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ABSTRACT

Task-agnostic model fingerprinting has recently gained increasing attention due
to its ability to provide a universal framework applicable across diverse model
architectures and tasks. The current state-of-the-art method, MetaV, ensures gener-
alization by jointly training a set of fingerprints and a neural-network-based global
verifier using two large and diverse model sets: one composed of pirated models
(i.e., the protected model and its variants) and the other comprising independently-
trained models. However, publicly available models are scarce in many real-world
domains, and constructing such model sets requires intensive training efforts and
massive computational resources, posing a significant barrier to practical deploy-
ment. Reducing the number of models can alleviate the overhead, but increases the
risk of overfitting, a problem further exacerbated by MetaV’s entangled design, in
which all fingerprints and the global verifier are jointly trained. This overfitting
issue leads to compromised generalization capability to verify unseen models.
In this paper, we propose LiteGuard, an efficient task-agnostic fingerprinting
framework that attains enhanced generalization while significantly lowering com-
putational cost. Specifically, LiteGuard introduces two key innovations: (i) a
checkpoint-based model set augmentation strategy that enriches model diversity by
leveraging intermediate model snapshots captured during the training of each pi-
rated and independently-trained model—thereby alleviating the need to train a large
number of pirated and independently-trained models, and (ii) a local verifier archi-
tecture that pairs each fingerprint with a lightweight local verifier, thereby reducing
parameter entanglement and mitigating overfitting. Extensive experiments across
five representative tasks show that LiteGuard consistently outperforms MetaV in
both generalization performance and computational efficiency.

1 INTRODUCTION

Model fingerprinting has been considered a promising technique for safeguarding the ownership
of deep neural networks (DNNs) (Chen et al., 2022; Xu et al., 2024; Godinot et al., 2025). As
valuable digital assets, DNN models often become prime targets for adversaries seeking unauthorized
use and redistribution (Chen et al., 2021; Waheed et al., 2024; Stang et al., 2024). For instance,
adversaries may steal DNN models and publicly deploy these pirated models as a service. To
protect the intellectual property (IP) of such DNN models, model fingerprinting exploits a model’s
inherent characteristics to generate fingerprints during the fingerprint generation stage, and utilizes
these fingerprints to verify the ownership of suspect models during the fingerprint verification
stage. However, adversaries may intentionally evade ownership verification by exploiting ownership
obfuscation techniques (Pan et al., 2022; Zhao et al., 2024; Xu et al., 2024) to modify the stolen
models without degrading their utility, and/or publicly deploying these models as cloud services. To
counter such threats, model fingerprinting typically crafts inputs that elicit distinctive model outputs,
and uses the resulting input-output pairs as unique fingerprints to verify model ownership.

Researchers have developed model fingerprinting methods that can be broadly categorized into
task-specific and task-agnostic approaches. To the best of our knowledge, most existing methods are
task-specific, with a particular focus on classification tasks (Zhao et al., 2020; Cao et al., 2021; Wang
et al., 2021b; Yin et al., 2022; Yang & Lai, 2023; Liu & Zhong, 2024; Lukas et al., 2021; Li et al.,
2021; Ren et al., 2023; Peng et al., 2022; Guan et al., 2022; Xu et al., 2024; Godinot et al., 2025).
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For example, many of them leverage adversarial examples to craft fingerprints that reflect the unique
characteristics of a model’s decision boundaries (Zhao et al., 2020; Cao et al., 2021; Wang et al.,
2021b; Yin et al., 2022; Yang & Lai, 2023; Liu & Zhong, 2024), thereby effectively distinguishing
the protected model and its variants from independently-trained ones. Some works consider evading
verification through ownership obfuscation techniques, such as fine-tuning and pruning (Lukas et al.,
2021; Li et al., 2021; Ren et al., 2023). Beyond the classification task, a few recent studies have begun
exploring fingerprinting for non-classification tasks. For instance, GNNFingers (You et al., 2024)
generates fingerprints based on node features and graph topology to protect the ownership of graph
neural networks (GNNs). Similarly, other researchers propose training classifiers to learn distinct
fingerprints from images produced by Generative Adversarial Networks (GANs) to protect their
ownership (Yu et al., 2019; Huang et al., 2023). While these task-specific fingerprinting methods have
shown effectiveness in ownership protection, their reliance on task-specific characteristics inherently
restricts their applicability beyond their target tasks.

In contrast, task-agnostic fingerprinting aims to provide broad applicability across diverse model
architectures and tasks. To date, two task-agnostic approaches have been proposed: TAFA (Pan et al.,
2021) and MetaV (Yang et al., 2022). However, TAFA assumes ReLU activations and continuous
model outputs, restricting its practical applicability and preventing it from being fully task-agnostic.
MetaV, by contrast, imposes no architectural assumptions and remains the only fully task-agnostic
approach. It adopts an end-to-end framework that jointly trains a set of fingerprints and a neural-
network-based global verifier. The training utilizes a piracy set composed of a protected model and
its variants and an independence set comprising independently-trained models. During ownership
verification, all fingerprints are passed through a suspect model, and the resulting outputs are
concatenated and fed into the global verifier to produce a confidence score indicating the likelihood
of the suspect model being a pirated copy of the protected one.

However, MetaV ensures generalization by heavily relying on access to large and diverse model
sets during fingerprint training. In practice, publicly available models are scarce in many real-
world domains, and constructing large model sets incurs intensive training efforts and prohibitive
computational costs. While reducing the size of the model sets can alleviate computational burden, it
significantly increases the risk of overfitting, i.e., the jointly trained fingerprints and global verifier
tend to overfit to the limited training models, consequently resulting in poor generalization to unseen
models. This issue is further exacerbated by the entangled training of all the fingerprints and
the verifier. Since a large number of fingerprints is typically required to ensure high verification
reliability, this training architecture introduces a substantial number of jointly trained parameters.
Consequently, the risk of overfitting to limited training models in both sets is further amplified,
potentially undermining MetaV’s generalization performance.

In this paper, we propose LiteGuard, an efficient task-agnostic model fingerprinting method that
enhances generalization while maintaining low computational cost. To achieve this, LiteGuard
introduces the following two key innovations: (i) Checkpoint-based model set augmentation: Lite-
Guard leverages checkpoints—intermediate model snapshots saved during the training (Eisenman
et al., 2022; Wang et al., 2021a) of each pirated and independently-trained model—to augment
the pirated and independently-trained model sets. These checkpoints reflect diverse decision be-
haviors, enhancing model diversity at no extra computational cost; (ii) Local verifier architecture:
Instead of using a global verifier that is jointly trained with all the fingerprints, LiteGuard pairs each
fingerprint with a lightweight local verifier. While each pair is jointly trained, different pairs are
optimized independently, substantially reducing the number of jointly trained parameters. The two
novel designs aim to address the overfitting issue caused by reducing the number of training models,
thereby enhancing the computational efficiency of the task-agnostic fingerprinting paradigm without
compromising generalization. We evaluate LiteGuard on five representative tasks involving multiple
types of DNN models. Experimental results demonstrate that LiteGuard consistently surpasses both
task-agnostic and task-specific fingerprinting baselines, achieving higher generalization capability
and computational efficiency.

2 PROBLEM FORMULATION

We consider a typical model fingerprinting scenario involving two entities: a model owner and an
adversary. Specifically, the model owner trains and deploys a proprietary DNN model MP . To
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safeguard its ownership, the model owner generates a set F of fingerprints by crafting input samples
that elicit distinctive responses from MP . Meanwhile, an adversary gains unauthorized access to MP ,
e.g., via model theft, and redistributes this pirated copy as a black-box service that clients can access
through an API. In particular, the adversary may apply performance-preserving ownership obfuscation
techniques to the stolen model before redistribution, in order to evade ownership verification (Pan
et al., 2022; Zhao et al., 2024; Xu et al., 2024).

Upon identifying a suspect model MS , the model owner performs ownership verification to determine
whether it is a piracy version of MP . Concretely, the model owner queries MS using the fingerprint set
F and analyzes its outputs to determine whether MS is a piracy version of MP or an independently-
trained model.

3 METHODOLOGY

3.1 OVERVIEW

We present LiteGuard, a task-agnostic model fingerprinting framework with enhanced generalization
capability under the limited computational cost. Specifically, LiteGuard jointly learns a set of
fingerprint-verifier pairs through an end-to-end training process. As illustrated in Figure 1, LiteGuard
consists of the following three components.

• Model Set Construction. LiteGuard constructs two model sets: an independence set and a piracy
set. The independence set consists of models independently trained from scratch, along with
the checkpoints captured during their training. The piracy set includes the protected model, its
checkpoints, and optionally its variants with their checkpoints. By leveraging these checkpoints,
LiteGuard significantly increases model diversity without requiring additional training efforts,
thereby enhancing generalization capability at no extra computational cost.

• Fingerprint-Verifier Pair Joint Training. Each fingerprint and its paired local verifier are
jointly trained using the constructed model sets. Unlike a global verifier that processes the joint
responses from a model to all fingerprints, each local verifier operates solely on the model’s
response to a single fingerprint, significantly reducing the number of jointly trained parameters
and thus mitigating overfitting.

• Ownership Verification. During model ownership verification, each fingerprint is passed
through the suspect model to obtain an output, which is evaluated by its corresponding local
verifier to produce a confidence score. The final verification decision is made by averaging the
confidence scores across all verifiers.
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Figure 1: The overview of LiteGuard.

3.2 MODEL SET CONSTRUCTION

Prior to fingerprint generation, we construct two distinct model sets: a piracy set GP and an indepen-
dence set GI . The piracy set contains a protected model and may also include its variants produced by
applying ownership obfuscation operations. In contrast, the independence set comprises models that
are independently trained from scratch on the same or similar datasets, but with different seeds and/or
architectures, thereby ensuring independence from the protected model. To introduce additional
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diversity for both sets, we capture model checkpoints—intermediate snapshots saved during training
models for both sets—and incorporate them into their respective sets.

The Checkpoint Selection Strategy. A typical training process yields a large number of model
checkpoints, but using all of them for fingerprint generation is resource-consuming. and often
redundant. Thus, we propose a principled checkpoint selection strategy that maintains model diversity
while reducing resource compsumption. Specifically, starting from an epoch es, we uniformly sample
checkpoints throughout training, selecting one every l epochs until the end of training. Choosing es is
crucial: checkpoints from the early stage often produce near-random predictions and lack meaningful
decision behavior, while those near the final epoch tend to resemble the converged model and thus
contribute little additional diversity. This approach reduces redundancy among adjacent checkpoints
while ensuring sufficient diversity.

3.3 JOINT TRAINING OF FINGERPRINT-VERIFIER PAIRS

At this stage, we aim to construct a set of N fingerprint-verifier pairs, each consisting of a fingerprint
and a lightweight verifier. These pairs are trained using the piracy set GP and the independence set GI ,
with the objective of maximizing their ability to distinguish pirated models from independently-trained
ones. To mitigate overfitting, we adopt batch-wise training: At each iteration, a fingerprint-verifier
pair is optimized using two mini-batches of K models, denoted as BP and BI , which are randomly
sampled from GP and GI , respectively.

Let x ∈ X denote a trainable fingerprint, where X is the input space of the models. For each
model g ∈ BP ∪ BI , the model output is computed as y = g(x). This output is then evaluated by
a corresponding verifier v : Y → (0, 1), where Y is the output space of the models. The verifier
v is designed as a lightweight model comprising a linear layer followed by a sigmoid activation.
Specifically, given a model output y ∈ Y , the verifier computes v(y) = σ(⟨w,y⟩F ), where w is
a trainable weight tensor of the same dimensionality as y, ⟨·, ·⟩F represents the Frobenius inner
product, and σ(·) is the sigmoid function. A binary label s is assigned to each model, where s = 1
indicates pirated models and s = 0 indicates independently-trained models.

The fingerprint x and verifier v are jointly trained with the objective of minimizing the average binary
cross-entropy loss over the pair of sampled model batches. Specifically, the objective function is
defined as follows:

L(x, v) = αprot·Lbce(v(MP (x)), 1)+
αP

K

∑
gP∈BP

Lbce(v(gP (x)), 1)+
αI

K

∑
gI∈BI

Lbce(v(gI(x)), 0),

(1)
where Lbce(p, s) = −s log p− (1− s) log(1− p) is the binary cross-entropy loss. The weights are
chosen to satisfy αprot + αP ≈ αI , ensuring a balanced contribution from positive and negative
samples to prevent biased optimization. The parameters of both x and v are updated using the Adam
optimizer (Kingma & Ba, 2017) based on the gradients of the objective.

Upon the completion of training, we obtain the fingerprint set F : {(x∗
m, v∗m)}Nm=1, where each

(x∗
m, v∗m) represents a trained fingerprint-verifier pair.

3.4 OWNERSHIP VERIFICATION

At the ownership verification stage, the goal is to determine whether a suspect model is a pirated copy
of the protected model MP or an independently-trained model. To this end, we leverage the learned
fingerprint-verifier set F = {(x∗

m, v∗m)}Nm=1 to perform ownership verification.

Given a suspect model MS , each fingerprint x∗
m is first fed into the model to produce an output

ym = MS(x
∗
m), which is then evaluated by the corresponding verifier v∗m, producing a confidence

score v∗m(ym) ∈ (0, 1) that indicates the likelihood of MS being a piracy version of the protected
model MP . Subsequently, the N confidence scores corresponding to the N fingerprint-verifier pairs
are aggregated by taking their average, i.e., savg = 1

N

∑N
m=1 v

∗
m (MS(x

∗
m)). After obtaining the

averaged confidence score savg, a verification decision is made by comparing savg with a threshold
τ ∈ (0, 1). If savg > τ , MS is determined as a pirated copy of MP , otherwise MS is classified as an
independently-trained model. Formally, the decision rule is defined by Decision(MS) = 1 [savg > τ ],
where 1[·] is the indicator function, which returns 1 if the condition holds, and 0 otherwise.
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4 PARAMETER COMPLEXITY ANALYSIS

We analyze the parameter complexity of LiteGuard and MetaV. Here, parameter complexity is defined
as the total number of learnable parameters entangled in the joint training architecture of each method.
To facilitate this analysis, we introduce the following notation: Let F denote the number of parameters
per fingerprint, O the model output dimension, and N the total number of fingerprints.

MetaV: Entangled Architecture. MetaV adopts an entangled architecture in which all fingerprints
are trained jointly with a global verifier. The global verifier is implemented as an L-layer multilayer
perception (MLP) with H neurons in each hidden layer. It takes as input the concatenated model
outputs corresponding to all fingerprints, resulting in an input dimension of N ·O, and maps them
to a scalar score. Hence, the number of parameters contained by the global verifier is PMetaV

verifier =
(N ·O) ·H + (L− 2) ·H2 +H . Together with N fingerprints, the number of entangled parameters
that are jointly trained is PMetaV

total = N · F + PMetaV
verifier , which leads to an overall complexity of

PMetaV = O
(
N(F +O ·H) +H2 · L

)
.

LiteGuard: Decoupled Architecture. LiteGuard employs a modular design, where each fingerprint
is paired with a lightweight, independent local verifier. Each fingerprint-verifier pair consists of
F parameters from the fingerprint and O from the linear layer of the local verifier that maps the
model’s O-dimensional output to a scalar score. Thus, the number of jointly trained parameters is
P LiteGuard

pair = F +O. Since all pairs are optimized independently, the parameter complexity of this
design remains constant, i.e., PLiteGuard = O(F +O).

Implications. MetaV’s parameter complexity scales with the number of fingerprints N , consequently
increasing the risk of overfitting, particularly when N is large. In contrast, LiteGuard’s decoupled
architecture maintains constant parameter complexity independent of N , thereby mitigating the
overfitting risk and improving generalization capability.

5 EXPERIMENTS

We perform systematic experiments to thoroughly evaluate the effectiveness of LiteGuard with the
following experimental settings.

Tasks. We consider five typical tasks, each corresponding to a specific type of neural network
architecture and a dataset: (1) image classification using convolutional neural networks (CNNs) on
the CIFAR-100 dataset (Krizhevsky et al., 2014), (2) protein property regression using MLPs on the
CASP dataset (Rana, 2013), (3) tabular data generation with autoencoders (AEs) on the California
Housing (CH) dataset (Pace & Barry, 1997), (4) molecular property prediction via GNNs on the
QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014), and (5) time-series sequence data
generation with recurrent neural networks (RNNs) on the Weather dataset (NCEI, 2023).

Baselines. We compare LiteGuard with several representative model fingerprinting methods. Specifi-
cally, since MetaV is a task-agnostic approach, we compare LiteGuard with MetaV across all five tasks.
Besides, for the molecular property prediction task, we also include GNNFingers (You et al., 2024), a
method specifically tailored for GNNs. For the classification task, besides MetaV, we additionally
compare LiteGuard with several representative existing methods, including IPGuard (Cao et al.,
2021), which utilizes near-boundary samples that capture unique model behaviors as fingerprints,
UAP (Peng et al., 2022), which is based on universal adversarial perturbations, and ADV-TRA (Xu
et al., 2024), which employs adversarial trajectories that encode richer decision boundary information
to achieve enhanced verification reliability.

Ownership obfuscation techniques. We consider six representative ownership obfuscation tech-
niques: pruning, fine-tuning, knowledge distillation (KD), noise injection followed by fine-tuning
(N-finetune), pruning followed by fine-tuning (P-finetune), and adversarial fine-tuning (A-finetune).

Model set construction. For each task, we designate a protected model, and construct four model
sets to facilitate the training and testing of our method—each phase demanding both a piracy set
and an independence set. Specifically, unless otherwise specified in experimental settings, we
adopt an extreme setting for the training phase, wherein each model set contains only a single
trained model: the piracy set consists of the protected model, while the independence set consists
of one independently-trained model. This is the highest-efficiency scenario with minimal training
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Table 2: AUCs achieved by different approaches across five tasks (different model types and datasets).

Method CNN/CIFAR-100 MLP/CASP AE/CH GNN/QM9 RNN/Weather

UAP 0.752 ± 0.045 – – – –
IPGuard 0.708 ± 0.055 – – – –
ADVTRA 0.845 ± 0.010 – – – –
GNNFingers – – – 0.608 ± 0.165 –
MetaV 0.676 ± 0.019 0.824 ± 0.008 0.783 ± 0.029 0.598 ± 0.108 0.854 ± 0.022
LiteGuard 0.936 ± 0.007 0.902 ± 0.007 0.977 ± 0.001 0.803 ± 0.003 0.971 ± 0.004

overhead, enabling a direct evaluation of LiteGuard’s capability to mitigate overfitting and improve
generalization. Furthermore, we augment both sets by incorporating checkpoints saved during
the training process of the protected and independently-trained models. Table 1 summarizes the
checkpoint selection configurations for each model type. For the testing phase, we construct large
and diverse model sets that are entirely disjoint from those used in training: the piracy set comprises
91 models, including the protected model and 15 variants for each of six ownership obfuscation
techniques, each generated using different random seeds, while the independence set consists of 100
models trained from scratch using varying architectures and random seeds.

Table 1: Configurations of checkpoints selection
for each model type: start epoch es, selection in-
terval l, and total training epochs E.

CNN MLP AE GNN RNN

l 20 6 6 12 6
es/E 400/600 60/120 60/120 180/300 60/120

Evaluation Metric. We employ the Area Un-
der the Receiver Operating Characteristic Curve
(AUC) as our primary evaluation metric when
assessing the effectiveness of LiteGuard. More
specifically, AUC measures the likelihood that
a randomly-chosen pirated model is assigned a
higher confidence score than a randomly-chosen
independently-trained model, thereby quantify-
ing the capability of a fingerprinting method to
discriminate pirated models and independently-trained models. A higher AUC value generally indi-
cates stronger verification performance, and an AUC of 1.0 represents perfect discrimination between
pirated and independently-trained models. In the experiments, we report the mean and standard
deviation of AUCs over five independent runs.

Other Implementation Details. To evaluate LiteGuard, we set the loss weights αprot, αP , and αI

to be 0.5, 1.0, and 1.5, respectively, and use a batch size K = 1. We set the number of fingerprints
to N = 100 across all methods, consistent with the setting in MetaV (Pan et al., 2022). We train
LiteGuard under the same training protocol used in MetaV, including using the Adam optimizer
(Kingma & Ba, 2017) with a learning rate of 0.001 and 1000 training iterations.

5.1 EFFECTIVENESS OF OUR PROPOSED METHOD

The Generalization Capability of LiteGuard. We evaluate LiteGuard’s generalization capability by
assessing its effectiveness in distinguishing unseen pirated models from unseen independently-trained
models in the testing phase, under a highly constrained training setting where only a single model is
used in each model set during fingerprint training. Table 2 presents the AUCs achieved by LiteGuard
and various baselines across five representative tasks. Specifically, LiteGuard achieves the state-of-
the-art performance on all five tasks, outperforming both task-specific baselines (i.e., UAP, IPGuard,
ADVTRA, and GNNFingers) and the task-agnostic baseline (i.e., MetaV). Particularly, LiteGuard, as
a task-agnostic approach, surprisingly outperforms task-specific methods that are specifically tailored
for their target tasks, underscoring its consistent effectiveness across different domains. Compared to
MetaV, LiteGuard yields substantial improvement in AUC: 34.5% on the image classification task,
9.5% on the protein property regression task, 24.9% on the tabular data generation task, 34.3% on
the molecular prediction task, and 13.7% on the time-series sequence generation task. These results
demonstrate LiteGuard’s significantly enhanced generalizability.

We further plot the Receiver Operating Characteristic (ROC) curves and the distribution of confidence
scores to illustrate the discriminative power of LiteGuard. The ROC curve depicts the relationship
between true positive rate (TPR) and false positive rate (FPR) across different thresholds, offering a
holistic view of a method’s ability to distinguish pirated models from independent ones. A curve closer
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to the top-left corner indicates stronger discriminative power. As shown in Figure 2(a), LiteGuard
achieves the most favorable ROC profile on the image classification task, closely approaching the
ideal top-left point and outperforming all baselines. In contrast, MetaV’s ROC curve lies much
closer to the diagonal, reflecting its limited discriminative power under the constrained training
setting. On the other hand, we also present the distribution of confidence scores for pirated and
independently-trained models through boxplots in Figure 2(b). A larger separation between the score
distributions of pirated and independently-trained models implies higher discriminative power of
a method. LiteGuard yields two clearly separated distributions with minimal overlap, indicating a
strong ability to distinguish pirated models from independently-trained ones. By comparison, other
methods—especially MetaV—exhibit significant overlap, revealing their limited ability to reliably
verify model ownership.

(b)(a)
Figure 2: (a) The ROC curve and (b) the confidence score
distribution.

The Computational Efficiency of
LiteGuard. Figure 3 demonstrates
LiteGuard’s computational efficiency
by measuring the mean AUC (de-
picted as a solid line) and the standard
deviation (shown as a shaded area)
across varying numbers of trained
models in each model set. Specif-
ically, we compare LiteGuard with
MetaV on two tasks: the molecular
property prediction task (GNN/QM9)
and the protein property regression
task (MLP/CASP). For LiteGuard, we vary the number of trained models in both sets from 1
to 5 and augment each set with checkpoints to ensure a fixed size of 10 models. For MetaV, we
consider three configurations with n = 1, n = 10, and n = 30 trained models per set.

(b)(a)

Figure 3: The AUCs achieved by MetaV and LiteGuard on
(a) the molecular property prediction task (GNN/QM9) and
(b) the protein property regression task (MLP/CASP).

As shown in Figure 3(a), on the molec-
ular property prediction task, Lite-
Guard achieves an AUC of 0.858 us-
ing 2 trained models per set, outper-
forming MetaV’s AUC of 0.849 ob-
tained using 10 trained models per
set, thereby reducing the training cost
by 80%. With 5 trained models,
LiteGuard’s AUC further improves to
0.944, nearly matching MetaV’s per-
formance at n = 30. A similar trend is
observed in Figure 3(b) for the protein
property regression task, where Lite-
Guard with even 1 trained model outperforms MetaV’s performance at n = 10, and with 5 models,
matches MetaV’s AUC at n = 30. These results demonstrate that LiteGuard achieves superior owner-
ship verification performance while requiring significantly fewer trained models, thus highlighting its
high computational efficiency.

Robustness to Ownership Obfuscation Techniques.

We evaluate the robustness of LiteGuard against a range of ownership obfuscation techniques (i.e.,
pruning, fine-tuning, KD, N-finetune, P-finetune, and A-finetune). The corresponding results are
summarized in Table 3. It can be observed that LiteGuard consistently outperforms all baseline
methods in most cases, demonstrating strong robustness against various ownership obfuscation
techniques. Specifically, for the image classification task (CNN/CIFAR-100), LiteGuard achieves
near-perfect verification performance under four of the six techniques, achieving AUCs of 0.996
(Finetuning), 0.986 (N-finetune), 0.975 (P-finetune), and 0.980 (A-finetune). It also maintains strong
performance under pruning (0.955) and exhibits competitive robustness against the more challenging
KD (0.786). Particularly, compared to MetaV, LiteGuard shows substantial improvements in AUC
under all six obfuscation techniques—namely, 31.1% (Pruning), 28.4% (Finetuning), 30.3% (KD),
39.5% (N-finetune), 43.2% (P-finetune), and 91.8% (A-finetune). Beyond the image classification
task, LiteGuard also demonstrates superior robustness across the other four tasks. For instance, on
the tabular data generation task (AE/CH), LiteGuard achieves 41.5% higher AUC than MetaV under
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Table 3: AUCs under various ownership obfuscation techniques across various tasks.

Model/Dataset Method Pruning Finetuning KD N-finetune P-finetune A-finetune

CNN/CIFAR100

UAP 0.731 ± 0.068 0.903 ± 0.003 0.703 ± 0.072 0.642 ± 0.054 0.752 ± 0.050 0.780 ± 0.066
IPGuard 0.742 ± 0.078 0.990 ± 0.011 0.581 ± 0.030 0.720 ± 0.024 0.653 ± 0.017 0.561 ± 0.027
ADVTRA 0.887 ± 0.011 0.993 ± 0.005 0.816 ± 0.008 0.726 ± 0.009 0.897 ± 0.015 0.869 ± 0.011
MetaV 0.728 ± 0.030 0.776 ± 0.017 0.603 ± 0.022 0.707 ± 0.013 0.681 ± 0.012 0.511 ± 0.018
LiteGuard 0.955 ± 0.007 0.996 ± 0.002 0.786 ± 0.009 0.986 ± 0.005 0.975 ± 0.010 0.980 ± 0.004

MLP/CASP MetaV 0.997 ± 0.005 0.988 ± 0.010 0.520 ± 0.038 0.987 ± 0.015 0.697 ± 0.070 0.886 ± 0.056
LiteGuard 0.981 ± 0.013 1.000 ± 0.000 0.534 ± 0.004 1.000 ± 0.000 0.985 ± 0.003 0.978 ± 0.002

AE/CH MetaV 0.655 ± 0.015 0.826 ± 0.051 0.798 ± 0.022 0.812 ± 0.025 0.779 ± 0.022 0.801 ± 0.005
LiteGuard 0.927 ± 0.005 0.992 ± 0.000 0.991 ± 0.000 0.991 ± 0.001 0.975 ± 0.001 0.991 ± 0.000

GNN/QM9 GNNFingers 0.688 ± 0.111 0.637 ± 0.266 0.506 ± 0.105 0.589 ± 0.196 0.621 ± 0.125 0.623 ± 0.031
MetaV 0.673 ± 0.047 0.601 ± 0.162 0.550 ± 0.020 0.580 ± 0.164 0.681 ± 0.098 0.601 ± 0.022
LiteGuard 0.984 ± 0.001 0.834 ± 0.005 0.645 ± 0.005 0.791 ± 0.003 0.812 ± 0.004 0.770 ± 0.002

RNN/Weather MetaV 0.870 ± 0.018 0.816 ± 0.030 0.922 ± 0.018 0.835 ± 0.016 0.835 ± 0.023 0.762 ± 0.021
LiteGuard 0.988 ± 0.000 0.964 ± 0.007 0.991 ± 0.003 0.962 ± 0.005 0.957 ± 0.006 0.947 ± 0.002

pruning, and on the molecular property prediction task (GNN/QM9), it outperforms MetaV by 38.8%
under fine-tuning. An exception is observed in the protein property regression task (MLP/CASP)
under pruning, where both LiteGuard and MetaV yield comparable AUCs. These results underscore
LiteGuard’s strong robustness against a broad range of ownership obfuscation techniques.

5.2 ABLATION STUDIES

(b)(a) (d)(c)

Figure 4: The AUCs under varying checkpoint selection intervals l for (a) tabular data generation task
(AE/CH) and (b) time-series sequence generation task (RNN/Weather). The AUCs under varying
start epoch es for (c) tabular data generation task (AE/CH) and (d) time-series sequence generation
task (RNN/Weather).

Impact of the Checkpoint-based Augmentation. We evaluate the impact of checkpoint-based
augmentation and its configuration parameters on discriminative capability. More specifically, we vary
the selection interval l and the starting epoch es. Besides, to assess whether MetaV can benefit from
incorporating checkpoints, we also extend its implementation with checkpoint augmentation. The
experimental results are shown in Figure 4, in which solid lines represent methods with checkpoint
augmentation, while dashed lines represent the corresponding methods without it.

Figure 4(a), (b), (c), and (d) show the impact of varying selection interval l and varying selection start
epoch es on the tabular data generation task and the time-series sequence generation task, respectively.
We can see from the sub-figures that for both LiteGuard and MetaV, the solid lines are always above
the corresponding dashed lines, demonstrating that introducing extra checkpoints to the piracy and
independence sets increases diversity and thus enhances discriminative power. These results suggest
that checkpoint-based augmentation is a generally effective strategy for enhancing generalization
capability.

Figure 4(a) and (b) show the impact of varying selection interval l with fixed start epoch es on both
tasks. A clear decline in AUC is observed when l increases from 6 to 30, as a larger interval yields
fewer available checkpoints and thereby limits the diversity of the model set. In contrast, when the
interval decreases from 6 to 2, the performance quickly saturates since close checkpoints provide
limited additional diversity.

Figure 4(c) and (d) show the impact of varying selection start epoch es with fixed interval l at 2
on both tasks. Adopting an early start epoch (e.g., es = 10) lowers AUCs because early-stage
models behave almost randomly and lack meaningful decision behaviors. Using a late start epoch
(e.g., es = 110) also exhibits a similar performance degradation, as such checkpoints are close to
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the converged model and contribute little diversity. The best results occur with moderate es values
(e.g., 35–85), which avoid noisy early checkpoints while retaining sufficiently diverse intermediate
ones. Particularly, the AUCs achieved when es = 10 are always higher than those achieved when
es = 110, since an early start still includes mid- and late-stage checkpoints and thus preserves
sufficient diversity, whereas a late start is restricted to overly similar checkpoints.

(b)(a)

Figure 5: The AUCs under different verifier designs for (a)
the image classification task (CNN/CIFAR-100) and (b) the
time-series sequence data generation task (RNN/Weather).

Impact of the Verifier Design. Fig-
ure 5 shows the effect of the verifier
design on the discriminative power
across two tasks. In the experiment,
we consider four configurations: Lite-
Guard, MetaV, LiteGuard-MV (Lite-
Guard using MetaV’s verifier), and
MetaV-LV (MetaV using LiteGuard’s
verifier). As shown in the figure, Lite-
Guard achieves the highest AUC on
both tasks, outperforming all other
configurations. On the image clas-
sification task, LiteGuard attains an
AUC of 0.936, substantially exceed-
ing LiteGuard-MV (0.809), MetaV (0.676), and MetaV-LV (0.793). A similar trend is observed in the
time-series task, where LiteGuard achieves an AUC of 0.977, while LiteGuard-MV drops to 0.908.
MetaV achieves an AUC of 0.854, which is substantially improved to 0.959 when equipped with
LiteGuard’s verifier. Therefore, these results clearly reveal the importance of LiteGuard’s verifier
design in enhancing discriminative capability.

(b)(a)
Figure 6: The AUC under varying numbers of fingerprints
for (a) the tabular data generation task (AE/CH) and (b) the
protein property regression task (MLP/CASP).

Impact of the Fingerprint Set Size.
Figure 6 demonstrates the impact of
the fingerprint set size on the verifi-
cation performance. As previously
discussed, MetaV’s performance is
highly sensitive to the number of fin-
gerprints. To assess whether Lite-
Guard exhibits similar behavior, we
conduct experiments on the tabular
data generation task and the protein
property regression task. The experi-
mental results in Figure 6 reveal that
LiteGuard achieves a monotonic in-
crease in AUC as the number of fingerprints grows, with consistently decreasing standard deviations,
indicating stable performance improvements. This observation reveals that LiteGuard benefits from
the increased number of fingerprints without suffering from overfitting. In contrast, MetaV shows a
fluctuating and non-monotonic trend. While it initially gains from a moderate increase in the number
of fingerprints, its performance deteriorates beyond a certain point. This suggests that MetaV’s entan-
gled fingerprints-global verifier design introduces susceptibility to overfitting when the fingerprint
set becomes large. Consequently, MetaV requires careful tuning of the fingerprint set size, which is
non-trivial in practice.

6 CONCLUSIONS

In this paper, we present LiteGuard, a task-agnostic model fingerprinting method that offers enhanced
generalization capability under high-efficiency settings where the number of trained models in the
piracy and independence sets is limited, addressing the generalization issue suffered by MetaV.
By leveraging checkpoint-based model set augmentation and a modular local verifier architecture,
LiteGuard significantly improves model diversity and verification robustness without incurring
extra computational costs. Experimental results across various tasks demonstrate that LiteGuard
achieves superior verification performance, outperforming MetaV in both generalization performance
and computational efficiency. These results highlight LiteGuard’s practical value as an efficient
task-agnostic fingerprinting method.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 MODEL ARCHITECTURES AND TRAINING SETTINGS

We summarize the architectures and training configurations of the protected model, the pirated
models, and the independently-trained models used for each task in the following.

A.1.1 PROTECTED MODEL

CNN (CIFAR-100). The protected model is a ResNet-18 trained from scratch using SGD with
momentum 0.9, weight decay 5e-4, learning rate 0.1, cosine annealing learning rate scheduling, and
Xavier initialization. Training is conducted for 600 epochs with a batch size of 128.

MLP (CASP). The protected model is a Residual Multilayer Perceptron (ResMLP) trained from
scratch using Adam Optimizer, with a learning rate of 0.001, and Kaiming initialization. Training is
conducted for 120 epochs with a batch size of 128.

GNN (QM9). The protected model is a Graph Attention Network (GAT) trained using the Adam
optimizer with a learning rate of 0.001 and Xavier initialization. Training is conducted for 300 epochs
with a batch size of 128.

AE (CH). The protected model is a Variational Autoencoder (VAE) trained using the Adam optimizer
with a learning rate of 0.01. In line with the default PyTorch implementation, the initialization scheme
sets the weights of all linear layers to samples from a normal distribution N (0, 0.022) and their biases
to zero. Training is conducted for 160 epochs with a batch size of 128.

RNN (Weather). The protected model is a Vanilla Recurrent Neural Network (RNN) trained using
the Adam optimizer with a learning rate of 0.001 and Xavier initialization. Training is conducted for
120 epochs with a batch size of 128.

A.1.2 INDEPENDENCE SET FOR FINGERPRINT TRAINING

For each task, the independence set used for fingerprint generation consists of a single independently-
trained model together with its checkpoints. The architecture of the independently-trained model
is: CNN (CIFAR-100): DenseNet-169; MLP (CASP): TabNet; GNN (QM9): Graph Isomorphism
Network (GIN); AE (CH): Variational Autoencoder (VAE); RNN (Weather): Gated Recurrent Unit
(GRU).

A.1.3 PIRACY SET FOR FINGERPRINT TRAINING

For each task, as mentioned in Section 5, the piracy set used for fingerprint generation only consists
of the protected model and its checkpoints.

A.1.4 INDEPENDENCE SET FOR PERFORMANCE EVALUATION

Across all tasks, models in the independence set are trained from scratch without access to the
protected model; they share the task’s default training protocol for fairness, while diversity arises
from heterogeneous architectures and distinct random seeds. The architectures included in the
independence set for testing are specified as follows:

CNN (CIFAR-100). ResNet-18, ResNet-50, ResNet-101, MobileNetV2, MobileNetV3-Large,
EfficientNet-B2, EfficientNet-B4, DenseNet-121, and DenseNet-169.

AE (CH). Autoencoder (AE), Variational Autoencoder (VAE), Wasserstein Autoencoder (WAE),
Beta-Variational Autoencoder (BetaVAE), Sparse Autoencoder (SparseAE), Denoising Autoencoder
(DenoisingAE), Adversarial Autoencoder (AdversarialAE).

MLP (CASP). Wide & Deep Model (Wide&Deep), Residual Multi-Layer Perceptron (ResMLP),
Feature Tokenizer Transformer (FT-Transformer), Spiking Neural Network (SNN), Neural Ordinary
Differential Equation (NODE), TabNet, and TabTransformer.
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GNN (QM9). Graph Convolutional Network (GCN), Graph Isomorphism Network (GIN), Graph
Sample and Aggregate (GraphSAGE), Graph Attention Network (GAT), Graph Attention Network v2
(GATv2), Simple Graph Convolution (SGC), and Approximate Personalized Propagation of Neural
Predictions (APPNP).

RNN (Weather). Vanilla Recurrent Neural Network (VanillaRNN), Long Short-Term Memory
(LSTM), Gated Recurrent Unit (GRU), Residual Recurrent Neural Network (Residual VanillaRNN),
Residual Long Short-Term Memory (Residual LSTM), and Residual Gated Recurrent Unit (Residual
GRU).

A.1.5 PIRACY SET FOR PERFORMANCE EVALUATION

We generate pirated models for all tasks by applying six types of performance-preserving ownership
obfuscation techniques to the protected model, with the following configurations:

• Fine-tuning: updating the parameters of the already trained protected model for a fixed number of
epochs.

• Adversarial fine-tuning (A-Finetune): fine-tuning the protected model using a mixture of clean
and adversarially perturbed samples. For regression tasks with continuous outputs, adversarial
examples are generated by maximizing the prediction loss (e.g., MSE) w.r.t. input perturbations
using standard methods such as FGSM or PGD.

• Pruning: applying unstructured global pruning at sparsity levels ranging from 10% to 90% (step
size 10%).

• Prune + Fine-tuning (P-Finetune): pruning the model at sparsity levels of 30%, 60%, and 90%,
followed by fine-tuning to recover performance.

• Noise injection + Fine-tuning (N-Finetune): adding scaled Gaussian noise to the parameter tensor
and then fine-tuning the noisy model.

• Knowledge Distillation (KD): training a student model to mimic the protected model behavior by
minimizing the KL divergence (or temperature-scaled soft targets) between the teacher and student
outputs.

A.2 DATASET PROCESSING

Data Normalization. Each dataset is preprocessed using its commonly adopted normalization
parameters prior to model training, ensuring that inputs are scaled consistently with standard practice
in the respective domains.

13


	Introduction
	Problem Formulation
	Methodology
	Overview
	Model Set Construction
	Joint Training of Fingerprint-Verifier Pairs
	Ownership Verification

	Parameter Complexity Analysis
	Experiments
	Effectiveness of Our Proposed Method
	Ablation Studies

	Conclusions
	Implementation Details
	Model Architectures and Training Settings
	Protected Model
	Independence Set for Fingerprint Training
	Piracy Set for Fingerprint Training
	Independence Set for Performance Evaluation
	Piracy Set for Performance Evaluation

	Dataset Processing


