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Abstract
The rise of AI workloads has driven the need
for efficient liquid cooling in high-density data
centers, yet current systems lack intelligent, inter-
pretable control. We propose a novel framework
combining Reinforcement Learning (RL) with
Large Language Models (LLMs) to optimize end-
to-end liquid cooling, from server cabinets to the
cooling towers, while providing natural language
explanations for control actions. Our approach
includes a hybrid of a multi-agent Reinforcement
Learning and a Large Language Model controller.
Evaluated on a baseline of Oak Ridge National
Lab’s Frontier Supercomputer based scalable liq-
uid cooling Modelica model, it improves temper-
ature stability and energy efficiency, offering a
scalable and transparent solution for sustainable
data center cooling.

1. Introduction
Rising HPC and AI workloads have sharply increased
data center energy use, projected to consume a signif-
icant % of global electrical energy by 2030. Cool-
ing—especially in liquid-cooled (LC) systems for dense
GPU clusters—accounts for a major share (Luo et al., 2024;
Ott et al., 2024). LC offers superior thermal efficiency over
air cooling and can reduce energy and emissions by up to
63% (Azarifar et al., 2024; Habibi Khalaj & Halgamuge,
2017). Yet, many LC systems still rely on fixed-level or
fixed-rule controllers (Chen et al., 2020; Shahi et al., 2022;
Lucchese et al., 2020), lacking adaptability to workload and
environmental variability.

Advanced setups like ORNL’s Frontier use closed-loop LC
with Cooling Distribution Units (CDUs), pumps, -cooling
towers (CT), and heat exchangers (Wetter et al., 2014;
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Figure 1: System Overview of end-to-end Control of Liquid
Cooled Data Center. The CDU RL agents control the HPC server
cabinets. The Cooling Towers are controlled by the CT RL agents.

Greenwood, 2020; Kumar et al., 2024), requiring dynamic
control across nonlinear, delayed systems. While reinforce-
ment learning (RL) enables adaptive control, its opacity hin-
ders trust in safety-critical environments (Raschka, 2025).
This paper proposes and evaluates three cooling controllers:

1. Pure RL: Learns end-to-end cooling policies.
2. Hybrid LLM+RL: Combines LLMs for planning and

high level policies and RL for actuation.
3. LLM-only: Generates control actions via prompt-

based reasoning.

All are paired with a universal LLM explanation mod-
ule that generates natural language rationales for trans-
parency. Experiments use a simulation environment built on
a Frontier-based FMU (Brewer et al., 2024a), evaluated with
real workload traces and open-source LLMs (e.g., LLaMA,
Qwen). Key contributions:

• Comparative study of RL-only, LLM+RL, and LLM-
only controllers.

• LLM-based explanation module for interpretable cool-
ing control.

• Evaluation on a realistic platform using performance
and interpretability metrics.

2. Related Works
Increasing energy demands and environmental concerns
have intensified research into data center cooling. Tradi-
tional rule-based methods lack adaptability for modern HPC
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and AI workloads (Ellsworth Jr, 2012; Fulpagare & Bhargav,
2015), while liquid cooling offers higher efficiency (Wes-
tra, 2009; Khalaj & Halgamuge, 2017) but adds control
complexity (Patterson et al., 2016).

ML approaches, especially RL, have shown promise in air-
cooled systems (Meta Engineering Team, 2024; Zhan et al.,
2025) and are now being extended to liquid cooling (Brewer
et al., 2024b; Sarkar et al., 2025; Li et al., 2024). Industrial
adoption is growing rapidly, with direct-to-chip cooling
projected to reach $11.89B by 2034 (Data Center Frontier,
2024; GlobeNewswire, 2025).

Yet, RL’s lack of interpretability hinders deployment in
safety-critical settings (DataRoot Labs, 2025; AAAI, 2025).
LLMs offer a solution by explaining black-box decisions
in natural language (Raschka, 2025). This work combines
multi-agent RL with LLM-based explanation to enable trans-
parent, trustworthy liquid cooling control.

3. Simulation Environment
We evaluate all controllers using a high-fidelity simulator
based on ORNL’s Frontier liquid-cooled data center. The
environment models detailed interactions between cabinet-
side CDUs and cooling towers (CTs), enabling closed-loop
RL and LLM control.

3.1. System Overview

Figure 1 illustrates the system: server blades are cooled
by CDUs, which circulate coolant via heat exchangers and
pumps. Heat is transferred through a shared hot-water loop
to CTs, with performance influenced by weather (e.g., wet-
bulb temperature).

3.2. Modeling Framework

The system is implemented in Modelica and exported as
a Functional Mock-up Unit (FMU), forming a nonlinear
control environment. A Gym-compatible Python interface
enables ML training. As shown in Figure 2, agents control
CDU flow rates, valve positions, and CT outlet temperature.
Components are defined via a hierarchical JSON schema
and instantiated using AutoCSM (Greenwood et al., 2024).

Cooling Tower 
ML Control 

Blade Group ML 
Control 

CDU 
ML Controls 

Figure 2: Modelica model augmentations: RL-actuated replace-
ments for rule-based control at CDUs and CTs.

3.3. Control Interfaces and MDPs

The simulator defines two MDPs: (1) a Cooling Tower
MDP for adjusting CT outlet temperature to reduce energy
use, and (2) a Blade Group MDP for managing coolant flow
and setpoints at the cabinet level. Both share a transition
model but are trained independently due to weak thermal
coupling. Centralized training was unstable, so we use
independent training with shared inference. Inputs like
server heating and weather come from public data sets.

3.4. Scalability

The framework scales from small setups to full HPC systems
via JSON configuration and FMU presets. It supports multi-
agent control, hybrid actions, and interpretability features.

4. Control Strategy Design
4.1. RL-Only Controller

We implement a hierarchical PPO agent comprising a meta-
controller (every τ=5 steps) and five cabinet-level agents
(every step). Each cabinet observes a 6-D state (return
temperatures and power), while the cooling tower observes
4-D (fan power and water temperatures). Cabinet actions:

acab =
[
Tset, ∆P, V1, V2, V3

]
,

where V1:3 are softmax-normalized valve openings. The
tower agent selects discrete deltas for the outlet water tem-
perature. The reward balances thermal accuracy, efficiency,
and workload alignment,

rcab = 0.7 ralign + 0.3 reff + rtemp.

Full hyper-parameters are listed in Appendix D.

4.2. Hybrid LLM + RL Controller

As illustrated in Figure 3, the hybrid controller combines
a pretrained language model (LLM) with a reinforcement
learning (RL) policy. At each timestep, the LLM produces
a high-level intent vector zt, which guides the RL policy in
generating refined control actions:

aRL
t = πθ(st, zt).

The final action is a weighted blend of the LLM’s proposal
aLLM
t and the RL output aRL

t , modulated by a dynamic mix-
ing factor:

at = (1− α(st)) · aRL
t + α(st) · aLLM

t ,

α(st) = wtemp · αtemp + wenergy · αenergy.

This design separates roles: the LLM provides high-level
guidance via zt, while the RL policy handles low-level
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actuation. The mixing function α(st) adapts based on the
current thermal state and energy profile, ensuring the system
leans on the RL policy in uncertain or volatile regimes.

Although the LLM can correct or steer policy behavior with
reasoning-informed adjustments, its influence is bounded
by conservative gating strategies that prioritize stability and
policy safety. This architecture reflects practical deploy-
ment needs—enabling flexible control while retaining the
structure of a trained RL policy.

4.3. LLM-Only Controller

The LLM-only controller removes the RL component en-
tirely and directly generates control actions using a language
model fine-tuned via imitation learning on expert RL tra-
jectories. At inference time, it receives structured prompts
encoding the current state, actuator limits, and contextual
information, and outputs both structured action commands
and natural-language rationales.

Unlike the hybrid controller, this architecture enables fully
end-to-end decision-making: the LLM interprets observa-
tions and issues control decisions without blending con-
straints or conflicting signals. As a result, the LLM-
only controller exhibits greater consistency and coher-
ence—particularly in reasoning-intensive or symbolically
aligned tasks—though it needs explicit safety guarantees as
guard rail directives unlike RL.

Imitation Learning. A dataset D = {(xi, yi)} pairs system
observations with expert rationales and actions. The LLM
is trained to minimize:

LIL(θ) =
1

N

∑
i,t

− log pθ(yi,t | xi, yi,<t)

Inference. Prompts include system state, actuator limits,
and qualitative labels (e.g., “above target”). The LLM out-
puts a reasoning trace followed by structured control actions.

Actions. Outputs include cabinet actions
acab
t = [τt, ft, α

(1)
t , α

(2)
t , α

(3)
t ] and CT delta

atower
t ∈ {−0.20, ..., 0.20}, parsed inline or structurally.

Design Insights. Key improvements include encoding ther-
mal deviation direction, training on temperature-specific
prompts, and validating outputs for safety and plausibility.

4.4. Control Setup

Observations included blade-group return temperatures and
heating inputs, as well as cooling tower metrics such as
power consumption and water return temperature. Ac-
tions comprised setpoints for CDU supply temperature and
coolant flow rate, valve openings for blade-group branches,
and the cooling tower’s output water temperature setpoint.

4.5. LLM-Based Interpretability

To ensure transparency across all controllers, we employ
a post hoc LLM-based module that generates natural lan-
guage rationales from observation–action pairs. This expla-
nation module is model-agnostic and operates independently
of training and control execution. At each step during in-
ference, it receives the system state st and action at, and
formats them into a structured prompt:

Observation: [state vector]
Action Taken: [action vector]
Explain why this action is appropriate.

Few-shot examples—typically drawn from expert or con-
fident trajectories—guide the LLM to generate grounded,
context-aware explanations. Outputs link control actions
to thermal conditions, identifying phenomena such as heat
imbalance, undercooling risk, or workload alignment.

In the RL-only controller, this module provides retrospec-
tive explanations of the agent’s black-box behavior, enabling
human-in-the-loop validation without modifying the under-
lying policy. For the hybrid controller, the module has
access to both the RL and LLM components of the blended
action, allowing for more expressive and interpretable ra-
tionales. While the LLM does not introspect RL internals,
it helps externalize control behavior in terms aligned with
physical constraints and operational goals.

The hybrid design leverages RL for risk-averse fine control
but tempers the LLM’s influence through a conservative
mixing factor α(st). By contrast, the pure LLM variant
enjoys full autonomy—yielding higher interpretability and
consistency in reasoning-dominant scenarios, albeit without
the fallback safety net of an RL policy.

5. Experimental Setup
We evaluate three controller architectures: (1) RL-only, (2)
hybrid RL+LLM, and (3) LLM-only. Experiments are run
on a Modelica-based simulation of ORNL’s Frontier sys-
tem, compiled as a Functional Mock-up Unit (FMU) and
interfaced with Python via Gymnasium.

The simulator models five compute cabinets and one cooling
tower, with configurable thermal and fluid dynamics. Con-
trollers act at 1-second intervals based on observed tempera-
tures, power, and environmental signals. All architectures
are tested under identical workloads, ambient conditions,
and actuator constraints.

To ensure fairness, both the hybrid and LLM-only con-
trollers use the same pretrained LLM, with fine-tuning per-
formed on expert trajectories from the RL-only policy. We
also evaluate base (unfine-tuned) LLMs to isolate the effect
of imitation learning.

A shared reward function balances thermal accuracy, energy
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Figure 3: Hybrid controller: LLM proposes high-level intents; RL refines and blends them, with explanations generated on demand.

Figure 4: LLM explanation for cabinet control

Figure 5: LLM explanation for cooling tower control
use, and workload alignment, with fixed coefficients across
all controllers. We did not optimize the reward weights in
this study.

Tests with meta-controller intervals of 1s and 10s showed no
significant degradation in thermal response, though longer
intervals may require further analysis. Additional details
are provided in Appendix B.

5.1. Simulation Environment

We use the SmallFrontierModel, simulating five com-
pute blocks with CDUs and a four-cell cooling tower (two
observable). Controllers adjust coolant temperature, flow,
pressure, valve positions, and tower outlet delta. Constraints
include 293.15–313.15 K coolant temps, 25–38 kPa pres-
sure, and 0.1–10 m³/s flow. All controllers use a unified

reward balancing thermal stability and energy efficiency,
tested under identical workloads and weather traces.

5.2. Controller Architectures

RL Controller. A hierarchical PPO-based setup uses a high-
level policy (every 5 steps) to control CT and cabinet targets.
Low-level cabinet agents output continuous control actions.
Policies share a feedforward architecture and are trained for
2M steps with 8 parallel workers.

Hybrid Controller. Combines RL control with LLM-
guided adjustments. The LLM receives structured prompts
and its suggestions are mixed with RL actions via a dynamic
coefficient α(st), based on thermal and energy conditions.
Outputs are safety-checked before execution.

LLM-Only Controller. Trained via imitation learning on
RL trajectories, the LLM receives system state prompts and
outputs JSON-formatted actions with rationales. Fine-tuned
versions of Qwen3 8B and LLaMA 3.1 8B are compared to
base models. Fallback mechanisms ensure robustness.

5.3. Evaluation Metrics

Detailed definitions of all metrics are available in Ap-
pendix F.

6. Results and Discussion
We compare three controllers—RL-only, hybrid RL+LLM,
and LLM-only—using a Frontier-based simulation. The
LLM-only controller consistently outperforms others across
temperature stability, energy efficiency, and composite re-
ward (Fig. 6, Fig. 7), maintaining tighter thermal control
and reduced energy use, drawing it’s strength from a combi-
nation of structured reasoning and expert policy imitation.

Cooling tower action distributions reveal distinct patterns:
RL favors conservative mid-range actions; hybrid spreads
across the range due to policy mixing; and LLM-only
prefers low to mid-range, energy-efficient actions, guided
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Figure 6: Comparison of controller performance on primary evalu-
ation metrics.

Figure 7: Comparison of controller performance on primary evalu-
ation metrics.

by reasoning-based policies (Fig. 8) (Appendix).

Temperature profiles further highlight the LLM-only con-
troller’s stability, with average cabinet temps at 27.57°C,
minimal fluctuation (avg. deviation 2.53°C), and no thermal
spikes. It also significantly outperforms others in time spent
within ±2°C of the target.

Comparing base vs. fine-tuned LLMs (Fig. 6), fine-tuned
LLaMA shows marked gains in thermal control and over-
all reward. Qwen’s base model excels in energy effi-
ciency but sees inconsistent results post-tuning, suggesting
architecture-dependent fine-tuning efficacy.

The LLM-only controller excels where RL and hybrid falter.
RL struggles with delayed dynamics and sparse rewards;
hybrid underutilizes LLM input due to non-adaptive blend-
ing and parallel control logic, where more work needs to
be done. In contrast, the LLM-only approach leverages
pretraining, structured prompts, and symbolic reasoning
to produce generalizable, stable, and energy-aware con-
trol—learning heuristics like “increase cooling with rising
power” without explicit supervision.

Crucially, the LLM also generates intermediate natural lan-
guage rationales (Figs. 4, 5) that enhance transparency and
decision quality. Reasoning-augmented prompts improve
performance, especially under highly variable workloads,
enabling the LLM to act as both a controller and an inter-
pretable agent.

6.1. Base vs. Fine-Tuned LLMs

In our experiments at the time of publishing this paper, we
got different outcomes between fine-tuned vs base LLMs
for Llama and Qwen. Even though for Llama the FT model
outperformed the base model, it was the reverse for Qwen.
Unlike the prevailing intuition the base LLM model which
operates in a true few-shot setting—receiving a large num-
ber of relevant demonstrations at inference time, outshone
the fine-tuned LLM model which encodes its policy pri-
marily within adapter weights from RL traces and receives
less per-example guidance. This leads to some intriguing
insights as follows.
Few-shot prompting allows in-context adaptation, enabling
the base model to handle outliers—like a hot cabinet in
branch 2 - unlike fine-tuned models that follow policy with
limited flexibility. The base model also enhances robustness
to distribution shifts by re-anchoring the model to local con-
ditions under extreme workloads, whereas fine-tuned mod-
els remain tied to their unbalanced training data. Prompting
retains generalist priors, avoiding the overspecialization that
fine-tuning on narrow data can cause. It also supports better
cross-condition generalization, as base models guided by
structured prompts can outperform fine-tuned models that
overfit to specific RL patterns.

These observations suggest that the base model’s few-shot
learning capability is a powerful mechanism for rapid adap-
tation. However, to close the remaining gap, we are extend-
ing fine-tuning with additional RL-generated trajectories to
cover outliers and exploring training schemes that encour-
age the LLM to generalize beyond pure imitation of the
expert policy, with a healthy balance of few shot training
and chain of thought.

7. Conclusion
We introduced a modular and interpretable control frame-
work for sustainable liquid cooling in data centers by
leveraging large language models (LLMs) alongside rein-
forcement learning (RL). Our study compared three con-
troller paradigms—RL-only, hybrid RL+LLM, and LLM-
only—on a high-fidelity simulator modeled after the ORNL
Frontier system. Through extensive experiments, we
showed that LLMs, when trained via imitation learning
and guided by structured prompting, can surpass RL meth-
ods in key metrics such as temperature stability and en-
ergy efficiency for liquid cooling of DC. Beyond perfor-
mance, our architecture provides interpretability through
chain-of-thought reasoning, enabling natural language au-
diting. These findings support the promise of language-
driven control policies that unify optimization and explain-
ability—an essential direction for scalable and trustworthy
DC operations. The intersection of RL and LLM holds
significant prospect and calls for continued investigation.
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A. Controller Design
System Inputs and Outputs

Compute Cabinet
Inputs (Observations):

• Temp 1–3 (K): Return temperatures from blade-groups 1, 2, and 3. (A blade-group is a collection of servers cooled by
a single coolant flow channel.)

• Heat 1–3 (kW): Heat generated by server workloads in blade-groups 1, 2, and 3.

Outputs (Actions):

• CDU Supply Temp Setpoint (°C, z-scored): Coolant supply temperature setpoint delivered to all three branches.

• Pump Flow Rate (m³/h, z-scored): Coolant flow rate pumped through the cabinet.

• Valve Opening 1–3 (0–1): Fractional opening of the three branch valves, controlling coolant distribution to each
blade-group.

Cooling Tower
Inputs (Observations):

• Power consumption of cell 1 in cooling tower 1.

• Water return temperature from the cooling tower.

Output (Action):

• Cooling tower water leaving temperature setpoint.

A.1. Nature of Hybrid and LLM controllers

The hybrid controller combines a pretrained language model (LLM) with a reinforcement learning (RL) policy to produce
refined control actions. At each timestep, both the LLM and the RL policy independently generate candidate actions based on
the current system state and recent trends. These outputs are then blended using a dynamic mixing factor, α(st)α(st)α(st),
computed from features such as temperature deviation and energy usage. This design allows the LLM to adjust or guide the
RL output, offering reasoning-informed refinements while retaining the structure and safety of the trained policy. However,
because the two modules operate in parallel rather than hierarchically, the LLM’s influence is often constrained—particularly
in volatile regimes—due to conservative mixing strategies that tend to favor the RL output.

By contrast, the LLM-only controller omits the RL component entirely and directly produces control actions using a
language model fine-tuned via imitation learning on expert RL trajectories. This controller receives structured prompts
encoding the system state, actuator limits, and relevant context, and returns both a natural language rationale and structured
action commands. Its architecture enables fully end-to-end decision-making, where the LLM is solely responsible for
interpreting observations and generating control actions, unencumbered by blending constraints or conflicting signals. As
a result, the LLM-only controller exhibits greater consistency and coherence in scenarios where reasoning and symbolic
alignment are critical to stable thermal management.

B. Experimental Setup
Training and Evaluation Setup. In the hybrid controller, the LLM is used in a purely prompted fashion—no fine-tuning
is applied. At each timestep, it receives a structured prompt encoding the current system state and recent trends, and returns
a suggested action, which is then blended with the RL policy output using the dynamic mixing factor α(st). This design
enables real-time augmentation of the RL policy while preserving its safety properties and learned structure.
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In contrast, the LLM-only controller is trained via supervised fine-tuning (SFT) using imitation learning on expert trajectories
generated from the same pretrained RL policy used in our RL-only baseline. These trajectories consist of observation-action
pairs and, optionally, natural language rationales. This shared expert ensures consistency across baselines and provides
high-quality supervision for SFT.

To ensure fair evaluation, we include both base and fine-tuned versions of the LLM in our experiments. Interestingly, the
base (unfine-tuned) LLM already performs competitively on several metrics, indicating that performance gains are not solely
due to supervised adaptation. Note also that the hybrid controller uses the same base LLM at inference time, reflecting
realistic deployment conditions where lightweight integration of pretrained models is often preferred.

C. LLM Intrepretability Examples
C.1. Llama3.1 Detailed Explanation

C.1.1. DETAILED EXPLANATION (LLAMA-3.1-8B-INSTRUCT)

Detailed Explanation

EXECUTIVE SUMMARY:
The current system is focused on balancing temperature stability and energy efficiency. The cabinet valves are distributed to
match the power distribution across blade groups, while the cooling tower is set to very low cooling to avoid energy wastage.
However, there is room for improvement in aligning temperature setpoints with goals and considering trade-offs between stability
and efficiency.
TEMPERATURE STABILITY:
• Overall Assessment: The overall temperature stability is rated as moderate (score: 0.6341). While the system maintains
reasonable temperature levels, there are deviations from desired goals, especially in cabinets 1 and 5.
• Cabinet Temperature Control: The valve positions are distributed to match the power distribution across blade groups, which
helps maintain consistent temperature levels across all cabinets. However, this comes at the cost of increased energy usage
compared to other configurations.
• Cooling Tower Impact: The cooling tower action is set to very low cooling to avoid excessive energy consumption. While this
reduces the overall impact on temperature stability, it also limits the system’s ability to compensate for large deviations from
desired goals.
ACTION RATIONALE:
• Temperature Setpoints: The temperature setpoints do not fully align with the desired goal temperatures for each cabinet. This
results in deviations from target values, especially in cabinets 1 and 5.
• Valve Positions: The valve positions are distributed to match the power distribution across blade groups, which helps maintain
consistent temperature levels across all cabinets. However, this results in higher energy usage compared to other configurations.
• Cooling Tower: The cooling tower action is set to very low cooling to avoid excessive energy consumption. While this reduces
the overall impact on temperature stability, it also limits the system’s ability to compensate for large deviations from desired
goals.
ENERGY EFFICIENCY:
• Assessment: The current actions have a moderate energy efficiency score of 0.6166. While the valve positions are distributed
to match the power distribution across blade groups, this results in higher energy usage compared to other configurations.
Additionally, the cooling tower action is set to very low cooling which reduces energy wastage but also limits the system’s ability
to compensate for large deviations from desired goals.
• Trade Offs: There is a trade-off between temperature stability and energy efficiency in the current actions. The valve positions
are distributed to match the power distribution across blade groups, which helps maintain consistent temperature levels across all
cabinets but comes at the cost of increased energy usage. The cooling tower action is set to very low cooling to avoid excessive
energy consumption, which reduces the overall impact on temperature stability but also limits the system’s ability to compensate
for large deviations from desired goals.
RECOMMENDATIONS:
One potential improvement could be to adjust the temperature setpoints to better align with desired goals, especially in cabinets 1
and 5. This would help reduce deviations from target values and improve overall temperature stability. Another option could be
to consider alternative valve distribution configurations that balance temperature stability and energy efficiency. By optimizing
both factors simultaneously, the system can achieve better results overall.
Inference Time: 4.77 seconds

C.1.2. VERY DETAILED EXPLANATION (LLAMA 3.1-8B-INSTRUCT)

This explanation is significantly longer (approximately 1,500 words) and includes detailed scientific analysis across multiple
categories. For complete response, refer to Appendix. A representative excerpt:
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Very Detailed Explanation

EXECUTIVE SUMMARY:
The cooling system is currently maintaining a stable operating temperature across all five CDUs. This is achieved through a
combination of active cooling provided by the cooling towers and passive thermal regulation via the cabinet valves. The cooling
towers are operated at a very low cooling level, resulting in a slight increase in temperature compared to ideal operating conditions.
The cabinet valves are adjusted to distribute cooling fluid equitably among the CDUs, balancing temperature differences while
minimizing energy consumption. Overall, the system is operating within acceptable parameters and maintaining a stable thermal
environment for the computational hardware.
SYSTEM STATE ANALYSIS:
• Temperature Overview:
The temperature distribution across the five CDUs is relatively uniform, with each cabinet maintaining a temperature within
a narrow range. The highest temperatures are observed in CDU-5, which has experienced a higher workload and is currently
operating at a temperature of 26.38 Celsius. The lowest temperatures...
• Workload Distribution:
The workload distribution across the five CDUs is relatively even, with each cabinet processing an approximately equal share of
the total computational workload. The CDUs are configured to handle the workload in a balanced manner, ensuring that each...
• Historical Context:
The current system state is characterized by stable temperatures and power consumption levels, indicating that the system has
been operating in a consistent and reliable manner over the past several months. The cooling system has maintained...
• System Goals:
The current system goals for the cooling system are to maintain a stable operating temperature across all five CDUs, while
minimizing energy consumption and maximizing computational performance. The system is currently operating within...
CABINET CONTROL ANALYSIS:
• Temperature Setpoints:

• Description: The temperature setpoints for the five CDUs are configured to maintain a uniform operating temperature
across all cabinets. The setpoints are optimized to balance performance and energy efficiency, taking into account...

• Justification: The temperature setpoints for the five CDUs are justified by the specific thermal requirements of the
computational hardware. The setpoints are configured to maintain a temperature range that is optimal for...

• Impact Assessment: The impact of the current temperature setpoints on system stability and performance is positive. By
maintaining a uniform temperature distribution across all five CDUs, the system is able to operate...

• Valve Distributions:

• Description: The valve distributions for the five CDUs are adjusted to balance cooling fluid flow and minimize energy
consumption. The valve positions are optimized to distribute cooling fluid equitably among the cabinets...

• Power Alignment: The valve distributions for the five CDUs are aligned with the power consumption distribution across
the cabinets. The valve positions are adjusted to ensure that each cabinet receives an equitable...

• Hydraulic Considerations: The hydraulic considerations for the valve distributions include ensuring that the cooling fluid
is distributed equitably among the cabinets, while also minimizing energy consumption...

COOLING TOWER ANALYSIS:
• Action Details: The current cooling tower action is ’very low cooling’, indicating that the cooling towers are currently operating
at a low cooling level to ensure that the system remains stable and efficient. This action is justified...
• Thermal Dynamics: The thermal dynamics of the cooling towers are characterized by a low cooling level, resulting in a slight
increase in temperature compared to ideal operating conditions. This is justified by the specific thermal...
• Weather Interactions: The current weather conditions are not directly influencing the cooling tower action. The cooling
towers are adjusted to maintain a uniform temperature distribution across all five CDUs, ensuring that...
ENERGY EFFICIENCY ANALYSIS:
• Component Efficiency:

• Cooling Tower: The cooling tower efficiency is relatively low, resulting in a slight increase in temperature compared to
ideal operating conditions. This is justified by the specific thermal requirements...

• Pumps And Valves: The pump and valve efficiency is relatively high, resulting in minimal energy consumption. The valve
positions are adjusted to ensure that each cabinet receives an equitable share...

• Secondary Cooling: The secondary cooling loop efficiency is relatively high, resulting in minimal energy consumption.
The valve positions are adjusted to ensure that each cabinet receives an equitable...
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• Optimization Strategy: The current optimization strategy involves balancing energy efficiency and system stability. The
temperature setpoints are configured to maintain a uniform operating temperature across all cabinets...
• Performance Metrics: The performance metrics for the cooling system include temperature stability, energy efficiency, and
workload distribution. The temperature stability is relatively high, with minimal fluctuations...
THERMODYNAMIC IMPLICATIONS:
• Heat Transfer: The heat transfer dynamics within the cooling system are characterized by the distribution of cooling fluid
through the cabinet valves, ensuring that each cabinet receives an equitable share of the cooling fluid...
• Thermal Gradients: The thermal gradients across the five CDUs are minimal, with each cabinet maintaining a uniform
temperature distribution. The valve positions are adjusted to minimize thermal gradients, ensuring that...
• Fluid Dynamics: The fluid dynamics within the cooling system are characterized by the distribution of cooling fluid through
the cabinet valves, ensuring that each cabinet receives an equitable share of the cooling fluid...
RECOMMENDATIONS:
• Short Term: The short-term recommendations for the cooling system include monitoring temperature and workload distribu-
tions, adjusting valve positions as needed, and optimizing the Cooing tower action...
• Long Term: The long-term recommendations for the cooling system include ongoing monitoring of temperature and workload
distributions, regular adjustments to valve positions as needed, and continued optimization...
• Trade Off Analysis: The trade-off analysis for the cooling system involves balancing system stability and energy efficiency.
The current configuration and operating conditions of the cooling system are optimized to maintain...
SCIENTIFIC INSIGHTS:
The scientific insights from the current system behavior include the optimal temperature setpoints for the five CDUs, the
appropriate valve positions to ensure equitable cooling fluid distribution, and the ideal cooling tower action to maintain stability
and efficiency. These insights are derived from a thorough analysis of the system’s performance metrics, including temperature
stability, energy efficiency, and workload distribution.
Inference Time: 15.25 seconds

D. RL Controller Details

Figure 8: Action choice distribution across different controllers.

D.1. Addtional Details for implementation

Environment Formulation Observations are collected per cabinet (R6), including boundary temperatures and blade
power levels, and from the cooling tower (R4), including fan powers, water supply temperature, and wet bulb temperature.
Cabinet actions are 5-dimensional: secondary supply setpoint, pressure differential, and three valve positions (normalized
via softmax). Cooling tower actions are discrete with 9 levels representing temperature offsets.
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Architecture The controller uses a two-tier hierarchical structure. The meta-controller, updating every 5 steps, observes
the global state and issues cabinet goals and cooling tower actions. Each cabinet controller operates at every timestep using
local observations and a scalar temperature goal. Policies are implemented as feedforward neural networks: two-layer MLPs
for cabinets and a shared multi-head network for the meta-controller.

Training Methodology We use PPO with the following hyperparameters: learning rates of 3 × 10−4 (cabinets) and
1× 10−4 (meta), entropy coefficients 0.05 and 0.02 respectively, and discount factors γ = 0.9 (cabinet), γ = 0.95 (meta).
Training is distributed across 8 workers with 2 environments per worker, using a batch size of 8,000 and minibatch size of
1,024, over 2 million timesteps.

Reward Function Design For cabinet controllers:

ralignment = 6.0−
3∑

i=1

|avalvei − opoweri | (1)

refficiency = 1.0−
∑3

i=1 avalvei
3

(2)

rtemp = −1.5 ·
∑3

i=1 |Ti − Tgoal|
20.0

(3)

rcabinet = 0.7 · ralignment + 0.3 · refficiency + rtemp (4)

For the cooling tower:

refficiency = 1.0− Pfan1
+ Pfan2

+ 1

2
(5)

rtemp dev = −0.4 · 1
5

5∑
j=1

∑3
i=1 |Tj,i − Tj,goal|

20.0
(6)

rcooling = 0.6 · refficiency + rtemp dev (7)

The meta-controller reward combines cabinet and cooling components:

rmeta =
1

5

5∑
j=1

rcabinetj + rcooling (8)

Challenges and Limitations The RL controller faces several challenges: - Long thermal delays complicate credit
assignment, limiting PPO’s effectiveness even with γ = 0.9/0.95. - Coupled dynamics and nonlinear responses produce
unstable gradients. - Discrete cooling tower actions create reward discontinuities. - Information bottlenecks: Cabinet agents
receive only scalar goals and cannot coordinate laterally. - Limited training budget (2M steps) and conservative exploration
reduce learning stability. - Physics-naı̈ve modeling: The controller must learn principles LLMs inherit via pretraining,
including thermal trends and constraint adherence.

These factors, taken together, contribute to the performance gap observed between the RL controller and LLM-based
alternatives in our experiments.

D.2. RL Controller Training Details

The following table summarizes the training configuration used for the hierarchical reinforcement learning controller:

E. Hybrid Controller Details
Special Case Handling. The controller adapts mixing behavior in special regimes. For example, it increases LLM
influence under high energy usage with stable temperature, and reduces it when temperatures deviate significantly, relying
more on RL’s recovery capabilities.
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Table 1: RL Controller Training Parameters

Parameter Value
Learning rate 3× 10−4 (cabinet), 1× 10−4 (meta)
Discount factor (γ) 0.9 (cabinet), 0.95 (meta)
GAE parameter (λ) 0.95
Entropy coefficient 0.05 (cabinet), 0.02 (meta)
Batch size 8000
Minibatch size 1024
Training epochs 10
Clip parameter 0.2
Workers 8
Environments per worker 2

Validation and Safety. The hybrid controller applies rule-based validation on LLM-proposed actions. If temperature is
below target, cooling tower reductions are blocked; if above target, heating actions are rejected. Cabinet setpoints are also
checked for consistency with temperature direction.

Error Handling. In cases where LLM queries fail or return invalid responses, the controller performs structured retries,
falls back to last successful actions, or defaults to context-aware safe control templates.

Implementation Notes. Additional safeguards include temperature trend tracking, historical context buffers, and softmax
enforcement on valve vectors to ensure valid actuation.

Theoretical Rationale. The hybrid approach overcomes key limitations of both base methods. RL alone lacks explainabil-
ity and flexibility post-training, while LLMs may hallucinate or drift. Together, they form a cooperative agent with improved
adaptability, safety, and control stability.

F. Detailed Evaluation Metric Definitions
This appendix provides the full definitions for all evaluation metrics used in our experiments.

Each controller is evaluated over 10 episodes, each consisting of 1,000 timesteps. To ensure experimental consistency, we
use fixed random seeds and identical environment traces across all runs. The experiments are executed on a compute node
with 40 CPU cores and 2 GPUs. Metrics are recorded at every timestep and include aspects of thermal behavior, energy
consumption, and control smoothness. The reference temperature is fixed at 303.15 K.

We assess performance using a combination of primary and secondary metrics. The primary metrics include Temperature
Stability, Energy Efficiency, and a Weighted Reward that emphasizes thermal safety. Secondary thermal metrics capture
the average and maximum temperature deviation, as well as the percentage of time spent within the target range (±2 K).
Energy-related metrics include cooling power usage and Power Usage Effectiveness (PUE). Control smoothness is quantified
using the average control delta and recovery time following thermal disturbances. For LLM-based controllers, we also log
average inference latency and the proportion of final actions influenced by the LLM.

F.1. Primary Performance Metrics

Temperature Stability. Measures how closely cabinet temperatures remain near the 30°C target:

Temp Stability = max(0, 1− avg deviation K
10.0

) (9)

Energy Efficiency. Measures how efficiently the system minimizes cooling power:

Energy Efficiency = max(0, 1− cooling power W
nominal power W

) (10)
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Weighted Reward. A composite metric balancing stability and efficiency:

Weighted Reward = 0.7× Temp Stability + 0.3× Energy Efficiency (11)

F.2. Detailed Temperature Metrics

• Average Temperature: Mean cabinet temperature (°C)

• Average Temperature Deviation: Mean absolute deviation from the target (K)

• Maximum Temperature Deviation: Max deviation from the target (K)

• Time in Target Range: Percentage of steps where temperature remains within ±2 K of the target

F.3. Energy Performance Metrics

• Cooling Power: Average cooling tower energy usage (W)

• PUE: Ratio of total facility power to IT power

• Energy Cost: Operational cost (USD/hour)

• Carbon Emissions: CO2 emissions per hour (kg)

F.4. Control Stability Metrics

• Control Changes: Average magnitude of change in control values across steps

• Recovery Time: Steps required to return to target range after deviation

• Action Distribution: Histogram of cooling tower action selections

F.5. LLM-Specific Metrics

• Inference Time: Average LLM inference duration (sec)

• LLM Influence: Proportion of steps where the LLM modified base actions significantly

G. LLM Controller Implementation Details
G.1. Post-Processing and Validation.

Model outputs are validated for syntactic correctness and physical consistency. Parsing is enforced using a predefined
JSON schema, and safety checks correct contradictory decisions, such as applying excessive cooling when temperatures
are already below target. Fallbacks reuse the most recent valid action when parsing or generation fails. The LLM-based
controllers were trained using parameter-efficient fine-tuning (LoRA) on two open-source base models: Qwen 3 (8B) and
LLaMA 3.1 (8B). Training was conducted via imitation learning using expert trajectories collected from the RL controller.
These trajectories consisted of serialized state observations and corresponding expert actions, formatted as input-output
pairs for language modeling.

Model training was implemented using the HuggingFace transformers and peft libraries. All training was performed
in 16-bit precision using mixed-precision optimization and the paged AdamW optimizer. Prompts were structured to include
system state variables, recent trends, and physical constraints. The expected output format was a natural language reasoning
trace followed by a structured JSON object encoding cabinet and tower control actions.
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Training Configuration

• Learning rate: 3× 10−4

• Batch size: 4

• Gradient accumulation: 8 steps

• Number of epochs: 50

• Precision: bfloat16

• Optimizer: Paged AdamW

Qwen 3 (8B) LoRA Settings

• LoRA rank (r): 8

• LoRA alpha (α): 32

• Dropout: 0.05

• Target modules: q proj, k proj, v proj, o proj

LLaMA 3.1 (8B) LoRA Settings

• LoRA rank (r): 8

• LoRA alpha (α): 16

• Dropout: 0.1

• Target modules: q proj, k proj, v proj, o proj

H. LLM Inference Optimization
H.1. Experimental Setup

We implemented a high-performance inference system for real-time cooling control using large language models (LLMs).
Our experimental framework deployed four model variants: base Llama-3.1-8B, fine-tuned Llama-3.1-8B, base Qwen-7B,
and fine-tuned Qwen-7B. All experiments were conducted on a server equipped with four NVIDIA H100 GPUs, yielding a
total runtime of approximately four hours for the complete benchmark suite.

H.2. Inference Infrastructure

The inference system was deployed using the vLLM framework (Kwon et al., 2023) with the following configuration:

d oc ke r run −− r u n t i m e n v i d i a −−gpus a l l \
−v / home / * * * * / f t − l l ama3do t1 −8b : / model \
−p 0 . 0 . 0 . 0 : 8 0 0 0 : 8 0 0 0 \
−− i p c = h o s t \
vl lm / vllm − o p e n a i : l a t e s t \
−model / model \
−− t e n s o r − p a r a l l e l − s i z e 4 \
−−max−num− ba tched − t o k e n s 32768 \
−−max−num− s e q s 50 \
−−gpu −memory− u t i l i z a t i o n 0 . 9 \

This configuration leverages several critical optimizations for efficient real-time LLM inference:
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• Tensor Parallelism: Model weights are distributed across four H100 GPUs (tensor-parallel-size 4),
enabling larger models to fit in GPU memory while reducing per-token generation latency.

• Efficient Token Batching: The system processes up to 32,768 tokens in a single batch
(max-num-batched-tokens 32768), optimizing GPU utilization during concurrent requests.

• Parallel Request Handling: Up to 50 concurrent sequence requests are supported (max-num-seqs 50), essential
for our multi-agent evaluation framework.

• Memory Optimization: GPU memory utilization is set to 90% (gpu-memory-utilization 0.9), balancing
resource maximization and prevention of out-of-memory errors.

H.3. Parallelization Strategy

Our implementation employs a multi-level parallelization strategy to maximize throughput:

1. Parallel Episode Execution: Using Ray (Moritz et al., 2018), we execute multiple simulation episodes simultaneously,
each with its own controller instance.

2. Tensor Parallelism: Model weights are sharded across four GPUs, enabling faster matrix multiplications and reducing
per-token latency.

3. Continuous Batching: vLLM’s PagedAttention (Kwon et al., 2023) dynamically allocates key-value (KV) cache
blocks, enabling efficient generation for varying sequence lengths.

4. Prefill Optimization: KV cache management reduces redundant computation by caching key-value pairs from previous
forward passes.

5. Parallel Requests: Multiple controller instances query the model concurrently, maximizing GPU utilization through
interleaved request processing.

H.4. Inference Performance Analysis

We evaluated inference performance across the fine-tuned model variants over 10 episodes, each consisting of 1,000
timesteps, totaling 10,000 inference calls per model. Table 2 summarizes the inference time statistics. Key observations

Table 2: Inference Performance Comparison

Model Mean (s) Min (s) Max (s) Total (s)

Fine-tuned Llama-3.1-8B 6.89 6.70 27.68 57,131.87
Fine-tuned Qwen-7B 9.21 8.74 38.46 92,088.90

from the analysis include:

• The fine-tuned Llama-3.1-8B model exhibited significantly faster inference times compared to fine-tuned Qwen-7B
(6.89 s vs. 9.21 s), suggesting architectural differences impacting computational efficiency.

• Maximum inference times were substantially higher than means for both models, likely due to cache misses, garbage
collection, or resource contention during parallel execution.

• Fine-tuned Llama-3.1-8B achieved a lower cumulative inference time of approximately 57,131.87 seconds compared to
92,088.90 seconds for fine-tuned Qwen-7B, reflecting better efficiency in per-request latency and parallel processing.

I. Experimental Results
I.1. Performance Comparison Across Control Approaches

Our experimental evaluation yields several significant findings about the efficacy of different control approaches for
data center cooling optimization. Table 3 summarizes the quantitative results across different model configurations. All
differences between controllers are statistically significant (p < 0.001) based on ANOVA with post-hoc t-tests.
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Table 3: Performance comparison of control approaches across different model configurations

Controller Temperature Stability Energy Efficiency Weighted Reward

Fine-tuned Llama

RL 0.633± 0.000 0.608± 0.000 0.625± 0.000
RL+LLM 0.652± 0.001 0.603± 0.003 0.637± 0.001
LLM 0.747± 0.005 0.682± 0.004 0.728± 0.003

Base Llama

RL 0.633± 0.000 0.608± 0.000 0.625± 0.000
RL+LLM 0.651± 0.001 0.603± 0.003 0.637± 0.001
LLM 0.718± 0.001 0.674± 0.001 0.705± 0.001

Fine-tuned Qwen

RL 0.633± 0.000 0.608± 0.000 0.625± 0.000
RL+LLM 0.642± 0.000 0.602± 0.002 0.630± 0.001
LLM 0.721± 0.001 0.678± 0.001 0.708± 0.001

Base Qwen

RL 0.633± 0.000 0.608± 0.000 0.625± 0.000
RL+LLM 0.662± 0.001 0.603± 0.003 0.644± 0.001
LLM 0.723± 0.007 0.692± 0.005 0.714± 0.005

I.1.1. OVERALL PERFORMANCE TRENDS

The most striking result is the consistent superior performance of the pure LLM controller across all metrics and model
configurations. The LLM approach outperforms both the RL-only and hybrid RL+LLM controllers by substantial margins:

• Temperature stability: LLM controllers achieve 10-18% higher stability scores compared to RL controllers, indicating
more precise temperature management.

• Energy efficiency: LLM controllers demonstrate 12-14% better energy efficiency than RL controllers, suggesting
more optimal cooling resource allocation.

• Weighted reward: LLM controllers exhibit 13-16% higher composite performance, confirming their superior balance
of temperature control and energy conservation.

The fine-tuned Llama-based LLM controller achieved the highest overall performance, with a weighted reward score of
0.728± 0.003, representing a 16.5% improvement over the pure RL approach and a 14.3% improvement over the hybrid
RL+LLM approach with the same model.

I.1.2. HYBRID CONTROLLER PERFORMANCE

Contrary to our expectations, the hybrid RL+LLM approach showed only modest improvements over the pure RL controller:

• Across all model configurations, the hybrid approach improved temperature stability by 1.4-4.6% over pure RL.

• The hybrid approach consistently showed slightly reduced energy efficiency compared to pure RL (approximately 1%
worse), suggesting suboptimal integration of the two control paradigms.

• The weighted reward improved by only 0.8-3.0% compared to pure RL, indicating that the sophisticated mixing strategy
failed to effectively leverage the superior capabilities of the LLM component.

This underperformance of the hybrid approach is particularly notable given our implementation of a context-aware mixing
strategy that dynamically adjusted the influence of each controller based on system state.
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I.1.3. MODEL COMPARISON ACROSS ARCHITECTURES

Our results reveal interesting patterns across different LLM architectures and training regimes:

• Fine-tuned vs. Base Models: Fine-tuned models generally outperformed their base counterparts, with the fine-tuned
Llama model achieving the highest overall performance. The performance improvements from fine-tuning ranged from
2-4% across metrics.

• Llama vs. Qwen: While both model families performed well, Llama-based controllers showed slight advantages in
temperature stability (1-3% better), while Qwen-based controllers demonstrated marginally better energy efficiency
(1-2% advantage).

I.1.4. ANALYSIS OF LLM SUCCESS FACTORS

The surprisingly strong performance of LLM controllers can be attributed to several factors:

• Domain Knowledge Integration: LLMs implicitly contain physical and engineering principles relevant to thermal
management, effectively providing a rich prior for control decisions that RL must learn from scratch.

• Contextual Reasoning: LLMs excel at integrating multiple information streams (temperature readings, power
distribution, historical trends) into coherent reasoning about system state.

• Multi-objective Balancing: Our prompt structure explicitly encourages consideration of both temperature stability
and energy efficiency, enabling more balanced control decisions.

• Action Consistency: The logical validation mechanisms in our LLM controller ensure physically consistent actions
(e.g., not cooling when heating is needed), preventing counterproductive control choices.

I.1.5. UNDERSTANDING RL LIMITATIONS

The relative underperformance of RL can be attributed to several domain-specific challenges:

• Delayed System Dynamics: Thermal systems exhibit significant delays between actions and observable effects,
creating a difficult credit assignment problem for RL.

• Coupled Physical Subsystems: The interdependencies between cooling towers, heat exchangers, and cabinets create
complex state transitions that are challenging for RL to model efficiently.

• Hierarchical Control Structure Limitations: Our two-level hierarchy with limited information flow between levels
constrains effective coordination among cabinet controllers.

• Reward Function Design Challenges: Balancing multiple competing objectives (temperature stability, energy
efficiency, control alignment) creates a complex reward landscape that complicates policy learning.

In summary, our experimental results demonstrate that LLM-based controllers can significantly outperform both traditional
RL approaches and hybrid RL+LLM strategies for data center cooling optimization. The LLM’s ability to integrate
domain knowledge, reason contextually, and maintain action consistency contributes to its superior performance, suggesting
significant potential for LLM-based control in complex physical systems.
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