
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LITEGUARD: EFFICIENT TASK-AGNOSTIC MODEL FIN-
GERPRINTING WITH ENHANCED GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Task-agnostic model fingerprinting has recently gained increasing attention due
to its ability to provide a universal framework applicable across diverse model
architectures and tasks. The current state-of-the-art method, MetaV, ensures gener-
alization by jointly training a set of fingerprints and a neural-network-based global
verifier using two large and diverse model sets: one composed of pirated models
(i.e., the protected model and its variants) and the other comprising independently-
trained models. However, publicly available models are scarce in many real-world
domains, and constructing such model sets requires intensive training efforts and
massive computational resources, posing a significant barrier to practical deploy-
ment. Reducing the number of models can alleviate the overhead, but increases the
risk of overfitting, a problem further exacerbated by MetaV’s entangled design, in
which all fingerprints and the global verifier are jointly trained. This overfitting
issue leads to compromised generalization capability to verify unseen models.
In this paper, we propose LiteGuard, an efficient task-agnostic fingerprinting
framework that attains enhanced generalization while significantly lowering com-
putational cost. Specifically, LiteGuard introduces two key innovations: (i) a
checkpoint-based model set augmentation strategy that enriches model diversity by
leveraging intermediate model snapshots captured during the training of each pi-
rated and independently-trained model—thereby alleviating the need to train a large
number of pirated and independently-trained models, and (ii) a local verifier archi-
tecture that pairs each fingerprint with a lightweight local verifier, thereby reducing
parameter entanglement and mitigating overfitting. Extensive experiments across
five representative tasks show that LiteGuard consistently outperforms MetaV in
both generalization performance and computational efficiency.

1 INTRODUCTION

Model fingerprinting has been considered a promising technique for safeguarding the ownership
of deep neural networks (DNNs) (Chen et al., 2022; Xu et al., 2024; Godinot et al., 2025). As
valuable digital assets, DNN models often become prime targets for adversaries seeking unauthorized
use and redistribution (Chen et al., 2021; Waheed et al., 2024; Stang et al., 2024). For instance,
adversaries may steal DNN models and publicly deploy these pirated models as a service. To
protect the intellectual property (IP) of such DNN models, model fingerprinting exploits a model’s
inherent characteristics to generate fingerprints during the fingerprint generation stage, and utilizes
these fingerprints to verify the ownership of suspect models during the fingerprint verification
stage. However, adversaries may intentionally evade ownership verification by exploiting ownership
obfuscation techniques (Pan et al., 2022; Zhao et al., 2024; Xu et al., 2024) to modify the stolen
models without degrading their utility, and/or publicly deploying these models as cloud services. To
counter such threats, model fingerprinting typically crafts inputs that elicit distinctive model outputs,
and uses the resulting input-output pairs as unique fingerprints to verify model ownership.

Researchers have developed model fingerprinting methods that can be broadly categorized into
task-specific and task-agnostic approaches. To the best of our knowledge, most existing methods are
task-specific, with a particular focus on classification tasks (Zhao et al., 2020; Cao et al., 2021; Wang
et al., 2021b; Yin et al., 2022; Yang & Lai, 2023; Liu & Zhong, 2024; Lukas et al., 2021; Li et al.,
2021; Ren et al., 2023; Peng et al., 2022; Guan et al., 2022; Xu et al., 2024; Godinot et al., 2025).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

For example, many of them leverage adversarial examples to craft fingerprints that reflect the unique
characteristics of a model’s decision boundaries (Zhao et al., 2020; Cao et al., 2021; Wang et al.,
2021b; Yin et al., 2022; Yang & Lai, 2023; Liu & Zhong, 2024), thereby effectively distinguishing
the protected model and its variants from independently-trained ones. Some works consider evading
verification through ownership obfuscation techniques, such as fine-tuning and pruning (Lukas et al.,
2021; Li et al., 2021; Ren et al., 2023). Beyond the classification task, a few recent studies have begun
exploring fingerprinting for non-classification tasks. For instance, GNNFingers (You et al., 2024)
generates fingerprints based on node features and graph topology to protect the ownership of graph
neural networks (GNNs). Similarly, other researchers propose training classifiers to learn distinct
fingerprints from images produced by Generative Adversarial Networks (GANs) to protect their
ownership (Yu et al., 2019; Huang et al., 2023). While these task-specific fingerprinting methods have
shown effectiveness in ownership protection, their reliance on task-specific characteristics inherently
restricts their applicability beyond their target tasks.

In contrast, task-agnostic fingerprinting aims to provide broad applicability across diverse model
architectures and tasks. To date, two task-agnostic approaches have been proposed: TAFA (Pan et al.,
2021) and MetaV (Yang et al., 2022). However, TAFA assumes ReLU activations and continuous
model outputs, restricting its practical applicability and preventing it from being fully task-agnostic.
MetaV, by contrast, imposes no architectural assumptions and remains the only fully task-agnostic
approach. It adopts an end-to-end framework that jointly trains a set of fingerprints and a neural-
network-based global verifier. The training utilizes a piracy set composed of a protected model and
its variants and an independence set comprising independently-trained models. During ownership
verification, all fingerprints are passed through a suspect model, and the resulting outputs are
concatenated and fed into the global verifier to produce a confidence score indicating the likelihood
of the suspect model being a pirated copy of the protected one.

However, MetaV ensures generalization by heavily relying on access to large and diverse model
sets during fingerprint training. In practice, publicly available models are scarce in many real-
world domains, and constructing large model sets incurs intensive training efforts and prohibitive
computational costs. While reducing the size of the model sets can alleviate computational burden, it
significantly increases the risk of overfitting, i.e., the jointly trained fingerprints and global verifier
tend to overfit to the limited training models, consequently resulting in poor generalization to unseen
models. This issue is further exacerbated by the entangled training of all the fingerprints and
the verifier. Since a large number of fingerprints is typically required to ensure high verification
reliability, this training architecture introduces a substantial number of jointly trained parameters.
Consequently, the risk of overfitting to limited training models in both sets is further amplified,
potentially undermining MetaV’s generalization performance.

In this paper, we propose LiteGuard, an efficient task-agnostic model fingerprinting method that
enhances generalization while maintaining low computational cost. To achieve this, LiteGuard
introduces the following two key innovations: (i) Checkpoint-based model set augmentation: Lite-
Guard leverages checkpoints—intermediate model snapshots saved during the training (Eisenman
et al., 2022; Wang et al., 2021a) of each pirated and independently-trained model—to augment
the pirated and independently-trained model sets. These checkpoints reflect diverse decision be-
haviors, enhancing model diversity at no extra computational cost; (ii) Local verifier architecture:
Instead of using a global verifier that is jointly trained with all the fingerprints, LiteGuard pairs each
fingerprint with a lightweight local verifier. While each pair is jointly trained, different pairs are
optimized independently, substantially reducing the number of jointly trained parameters. The two
novel designs aim to address the overfitting issue caused by reducing the number of training models,
thereby enhancing the computational efficiency of the task-agnostic fingerprinting paradigm without
compromising generalization. We evaluate LiteGuard on five representative tasks involving multiple
types of DNN models. Experimental results demonstrate that LiteGuard consistently surpasses both
task-agnostic and task-specific fingerprinting baselines, achieving higher generalization capability
and computational efficiency.

2 PROBLEM FORMULATION

We consider a typical model fingerprinting scenario involving two entities: a model owner and an
adversary. Specifically, the model owner trains and deploys a proprietary DNN model MP . To

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

safeguard its ownership, the model owner generates a set F of fingerprints by crafting input samples
that elicit distinctive responses from MP . Meanwhile, an adversary gains unauthorized access to MP ,
e.g., via model theft, and redistributes this pirated copy as a black-box service that clients can access
through an API. In particular, the adversary may apply performance-preserving ownership obfuscation
techniques to the stolen model before redistribution, in order to evade ownership verification (Pan
et al., 2022; Zhao et al., 2024; Xu et al., 2024).

Upon identifying a suspect model MS , the model owner performs ownership verification to determine
whether it is a piracy version of MP . Concretely, the model owner queries MS using the fingerprint set
F and analyzes its outputs to determine whether MS is a piracy version of MP or an independently-
trained model.

3 METHODOLOGY

3.1 OVERVIEW

We present LiteGuard, a task-agnostic model fingerprinting framework with enhanced generalization
capability under the limited computational cost. Specifically, LiteGuard jointly learns a set of
fingerprint-verifier pairs through an end-to-end training process. As illustrated in Figure 1, LiteGuard
consists of the following three components.

• Model Set Construction. LiteGuard constructs two model sets: an independence set and a piracy
set. The independence set consists of models independently trained from scratch, along with
the checkpoints captured during their training. The piracy set includes the protected model, its
checkpoints, and optionally its variants with their checkpoints. By leveraging these checkpoints,
LiteGuard significantly increases model diversity without requiring additional training efforts,
thereby enhancing generalization capability at no extra computational cost.

• Fingerprint-Verifier Pair Joint Training. Each fingerprint and its paired local verifier are
jointly trained using the constructed model sets. Unlike a global verifier that processes the joint
responses from a model to all fingerprints, each local verifier operates solely on the model’s
response to a single fingerprint, significantly reducing the number of jointly trained parameters
and thus mitigating overfitting.

• Ownership Verification. During model ownership verification, each fingerprint is passed
through the suspect model to obtain an output, which is evaluated by its corresponding local
verifier to produce a confidence score. The final verification decision is made by averaging the
confidence scores across all verifiers.

⋯

⋯

Selected checkpoints of 
pirated models

Selected checkpoints of 
independent models

𝑀!

⋯
⋯

1
1
0

⋯
⋯

𝑣

Model Set Construction Fingerprint-verifier Joint Training Ownership Verification

⋯
⋯

⋯
⋯

𝑀"

aggregate > τ

Pirated!

Independent!

yes

no

Figure 1: The overview of LiteGuard.

3.2 MODEL SET CONSTRUCTION

Prior to fingerprint generation, we construct two distinct model sets: a piracy set GP and an indepen-
dence set GI . The piracy set contains a protected model and may also include its variants produced by
applying ownership obfuscation operations. In contrast, the independence set comprises models that
are independently trained from scratch on the same or similar datasets, but with different seeds and/or
architectures, thereby ensuring independence from the protected model. To introduce additional

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

diversity for both sets, we capture model checkpoints—intermediate snapshots saved during training
models for both sets—and incorporate them into their respective sets.

The Checkpoint Selection Strategy. A typical training process yields a large number of model
checkpoints, but using all of them for fingerprint generation is resource-consuming. and often
redundant. Thus, we propose a principled checkpoint selection strategy that maintains model diversity
while reducing resource compsumption. Specifically, starting from an epoch es, we uniformly sample
checkpoints throughout training, selecting one every l epochs until the end of training. Choosing es is
crucial: checkpoints from the early stage often produce near-random predictions and lack meaningful
decision behavior, while those near the final epoch tend to resemble the converged model and thus
contribute little additional diversity. This approach reduces redundancy among adjacent checkpoints
while ensuring sufficient diversity.

3.3 JOINT TRAINING OF FINGERPRINT-VERIFIER PAIRS

At this stage, we aim to construct a set of N fingerprint-verifier pairs, each consisting of a fingerprint
and a lightweight verifier. These pairs are trained using the piracy set GP and the independence set GI ,
with the objective of maximizing their ability to distinguish pirated models from independently-trained
ones. To mitigate overfitting, we adopt batch-wise training: At each iteration, a fingerprint-verifier
pair is optimized using two mini-batches of K models, denoted as BP and BI , which are randomly
sampled from GP and GI , respectively.

Let x ∈ X denote a trainable fingerprint, where X is the input space of the models. For each
model g ∈ BP ∪ BI , the model output is computed as y = g(x). This output is then evaluated by
a corresponding verifier v : Y → (0, 1), where Y is the output space of the models. The verifier
v is designed as a lightweight model comprising a linear layer followed by a sigmoid activation.
Specifically, given a model output y ∈ Y , the verifier computes v(y) = σ(⟨w,y⟩F ), where w is
a trainable weight tensor of the same dimensionality as y, ⟨·, ·⟩F represents the Frobenius inner
product, and σ(·) is the sigmoid function. A binary label s is assigned to each model, where s = 1
indicates pirated models and s = 0 indicates independently-trained models.

The fingerprint x and verifier v are jointly trained with the objective of minimizing the average binary
cross-entropy loss over the pair of sampled model batches. Specifically, the objective function is
defined as follows:

L(x, v) = αprot·Lbce(v(MP (x)), 1)+
αP

K

∑
gP∈BP

Lbce(v(gP (x)), 1)+
αI

K

∑
gI∈BI

Lbce(v(gI(x)), 0),

(1)
where Lbce(p, s) = −s log p− (1− s) log(1− p) is the binary cross-entropy loss. The weights are
chosen to satisfy αprot + αP ≈ αI , ensuring a balanced contribution from positive and negative
samples to prevent biased optimization. The parameters of both x and v are updated using the Adam
optimizer (Kingma & Ba, 2017) based on the gradients of the objective.

Upon the completion of training, we obtain the fingerprint set F : {(x∗
m, v∗m)}Nm=1, where each

(x∗
m, v∗m) represents a trained fingerprint-verifier pair.

3.4 OWNERSHIP VERIFICATION

At the ownership verification stage, the goal is to determine whether a suspect model is a pirated copy
of the protected model MP or an independently-trained model. To this end, we leverage the learned
fingerprint-verifier set F = {(x∗

m, v∗m)}Nm=1 to perform ownership verification.

Given a suspect model MS , each fingerprint x∗
m is first fed into the model to produce an output

ym = MS(x
∗
m), which is then evaluated by the corresponding verifier v∗m, producing a confidence

score v∗m(ym) ∈ (0, 1) that indicates the likelihood of MS being a piracy version of the protected
model MP . Subsequently, the N confidence scores corresponding to the N fingerprint-verifier pairs
are aggregated by taking their average, i.e., savg = 1

N

∑N
m=1 v

∗
m (MS(x

∗
m)). After obtaining the

averaged confidence score savg, a verification decision is made by comparing savg with a threshold
τ ∈ (0, 1). If savg > τ , MS is determined as a pirated copy of MP , otherwise MS is classified as an
independently-trained model. Formally, the decision rule is defined by Decision(MS) = 1 [savg > τ ],
where 1[·] is the indicator function, which returns 1 if the condition holds, and 0 otherwise.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 PARAMETER COMPLEXITY ANALYSIS

We analyze the parameter complexity of LiteGuard and MetaV. Here, parameter complexity is defined
as the total number of learnable parameters entangled in the joint training architecture of each method.
To facilitate this analysis, we introduce the following notation: Let F denote the number of parameters
per fingerprint, O the model output dimension, and N the total number of fingerprints.

MetaV: Entangled Architecture. MetaV adopts an entangled architecture in which all fingerprints
are trained jointly with a global verifier. The global verifier is implemented as an L-layer multilayer
perception (MLP) with H neurons in each hidden layer. It takes as input the concatenated model
outputs corresponding to all fingerprints, resulting in an input dimension of N ·O, and maps them
to a scalar score. Hence, the number of parameters contained by the global verifier is PMetaV

verifier =
(N ·O) ·H + (L− 2) ·H2 +H . Together with N fingerprints, the number of entangled parameters
that are jointly trained is PMetaV

total = N · F + PMetaV
verifier , which leads to an overall complexity of

PMetaV = O
(
N(F +O ·H) +H2 · L

)
.

LiteGuard: Decoupled Architecture. LiteGuard employs a modular design, where each fingerprint
is paired with a lightweight, independent local verifier. Each fingerprint-verifier pair consists of
F parameters from the fingerprint and O from the linear layer of the local verifier that maps the
model’s O-dimensional output to a scalar score. Thus, the number of jointly trained parameters is
P LiteGuard

pair = F +O. Since all pairs are optimized independently, the parameter complexity of this
design remains constant, i.e., PLiteGuard = O(F +O).

Implications. MetaV’s parameter complexity scales with the number of fingerprints N , consequently
increasing the risk of overfitting, particularly when N is large. In contrast, LiteGuard’s decoupled
architecture maintains constant parameter complexity independent of N , thereby mitigating the
overfitting risk and improving generalization capability.

5 EXPERIMENTS

We perform systematic experiments to thoroughly evaluate the effectiveness of LiteGuard with the
following experimental settings.

Tasks. We consider five typical tasks, each corresponding to a specific type of neural network
architecture and a dataset: (1) image classification using convolutional neural networks (CNNs) on
the CIFAR-100 dataset (Krizhevsky et al., 2014), (2) protein property regression using MLPs on the
CASP dataset (Rana, 2013), (3) tabular data generation with autoencoders (AEs) on the California
Housing (CH) dataset (Pace & Barry, 1997), (4) molecular property prediction via GNNs on the
QM9 dataset (Ruddigkeit et al., 2012; Ramakrishnan et al., 2014), and (5) time-series sequence data
generation with recurrent neural networks (RNNs) on the Weather dataset (NCEI, 2023).

Baselines. We compare LiteGuard with several representative model fingerprinting methods. Specifi-
cally, since MetaV is a task-agnostic approach, we compare LiteGuard with MetaV across all five tasks.
Besides, for the molecular property prediction task, we also include GNNFingers (You et al., 2024), a
method specifically tailored for GNNs. For the classification task, besides MetaV, we additionally
compare LiteGuard with several representative existing methods, including IPGuard (Cao et al.,
2021), which utilizes near-boundary samples that capture unique model behaviors as fingerprints,
UAP (Peng et al., 2022), which is based on universal adversarial perturbations, and ADV-TRA (Xu
et al., 2024), which employs adversarial trajectories that encode richer decision boundary information
to achieve enhanced verification reliability.

Ownership obfuscation techniques. We consider six representative ownership obfuscation tech-
niques: pruning, fine-tuning, knowledge distillation (KD), noise injection followed by fine-tuning
(N-finetune), pruning followed by fine-tuning (P-finetune), and adversarial fine-tuning (A-finetune).

Model set construction. For each task, we designate a protected model, and construct four model
sets to facilitate the training and testing of our method—each phase demanding both a piracy set
and an independence set. Specifically, unless otherwise specified in experimental settings, we
adopt an extreme setting for the training phase, wherein each model set contains only a single
trained model: the piracy set consists of the protected model, while the independence set consists
of one independently-trained model. This is the highest-efficiency scenario with minimal training

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: AUCs achieved by different approaches across five tasks (different model types and datasets).

Method CNN/CIFAR-100 MLP/CASP AE/CH GNN/QM9 RNN/Weather

UAP 0.752 ± 0.045 – – – –
IPGuard 0.708 ± 0.055 – – – –
ADVTRA 0.845 ± 0.010 – – – –
GNNFingers – – – 0.608 ± 0.165 –
MetaV 0.676 ± 0.019 0.824 ± 0.008 0.783 ± 0.029 0.598 ± 0.108 0.854 ± 0.022
LiteGuard 0.936 ± 0.007 0.902 ± 0.007 0.977 ± 0.001 0.803 ± 0.003 0.971 ± 0.004

overhead, enabling a direct evaluation of LiteGuard’s capability to mitigate overfitting and improve
generalization. Furthermore, we augment both sets by incorporating checkpoints saved during
the training process of the protected and independently-trained models. Table 1 summarizes the
checkpoint selection configurations for each model type. For the testing phase, we construct large
and diverse model sets that are entirely disjoint from those used in training: the piracy set comprises
91 models, including the protected model and 15 variants for each of six ownership obfuscation
techniques, each generated using different random seeds, while the independence set consists of 100
models trained from scratch using varying architectures and random seeds.

Table 1: Configurations of checkpoints selection
for each model type: start epoch es, selection in-
terval l, and total training epochs E.

CNN MLP AE GNN RNN

l 20 6 6 12 6
es/E 400/600 60/120 60/120 180/300 60/120

Evaluation Metric. We employ the Area Un-
der the Receiver Operating Characteristic Curve
(AUC) as our primary evaluation metric when
assessing the effectiveness of LiteGuard. More
specifically, AUC measures the likelihood that
a randomly-chosen pirated model is assigned a
higher confidence score than a randomly-chosen
independently-trained model, thereby quantify-
ing the capability of a fingerprinting method to
discriminate pirated models and independently-trained models. A higher AUC value generally indi-
cates stronger verification performance, and an AUC of 1.0 represents perfect discrimination between
pirated and independently-trained models. In the experiments, we report the mean and standard
deviation of AUCs over five independent runs.

Other Implementation Details. To evaluate LiteGuard, we set the loss weights αprot, αP , and αI

to be 0.5, 1.0, and 1.5, respectively, and use a batch size K = 1. We set the number of fingerprints
to N = 100 across all methods, consistent with the setting in MetaV (Pan et al., 2022). We train
LiteGuard under the same training protocol used in MetaV, including using the Adam optimizer
(Kingma & Ba, 2017) with a learning rate of 0.001 and 1000 training iterations.

5.1 EFFECTIVENESS OF OUR PROPOSED METHOD

The Generalization Capability of LiteGuard. We evaluate LiteGuard’s generalization capability by
assessing its effectiveness in distinguishing unseen pirated models from unseen independently-trained
models in the testing phase, under a highly constrained training setting where only a single model is
used in each model set during fingerprint training. Table 2 presents the AUCs achieved by LiteGuard
and various baselines across five representative tasks. Specifically, LiteGuard achieves the state-of-
the-art performance on all five tasks, outperforming both task-specific baselines (i.e., UAP, IPGuard,
ADVTRA, and GNNFingers) and the task-agnostic baseline (i.e., MetaV). Particularly, LiteGuard, as
a task-agnostic approach, surprisingly outperforms task-specific methods that are specifically tailored
for their target tasks, underscoring its consistent effectiveness across different domains. Compared to
MetaV, LiteGuard yields substantial improvement in AUC: 34.5% on the image classification task,
9.5% on the protein property regression task, 24.9% on the tabular data generation task, 34.3% on
the molecular prediction task, and 13.7% on the time-series sequence generation task. These results
demonstrate LiteGuard’s significantly enhanced generalizability.

We further plot the Receiver Operating Characteristic (ROC) curves and the distribution of confidence
scores to illustrate the discriminative power of LiteGuard. The ROC curve depicts the relationship
between true positive rate (TPR) and false positive rate (FPR) across different thresholds, offering a
holistic view of a method’s ability to distinguish pirated models from independent ones. A curve closer

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

to the top-left corner indicates stronger discriminative power. As shown in Figure 2(a), LiteGuard
achieves the most favorable ROC profile on the image classification task, closely approaching the
ideal top-left point and outperforming all baselines. In contrast, MetaV’s ROC curve lies much
closer to the diagonal, reflecting its limited discriminative power under the constrained training
setting. On the other hand, we also present the distribution of confidence scores for pirated and
independently-trained models through boxplots in Figure 2(b). A larger separation between the score
distributions of pirated and independently-trained models implies higher discriminative power of
a method. LiteGuard yields two clearly separated distributions with minimal overlap, indicating a
strong ability to distinguish pirated models from independently-trained ones. By comparison, other
methods—especially MetaV—exhibit significant overlap, revealing their limited ability to reliably
verify model ownership.

(b)(a)
Figure 2: (a) The ROC curve and (b) the confidence score
distribution.

The Computational Efficiency of
LiteGuard. Figure 3 demonstrates
LiteGuard’s computational efficiency
by measuring the mean AUC (de-
picted as a solid line) and the standard
deviation (shown as a shaded area)
across varying numbers of trained
models in each model set. Specif-
ically, we compare LiteGuard with
MetaV on two tasks: the molecular
property prediction task (GNN/QM9)
and the protein property regression
task (MLP/CASP). For LiteGuard, we vary the number of trained models in both sets from 1
to 5 and augment each set with checkpoints to ensure a fixed size of 10 models. For MetaV, we
consider three configurations with n = 1, n = 10, and n = 30 trained models per set.

(b)(a)

Figure 3: The AUCs achieved by MetaV and LiteGuard on
(a) the molecular property prediction task (GNN/QM9) and
(b) the protein property regression task (MLP/CASP).

As shown in Figure 3(a), on the molec-
ular property prediction task, Lite-
Guard achieves an AUC of 0.858 us-
ing 2 trained models per set, outper-
forming MetaV’s AUC of 0.849 ob-
tained using 10 trained models per
set, thereby reducing the training cost
by 80%. With 5 trained models,
LiteGuard’s AUC further improves to
0.944, nearly matching MetaV’s per-
formance at n = 30. A similar trend is
observed in Figure 3(b) for the protein
property regression task, where Lite-
Guard with even 1 trained model outperforms MetaV’s performance at n = 10, and with 5 models,
matches MetaV’s AUC at n = 30. These results demonstrate that LiteGuard achieves superior owner-
ship verification performance while requiring significantly fewer trained models, thus highlighting its
high computational efficiency.

Robustness to Ownership Obfuscation Techniques.

We evaluate the robustness of LiteGuard against a range of ownership obfuscation techniques (i.e.,
pruning, fine-tuning, KD, N-finetune, P-finetune, and A-finetune). The corresponding results are
summarized in Table 3. It can be observed that LiteGuard consistently outperforms all baseline
methods in most cases, demonstrating strong robustness against various ownership obfuscation
techniques. Specifically, for the image classification task (CNN/CIFAR-100), LiteGuard achieves
near-perfect verification performance under four of the six techniques, achieving AUCs of 0.996
(Finetuning), 0.986 (N-finetune), 0.975 (P-finetune), and 0.980 (A-finetune). It also maintains strong
performance under pruning (0.955) and exhibits competitive robustness against the more challenging
KD (0.786). Particularly, compared to MetaV, LiteGuard shows substantial improvements in AUC
under all six obfuscation techniques—namely, 31.1% (Pruning), 28.4% (Finetuning), 30.3% (KD),
39.5% (N-finetune), 43.2% (P-finetune), and 91.8% (A-finetune). Beyond the image classification
task, LiteGuard also demonstrates superior robustness across the other four tasks. For instance, on
the tabular data generation task (AE/CH), LiteGuard achieves 41.5% higher AUC than MetaV under

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: AUCs under various ownership obfuscation techniques across various tasks.

Model/Dataset Method Pruning Finetuning KD N-finetune P-finetune A-finetune

CNN/CIFAR100

UAP 0.731 ± 0.068 0.903 ± 0.003 0.703 ± 0.072 0.642 ± 0.054 0.752 ± 0.050 0.780 ± 0.066
IPGuard 0.742 ± 0.078 0.990 ± 0.011 0.581 ± 0.030 0.720 ± 0.024 0.653 ± 0.017 0.561 ± 0.027
ADVTRA 0.887 ± 0.011 0.993 ± 0.005 0.816 ± 0.008 0.726 ± 0.009 0.897 ± 0.015 0.869 ± 0.011
MetaV 0.728 ± 0.030 0.776 ± 0.017 0.603 ± 0.022 0.707 ± 0.013 0.681 ± 0.012 0.511 ± 0.018
LiteGuard 0.955 ± 0.007 0.996 ± 0.002 0.786 ± 0.009 0.986 ± 0.005 0.975 ± 0.010 0.980 ± 0.004

MLP/CASP MetaV 0.997 ± 0.005 0.988 ± 0.010 0.520 ± 0.038 0.987 ± 0.015 0.697 ± 0.070 0.886 ± 0.056
LiteGuard 0.981 ± 0.013 1.000 ± 0.000 0.534 ± 0.004 1.000 ± 0.000 0.985 ± 0.003 0.978 ± 0.002

AE/CH MetaV 0.655 ± 0.015 0.826 ± 0.051 0.798 ± 0.022 0.812 ± 0.025 0.779 ± 0.022 0.801 ± 0.005
LiteGuard 0.927 ± 0.005 0.992 ± 0.000 0.991 ± 0.000 0.991 ± 0.001 0.975 ± 0.001 0.991 ± 0.000

GNN/QM9 GNNFingers 0.688 ± 0.111 0.637 ± 0.266 0.506 ± 0.105 0.589 ± 0.196 0.621 ± 0.125 0.623 ± 0.031
MetaV 0.673 ± 0.047 0.601 ± 0.162 0.550 ± 0.020 0.580 ± 0.164 0.681 ± 0.098 0.601 ± 0.022
LiteGuard 0.984 ± 0.001 0.834 ± 0.005 0.645 ± 0.005 0.791 ± 0.003 0.812 ± 0.004 0.770 ± 0.002

RNN/Weather MetaV 0.870 ± 0.018 0.816 ± 0.030 0.922 ± 0.018 0.835 ± 0.016 0.835 ± 0.023 0.762 ± 0.021
LiteGuard 0.988 ± 0.000 0.964 ± 0.007 0.991 ± 0.003 0.962 ± 0.005 0.957 ± 0.006 0.947 ± 0.002

pruning, and on the molecular property prediction task (GNN/QM9), it outperforms MetaV by 38.8%
under fine-tuning. An exception is observed in the protein property regression task (MLP/CASP)
under pruning, where both LiteGuard and MetaV yield comparable AUCs. These results underscore
LiteGuard’s strong robustness against a broad range of ownership obfuscation techniques.

5.2 ABLATION STUDIES

(b)(a) (d)(c)

Figure 4: The AUCs under varying checkpoint selection intervals l for (a) tabular data generation task
(AE/CH) and (b) time-series sequence generation task (RNN/Weather). The AUCs under varying
start epoch es for (c) tabular data generation task (AE/CH) and (d) time-series sequence generation
task (RNN/Weather).

Impact of the Checkpoint-based Augmentation. We evaluate the impact of checkpoint-based
augmentation and its configuration parameters on discriminative capability. More specifically, we vary
the selection interval l and the starting epoch es. Besides, to assess whether MetaV can benefit from
incorporating checkpoints, we also extend its implementation with checkpoint augmentation. The
experimental results are shown in Figure 4, in which solid lines represent methods with checkpoint
augmentation, while dashed lines represent the corresponding methods without it.

Figure 4(a), (b), (c), and (d) show the impact of varying selection interval l and varying selection start
epoch es on the tabular data generation task and the time-series sequence generation task, respectively.
We can see from the sub-figures that for both LiteGuard and MetaV, the solid lines are always above
the corresponding dashed lines, demonstrating that introducing extra checkpoints to the piracy and
independence sets increases diversity and thus enhances discriminative power. These results suggest
that checkpoint-based augmentation is a generally effective strategy for enhancing generalization
capability.

Figure 4(a) and (b) show the impact of varying selection interval l with fixed start epoch es on both
tasks. A clear decline in AUC is observed when l increases from 6 to 30, as a larger interval yields
fewer available checkpoints and thereby limits the diversity of the model set. In contrast, when the
interval decreases from 6 to 2, the performance quickly saturates since close checkpoints provide
limited additional diversity.

Figure 4(c) and (d) show the impact of varying selection start epoch es with fixed interval l at 2
on both tasks. Adopting an early start epoch (e.g., es = 10) lowers AUCs because early-stage
models behave almost randomly and lack meaningful decision behaviors. Using a late start epoch
(e.g., es = 110) also exhibits a similar performance degradation, as such checkpoints are close to

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

the converged model and contribute little diversity. The best results occur with moderate es values
(e.g., 35–85), which avoid noisy early checkpoints while retaining sufficiently diverse intermediate
ones. Particularly, the AUCs achieved when es = 10 are always higher than those achieved when
es = 110, since an early start still includes mid- and late-stage checkpoints and thus preserves
sufficient diversity, whereas a late start is restricted to overly similar checkpoints.

(b)(a)

Figure 5: The AUCs under different verifier designs for (a)
the image classification task (CNN/CIFAR-100) and (b) the
time-series sequence data generation task (RNN/Weather).

Impact of the Verifier Design. Fig-
ure 5 shows the effect of the verifier
design on the discriminative power
across two tasks. In the experiment,
we consider four configurations: Lite-
Guard, MetaV, LiteGuard-MV (Lite-
Guard using MetaV’s verifier), and
MetaV-LV (MetaV using LiteGuard’s
verifier). As shown in the figure, Lite-
Guard achieves the highest AUC on
both tasks, outperforming all other
configurations. On the image clas-
sification task, LiteGuard attains an
AUC of 0.936, substantially exceed-
ing LiteGuard-MV (0.809), MetaV (0.676), and MetaV-LV (0.793). A similar trend is observed in the
time-series task, where LiteGuard achieves an AUC of 0.977, while LiteGuard-MV drops to 0.908.
MetaV achieves an AUC of 0.854, which is substantially improved to 0.959 when equipped with
LiteGuard’s verifier. Therefore, these results clearly reveal the importance of LiteGuard’s verifier
design in enhancing discriminative capability.

(b)(a)
Figure 6: The AUC under varying numbers of fingerprints
for (a) the tabular data generation task (AE/CH) and (b) the
protein property regression task (MLP/CASP).

Impact of the Fingerprint Set Size.
Figure 6 demonstrates the impact of
the fingerprint set size on the verifi-
cation performance. As previously
discussed, MetaV’s performance is
highly sensitive to the number of fin-
gerprints. To assess whether Lite-
Guard exhibits similar behavior, we
conduct experiments on the tabular
data generation task and the protein
property regression task. The experi-
mental results in Figure 6 reveal that
LiteGuard achieves a monotonic in-
crease in AUC as the number of fingerprints grows, with consistently decreasing standard deviations,
indicating stable performance improvements. This observation reveals that LiteGuard benefits from
the increased number of fingerprints without suffering from overfitting. In contrast, MetaV shows a
fluctuating and non-monotonic trend. While it initially gains from a moderate increase in the number
of fingerprints, its performance deteriorates beyond a certain point. This suggests that MetaV’s entan-
gled fingerprints-global verifier design introduces susceptibility to overfitting when the fingerprint
set becomes large. Consequently, MetaV requires careful tuning of the fingerprint set size, which is
non-trivial in practice.

6 CONCLUSIONS

In this paper, we present LiteGuard, a task-agnostic model fingerprinting method that offers enhanced
generalization capability under high-efficiency settings where the number of trained models in the
piracy and independence sets is limited, addressing the generalization issue suffered by MetaV.
By leveraging checkpoint-based model set augmentation and a modular local verifier architecture,
LiteGuard significantly improves model diversity and verification robustness without incurring
extra computational costs. Experimental results across various tasks demonstrate that LiteGuard
achieves superior verification performance, outperforming MetaV in both generalization performance
and computational efficiency. These results highlight LiteGuard’s practical value as an efficient
task-agnostic fingerprinting method.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. IPGuard: Protecting intellectual property of
deep neural networks via fingerprinting the classification boundary. In Proceedings of the 2021
ACM Asia Conference on Computer and Communications Security, 2021.

Jialuo Chen, Jingyi Wang, Tinglan Peng, Youcheng Sun, Peng Cheng, Shouling Ji, Xingjun Ma,
Bo Li, and Dawn Xiaodong Song. Copy, Right? A testing framework for copyright protection of
deep learning models. In Proceedings of 2022 IEEE Symposium on Security and Privacy (S&P),
pp. 824–841, 2021.

Yufei Chen, Chao Shen, Cong Wang, and Yang Zhang. Teacher model fingerprinting attacks against
transfer learning. In Proceedings of 31st USENIX Security Symposium (USENIX Security 22), pp.
3593–3610, Boston, MA, 2022.

Assaf Eisenman, Kiran Kumar Matam, Steven Ingram, Dheevatsa Mudigere, Raghuraman Krish-
namoorthi, Krishnakumar Nair, Misha Smelyanskiy, and Murali Annavaram. Check-N-Run: a
checkpointing system for training deep learning recommendation models. In 19th USENIX Sympo-
sium on Networked Systems Design and Implementation, pp. 929–943, Renton, WA, 2022. ISBN
978-1-939133-27-4.

Augustin Godinot, Erwan Le Merrer, Camilla Penzo, Francois Taiani, and Gilles Tredan. Queries,
representation & detection: The next 100 model fingerprinting schemes. Proceedings of the AAAI
Conference on Artificial Intelligence, 39(16):16817–16825, Apr. 2025.

Jiyang Guan, Jian Liang, and Ran He. Are you stealing my model? sample correlation for fingerprint-
ing deep neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Proceedings of Advances in Neural Information Processing Systems, 2022.

Ziheng Huang, Boheng Li, Yan Cai, Run Wang, Shangwei Guo, Liming Fang, Jing Chen, and
Lina Wang. What can discriminator do? towards box-free ownership verification of generative
adversarial networks. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 4986–4996, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Alex Krizhevsky, Vinod Nair, Geoffrey Hinton, et al. The CIFAR-100 dataset. online: http://www. cs.
toronto. edu/kriz/cifar. html, 55(5):2, 2014.

Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu. ModelDiff: testing-based
DNN similarity comparison for model reuse detection. In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021.

Weixing Liu and Shenghua Zhong. MarginFinger: Controlling generated fingerprint distance
to classification boundary using conditional gans. In Proceedings of the 2024 International
Conference on Multimedia Retrieval, 2024.

Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep neural network fingerprinting by
conferrable adversarial examples. In Proceedings of 2021 International Conference on Learning
Representations, 2021.

NCEI. Local climatological data (lcd). https://www.ncei.noaa.gov/data/
local-climatological-data/, 2023.

R. Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics and Probability Letters,
33(3):291–297, 1997.

Xudong Pan, Mi Zhang, Yifan Lu, and Min Yang. TAFA: A task-agnostic fingerprinting algorithm
for neural networks. In Proceedings of European Symposium on Research in Computer Security,
2021.

Xudong Pan, Yifan Yan, Mi Zhang, and Min Yang. MetaV: A meta-verifier approach to task-agnostic
model fingerprinting. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, 2022.

10

https://www.ncei.noaa.gov/data/local-climatological-data/
https://www.ncei.noaa.gov/data/local-climatological-data/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zirui Peng, Shaofeng Li, Guoxing Chen, Cheng Zhang, Haojin Zhu, and Minhui Xue. Fingerprinting
deep neural networks globally via universal adversarial perturbations. In Proceedings of 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13420–13429,
2022.

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific Data, 1:140022, 2014.

Prashant Rana. Physicochemical Properties of Protein Tertiary Structure. UCI Machine Learning
Repository, 2013.

Huali Ren, Anli Yan, Xiaojun Ren, Pei gen Ye, Chong zhi Gao, Zhili Zhou, and Jin Li. GanFinger:
Gan-based fingerprint generation for deep neural network ownership verification. ArXiv, 2023.

Lars Ruddigkeit, Ruud van Deursen, Lorenz C. Blum, and Jean-Louis Reymond. Enumeration of 166
billion organic small molecules in the chemical universe database gdb-17. Journal of Chemical
Information and Modeling, 52(11):2864–2875, 2012.

Jasper Stang, Torsten Krauß, and Alexandra Dmitrienko. Dnnshield: Embedding identifiers for deep
neural network ownership verification, 2024.

Asim Waheed, Vasisht Duddu, and N. Asokan. Grove: Ownership verification of graph neural
networks using embeddings. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 2460–
2477, 2024.

Feng Wang, Guoyizhe Wei, Qiao Liu, Jinxiang Ou, xian wei, and Hairong Lv. Boost neural networks
by checkpoints. In Advances in Neural Information Processing Systems (NeurIPS 21’), volume 34,
pp. 19719–19729. Curran Associates, Inc., 2021a.

Siyue Wang, Xiao Wang, Pin-Yu Chen, Pu Zhao, and Xue Lin. Characteristic examples: High-
robustness, low-transferability fingerprinting of neural networks. In Proceedings of International
Joint Conference on Artificial Intelligence, 2021b.

Tianlong Xu, Chen Wang, Gaoyang Liu, Yang Yang, Kai Peng, and Wei Liu. United we stand,
divided we fall: Fingerprinting deep neural networks via adversarial trajectories. In Proceedings of
Neural Information Processing Systems, 2024.

Kan Yang and Kunhao Lai. NaturalFinger: Generating natural fingerprint with generative adversarial
networks. ArXiv, 2023.

Kan Yang, Run Wang, and Lina Wang. MetaFinger: Fingerprinting the deep neural networks with
meta-training. In Proceedings of International Joint Conference on Artificial Intelligence, 2022.

Zhaoxia Yin, Heng Yin, and Xinpeng Zhang. Neural network fragile watermarking with no model
performance degradation. In Proceedings of 2022 IEEE International Conference on Image
Processing (ICIP), pp. 3958–3962, 2022.

Xia Zheng You, Youhe Jiang, Jianwei Xu, Mi Zhang, and Min Yang. GNNFingers: A fingerprinting
framework for verifying ownerships of graph neural networks. In Proceedings of the ACM on Web
Conference 2024, 2024.

Ning Yu, Larry S Davis, and Mario Fritz. Attributing fake images to gans: Learning and analyzing
gan fingerprints. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
7556–7566, 2019.

Boyao Zhao, Haozhe Chen, Jie Zhang, Weiming Zhang, and Neng H. Yu. Dual-verification-based
model fingerprints against ambiguity attacks. Cybersecur., 7:78, 2024.

Jingjing Zhao, Qin Hu, Gaoyang Liu, Xiaoqiang Ma, Fei Chen, and Mohammad Mehedi Hassan.
AFA: Adversarial fingerprinting authentication for deep neural networks. Comput. Commun., 150:
488–497, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A IMPLEMENTATION DETAILS

A.1 MODEL ARCHITECTURES AND TRAINING SETTINGS

We summarize the architectures and training configurations of the protected model, the pirated
models, and the independently-trained models used for each task in the following.

A.1.1 PROTECTED MODEL

CNN (CIFAR-100). The protected model is a ResNet-18 trained from scratch using SGD with
momentum 0.9, weight decay 5e-4, learning rate 0.1, cosine annealing learning rate scheduling, and
Xavier initialization. Training is conducted for 600 epochs with a batch size of 128.

MLP (CASP). The protected model is a Residual Multilayer Perceptron (ResMLP) trained from
scratch using Adam Optimizer, with a learning rate of 0.001, and Kaiming initialization. Training is
conducted for 120 epochs with a batch size of 128.

GNN (QM9). The protected model is a Graph Attention Network (GAT) trained using the Adam
optimizer with a learning rate of 0.001 and Xavier initialization. Training is conducted for 300 epochs
with a batch size of 128.

AE (CH). The protected model is a Variational Autoencoder (VAE) trained using the Adam optimizer
with a learning rate of 0.01. In line with the default PyTorch implementation, the initialization scheme
sets the weights of all linear layers to samples from a normal distribution N (0, 0.022) and their biases
to zero. Training is conducted for 160 epochs with a batch size of 128.

RNN (Weather). The protected model is a Vanilla Recurrent Neural Network (RNN) trained using
the Adam optimizer with a learning rate of 0.001 and Xavier initialization. Training is conducted for
120 epochs with a batch size of 128.

A.1.2 INDEPENDENCE SET FOR FINGERPRINT TRAINING

For each task, the independence set used for fingerprint generation consists of a single independently-
trained model together with its checkpoints. The architecture of the independently-trained model
is: CNN (CIFAR-100): DenseNet-169; MLP (CASP): TabNet; GNN (QM9): Graph Isomorphism
Network (GIN); AE (CH): Variational Autoencoder (VAE); RNN (Weather): Gated Recurrent Unit
(GRU).

A.1.3 PIRACY SET FOR FINGERPRINT TRAINING

For each task, as mentioned in Section 5, the piracy set used for fingerprint generation only consists
of the protected model and its checkpoints.

A.1.4 INDEPENDENCE SET FOR PERFORMANCE EVALUATION

Across all tasks, models in the independence set are trained from scratch without access to the
protected model; they share the task’s default training protocol for fairness, while diversity arises
from heterogeneous architectures and distinct random seeds. The architectures included in the
independence set for testing are specified as follows:

CNN (CIFAR-100). ResNet-18, ResNet-50, ResNet-101, MobileNetV2, MobileNetV3-Large,
EfficientNet-B2, EfficientNet-B4, DenseNet-121, and DenseNet-169.

AE (CH). Autoencoder (AE), Variational Autoencoder (VAE), Wasserstein Autoencoder (WAE),
Beta-Variational Autoencoder (BetaVAE), Sparse Autoencoder (SparseAE), Denoising Autoencoder
(DenoisingAE), Adversarial Autoencoder (AdversarialAE).

MLP (CASP). Wide & Deep Model (Wide&Deep), Residual Multi-Layer Perceptron (ResMLP),
Feature Tokenizer Transformer (FT-Transformer), Spiking Neural Network (SNN), Neural Ordinary
Differential Equation (NODE), TabNet, and TabTransformer.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

GNN (QM9). Graph Convolutional Network (GCN), Graph Isomorphism Network (GIN), Graph
Sample and Aggregate (GraphSAGE), Graph Attention Network (GAT), Graph Attention Network v2
(GATv2), Simple Graph Convolution (SGC), and Approximate Personalized Propagation of Neural
Predictions (APPNP).

RNN (Weather). Vanilla Recurrent Neural Network (VanillaRNN), Long Short-Term Memory
(LSTM), Gated Recurrent Unit (GRU), Residual Recurrent Neural Network (Residual VanillaRNN),
Residual Long Short-Term Memory (Residual LSTM), and Residual Gated Recurrent Unit (Residual
GRU).

A.1.5 PIRACY SET FOR PERFORMANCE EVALUATION

We generate pirated models for all tasks by applying six types of performance-preserving ownership
obfuscation techniques to the protected model, with the following configurations:

• Fine-tuning: updating the parameters of the already trained protected model for a fixed number of
epochs.

• Adversarial fine-tuning (A-Finetune): fine-tuning the protected model using a mixture of clean
and adversarially perturbed samples. For regression tasks with continuous outputs, adversarial
examples are generated by maximizing the prediction loss (e.g., MSE) w.r.t. input perturbations
using standard methods such as FGSM or PGD.

• Pruning: applying unstructured global pruning at sparsity levels ranging from 10% to 90% (step
size 10%).

• Prune + Fine-tuning (P-Finetune): pruning the model at sparsity levels of 30%, 60%, and 90%,
followed by fine-tuning to recover performance.

• Noise injection + Fine-tuning (N-Finetune): adding scaled Gaussian noise to the parameter tensor
and then fine-tuning the noisy model.

• Knowledge Distillation (KD): training a student model to mimic the protected model behavior by
minimizing the KL divergence (or temperature-scaled soft targets) between the teacher and student
outputs.

A.2 DATASET PROCESSING

Data Normalization. Each dataset is preprocessed using its commonly adopted normalization
parameters prior to model training, ensuring that inputs are scaled consistently with standard practice
in the respective domains.

13


	Introduction
	Problem Formulation
	Methodology
	Overview
	Model Set Construction
	Joint Training of Fingerprint-Verifier Pairs
	Ownership Verification

	Parameter Complexity Analysis
	Experiments
	Effectiveness of Our Proposed Method
	Ablation Studies

	Conclusions
	Implementation Details
	Model Architectures and Training Settings
	Protected Model
	Independence Set for Fingerprint Training
	Piracy Set for Fingerprint Training
	Independence Set for Performance Evaluation
	Piracy Set for Performance Evaluation

	Dataset Processing


