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Abstract

Recent advances in Foundation Models such001
as Large Language Models (LLMs) have pro-002
pelled them to the forefront of Recommender003
Systems (RS). Despite their utility, there is004
a growing concern that LLMs might inadver-005
tently perpetuate societal stereotypes, result-006
ing in unfair recommendations. Since fairness007
is critical for RS as many users take it for008
decision-making and demand fulfillment, this009
paper focuses on user-side fairness for LLM-010
based recommendation where the users may011
require a recommender system to be fair on012
specific sensitive features such as gender or013
age. In this paper, we dive into the extent014
of unfairness exhibited by LLM-based recom-015
mender models based on both T5 and LLaMA016
backbones, and discuss appropriate methods017
for promoting equitable treatment of users in018
LLM-based recommendation models. We in-019
troduce a novel Counterfactually-Fair-Prompt020
(CFP) method towards Unbiased Foundation021
mOdels (UFO) for fairness-aware LLM-based022
recommendation. Experiments are conducted023
on two real-world datasets, MovieLens-1M and024
Insurance, and compared with both matching-025
based and sequential-based fairness-aware rec-026
ommendation models. Results show that CFP027
achieves better recommendation performance028
with a high level of fairness. Source code is029
anonymously released for reproducibility1.030

1 Introduction031

Large Language Model (LLM) has revolutionized032

the research in NLP (Brown et al., 2020; Bubeck033

et al., 2023), and its application on Recommender034

Systems (RS) also attracts soaring interest (Fan035

et al., 2023; Li et al., 2023a; Chen et al., 2023;036

Lin et al., 2023; Liu et al., 2023). Recommender037

Systems (Bobadilla et al., 2013) are algorithms038

designed to personalize contents or items for indi-039

vidual users based on their preferences. Through040

1Code and data: https://github.com/noraanonymous/UFO

Figure 1: Toy examples of the input-output for prompt-
driven LLM-based recommendation models.

personalized natural language prompts (Geng et al., 041

2022), Large Language Models can serve as a back- 042

bone for RS (LLM4RS) to generate personalized 043

recommendations based on user and item informa- 044

tion. Figure 1 shows a toy input-output example of 045

prompting LLM-based recommender systems for 046

personalized recommendation. 047

This paper delves into the fairness of LLM-based 048

recommendation, a significant concern of RS due 049

to its influence on individual decision-making (Li 050

et al., 2023b; Amigó et al., 2023; Ge et al., 2021; 051

Deldjoo et al., 2021; Abdollahpouri et al., 2020; 052

Ekstrand et al., 2019a; Shrestha and Yang, 2019). 053

Specifically, we aim to address user-side counter- 054

factual fairness (Leonhardt et al., 2018; Sonboli 055

et al., 2021; Rahmani et al., 2022; Li et al., 2021; 056

Wu et al., 2021) in RS. We ensure that the RS gen- 057

erates recommendations without factoring in the 058

sensitive attributes that users wish to remain undis- 059

closed. For instance, in a movie recommender 060

system, users may seek recommendations that are 061

not influenced by sensitive attributes such as race, 062

gender, or age. For example, an elderly user may 063

also want to watch younger generation movies to 064

catch up with the times, and thus the user does not 065

want to be discriminated on their age in terms of 066

movie recommendation. As a result, recommender 067

systems should allow users to convey their sensitive 068

preferences and consider these criteria for generat- 069

ing recommendations, rather than solely relying on 070

the recommendation model’s determination. 071

In traditional RS, each user is modeled either as 072

a single embedding (in matching models) (Menon 073

1



and Williamson, 2018; Liang et al., 2018; He et al.,074

2017; Yi et al., 2019; Cheng et al., 2016; Koren075

et al., 2009) such that whether an item should be076

recommended is computed by the similarity be-077

tween item embedding and user embedding, or as a078

sequence of item embeddings from the user’s inter-079

action history (in sequential models) (Hidasi and080

Karatzoglou, 2018; Kang and McAuley, 2018; Sun081

et al., 2019; Hidasi et al., 2015; Wu et al., 2017;082

Yu et al., 2016) such that the model will generate083

the next item based on the history. However, in the084

context of LLM-based recommendation, the user’s085

information is not consolidated into a singular user086

embedding or a sequence of item embeddings, thus087

rendering traditional methods inapplicable. As a088

result, this paper explores methods to remove sen-089

sitive information from LLM-based recommenda-090

tion models for fairness-aware recommendation.091

Since LLM-based recommendation models contain092

a large number of parameters storing a rich amount093

of knowledge for both language understanding and094

personalized recommendation, to remove unfair-095

ness from such models, three challenges need to096

be addressed: 1) efficient training and inference097

of the attribute-specific fairness-aware models for098

each sensitive attribute and their combinations, 2)099

avoiding training separate models for each combi-100

nation of sensitive attributes due to a potentially101

exponential growth in attribute combinations, and102

3) minimizing performance decrease on recommen-103

dations, as user attributes could be important for104

the recommendation performance.105

In this work, we first explore three methods to106

probe the unfairness of LLM-based recommenda-107

tion. Then, we present the Counterfactually-Fair-108

Prompt (CFP) method to mitigate the user-side un-109

fairness and propose a fairness-aware foundation110

model, wherein sensitive user attributes, such as111

gender, age, occupation, etc., can be either removed112

or preserved based on each user’s preference. We113

experiment on two datasets which contain sensi-114

tive attributes, MovieLens-1M and Insurance, for115

fairness research, showing the effectiveness of our116

model in eliminating unfairness while maintaining117

a high level of recommendation performance.118

The paper proceeds as follows: Section 2119

presents an overview of the related work on fair-120

ness in LLM and RS; Section 3 briefly introduces121

the preliminary of LLM-based recommendation122

and its fairness motivation; Section 4 introduces123

the proposed CFP model. Section 5 presents the124

experimental results for both single-attribute fair-125

ness and combined-attribute fairness. Section 6 126

provides ablation studies and hyperparameter sen- 127

sitivity analysis. Section 7 concludes the paper. 128

2 Related Work 129

Fairness of Recommender Systems. Since rec- 130

ommender systems involve various stakeholders 131

such as users, item providers, and the platform 132

itself, fairness is a multi-sided concept in recom- 133

mender systems (Li et al., 2023b; Wang et al., 2023; 134

Ekstrand et al., 2019b). For user-side fairness, espe- 135

cially counterfactual fairness, it is usually defined 136

as whether recommendations for a user are made in- 137

dependently of the user’s sensitive attributes, which 138

is measured by determining whether the recommen- 139

dation outcomes for a given user are equivalent in 140

both the factual and counterfactual scenarios with 141

respect to a specific attribute (Ge et al., 2022; Dong 142

et al., 2020; Li et al., 2021). In the context of RS, 143

a counterfactual world is an alternate scenario in 144

which the user’s sensitive attributes are manipu- 145

lated while all other attributes independent of the 146

sensitive attributes are held constant, as defined in 147

the following (Li et al., 2021): 148

Definition 2.1 (Counterfactually fair recommendation) 149

An RS is counterfactually fair iff. for any possible 150

user u with features X = x and K = k, where K 151

are the user’s sensitive attributes and X are the 152

attributes that are causally independent of K, 153

P (Lk|X = x,K = k) = P (Lk′ |X = x,K = k) (1) 154

holds for all L and any value k attainable by K, 155

where L is the recommendation list for user u. 156

A sufficient condition for RS to be counterfac- 157

tually fair is to remove the user’s sensitive infor- 158

mation when generating recommendations so that 159

the recommendation outcome remains unchanged 160

across various counterfactual scenarios (Li et al., 161

2021; Wu et al., 2022), which is ultimately similar 162

to the fairness of language models except that we 163

focus on user representations other than attribute- 164

related words. Li et al. and Wu et al. explored per- 165

sonalized counterfactual fairness for traditional RS, 166

where (Li et al., 2021) is developed for matching- 167

based RS while (Wu et al., 2022) is for sequential- 168

based RS. However, counterfactual fairness for 169

LLM-based RS has largely been unexplored, which 170

has unique challenges to solve as we mentioned 171

before. Furthermore, existing methods are not di- 172

rectly applicable to LLM-based recommendation. 173

For example, Li et al. requires updating all param- 174

eters in the model for each feature, which is not 175
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Figure 2: Counterfactual fairness of LLM-based recommendation given the user’s choice of sensitive attribute.

parameter-efficient and thus unsuitable for large176

language models. Wu et al. appends a prefix177

prompt and an adapter to the model for improving178

fairness on sequential recommendation. However,179

for each attribute combination, a new prefix prompt180

and a new adapter must be trained from scratch,181

and thus the method cannot properly handle the182

exponential combination of attributes. As a result,183

developing fairness-aware methods for LLM-based184

recommendation is highly needed.185

Fairness of Large Language Models. Fairness186

of language models is usually concerned with187

whether embeddings for attribute-related words188

such as gender-related words are associated with189

stereotypes (Ravfogel et al., 2020). Recent studies190

have highlighted the potential of unfairness in the191

pre-training data of LLMs, which leads to the gen-192

eration of harmful or offensive content, including193

discrimination against marginalized groups. Con-194

sequently, there has been an increased research fo-195

cus on addressing the harmfulness issues of LLMs,196

with a particular emphasis on unfairness. In a study197

conducted by Zhuo et al., the fairness of LLMs was198

examined using two datasets specifically designed199

to assess bias in the context of general question200

answering and text generation tasks. Another re-201

search effort by Sun et al. evaluated the safety of202

Chinese LLMs, including an examination of fair-203

ness. The study involved observing the frequency204

of harmful information present in the responses205

generated by LLMs. This approach provided in-206

sights into the potential unfairness and its impact207

on the safety of these models. (Zhang et al., 2023)208

and (Li and Zhang, 2023) tested the fairness of209

ChatGPT on recommendation, education, medical210

and legal tasks, though they did not provide solu- 211

tions for the unfairness problems. There also exist 212

several benchmark datasets that are used to better 213

evaluate the unfairness and other harmfulness of 214

LLMs, such as RedTeamingData (Ganguli et al., 215

2022) and HELM (Liang et al., 2022). While there 216

have been numerous investigations into the fairness 217

of LLMs within the field of NLP, there is currently 218

a gap of research in terms of addressing the fairness 219

problems of LLM-based recommender systems. 220

3 Preliminary of LLM-based Recommendation 221

Foundation Models such as Large Language Lodels 222

(LLMs), e.g., BERT (Devlin et al., 2018), Llama 223

(Touvron et al., 2023), T5 (Raffel et al., 2020), and 224

GPT-3 (Brown et al., 2020), have been shown to ef- 225

fectively learn rich semantics from web-scale data 226

and transfer knowledge in pre-training data to var- 227

ious downstream NLP tasks. For recommender 228

systems, P5 (Geng et al., 2022; Xu et al., 2023) 229

stands as a seminal framework for foundational 230

recommendation models, grounded in the archi- 231

tecture of LLM backbone models, including both 232

encoder-decoder configuration T5 (Raffel et al., 233

2020) and decoder-only model Llama (Touvron 234

et al., 2023). By integrating various recommenda- 235

tion tasks—ranging from item generation, recom- 236

mendation explanation, to rating prediction—P5 237

enhances the adaptability of contemporary recom- 238

mendation methodologies. 239

In our research, we employ both T5 (Raffel et al., 240

2020) and OpenLlama (Geng and Liu, 2023) back- 241

bones within the P5 framework to execute experi- 242

ments targeting unfairness mitigation. In this par- 243

ticular section, we train P5 and probe its fairness 244
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problem to motivate the fairness research for LLM-245

based recommendation. More specifically, we train246

P5 on two tasks: direct recommendation and se-247

quential recommendation. Direct recommendation248

generates recommendations without any user-item249

interaction history in the input prompt, while se-250

quential recommendation explicitly involves user-251

item interaction histories. We use the simple and252

effective sequential ID indexing method for both253

tasks (Hua et al., 2023). The prompt for each task254

is presented in the following square box.255

Direct Recommendation
Input: Which movie user_{{user_ID}} would like to watch
among the following candidates? {{List of 100 candidate
movies}}. Output: {{movie_ID}}
Sequential Recommendation
Input: User_{{user_ID}} has already watched the follow-
ing movies {{the sequence of movie IDs this user watched}}.
Which movie user_{{user_ID}} would like to watch next?
Output: {{movie_ID}}

Motivating Fairness Concerns. As presented256

above, P5 does not explicitly involve any sensitive-257

attribute-related textual description for users. How-258

ever, it can still implicitly infer user sensitive at-259

tributes and possibly use it for recommendation,260

even though users may not want to include such261

sensitive attributes when generating recommenda-262

tions for them. We use three methods for probing263

the user attributes from the LLM: 1) eliciting the at-264

tributes through in-context learning based on man-265

ually designed prompts, 2) generating attributes266

by tuning soft probing prompts, and 3) training a267

classifier on the embeddings corresponding to the268

user tokens in the input.269

Figure 3 presents the AUC score of predicting270

the sensitive attributes (gender, age, occupation,271

and marital_status) from the LLM on Movielens272

and Insurance datasets, while more details of the273

implementation and results are presented in the274

Appendix A. Experimental results show that both275

the soft prompt tuning and the classification meth-276

ods can detect user-sensitive attributes from the277

LLM, though manual prompts fail. The classifica-278

tion and soft prompt tuning methods both generate279

above-random predictions on user attributes. This280

result implies that even though the training and tun-281

ing process of LLM-based recommendation does282

not directly involve users’ sensitive attributes, such283

sensitive information is still inferred by the LLM284

and embeded in the LLM parameters for generat-285

ing recommendations, though users may not want286

their recommendations to be influenced by certain287

sensitive attributes. As a result, it is important to de-288

Figure 3: Inferring sensitive attribute information from
LLM-based recommendation model.

velop sensitive mitigation methods so as to enable 289

counterfactually fair LLM-based recommendation, 290

which we will introduce in the following sections. 291

4 Counterfactually-Fair Prompting 292

We propose a Counterfactually-Fair-Prompt (CFP) 293

method to mitigate the unfairness of LLM-based 294

recommendation, resulting in the development of 295

a fair and accurate recommendation foundation 296

model. Our approach is 1) personalized, since each 297

user can choose the attributes that they wish to be 298

treated fairly on, and 2) space and time efficient, 299

since our approach does not require retraining the 300

entire foundation model and only needs to train the 301

prefix prompts. The key idea of the CFP method is 302

to train a counterfactually-fair prompt (CFP): For 303

encoder-decoder LLM, we need an encoder prompt 304

penc to remove sensitive attributes and a decoder 305

prompt pdec to preserve the model performance; 306

For decoder-only LLM, we only need a decoder 307

prompt. Our goal is to learn such CFP so that sen- 308

sitive information in the user token embeddings is 309

removed by simply concatenating the CFP with the 310

original input prompt. 311

CFPs are trained by adversarial learning (Lowd 312

and Meek, 2005; Chakraborty et al., 2018; Zhao 313

et al., 2022). Adversarial learning requires a dis- 314

criminator module (Wang and Yu, 2019) aiming at 315

precise extraction of attribute values from embed- 316

dings, while CFP aims at obfuscation of the dis- 317

criminator’s efforts. Thus, the stronger the discrim- 318

inator, the more effectively we can clean sensitive 319

information from embeddings. According to the 320

probing experiments in Section 3, the multi-class 321

classifier is a stronger prober than other approaches. 322

Thus, we utilize the classifier as the discriminator 323

in adversarial learning. Figure 4 shows the model 324

architecture. We also present the results of using 325

the soft probing prompt as a discriminator in Sec- 326

tion 6 for comprehensiveness. 327

The model training involves an iterative process 328

where the CFP and the classifier are optimized in 329
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Figure 4: Counterfactually-Fair-Prompting method for sensitive attribute mitigation and fairness improvement

succession. For each attribute k, we denote the330

recommendation loss as Lk
rec and the discriminator331

loss as Lk
dis. Let M denote the recommendation332

foundation model and Ck as the classifier. Lk
rec333

is a negative log-likelihood loss that encourages334

generating the correct item y:335

Lk
rec = −

∑|y|

j=1
logP (yj |penck ◦ x, pdeck ◦ y0:j−1,M)

(2)336

Lk
dis is a Cross-Entropy Loss (CEL) that encour-337

ages predicting user attribute k correctly based on338

the average of user-relevant token embeddings E339

(e.g., the tokens “user”, “_”, and “1” in Figure 4)340

conditioned on penck . Denoting u as the user, and341

cu the correct attribute value for the user, Ldis is:342

Lk
dis = CEL(cu, Ck(mean(Eu))) (3)343

The adversarial loss Lk for each attribute k is de-344

fined as below, where λk denotes the discriminator345

weight for attribute k:346

Lk =
∑

u
Lk
rec − λk · Lk

dis (4)347

The training algorithm is presented in Appendix C.348

4.1 Prompt Mixture349

Users may seek recommendations that remain im-350

partial to several attributes at the same time. For351

instance, they may want a model to overlook de-352

tails like gender and marital status but still value353

recommendations that resonate with movie prefer-354

ences typical for their age group. Consequently,355

CFPs must possess the capacity to exclude sev-356

eral attributes in tandem. An elementary approach357

might involve developing a prompt for every possi-358

ble attribute combination, but this is operationally359

taxing given the exponential growth in the number360

of combinations.361

To solve the challenge, we propose a Prompt362

Mixture (PM) module. This module comprises363

a singular attention layer that combines the em- 364

beddings from various single-attribute CFPs to in- 365

tegrate user preferences. The attentional frame- 366

work offers flexibility regarding input length, al- 367

lowing for the integration of a variable number of 368

CFPs, each potentially of distinct lengths. The PM 369

is adept at processing information from different 370

CFPs, masking sensitive user information while 371

preserving other relevant details within the model- 372

generated hidden states. This positions the PM 373

as an invaluable instrument for a user-controllable 374

LLM-based recommendation model since users 375

have the freedom to choose different sensitive fea- 376

ture combinations, facilitating the assimilation of 377

multifaceted user stipulations without the neces- 378

sity for specialized model training for each unique 379

combination of requirements (Figure 5).

Figure 5: Prompt Mixture over CFPs from 3 attributes
380

Similar to single attribute prompt learning intro- 381

duced above, PM is also trained based on adversar- 382

ial learning, where each optimization step includes 383

a random combination of sensitive attributes se- 384

lected to be removed. PM takes a concatenation 385

of multiple single-attribute prefix prompts as input 386

and generates a new prompt, which is optimized 387

to simultaneously decrease the recommendation 388

loss and increase the sum of discriminator loss of 389
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Dataset MovieLens Insurance
Model PMF SimpleX P5 PMF SimpleX P5
↑ Hit@1 19.91 17.94 20.57 70.20 76.50 82.53
↑ Hit@3 38.66 38.79 38.38 75.23 80.12 92.68
↑ Hit@10 65.69 65.69 67.31 90.04 91.41 98.89
↓ AUC (G) 80.22 75.52 74.71 52.04 53.34 50.11
↓ AUC (A) 82.37 79.39 67.40 57.94 56.87 50.09
↓ AUC (O) 61.32 59.40 56.50 58.25 57.12 53.28
↓ AUC (M) – – – 71.30 68.85 69.25

Table 1: Results of matching-based recommendation,
G means Gender, A means Age, O means Occupation,
and M means Marital Status (%).

multiple classifiers. The loss function for one step390

with a set of randomly selected attributes K is:391

LK =
∑

u
(LK

rec − Σk∈Kλk · Lk
dis) (5)392

5 Experiments393

This section presents the experimental results of394

CFP on a variety of metrics, including recommen-395

dation performance and fairness level. The results396

show the model’s ability to achieve fairness in both397

single-attribute and multi-attribute scenarios.398

5.1 Experimental Setup399

Datasets Experiments are conducted on the400

MovieLens-1M dataset and Insurance dataset:401

MovieLens-1M(Harper and Konstan, 2015): The402

dataset contains user-movie interactions and user403

profile information: gender, age, and occupation.404

Gender is a binary feature, occupation is a twenty-405

one-class feature, and age is a seven-class feature.406

Insurance2: The dataset contains user-insurance407

interactions. The user profile contains four features:408

gender, marital status, age, and occupation. Gender409

is a binary feature, marital status is a seven-class410

feature, occupation is a six-class feature, and age411

is a five class feature.412

Evaluation Metrics To evaluate direct recom-413

mendation and sequential recommendation tasks,414

one correct item is predicted among 100 randomly415

selected negative samples for both tasks. The met-416

rics are Hit@k for k in {1, 3, 10}. We adopt the417

commonly used leave-one-out strategy (for each418

user, treat the second-to-last interacted item to be419

the validation item and the last interacted item to be420

the test item) to create the training, validation, and421

test datasets. We adopt AUC for user attribute clas-422

sification to evaluate whether sensitive attributes423

are involved in recommendations.424

2https://www.kaggle.com/datasets/mrmorj/insurance-
recommendation

Dataset MovieLens Insurance
Model SAS BERT P5 SAS BERT P5
↑ Hit@1 28.39 29.30 30.34 77.26 81.20 84.56
↑ Hit@3 53.89 49.06 49.26 85.15 93.33 93.99
↑ Hit@10 76.32 70.06 67.40 95.76 98.78 98.98
↓ AUC (G) 91.90 78.52 74.71 73.23 61.20 50.13
↓ AUC (A) 92.06 73.35 67.40 57.93 54.34 56.92
↓ AUC (O) 76.57 64.79 56.50 88.04 54.30 57.87
↓ AUC (M) – – – 76.61 76.11 76.37

Table 2: Results of sequential recommendation, G is
Gender, A is Age, O is Occupation, and M is Marital
Status (%). SAS is SASRec and BERT is Bert4Rec.

LLM Backbone We train the LLM recommen- 425

dation model under the P5 paradigm (Geng et al., 426

2022) using both T5-Base (Raffel et al., 2020) and 427

OpenLlama-3B (Geng and Liu, 2023) backbones. 428

We present results based on T5 in this section as the 429

main results for comparison, and detailed results 430

for the OpenLlama experiments are presented in 431

the Appendix B. 432

Baselines We adopt four SOTA fairness-aware 433

models as baselines: Li et al.’s Counterfactual- 434

filter method over PMF (C-PMF) and SimpleX 435

(C-SX), and Wu et al.’s Selective-prompt-adapter 436

method on SASRec (S-SAS) and BERT4Rec (S- 437

B4). PMF (Mnih and Salakhutdinov, 2007; Menon 438

and Williamson, 2018) is the Probabilistic Matrix 439

Factorization model that adds Gaussian prior into 440

the user and item latent factor distributions for ma- 441

trix factorization. SimpleX (Mao et al., 2021) is 442

a contrastive learning model based on cosine con- 443

trastive loss which has achieved state-of-the-art 444

performance on recommendation performance. Li 445

et al.’s unfairness-removing filters are applied right 446

after the user embedding computed by PMF and 447

SimpleX, which creates C-PMF and C-SX. SAS- 448

Rec (Kang and McAuley, 2018) is a sequential 449

recommendation model based on left-to-right self- 450

attention mechanism. BERT4Rec (Sun et al., 2019) 451

is a bidirectional sequential recommendation model 452

based on BERT. Wu et al.’s prompts are appended 453

to item sequences and adaptors are inserted into 454

each Transformer encoder block in SASRec and 455

BERT4Rec, which creates S-SAS and S-BERT. 456

Implementation Details The model hyper- 457

parameters are selected within the following range: 458

discriminator weight λ ∈ {1, 5, 10, 100}, prefix 459

length ∈ {5, 15, 30}, batch size = 16, number of 460

steps T ∈ {10, 20} to update C on Ldis or prefix 461

prompt P on Lrec, number of batches R ∈ {20} to 462

update prefix prompt P on adversarial loss L. 463
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Dataset MovieLens Insurance
Attribute Gender Age Occupation Age Marital Occupation
Model C-PMF C-SX CFP C-PMF C-SX CFP C-PMF C-SX CFP C-PMF C-SX CFP C-PMF C-SX CFP C-PMF C-SX CFP
↑ Hit@1 16.73 13.96 16.38 17.42 13.87 21.22 15.60 14.06 21.00 67.61 71.14 82.53 66.68 71.50 81.03 68.51 71.09 82.53
↑ Hit@3 34.03 29.56 35.04 34.20 29.61 39.22 34.36 29.56 38.50 73.25 83.23 92.68 74.23 83.00 90.58 74.09 82.23 92.68
↑ Hit@10 65.32 56.02 65.82 65.18 55.42 67.30 65.33 56.02 69.49 85.98 92.65 98.89 85.99 96.50 97.66 85.95 93.27 98.89
↓ AUC 56.62 70.80 54.19 62.55 79.26 52.91 56.01 57.02 50.00 50.81 51.26 50.09 52.10 56.23 52.19 54.40 52.09 53.28

Table 3: Results of single-attribute fairness-aware prompting on matching-based models (%)

Dataset MovieLens Insurance
Attribute Gender Age Occupation Age Marital Occupation
Model S-SAS S-B4 CFP S-SAS S-B4 CFP S-SAS S-B4 CFP S-SAS S-B4 CFP S-SAS S-B4 CFP S-SAS S-B4 CFP
↑ Hit@1 20.87 23.48 26.82 22.95 27.98 31.23 18.90 24.33 31.66 69.40 81.20 82.08 70.10 75.33 80.63 70.09 81.20 82.62
↑ Hit@3 41.64 42.09 45.18 44.10 49.32 51.18 20.84 43.29 50.73 80.05 93.33 92.62 80.38 84.54 90.16 80.38 93.33 92.65
↑ Hit@10 60.82 62.43 64.38 66.00 69.38 67.70 43.87 59.74 67.45 88.34 98.78 98.37 88.49 94.34 98.38 88.91 98.78 98.54
↓ AUC 59.72 58.33 54.19 60.20 67.33 52.91 67.27 60.36 50.00 57.48 53.34 51.23 66.51 69.11 50.03 86.66 54.30 50.82

Table 4: Results of single-attribute fairness-aware prompting on sequential models (%)

5.2 Overall Results of the CFP Model464

This subsection presents the overall results.465

Overall Performance Table 1 and Table 2466

present the recommendation performance and un-467

fairness of the baseline models for direct recom-468

mendation and sequential recommendation respec-469

tively. The first 3 rows on each table are the recom-470

mendation performance and the last 4 rows show471

the extent of unfairness. From the result, we see472

that LLM-based recommendation model (P5) per-473

forms better than other models on both datasets.474

Single-Attribute Scenario We compare the CFP475

model with fair matching-based models C-PMF476

and C-SX in Table 3 and fair sequential-based477

models S-SASRec and S-BERT4Rec in Table 4,478

since both frameworks provide solutions in single-479

attribute scenarios. CFP outperforms both fair480

matching-based and sequential-based models in481

terms of both AUC and recommendation accuracy.482

The AUC of CFP is close to 50%, indicating a high483

level of fairness since the model is unable to inferr484

users’ sensitive attributes, and the negative impact485

on recommendation performance is minimal com-486

pared to other models.487

Multi-Attribute Scenario We also provide ex-488

periment results on multi-attribute fairness treat-489

ment, as shown in Table 5 and Table 6. The at-490

tribute row denotes the set of attributes to be re-491

moved, where “G” represents “gender,” “A” repre-492

sents “age,” “O” represent “occupation,” and “M”493

represents “marital status”. Two or more attributes494

together such as “GA” means that the sensitive at-495

tributes need to be removed at the same time. We496

compare our CFP model with the two matching-497

based fairness baselines C-PMF and C-SX from498

Li et al., since the sequential fairness baselines499

from Wu et al. are unable to handle mutiple at- 500

tributes. We report the recommendation perfor- 501

mance and the average AUC for the targeted user 502

attributes in Table 5 (MovieLens) and Table 6 (In- 503

surance). We can see that our CFP method under 504

prompt mixture is an effective method to combine 505

the single-attribute prefix prompts, achieving fair- 506

ness and meanwhile maintaining high recommen- 507

dation performance. 508

6 Detailed Analysis 509

This section discusses the effect of different model 510

designs of the CFP method. We experiment on 1) 511

how hyperparameters such as prompt length and 512

discriminator weights affect the performance, and 513

2) how the choice of discriminator (classifier or 514

soft probing prompt) affects the performance. 515

Figure 6: Different prompt length on MovieLens

Figure 7: Different prompt length on Insurance

Hyperparameter Sensitivity In this section, we 516

study the effect of prompt length (5, 10, 15, 30) and 517

discriminator weight (0.1, 1, 10, and 100) on both 518

recommendation performance (Hit@1 on sequen- 519

tial recommendation) and attribute detection per- 520

formance (AUC). Figure 6 and 7 present the effects 521
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Model GA GO AO GAO
Attribute C-PMF C-SX CFP C-PMF C-SX CFP C-PMF C-SX CFP C-PMF C-SX CFP
↑ Hit@1 14.93 15.61 16.33 15.25 15.53 18.67 14.84 15.43 21.37 15.09 15.67 20.18
↑ Hit@3 32.11 31.79 37.48 32.70 31.84 39.02 31.83 31.87 39.83 32.58 31.85 38.79
↑ Hit@10 60.51 58.82 66.89 60.58 58.78 66.39 59.51 58.71 68.40 60.75 58.87 66.78
↓ Avg. AUC 58.03 70.25 54.22 56.57 60.90 52.10 56.57 64.41 50.00 56.54 65.19 53.21

Table 5: Results of multi-attribute fairness-aware prompting on MovieLens dataset (%)

Model AO AM MO AMO
Attribute C-PMF C-SX CFP C-PMF C-SX CFP C-PMF C-SX CFP C-PMF C-SX CFP
↑ Hit@1 63.68 71.58 79.00 62.27 71.23 80.91 62.44 71.11 78.30 64.38 72.30 81.63
↑ Hit@3 70.55 80.50 89.22 69.78 79.18 90.97 69.39 81.22 88.45 70.11 81.78 91.52
↑ Hit@10 84.88 93.61 97.66 83.85 93.22 98.73 84.88 93.52 97.33 85.90 93.35 97.37
↓ Avg. AUC 58.38 55.98 50.80 55.60 59.97 50.79 57.86 59.79 50.64 57.44 58.43 50.74

Table 6: Results of multi-attribute fairness-aware prompting on Insurance dataset (%)

of prefix prompt length on MovieLens and Insur-522

ance, respectively. In general, longer prefix length523

hurts fairness but improves the recommendation524

performance. Figure 8 and 9 present the results un-525

der different discriminator weight λ, showing that526

larger weights bring better fairness but hurt the rec-527

ommendation performance since the fairness term528

dominates the loss. Results indicate that we need to529

choose the prompt length and discriminator weight530

carefully to balance the fairness-recommendation531

trade-off.532

Figure 8: Different discriminator weight on MovieLens

Figure 9: Different discriminator weight on Insurance

Soft Probing Prompt as Discriminator This533

section discusses whether we can use soft probing534

prompt as the discriminator in adversarial training535

to improve fairness. According to the motivating536

experiments on probing fairness of LLMs (Sec-537

tion 3), soft probing prompt is a weaker tool to538

extract user attribute information compared with539

multi-class classier. To further validate this, we540

train the CFP using soft probing prompt as the dis-541

criminator. To test the effectiveness of the trained542

prompts, we append the trained CFP in front of the543

model inputs and then use 1) soft probing prompt 544

and 2) multi-class classifier to extract user attribute 545

information. We present the results on the Insur- 546

ance dataset targeting the marital status attribute 547

under different lengths of the CFP in Figure 10, 548

and other dataset and attributes have similar obser- 549

vations. We see that 1) the probing prompts cannot 550

extract any user attribute since its AUC is close to 551

50%, while the classifier can still extract non-trivial 552

sensitive attribute information from the LLM. 2) 553

longer CFPs are more effective in removing sensi- 554

tive attributes, since the classifier can extract less 555

information, while AUCs for probing prompts are 556

always around 50%. As a result, this result shows 557

that to train CFPs, it is better to use the classifier 558

instead of soft probing prompt as the discriminator. 559

Figure 10: Effect of different lengths on AUC using soft
probing prompt and classifier for probing

7 Conclusion and Future Work 560

This paper explores the unfairness issue of LLM 561

for recommendation by first probing the unfairness 562

issue of LLM-based recommendation models, and 563

then proposing a novel CFP method to mitigate the 564

issue, enabling a fair recommendation foundation 565

model. In the future, we will explore fairness in 566

other aspects of LLM-based recommendation, such 567

as explanation generation and conversational rec- 568

ommendation. We are also committed to develop- 569

ing user-friendly interfaces and algorithms that are 570

responsive to user specifications for user control- 571

lable fairness without compromising the system’s 572

performance or user experience. 573
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8 Limitation574

The paper investigates unfairness issues in large lan-575

guage models for recommender systems. However,576

the paper still has several limitations. In particular,577

though we explored fairness of LLM-based rec-578

ommendation over several sensitive features such579

as gender, age, and occupation, we did not study580

the bias problems with regard to historically dis-581

advantaged groups. The reason is because we are582

not aware of the availability of any dataset con-583

taining such sensitive feature information. In the584

future, when such dataset becomes available, we585

plan to extend our exploration on the fairness of586

LLM-based recommendation over such features.587

9 Ethical Consideration588

Our method is proposed to increase the fairness589

of recommendation performance for users. It will590

unlikely lead to negative societal impacts.591
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APPENDIX876

A Probing Unfairness in LLM-based RS877

Probing the user attributes out of LLM is a non-878

trivial task in LLM-based RS because each user879

does not have one specific user embedding. In this880

section, we illustrate three methods to detect un-881

fairness of LLM-based RS. The results show that882

even if the training data does not explicitly use user-883

sensitive attributes, LLM-based RS still implicitly884

infers user information and possibly leaks it.885

In general, there are three distinct methodolo-886

gies for probing user attributes in LLM: (1) elicit-887

ing attributes through in-context learning utilizing888

interpretable discrete prompts that are manually de-889

signed, (2) eliciting attributes through the training890

of tunable prompts, and in this paper, we adopt soft891

prompts which are more amenable to optimization892

compared with discrete prompts, (3) training a clas-893

sifier on embeddings generated for user tokens that894

appear in the input prompts. The three subsections895

below show how much user attribute information is896

encoded and how they can be probed by the three897

methods above.898

A.1 Manually-Designed Prompt899

In the first method, we directly adopt manually-900

designed discrete prompts using in-context learning901

to probe user sensitive attributes out of the LLM.902

We use questions about users with (or without)903

their item interaction history and expect reasonable904

answers when multiple examples are appended in905

the input.906

More specifically, we test two types of manual907

prompts: direct prompts and in-context learning908

prompts. The direct prompt directly asks the LLM909

about a user’s sensitive attribute, as shown by the910

following example, one without user-item interac-911

tion and one with user-item interaction.912

Discrete Prompt without User-Item Interaction
Input: What is the {{attribute}} for user_{{user_id}}?
Output: {{user attribute value}}
Discrete Prompt with User-Item Interaction
Input: User_{{user_id}} has watched movies (or bought
insurance) {{sequence of movie (or insurance) IDs}}. What
is the {{attribute}} of user_{{user_id}}? Output: {{user
attribute value}}

The attribute can be gender, age, occupation or913

marital status provided by MovieLens and Insur-914

ance datasets. The answer template is simply the915

value of the questioned attribute, such as female916

/ male, above / below 55 years old, or single /917

(a) Soft Prompt Method

(b) Multi-class Classifier Method

Figure 11: Details for Probing Methods

married. We constrain the output generated from 918

the decoder based on constrained token generation 919

over all possible values of the questioned attribute 920

(De Cao et al., 2021). 921

For in-context learning prompts, contextual ex- 922

amples, which are question-answer pairs of ran- 923

domly sampled known users, are appended before 924

the question. We use as many contextual examples 925

as the maximum input length allows. The follow- 926

ing example presents in-context learning prompts 927

for the MovieLens dataset with and without user- 928

item interaction information. We use gray color to 929

differentiate the context from the question. 930

In-context Learning Example w/o User-Item Interaction
Input: What is the gender of user_1? Female. What is the
gender of user_2? Male. What is the gender of user_3?
Female. What is the gender of user_4? Female. What is the
gender of user_5? Male. What is the gender of user_10?
Output: Male
In-context Learning Example w/ User-Item Interaction
Input: User_1 has watched movies 17, 1991, 29, 3039, 890.
What is the gender of user_1? Female. User_2 has watched
movies 29, 1084, 27, 93, 781. What is the gender of user_2?
Male. User_10 has watched movies 136, 798, 2778, 1894,
1. What is the gender of user_10? Output: Male.

We measure the performance of probing user 931

sensitive attributes from LLM using AUC and re- 932

sults are presented in Table 7. We notice that the 933

AUC is either 50% or slightly above 50%, indi- 934

cating that the prediction result is no better than 935

random guessing. Thus even if there is user sensi- 936

tive information encoded in LLM such as P5 (see 937

the next two subsections), direct prompting can- 938

not elicit it. The reason may be that the model is 939

trained using numerical user and item identifiers 940
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MovieLens Gender Age Occupation –
w/ interaction 50.33 50.09 50.00 –
w/o interaction 50.26 50.00 50.00 –
Insurance Gender Age Occupation Marital
w/ interaction 50.00 50.33 50.47 50.20
w/o interaction 50.00 50.00 50.00 50.00

Table 7: Manually-Designed Prompt AUC (%)

rather than natural language labels or descriptions941

and does not include any additional user or item942

metadata. Therefore, prompts designed using natu-943

ral language may not align with the numerical rep-944

resentations used in the model’s training. Manual945

prompts’ failure can be considered as an advantage946

of LLM-based RS, as user attributes will not be947

leaked too easily.948

A.2 Soft Probing Prompt Tuning949

In the second method, we adopt tunable prompts950

proposed in Lester et al. to explore soft prompt951

tuning with a frozen pre-trained LLM-based RS to952

elicit attributes. Each attribute has one soft prob-953

ing prompt trained, which is tailored to act as a954

question, guiding the model to produce desired out-955

comes. Soft probing prompts can be optimized956

end-to-end over a training dataset and can con-957

dense information by learning from the training.958

The model structure is presented in Figure 11(a).959

The encoder input is a concatenation of an encoder960

attribute prompt and an untunable discrete prompt,961

where the discrete prompt part includes the target962

user and relevant user-item interaction history, as963

shown below:964

User user_{{user_id}} has watched movies (or bought in-
surances) {{sequence of item IDs}}.

The decoder attends to the decoder attribute prompt,965

the previously generated tokens, and the encoder966

hidden state to predict the probability distribution967

of future tokens. The encoder attribute prompt and968

decoder attribute prompt are generated respectively969

by a two-layer multi-layer perceptron (MLP) and970

a three-layer MLP as proposed in (Li and Liang,971

2021). The prompts are tuned by minimizing the972

negative log-likelihood of the attribute value to-973

kens y conditioned on the input text x and the soft974

probing prompts p in an end-to-end manner:975

L = −
∑|y|

j=1
logP (yj |y<j , x, p) (6)976

For answer generation, we also apply the con-977

strained generation as in manual prompting.978

In experiments, we create separate train and test979

datasets by dividing all users into two groups in a980

MovieLens gender age occupation –
70.84 64.60 56.50 –

Insurance gender age occupation marital
50.00 51.80 50.00 70.28

Table 8: Soft Probing Prompt Tuning AUC (%)

MovieLens gender age occupation –
74.71 67.40 53.47 –

Insurance gender age occupation marital
50.13 56.92 57.87 76.37

Table 9: Multi-class Classifier AUC (%)

9:1 ratio, and generating a unique discrete attribute 981

prompt for each user in the process. Experimental 982

results on MovieLens and Insurance datasets are 983

shown in Table 8. We notice that using soft probing 984

prompt tuning does generate non-trivial predictions 985

on user attributes, especially on MovieLens dataset, 986

indicating that LLM-based RS does encode user 987

attributes and leaks personal information. 988

A.3 Multi-Class Classifier 989

The third probing method trains a multi-class clas- 990

sifier on the user token embeddings generated by 991

the encoder for all input sentences in the training 992

set. The model structure is presented in Figure 993

11(b), where the classifier is a seven-layer multi- 994

layer perceptron (MLP) network trained by stan- 995

dard cross-entropy loss. Tables 9 presents the AUC 996

results. The non-trivial AUC scores indicate that 997

LLM-based RS also suffers from user information 998

leakage, similar to other RS models. We also ob- 999

serve that the AUC scores obtained from the trained 1000

classifier tend to be higher than those obtained 1001

through soft probing prompt tuning. This suggests 1002

that training a classifier is a more effective prob- 1003

ing method of user sensitive attributes from LLMs 1004

than training soft probing prompts. This obser- 1005

vation highlights that the cross-entropy loss over 1006

multiple classes is better suitable than the negative 1007

log-likelihood loss over the entire vocabulary. This 1008

observation is leveraged in our design of fairness- 1009

aware foundation model architecture. 1010

A.4 Summary of Probing LLM-RS Unfairness 1011

This section demonstrates three possible methods 1012

to elicit user sensitive attributes from LLM-based 1013

RS: manually-designed discrete prompts, soft prob- 1014

ing prompts, and multi-class classifier. The latter 1015

two successfully generate non-trivial user attribute 1016

values among the three methods. Figure 3 illus- 1017

trates the degree of unfairness on LLM models 1018

trained on MovieLens and Insurance datasets, mea- 1019
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sured by the AUC of label prediction. The model1020

on MovieLens is unfair on gender, age, and slightly1021

on occupation, while the model on Insurance is1022

unfair on the marital status the most.1023

B Results on P5-OpenLlama-3B1024

This appendix presents all the experiment results of1025

the P5 recommendation paradigm under the Open-1026

llama-3B backbone. The observations here are1027

largely consistent with that under the T5 backbone.1028

Table 10 and Table 11 present the recommenda-1029

tion performance and AUC scores.

Dataset MovieLens Insurance
↑ Hit@1 22.79 83.01
↑ Hit@3 35.97 87.95
↑ Hit@10 62.18 87.95
↓ AUC (G) 73.39 50.49
↓ AUC (A) 59.59 51.68
↓ AUC (O) 50.43 50.18
↓ AUC (M) – 58.40

Table 10: Results of matching-based recommendation,
G means Gender, A means Age, O means Occupation,
and M means Marital Status (%).

1030

Dataset MovieLens Insurance
↑ Hit@1 33.70 84.17
↑ Hit@3 46.92 87.23
↑ Hit@10 68.18 90.11
↓ AUC (G) 73.39 51.32
↓ AUC (A) 59.59 52.40
↓ AUC (O) 50.43 50.97
↓ AUC (M) – 61.89

Table 11: Results of sequential-based recommendation,
G means Gender, A means Age, O means Occupation,
and M means Marital Status (%).

Tables 12 and 13 present the single-attribute fair-1031

ness performance using single-attribute CFPs.1032

Dataset MovieLens Insurance
Attribute Gender Age Occupation Age Marital Occupation
↑ Hit@1 20.78 22.08 22.79 83.01 82.74 83.01
↑ Hit@3 34.62 35.12 35.97 87.95 87.31 87.95
↑ Hit@10 59.14 60.97 62.18 87.95 87.92 87.95
↓ AUC 52.30 50.23 50.43 51.68 50.00 50.18

Table 12: Results of single-attribute fairness-aware
prompting on matching-based models (%)

Tables 14 and 15 present the multi-attribute1033

fairness-aware performance using prompt mixture1034

over multiple CFPs.1035

Dataset MovieLens Insurance
Attribute Gender Age Occupation Age Marital Occupation
↑ Hit@1 31.72 32.69 33.70 84.17 82.33 84.17
↑ Hit@3 44.60 45.72 46.92 87.23 86.14 87.23
↑ Hit@10 65.13 67.73 68.18 90.11 88.90 90.11
↓ AUC 54.38 52.25 50.43 52.40 50.23 50.97

Table 13: Results of single-attribute fairness-aware
prompting on sequential models (%)

Model GA GO AO GAO
↑ Hit@1 22.13 20.78 22.08 22.13
↑ Hit@3 36.77 34.62 35.12 36.77
↑ Hit@10 60.08 59.14 60.97 60.08
↓ Avg. AUC 50.49 51.37 50.33 50.47

Table 14: Results of multi-attribute fairness-aware
prompting on MovieLens dataset (%)

Model AO AM MO AMO
↑ Hit@1 84.17 82.33 82.33 82.33
↑ Hit@3 87.23 86.14 86.14 86.14
↑ Hit@10 90.11 88.90 88.90 88.90
↓ Avg. AUC 51.69 51.32 50.60 51.20

Table 15: Results of multi-attribute fairness-aware
prompting on Insurance dataset (%)

C Pseudo Code for CFP Training 1036

In this section, we provide the pseudo code of train- 1037

ing the Counterfactually-Fair Prompts (CFP) for 1038

unbiased recommendation foundation model. 1039

Algorithm 1 CFP Training
Require: Pretrained LLM4RSM, Randomly initialized pre-

fix prompt P , Randomly initialized classifier C, discrim-
inator loss weight λ, number of epochs Epoch_num,
number of steps T to update C on Ldis or prefix prompt
P on Lrec, number of batches R to update prefix prompt
P on adversarial loss L

1: for epoch← 1 toEpoch_num do
2: for batch_num, batch do
3: for i ∈ [1, T ] do
4: rec_loss, u_emb←P(M,batch)
5: dis_loss← C(u_emb, label_u)
6: L← rec_loss - λ · dis_loss
7: Optimize P based on L withM, C fixed
8: end for
9: if batch_num % R == 0 then

10: for i ∈ [1, T] do
11: rec_loss←P(M,batch)
12: Optimize P on rec_loss withM, C fixed
13: end for
14: for i ∈ [1, T] do
15: rec_loss, u_emb←P(M,batch)
16: dis_loss← C(u_emb, label_u)
17: Optimize C on dis_loss withM,P fixed
18: end for
19: end if
20: end for
21: end for
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