM ), for all v, v′ ∈ Sd−1.
(The formal proof is given in Appendix E.)

3.3. Rotationally Symmetric Simplex Codebook

Now, we focus on a particular rotationally symmetric code-
book. Notice that it is natural to consider the maximally sep-
arated codebook so that the M vectors U1, . . . , UM cover
the source space effectively. For M < d, the maximally
separated M vectors on the unit sphere Sd−1 is a simplex.
More precisely, let s1, . . . , sM ∈ Rd form a simplex:

(si)j =


M−1√
M(M−1)

if i = j

− 1√
M(M−1)

if i ̸= j and j ≤M

0 if j > M

. (2)

Then, we can define the rotationally symmetric

simplex codebook UM as (U1, U2, . . . , UM )
(d)
=

(rAs1, rAs2, . . . , rAsM ), where A is uniformly drawn
orthogonal matrix and r > 0 is a normalizing con-
stant. We then need to find the corresponding encoder
f that minimizes the error. Recall that the error is
EPUM

[∑M
m=1 ∥Um − v∥2Qf (m|v, U)

]
, and it is natural

to assign high probabilities to the message m with
low distortion ∥Um − v∥2 as long as ε-LDP constraint
allows. More precisely, we call the following probability
assignment “k-closest” encoding:

Qf (m|v, UM ) =


eε

keε+(M−k) if ∥v − Um∥2 is one of the ⌊k⌋ smallest
(k−⌊k⌋)(eε−1)+1

keε+(M−k) if ∥v − Um∥2 is the ⌊k⌋+ 1-th smallest
1

keε+(M−k) otherwise

.

(3)

The choice of r = rk is described in Section 3.4. We call
this approach Randomly Rotating Simplex Coding (RRSC)
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and provide the pseudocode in Algorithm 1. We note that
the codewords Um’s with smallest ∥v − Um∥2 and code-
words Um’s with largest ⟨v, Um⟩ coincide for a codebook
with fixed-norm codewords Um’s, which is the case for the
rotationally symmetric simplex codebook. We now present
our main theorem.

Theorem 3.6. For a rotationally symmetric simplex code-
book, there exists a k such that the “k-closest” encoding
is the exact-optimum unbiased scheme that satisfies ε-LDP
constraint. (The proof is given in Appendix F.)

Algorithm 1 Randomly Rotating Simplex Coding RRSC(k).
Inputs: v∈Sd−1, k, M=2b.

Codebook Generation:
Generate the simplex s1, . . . , sM ∈ Rd in (2).
Sample orthogonal matrix A ∈ Rd×d uniformly using
the shared random SEED.
Generate the codebook UM : (U1, U2, . . . , UM ) ←
(rkAs1, rkAs2, . . . , rkAsM ).
Encoding:
for m ∈ [M ] do

if ⟨v, Um⟩ is one of the k largest then
Qf (m|v, UM )← eε

keε+(M−k)

else
Qf (m|v, UM )← 1

keε+(M−k)

end if
end for
Sample codeword index m∗ ← Qf (·|v, UM ).

Output: m∗, encoded in b = logM bits.

3.4. k-closest Encoding for General Rotationally
Symmetric Codebook

In this section, we demonstrate that the k-closest encod-
ing consistently yields an unbiased scheme for any rota-
tionally symmetric codebook. To be more specific, for
any given spherically symmetric codebook UM , there
exists a scalar rk that ensures that the k-closest en-
coding with rkU

M = (rkU1, . . . , rkUM ) is unbiased.
Let Tk(v, U

M ) = {m : Um is one of the k-closest},
and without loss of generality, let us assume v =

e1. Then, EPUM

[∑M
m=1 Qf (m|e1, UM )Um

]
=

EPUM

[
eε−1

keε+(M−k)

∑
m∈Tk(e1,UM ) Um

]
, where we as-

sume an integer k for the sake of simplicity. Since the code-
book is rotationally symmetric and we pick k-closest vectors
toward v = e1, each codeword Um ∈ Tk(e1, U

M ) is sym-
metric in all directions other than v = e1. Thus, in expecta-
tion, the decoded vector is aligned with e1, and there exists
rk such that rk×EPUM

[∑M
m=1 Qf (m|e1, UM )Um

]
= e1.

For a rotationally symmetric simplex codebook, where

Um = Asm for a uniform random orthogonal matrix A,
we have an (almost) analytic formula.

Lemma 3.7. Normalization constant rk for RRSC(k) is

rk = keε+M−k
eε−1

√
M−1
M

1
Ck

, where Ck is an expected sum

of top-k coordinates of uniform random vector a ∈ Sd−1.
(The proof is in Appendix G.)

4. Experiments
We empirically demonstrate the communication-privacy-
utility tradeoffs of RRSC and compare it with order-optimal
schemes under privacy and communication constraints,
namely SQKR (Chen et al., 2020) and MMRC (Shah et al.,
2022). We also show that RRSC performs comparably with
PrivUnit (Bhowmick et al., 2018), which offers the ex-
act-optimal privacy-utility tradeoffs without communication
constraints (Asi et al., 2022). In our simulations, we use the
“optimized” PrivUnit mechanism, called PrivUnitG,
introduced in (Asi et al., 2022), which performs better
than PrivUnit in practice since it provides an easy-to-
analyze approximation of PrivUnit but with analytically
better-optimized hyperparameters. Similar to (Chen et al.,
2020; Shah et al., 2022), we generate data independently
but non-identically to capture the distribution-free setting
with µ ̸= 0. More precisely, for the first half of the users,
we set v1, . . . , vn/2

i.i.d∼ N(1, 1)⊗d; and for the second half

of the users, we set vn/2+1, . . . , vn
i.i.d∼ N(10, 1)⊗d. We

further normalize each vi to ensure that they lie on Sd−1.
We report the average ℓ2 error over 10 rounds together with
the confidence intervals. To find the optimal values for k
and rk, we compute the optimal rk using the formula in (68)
for k = 1, . . . ,M and pick the k that gives the smallest rk
(which corresponds to the bias). To estimate the expectation
Ck in (68), we run a Monte Carlo simulation with 1M trials.
Additional experimental results are provided in Appendix H.

Figure 1: Comparison of RRSC with SQKR, MMRC, and
PrivUnitG. (left) ℓ2 error vs ε with n = 5000, d = 500.
The number of bits is b = ε for RRSC, SQKR, and MMRC.
(middle) Same plot zoomed into higher ε, lower ℓ2 error
region. (right) ℓ2 error vs number of bits b for n = 5000,
d = 500, and ε = 6. For SQKR, we only report b ≤ ε = 6
since it performs poorly when b > ε.

In Figure 1-(left, middle), we report ℓ2 error for ε =
1, . . . , 8, where for each method (except PrivUnitG), the
number of bits is equal to b = ε. In Figure 1-(right), we
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report ℓ2 error by fixing ϵ = 6 and sweeping the bitrate from
b = 1 to b = 8 for RRSC and MMRC. For SQKR, we only
sweep for b ≤ ε as it leads to poor performance for b > ε.
In each figure, RRSC performs comparably to PrivUnitG
even for small b and outperforms both SKQR and MMRC by
large margins.

5. Discussion & Conclusion
In this work, we proved that using a rotationally symmetric
codebook is a necessary condition for the exact optimality
of mean estimation mechanisms under privacy and com-
munication constraints. We then proposed Random Rotat-
ing Simplex Coding (RRSC) based on a k-closest encoding
mechanism and proved that RRSC is exact-optimal for the
random rotating simplex codebook. In Appendix J, we dis-
cuss some important features of RRSC such as convergence
to PrivUnit and complexity; and finally provide conjec-
tures for future work.
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A. Related Work
The ℓ2 mean estimation problem is a canonical statistical formulation for many distributed stochastic optimization methods,
such as communication (memory)-efficient SGD (Suresh et al., 2017; Vargaftik et al., 2021) or private SGD (Kasiviswanathan
et al., 2011). For instance, as shown in (Ghadimi & Lan, 2013), as long as the final estimator of the mean is unbiased, the ℓ2
estimation error (i.e., the variance) determines the convergence rate of the distributed SGD. As a result, there is a long thread
of works that study the mean estimation problem under communication constraints (Barnes et al., 2020; Duchi et al., 2013;
Gandikota et al., 2021; Suresh et al., 2017; Vargaftik et al., 2021; Zhang et al., 2012), privacy constraints (Asi et al., 2022;
Huang et al., 2021), or a joint of both (Agarwal et al., 2018; Chen et al., 2020; Feldman & Talwar, 2021; Shah et al., 2022).

Among them, (Chen et al., 2020) shows that Θ(ε) bits are sufficient to achieve the order-optimal MSE Θ
(

d
nmin(ε,ε2)

)
and

proposes SQKR, an order-optimal mean estimation scheme under both privacy and communication constraints. Notice that
the MSE of SQKR is orderwise optimal up to a constant factor. Later on, in (Feldman & Talwar, 2021), it is shown that the
pre-constant factor in SQKR is indeed suboptimal, resulting in an unignorable gap in the MSE compared to PrivUnit
– an optimal ℓ2 mean estimation scheme under ε-LDP. In the original PrivUnit, the output space is a d-dimensional
sphere Sd−1 and hence requires O(d) bits of communication, which is far from the optimal O(ε) communication bound.
However, (Feldman & Talwar, 2021) shows that one can (almost) losslessly compress PrivUnit via a pseudo-random
generator (PRG). Under the assumption of an existing exponentially strong PRG, (Feldman & Talwar, 2021) proves that
one can compress the output of PrivUnit using polylog(d) bits with negligible performance loss. Similarly, (Shah et al.,
2022) shows that with the help of shared randomness, PrivUnit can be (nearly) losslessly compressed to Θ(ε) bits via a
channel simulation technique, called MMRC. We remark that although the privacy-utility trade-offs in (Feldman & Talwar,
2021) and (Shah et al., 2022) are (nearly) exactly optimal, the communication efficiency is only order-optimal. That is,
under an exact b-bit communication constraint, the MSEs of (Feldman & Talwar, 2021) (denoted as FT21) and MMRC (Shah
et al., 2022) may be suboptimal. In this work, we aim to achieve the exact-optimal MSE under both communication and
privacy constraints.

Furthermore, we show that SQKR, FT21, and MMRC can be viewed as special cases in our framework – i.e., (random) coding
with their own codebook design. We elaborate on this in Section 5 and provide more details on prior work in Appendix I.

B. Proof of Lemma 3.1
Proof. For n-user mean estimation protocol (f,A, PUM ), following the notation and steps from (?)Proof of Lemma
3.1]asi2022optimal, we define the marginalized output

g̃i(mi, Ui; v
n) = E{mj ,Uj}j ̸=i

[
nA({mj , Uj}nj=1)

∣∣∣ fi(vi, Ui) = mi, Ui, v
n\i

]
. (4)

Then, we define the user-specific decoder by averaging gi(mi, Ui; v
n) with respect to i.i.d. uniform Punif:

gi(mi, Ui) = Evn\i∼ Punif
[g̃i(mi, Ui; v

n)] (5)

where vn\i indicates the vn vector except vi. Due to the symmetry of Punif, it is clear that gi is unbiased. We also define

R̂≤i({vj ,mj , Uj}ij=1) = Evj∼Punif,j>i

nA({mj , Uj}nj=1)−
i∑

j=1

vj

∣∣∣∣∣∣ {vj ,mj , Uj}ij=1

 (6)

Consider an average error where v1, . . . , vn are drawn i.i.d. uniformly on the sphere Sd−1.

E{vj ,mj ,Uj}n
j=1

[∥∥∥nA({mj , Uj}nj=1)−
∑n

j=1 vj

∥∥∥2]
= E{vj ,mj ,Uj}n

j=1

[∥∥∥R̂≤n({vj ,mj , Uj}nj=1)
∥∥∥2] (7)

= E{vj ,mj ,Uj}n
j=1

[∥∥∥R̂≤n({vj ,mj , Uj}nj=1)− R̂≤n−1({vj ,mj , Uj}n−1
j=1 ) + R̂≤n−1({vj ,mj , Uj}n−1

j=1 )
∥∥∥2] (8)

= E{vj ,mj ,Uj}n
j=1

[∥∥∥R̂≤n({vj ,mj , Uj}nj=1)− R̂≤n−1({vj ,mj , Uj}n−1
j=1 )

∥∥∥2]
7
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+ E{vj ,mj ,Uj}n−1
j=1

[∥∥∥R̂≤n−1({vj ,mj , Uj}n−1
j=1 )

∥∥∥2] (9)

=

n∑
i=1

E{vj ,mj ,Uj}i
j=1

[∥∥∥R̂≤i({vj ,mj , Uj}ni=1)− R̂≤i−1({vj ,mj , Uj}i−1
j=1)

∥∥∥2] (10)

≥
n∑

i=1

Emi,Ui

[∥∥∥E{vj ,mj ,Uj}i−1
j=1

[
R̂≤i({vj ,mj , Uj}ni=1)− R̂≤i−1({vj ,mj , Uj}i−1

j=1)
]∥∥∥2] (11)

=

n∑
i=1

Emi,Ui

[
∥gi(mi, Ui)− vi∥2

]
. (12)

Then, we need to show the same inequality for the worst-case error.

sup
v1,...,vn

E{mj ,Uj}n
j=1


∥∥∥∥∥∥nA({mj , Uj}nj=1)−

n∑
j=1

vj

∥∥∥∥∥∥
2


≥ E{vj ,mj ,Uj}n
j=1


∥∥∥∥∥∥nA({mj , Uj}nj=1)−

n∑
j=1

vj

∥∥∥∥∥∥
2
 (13)

=

n∑
i=1

Evi,mi,Ui

[
∥gi(mi, Ui)− vi∥2

]
(14)

=

n∑
i=1

sup
vi

Emi,Ui

[
∥gi(mi, Ui)− vi∥2

]
(15)

where the last equality (15) is from Lemma 3.2, Lemma 3.4, and Lemma 3.5. Thus, the user-specific decoder achieves lower
MSE:

Errn(f,A, PUn) ≥ 1

n

n∑
i=1

Err1(fi, gi, PUi
). (16)

Since we keep random encoder fi the same, the canonical protocol with gi also satisfies ε-LDP constraint. This concludes
the proof.

C. Proof of Lemma 3.2
Proof. Let Ũm = g(m,U) for all 1 ≤ m ≤ M . Without loss of generality g(·, U) is one-to-one, i.e., {u : ũm =
g(m,u) for all m} has at most one element (with probability 1), and u = g−1(ũM ) is well-defined. Then, we define a
randomizer f0(v, ŨM ) that satisfies

Qf0(m|v, ũM ) = Qf (m|v, g−1(ũM )). (17)

It is clear that f0 satisfies ε-LDP constraint. Then,

D(v, f0, g
+, PŨM ) =Ef0,PŨM

[
∥g+(f0(v, ŨM ), ŨM )− v∥2

]
(18)

=EPŨM

[∑M
m=1 Qf0(m|v, ŨM )∥Ũm − v∥2

]
(19)

=Ef,PU

[∑M
m=1 Qf (m|v, U)∥g(m,U)− v∥2

]
(20)

=Ef,PU

[
∥g(f(v, U), U)− v∥2

]
(21)

=D(v, f, g, PU ). (22)

We also need to show that the composition of the new randomizer f0 and selector g+ is unbiased.

EPŨM

[
g+(f0(v, Ũ

M ), ŨM )
]
=Ef0,PŨM

[∑M
m=1 Qf0(m|v, ŨM )Ũm

]
(23)

8
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=Ef,PU

[∑M
m=1 Qf (m|v, U)g(m,U)

]
(24)

=Ef,PU
[g(f(v, U), U)] (25)

=v. (26)

Finally, Qf0(m|v, ũM ) is a valid transition probability, since

M∑
m=1

Qf0(m|v, ũM ) =

M∑
m=1

Qf (m|v, g−1(ũM )) = 1 (27)

for all ũM . This concludes the proof.

D. Proof of Lemma 3.4
Proof. Let A be a uniformly random orthogonal matrix and ŪM = A⊺UM . We further let f1 be a randomized encoder that
satisfies

Qf1(m|v, ŪM ) = EA

[
Qf (m|Av,AŪM )|ŪM

]
. (28)

Then, Qf1 is a valid probability since

M∑
m=1

Qf1(m|v, ŪM ) = EA

[
M∑

m=1

Qf (m|Av,AŪM )|ŪM

]
= 1. (29)

Also, we have

Qf1(m|v, ŪM )

Qf1(m|v′, ŪM )
=

EA

[
Qf (m|Av,AŪM )|ŪM

]
EA

[
Qf (m|Av′, AŪM )|ŪM

] (30)

≤
EA

[
eεQf (m|Av′, AŪM )|ŪM

]
EA

[
Qf (m|Av′, AŪM )|ŪM

] (31)

=eε. (32)

Finally, we need to check unbiasedness.

EPŪM

[
Qf1(m|v, ŪM )Ūm

]
=EA,PUM

[∑M
m=1 Qf (m|Av,AŪM )Ūm

]
(33)

=EA,PUM

[∑M
m=1 Qf (m|Av,UM )A⊺Um

]
(34)

=EA

[
A⊺EPUM

[∑M
m=1 Qf (m|Av,UM )Um

]]
(35)

=EA [A⊺Av] (36)
=v. (37)

The key step is that the original encoder f is unbiased, which implies

EPUM

[∑M
m=1 Qf (m|Av,UM )Um

]
= Av (38)

for all A.

Now, we are ready to prove the main inequality.

Err(f, PUM ) = sup
v

D(v, f, PUM ) (39)

≥EA [D(Av, f, PUM )] (40)

=EA

[
EPUM

[∑M
m=1 Qf (m|Av,UM )∥Um −Av∥2

]]
(41)

9
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=EPUM ,A

[∑M
m=1 Qf (m|Av,AŪM )∥Ūm − v∥2

]
(42)

=EPŪM

[∑M
m=1 EA

[
Qf (m|Av,AŪM )|ŪM

]
∥Ūm − v∥2

]
(43)

=EPŪM

[∑M
m=1 Qf1(m|v, ŪM )∥Ūm − v∥2

]
(44)

=D(v, f1, PŪM ). (45)

for all v. This concludes the proof.

E. Proof of Lemma 3.5
Proof. For v, v′ ∈ Sd−1, let A0 be an orthonormal matrix such that v′ = A0v. Let f2 be a randomized encoder such that

f2(v, U
M ) = f(Av,AUM ) (46)

for uniform random orthonormal matrix. Then,

Qf2(m|v, UM ) = EA

[
Qf (m|Av,AUM )

]
. (47)

Similar to the previous proofs, Qf2 is a well-defined probability distribution, and f2 is unbiased as well as ε-LDP. Since
PUM is rotationally symmetric and f2 is also randomized via the uniform random orthogonal matrix, we have

D(v′, f2, PUM ) = D(A0v, f2, PUM ) = D(v, f2, PUM ). (48)

Compared to a given randomizer f , we have

Err(f, PUM ) ≥EA [D(Av, f, PUM )] (49)

=EA,PUM

[∑M
m=1 Qf (m|Av,UM )∥Av − UM∥2

]
(50)

=EA,PUM

[∑M
m=1 Qf (m|Av,UM )∥v −A⊺UM∥2

]
(51)

=EA,PUM

[∑M
m=1 Qf (m|Av,AUM )∥v − UM∥2

]
(52)

=EPUM

[∑M
m=1 EA

[
Qf (m|Av,AUM )

]
∥v − UM∥2

]
(53)

=D(v, f2, PUM ) (54)

for all v ∈ Sd−1. This concludes the proof.

F. Proof of Theorem 3.6
Proof. The rotationally symmetric simplex codebook with normalization constant r is (rAs1, . . . , rAsM ). Let f be the
unbiased encoder satisfying ε-LDP. Let Qmax = maxQf (m|v, rAsM ) and Qmin = minQf (m|v, rAsM ), our objective
is to demonstrate that Qmax is less than or equal to eεQmin. We will employ a proof by contradiction to establish this.
Suppose Qf (m1|v1, rA1s

M ) > eεQf (m2|v2, rA2s
M ) for some m1, v1, A1,m2, v2, and A2. Let Ã be the row switching

matrix where rÃA1sm1 = rA1sm2 and rÃA1sm2 = rA1sm1 , then we have

Qf (m1|v1, rA1s
M ) = Qf (m2|Ãv1, rÃA1s

M ). (55)

We further let A′ be an orthogonal matrix such that A′ÃA1 = A2, then

Qf (m2|Ãv1, rÃA1s
M ) =Qf (m2|A′Ãv1, rA

′ÃA1s
M ) (56)

=Qf (m2|A′Ãv1, rA2s
M ) (57)

If we let v′1 = A′Ãv1, then

Qf (m2|v′1, rA2s
M ) =Qf (m1|v1, rA1s

M ) (58)
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>eεQf (m2|v2, rA2s
M ), (59)

which contradicts the ε-LDP constraint.

For an unbiased encoder, the error is

EPUM

[∑M
m=1 ∥Um − v∥2Qf (m|v, UM )

]
= EPUM

[
M∑

m=1

∥Um∥2Qf (m|v, UM )

]
− 1 (60)

= r2 − 1. (61)

Thus, we need to find r that minimizes the error.

On the other hand, the encoder needs to satisfy unbiasedness. Without loss of generality, we assume v = e1, then we need

EA

[∑M
m=1 rAsmQf (m|e1, rAsM )

]
= e1, (62)

where the expectation is with respect to the random orthonormal matrix A. If we focus on the first index of the vector, then

r × Ea

[
M∑

m=1

a⊺smQf (m|e1, rAsM )

]
= 1, (63)

where a⊺ = (a1, . . . , ad) is the first row of A and has uniform distribution on the sphere Sd−1. Thus, it is clear that assigning
higher probability (close to Qmax) to the larger a⊺sm.

If Qmax is strictly smaller than eεQmin, then we can always scale up the larger probabilities and scale down the lower
probabilities to keep the probability sum to one (while decreasing the error). Hence, we can assume that Qmin = q0 and
Qmax = eεq0 for some 1 > q0 > 0.

Now, let k be such that

(M − ⌊k⌋ − 1)q0 + qi + ⌊k⌋eεq0 = 1, (64)

where qi is an intermediate value such that qi ∈ [q0, e
εq0]. Then, the optimal strategy is clear: (i) assign eεq0 to ⌊k⌋-th

closest codewords sm’s, (ii) assign qi to the (⌊k⌋+ 1)-th closest codeword, and (iii) assign q0 to the remaining codewords.
This implies that the k-closest coding is optimal.

G. Proof of Lemma 3.7
Proof. Due to symmetry, encoding e1 with randomly rotating simplex codebook AsM is equivalent to encode uniform
random a ∈ Sd−1 with deterministic simplex codebook sM . Then, we have

rk × E

 eε − 1

keε + (M − k)

∑
m∈top-k

a⊺sm


=rk × E

 eε − 1

keε + (M − k)

∑
m∈top-k

√
M

M − 1
am −

M∑
i=1

a⊺sm

 (65)

=rk × E

 eε − 1

keε + (M − k)

∑
m∈top-k

√
M

M − 1
am

. (66)

If we focus on the first coordinate of (66), we have

rk ×
eε − 1

keε + (M − k)

√
M

M − 1
Ck = 1, (67)

which concludes the proof.
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H. Additional Experimental Results
In Figure 2, we provide additional empirical results by sweeping the number of users n from 2, 000 to 10, 000 on the left
and sweeping the dimension d from 200 to 1, 000 on the right.

Figure 2: Comparison of RRSC with SQKR (Chen et al., 2020), MMRC (Shah et al., 2022), and PrivUnitG (Asi et al.,
2022). (left) ℓ2 error vs number of users n with d = 500, ε = 6, and the number of bits is b = ε = 6. k = 1 for each n.
(right) ℓ2 error vs dimension d for n = 5000, ε = 6, and the number of bits is b = ε = 6. k = 1 for for each d.

I. Additional Details on Prior LDP Schemes
For completeness, we provide additional details on prior LDP mean estimation schemes in this section, including
PrivUnit (Bhowmick et al., 2018), SQKR (Chen et al., 2020), FT21 (Feldman & Talwar, 2021), and MMRC (Shah
et al., 2022).

I.1. PrivUnit (Bhowmick et al., 2018)

(Asi et al., 2022) considered the mean estimation problem under DP constraint (without communication constraint) when
X = Sd−1 = {v ∈ Rd : ∥v∥1 = 1}. Since there is no communication constraint, they assumed canonical protocol where
the random encoder is f : Sd−1 → Rd and the decoder is a simple additive aggregator

gn(f(v1), . . . , f(vn)) =
1

n

n∑
i=1

f(vi).

The authors showed that PrivUnit is an exact optimal among the family of unbiased locally private procedures.

Recall that given an input vector v ∈ Sd−1, the local randomized PrivUnit(p, q) has the following distribution up to
normalization:

PrivUnit(p, q) ∼

{
Z|⟨Z, v⟩ ≥ γ w.p. p
Z|⟨Z, v⟩ < γ w.p. 1− p

where Z has a uniform distribution on Sd−1. Let Sγ be the surface area of hypersphere cap {z ∈ Sd−1|⟨z, v⟩ ≥ γ}, with
S−1 representing the surface area of the d dimensional hypersphere. We denoted q = Pr [Z1 ≤ γ] = (S−1 − Sγ)/S−1

(convention from (Bhowmick et al., 2018; Asi et al., 2022)). The normalization factor is required to obtain unbiasedness.

(Asi et al., 2022) also introduced PrivUnitG, which is a Gaussian approximation of PrivUnit. In this approach, Z is
sampled from an i.i.d. N (0, 1/d) distribution. This simplifies the process of determining more accurate parameters p, q, and
γ. Consequently, in practical applications, PrivUnitG surpasses PrivUnit in performance owing to superior parameter
optimization.

I.2. SQKR (Chen et al., 2020)

Next, we outline the encoder and decoder of SQKR in this section. The encoding function mainly consists of three steps: (1)
computing Kashin’s representation, (2) quantization, and (3) sampling and privatization.

12
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Compute Kashin’s representation A tight frame is a set of vectors {uj}Nj=1 ∈ Rd that satisfy Parseval’s identity, i.e.

∥v∥22 =
∑N

j=1⟨uj , v⟩2 for all v ∈ Rd. We say that the expansion v =
∑N

j=1 ajuj is a Kashin’s representation of x at level
K if maxj |aj | ≤ K√

N
∥v∥2 (Kashin, 1977). Lyubarskii & Vershynin (2010) shows that if N > (1 + µ) d for some µ > 0,

then there exists a tight frame {uj}Nj=1 such that for any x ∈ Rd, one can find a Kashin’s representation at level K = Θ(1).

This implies that we can represent the local vector v with coefficients {aj}Nj=1 ∈ [−c/
√
d, c/
√
d]N for some constants c

and N = Θ(d).

Quantization In the quantization step, each client quantizes each aj into a 1-bit message qj ∈
{
−c/
√
d, c/
√
d
}

with

E [qj ] = aj . This yields an unbiased estimator of {aj}Nj=1, which can be described in N = Θ(d) bits. Moreover, due to the
small range of each aj , the variance of qj is bounded by O(1/d).

Sampling and privatization To further reduce {qj} to k = min(⌈ε⌉, b) bits, client i draws k independent samples from
{qj}Nj=1 with the help of shared randomness, and privatizes its k bits message via 2k-RR mechanism (Warner, 1965),
yielding the final privatized report of k bits, which it sends to the server.

Upon receiving the report from client i, the server can construct unbiased estimators âj for each {aj}Nj=1, and hence

reconstruct v̂ =
∑N

j=1 âjuj , which yields an unbiased estimator of v. In (Chen et al., 2020), it is shown that the variance of
v̂ can be controlled by O

(
d/min

(
ε2, ε, b

))
.

I.3. FT21 (Feldman & Talwar, 2021) and MMRC (Shah et al., 2022)

Both FT21 and MMRC aim to simulate a given ε-LDP scheme. More concretely, consider an ε-LDP mechanism q(·|v) that
we wish to compress, which in our case, PrivUnit. A number of candidates u1, · · · , uN are drawn from a fixed reference
distribution p(u) (known to both the client and the server), which in our case, uniform distribution on the sphere Sd−1.
Under FT21 (Feldman & Talwar, 2021), these candidates are generated from an (exponentially strong) PRG, with seed
length ℓ = polylog(d). The client then performs rejection sampling and sends the seed of the sampled candidates to the
server. See Algorithm 2 for an illustration.

Algorithm 2 Simulating LDP mechanisms via rejection sampling (Feldman & Talwar, 2021)
Inputs: ε-LDP mechanism q(·|v), ref. distribution p(·), seeded PRG G : {0, 1}ℓ → {0, 1}t, failure probability γ >
0.
J = eε ln(1/γ).
for j ∈ {1, · · · , J} do

Sample a random seed s ∈ {0, 1}ℓ.
Draw u← p(·) using the PRG G and the random seed s.
Sample b from Bernoulli

(
q(u|v)
eε·p(u)

)
.

if b = 1 then
BREAK

end if
end for

Output: s

On the other hand, under MRC (Shah et al., 2022) the LDP mechanism is simulated via a minimal random coding technique
(Havasi et al., 2019). Specifically, the candidates are generated via shared randomness, and the client performs an importance
sampling and sends the index of the sampled one to the server, as illustrated in Algorithm 3. It can be shown that when
the target mechanism is ε-LDP, the communication costs of both strategies are Θ(ε) bits. It is also worth noting that both
strategies will incur some bias (though the bias can be made exponentially small as one increases the communication cost),
and (Shah et al., 2022) provides a way to correct the bias when the target mechanism is PrivUnit (or general cap-based
mechanisms).
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Algorithm 3 Simulating LDP mechanisms via importance sampling (Shah et al., 2022)
Inputs: ε-LDP mechanism q(·|v), ref. distribution p(·), # of candidates M

Draw samples u1, · · · , uM from p(u) using the shared source of randomness.
for k ∈ {1, · · · ,M} do
w(k)← q(uk|v)/p(uk).

end for
πMRC(·)← w(·)/

∑
k w(k).

Draw k∗ ← πMRC.
Output: k∗

J. Additional Discussion
Convergence to PrivUnit As the communication constraint b increases, the exact-optimal scheme with communication
constraint should coincide with the exact-optimal scheme without communication constraint, which is PrivUnit. Note
that the rotationally symmetric simplex can be defined only when M = 2b < d, due to its simplex structure. However, we
have a natural extension where the codebook is a collection of M (nearly) maximally separated vectors on the sphere of
radius r, where we can assume that M codewords are uniformly distributed on the sphere of radius rk if M is large enough.
Consider the case where q = k

M is fixed and M = 2b is large. Since the k-closest encoding yields an unbiased scheme with
error Err(f, PUM ) = r2k − 1, where rk is normalizing constant, for uniformly distributed M codewords on the sphere, the
constant rk should satisfy

rk ×
eε − 1

keε + (M − k)
E

 ∑
m∈top-k

Um,1

 = 1 (68)

where Um,1 is the first coordinate of uniformly drawn Um from the unit sphere Sd−1. Then, as M increases, Um,1 being
one of the top-k becomes equivalent to Um,1 > γ, where γ is the threshold such that Pr[Um,1 > γ] = q. Hence, assigning
higher probabilities to the top-k closest codewords becomes equivalent to assigning high probabilities to the codewords with
⟨Um, e1⟩ > γ where v = e1. This is essentially how PrivUnit operates.

Complexity of RRSC Each user has d× d orthonormal matrix A and needs to find k smallest ⟨v,Asm⟩ for 1 ≤ m ≤M .
Since ⟨v,Asm⟩ = ⟨A⊺v, sm⟩, it requires O(d2) to compute A⊺v and additional O(Md) to compute all inner products for
1 ≤ m ≤M . However, if M ≪ d, we have a simpler equivalent scheme using

⟨A⊺v, sm⟩ =
√

M

M − 1
a⊺mv −

M∑
i=1

a⊺i v
1√

M(M − 1)
, (69)

where a⊺m is the m-th row of the matrix A. Then, it only requires storing the first M rows of the matrix and O(Md) to
obtain all inner products in (69) by avoiding O(d2) to construct A⊺v.

On the other hand, the server computes Asm upon receiving a message m. The corresponding time complexity is O(Md)
(per user) since sm has M non-zero values. We note that both MMRC (Shah et al., 2022) and FT21 (Feldman & Talwar,
2021) require the same encoding complexity O(Md) as RRSC, where they choose M = O(exp(ε)).

Unified Framework It turns out that SQKR (Chen et al., 2020), FT21 (Feldman & Talwar, 2021) and MMRC (Shah et al.,
2022) can be viewed as special cases in our framework. Specifically, SQKR (Chen et al., 2020) uses Kashin’s representation
of v =

∑N
j=1 ajuj , where {aj}Nj=1 ∈ [−c/

√
d, c/
√
d] for some (1 + µ)d with µ > 0 and c > 0. Then the SQKR encoder

quantizes each aj into a 1-bit message qi, and draws k samples with the help of shared randomness. This can be viewed as
random coding with a codebook-generating distribution. More concretely, the corresponding codebook UM consists of k non-
zero values of ±c/

√
d where the randomness is from selecting k indices using shared randomness. On the other hand, since

MMRC (Shah et al., 2022) is simulating the channel corresponding to a privacy mechanism, it can be viewed as pre-generating
random codewords UM according to the reference distribution, where the importance sampling is also a way of assigning
probabilities to each codeword. As elaborated earlier, it is observed that with an increase in the communication constraint
b, the suggested k-closest encoding gradually transforms into a threshold-based encoding, analogous to that of MMRC. The
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codebook associated with FT21 (Feldman & Talwar, 2021) depends on the PRG it uses. Let PRG : {0, 1}b → {0, 1}Θ(d)

be a PRG that takes a b-bit seed and maps it into Θ(d) bits, where b ≪ d, and let g : {0, 1}Θ(d) → Rd. For example, if
we represent each coordinate of x ∈ Rd as a 32-bit float, then g(·) maps the float representation of x (a 32-bit string) to
x. With a PRG, FT21 mimics PrivUnit by first generating a b-bit seed m, computing g (PRG(m)), and then performing
rejection sampling on the seed space. The above procedure can be treated as a special case in our framework, where the
deterministic codebook consists of 2b points on Rd: CFT21 :=

{
g(PRG(m)) : m ∈ {0, 1}b

}
. The probabilities assigned

to each codeword according to the rejection sampling are equivalent to a threshold-based assignment.

Shared randomness When M ≤ d + 1, additional randomization is required during codebook generation to achieve
an unbiased scheme, as discussed in (Gandikota et al., 2021). Furthermore, both the encoder and decoder must possess this
randomization information. In the proposed RRSC scheme, this randomization is achieved through the random rotation of
the simplex code using shared randomness. However, it is possible to circumvent the need for shared randomness by having
the server generate random rotation matrices using its private coin and communicate them to the users. This approach
replaces shared randomness with downlink communication, which is typically more affordable than uplink communication.
It should be noted that directly transmitting the rotation matrices would require O(d2) bits. Nonetheless, the server can
generate them using a predetermined pseudo-random generator (PRG) and transmit only the seeds of it to the users. Drawing
from a similar argument as in (Feldman & Talwar, 2021), assuming the existence of exponentially strong PRGs, seeds
with polylog(d) bits are sufficient.

Future Work We showed the exact-optimality of k-closest encoding for the rotating simplex codebook. In general,
it also achieves unbiasedness and the following error formulation EPUM

[∑M
m=1 Qf (m|v, UM )∥v − Um∥2

]
implies the

exact-optimality of k-closest encoding for any rotationally symmetric codebook, which leads us to the following conjecture.

Conjecture J.1. The proposed k-closest encoding is exact-optimal for any rotationally symmetric codebook.

It also remains unclear whether k can depend on the realization of the codebook UM in general, which we leave to future
work. We also proved that the exact-optimal codebook must be rotationally symmetric. We conjecture that the maximally
separated codebook (simplex codebook) is exact-optimal as it provides the most effective coverage of the space Sd−1. This,
too, is left as a topic for future work.

Conjecture J.2. The rotationally symmetric simplex codebook is the exact-optimal codebook.
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