
Under review as a conference paper at ICLR 2023

INPUT PERTURBATION REDUCES EXPOSURE BIAS IN
DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Denoising Diffusion Probabilistic Models (DDPMs) are fast becoming one of the
dominant generative methods thanks to their high generation quality and diversity.
However, one of the main problems of DDPMs is their large computational cost,
which is due to the chain of sampling steps. In this paper, we argue that one of the
reasons why DDPMs need a long sampling chain is due to an exposure bias prob-
lem, similar to the analogous problem in autoregressive text generation. Specif-
ically, we note that there is a discrepancy between training and testing, since the
former is conditioned on the ground truth samples, while the latter is conditioned
on the previously generated results. In order to alleviate this problem, we propose
a very simple but effective training protocol modification, consisting in perturb-
ing the ground truth samples to simulate the inference time prediction errors. We
empirically show that the proposed input perturbation leads to a significant im-
provement of the sample quality and to smoother sampling chains, with a drastic
acceleration of the inference time. For instance, in all the tested benchmarks, we
observed an acceleration over a state-of-the-art DDPM of 12.5 times.

1 INTRODUCTION

Denoising Diffusion Probabilistic Models (DDPMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020)
are a new generative paradigm which is attracting a growing interest due to its very high-quality
sample generation capabilities (Dhariwal & Nichol, 2021; Nichol et al., 2022; Ramesh et al., 2022).
differently from most existing generative methods which synthesize a new sample in a single step
using a deep network, DDPMs resemble the Langevin dynamics (Welling & Teh, 2011) and the
generation process is based on a sequence of denoising steps, in which a synthetic sample is created
starting from pure noise and autoregressively reducing the noise component. In more detail, during
training, a real sample xxx0 is progressively destroyed in T steps adding Gaussian noise (forward pro-
cess). The sequence xxx0, ...,xxxt, ...,xxxT so obtained, can be used to train a deep denoising autoencoder
(µ()) to invert the forward process: x̂xxt−1 = µ(xxxt, t). At inference time, the generation process is
autoregressive because it depends on the previously generated samples: x̂xxt−1 = µ(x̂xxt, t) (Sec. 3).

Despite the large success of DDPMs in different generative fields (Sec. 2), one of the main draw-
backs of these models is their expensive computational time, which depends on the large number of
steps T required at both the training and the inference stage. In this paper, we argue that one of the
reasons why DDPMs need a large number of steps to learn to effectively sample, is the discrepancy
between the training and the inference stages, in which the latter generates a sequence of samples
based on the results of the previous steps, hence possibly accumulating errors. In fact, at training
time, µ() is trained with a ground truth pair (xxxt,xxxt−1) and, given xxxt, it learns to reconstruct xxxt−1

(µ(xxxt, t)). However, at inference time, µ() has no access to the “real” xxxt, and its prediction de-
pends on the previously generated x̂xxt (µ(x̂xxt, t)). This input mismatch between µ(xxxt, t), used during
training, and µ(x̂xxt, t), used during testing, is similar to the exposure bias problem (Ranzato et al.,
2016; Schmidt, 2019) shared by other autoregressive generative methods. For example, in the Image
Captioning field, Rennie et al. (2017) argue that training a network to maximize the likelihood of
the next ground-truth word given the previous ground-truth word (called “Teacher-Forcing” (Bengio
et al., 2015)) results in error accumulation at inference time, since the model has never been exposed
to its own predictions.

1

Under review as a conference paper at ICLR 2023

In order to alleviate this exposure bias problem, we propose a surprisingly simple but very effective
method, which consists in explicitly modelling the prediction error during training. At training time,
we perturb xxxt and we feed µ() with a noisy version of xxxt, this way simulating the training-inference
discrepancy, and forcing the autoencoder to learn to take into account possible inference-time pre-
diction errors. Note that our perturbation is different from the content-destroying forward process,
because the new noise is not used in the ground truth prediction target (Sec. 5). We empirically show
that input perturbation largely improves the image generation quality, leading to smoother predic-
tion trajectories at inference time. As a consequence, we can obtain the same generation quality
of the baseline DDPMs either with a shorter training time and/or with a shorter sampling chain at
inference stage. This is schematically illustrated in Fig. 1, where the red line represents a common
full-chain sampling trajectory, while the green line represents a shorter trajectory in which random
oscillations are reduced because the predictions change more gradually (i.e., close points in the input
space correspond to similar output predictions).

Figure 1: A schematic illustration of the benefit of the proposed input perturbation (green line) with
respect to the inference sampling chain of a standard DDPM (red line).

Smoother prediction trajectories can also be obtained by explicitly encouraging the function µ() to
be Lipschitz continuous (Sec. 5.1). The rationale behind this is that a Lipschitz continuous function
µ() generates small prediction differences between neighborhood points of its domain, and this leads
to a DDPM which is more robust to the inference-time errors. However, the explicit minimization of
the Lipschitz constant in DDPMs is either very time consuming or less effective than input perturba-
tion (Sec. 5.1, 7). In contrast, directly perturbing the prediction network input at training time has no
additional training overhead and can be obtained without using additional regularization terms. We
denote our method as Denoising Diffusion Probabilistic Models with Input Perturbation (DDPM-
IP) and we show that it can significantly improve the generation quality of state-of-the-art DDPMs
(Dhariwal & Nichol, 2021) and speed up the inference-time sampling. On the Cifar10 (Krizhevsky
et al., 2009), the ImageNet 32×32 (Chrabaszcz et al., 2017) and the LSUN 64×64 (Yu et al., 2015)
datasets, DDPM-IP, with only 80 sampling steps, generates lower FID scores that the state-of-the-art
ADM Dhariwal & Nichol (2021) with 1,000 steps, which corresponds to an acceleration of more
than 12.5 times. Finally, DDPM-IP can be implemented with just two lines of code, without any
change in the network architecture or the loss function, and thus it can be easily plugged in different
existing DDPMs.

In summary, our contributions are:

• We argue that there is an exposure bias problem in DDPMs which has not been investigated
so far. To alleviate this problem, we propose a very simple method based on the input
perturbation at training time.

• We additionally propose other solutions to the exposure bias problem which are based on
Lipschitz continuous prediction networks. However, DDPM-IP leads to a higher sample
quality and a faster sampling.

2

Under review as a conference paper at ICLR 2023

• Using an image domain and common experimental benchmarks, we show that our method
can significantly improve the generation quality and drastically speed up the inference time
sampling.

2 RELATED WORK

DDPMs have been introduced by Sohl-Dickstein et al. (2015) and later improved in (Nichol &
Dhariwal, 2021; Ho et al., 2020). More recently, Dhariwal & Nichol (2021) have shown that DDPMs
can achieve still image generation results on par or superior to the best Generative Adversarial
Network (GAN) approaches (Goodfellow et al., 2014). Similarly to GANs, the generation process in
DDPMs can be both unconditional and conditioned. For instance, GLIDE (Nichol et al., 2022) is one
of the state-of-the-art text-guided image generation methods, in which a DDPM learns to generate
images according to an input textual sentence. Differently from GLIDE, where the diffusion model is
defined on the input space (i.e., the image space), DALL·E-2 (Ramesh et al. (2022)) uses a DDPM to
learn a prior distribution on the CLIP (Radford et al., 2021) space. Text-driven image manipulation
is explored also by Kim & Ye (2021), who use the CLIP space as a guidance for the backward
diffusion process (more details on the latter in Sec. 3). DDPMs can also be used with categorical
distributions (Hoogeboom et al., 2021; Gu et al., 2021), in an audio domain (Mittal et al., 2021;
Chen et al., 2021), in time series forecasting (Rasul et al., 2021) and in other generative tasks (Yang
et al., 2022; Croitoru et al., 2022). differently from previous work, our goal is not to propose an
application-specific prediction network architecture or loss function, but rather to investigate the
training-testing discrepancy of the DDPMs and propose a solution which can be used in different
application fields and jointly with different design choices.

The specific problem of increasing the convergence speed and/or reducing the number of sampling
steps T (Sec. 1) has been thoroughly investigated due to its practical implications. For instance,
Song et al. (2021) propose a non-Markovian diffusion process in which the prediction network di-
rectly predicts the initial point of the sequence (x̂xx0) and then x̂xx0 is used to obtain a new sample of
the chain x̂xxt−1, and they empirically show that this leads to a reduced number of sampling steps at
inference time. Salimans & Ho (2022) propose to distill the prediction network into new networks
which progressively reduce the number of required inference sampling steps. However, the disad-
vantage of this approach is the need of training multiple networks. Rombach et al. (2021) propose
to speed up the DDPM sampling by splitting the process in a compression stage and a generation
stage, and applying the DDPM on the compressed (latent) space rather than directly on the pixel
space. Hoogeboom et al. (2022) propose an order-agnostic DDPM, inspired by XLNet (Yang et al.,
2019), in which the sequence xxx0, ...,xxxT is randomly permuted at training time and which leads to a
partially parallelized sampling at inference time. Recently, Chen et al. (2021) found that, instead of
conditioning the prediction network (µ()) on a discrete diffusion step t, it is beneficial to condition
µ() on a continuous noise level. Our approach is orthogonal to these previous works, and it can
potentially be used jointly with any of them.

3 BACKGROUND

Without loss of generality, we assume an image domain and we focus on DDPMs which directly
define a diffusion process on the input space (see Sec. 2 for DDPM examples defined on a latent
space or based on different domains). Moreover, following (Nichol & Dhariwal, 2021; Dhariwal
& Nichol, 2021), we assume that the pixel values are linearly scaled to [−1, 1]. Given samples
from a real data distribution q(xxx0), a DDPM defines a forward process and a reverse process. The
forward process, defined as a Markov chain, starts from a real image xxx0 ∼ q(xxx0) and iteratively
adds Gaussian noise for T diffusion steps:

q(xxxt|xxxt−1) = N (xxxt;
√
1− βtxxxt−1, βtI), (1)

q(xxx1:T |xxx0) =

T∏
t=1

q(xxxt|xxxt−1), (2)

3

Under review as a conference paper at ICLR 2023

where β1, ..., βT is a noise schedule and Eq. 1-2 progressively destroy the original image xxx0 until
obtaining a completely noisy image xxxT . On the other hand, the reverse process is based on a predic-
tion network which learns to invert the forward process. More formally, starting from random noise
xxxT ∼ p(xxxT) = N (000, I), the reverse process is defined by means of learned transition probabilities
parameterized by θθθ and given by:

pθθθ(xxxt−1|xxxt) = N (xxxt−1;µθθθ(xxxt, t), σt), (3)

pθθθ(xxx0:T) = p(xxxT)

T∏
t=1

pθθθ(xxxt−1|xxxt), (4)

where σ1, ...σT is a predefined noise schedule and σt =
1−ᾱt−1

1−ᾱt
βt, being ᾱt =

∏t
i=1 αi and αi =

1− βi. Given xxx0, xxxt can be obtained (Ho et al., 2020) by:

xxxt =
√
ᾱtxxx0 +

√
1− ᾱtϵϵϵ, (5)

where ϵϵϵ is a noise vector (ϵϵϵ ∼ N (000, I)). Instead of using a prediction network which predicts the
mean of the forward process posterior (i.e., x̂xxt−1 = µθθθ(xxxt, t)), Ho et al. (2020) propose to use a
network ϵϵϵθθθ() which predicts the noise vector (ϵϵϵ). Using ϵϵϵθθθ(), and a simple L2 loss function, the
training objective becomes:

L(θθθ) = Exxx0∼q(xxx0),ϵϵϵ∼N (000,I),t∼U({1,...,T})[||ϵϵϵ− ϵϵϵθθθ(xxxt, t)||2]. (6)

Note that, in Eq. 6, xxxt and ϵϵϵ are ground-truth terms, while ϵϵϵθθθ(xxxt, t) is the network prediction. Using
Eq. 6, the training and the sampling algorithms are described in Alg. 1-2, respectively.

Algorithm 1 Training
1: repeat
2: xxx0 ∼ q(xxx0)
3: t ∼ U({1, ..., T})
4: ϵϵϵ ∼ N (000, I)
5: compute xxxt using Eq. 5
6: take a gradient descent step on

∇θθθ||ϵϵϵ− ϵϵϵθθθ(xxxt, t)||2
7: until converged

Algorithm 2 Sampling
1: x̂xxT ∼ N (000, I)
2: for t := T, ..., 1 do
3: if t > 1 then zzz ∼ N (000, I), else zzz = 000
4: x̂xxt−1 = 1√

αt
(x̂xxt− 1−αt√

1−ᾱt
ϵϵϵθθθ(x̂xxt, t))+σtzzz

5: end for
6: return x̂xx0

4 THE EXPOSURE BIAS PROBLEM IN DIFFUSION MODELS

Comparing line 6 of Alg. 1 with line 4 of Alg. 2, we observe that the inputs of the prediction
network ϵϵϵθθθ() are different between the training and the inference phase. Specifically, at training
time, standard DDPMs use ϵϵϵθθθ(xxxt, t), where xxxt is a ground truth sample (Eq. 5). In contrast, at
inference time, they use ϵϵϵθθθ(x̂xxt, t)), where x̂xxt is computed based on the output of ϵϵϵθθθ() at the previous
sampling step (t+1). As mentioned in Sec. 1, this leads to a training-inference discrepancy, which is
similar to, e.g., the exposure bias problem observed in text generation models, in which the training
generation is conditioned on a ground-truth sentence, while the testing generation is conditioned on
the previously generated words (Ranzato et al., 2016; Schmidt, 2019; Rennie et al., 2017; Bengio
et al., 2015).

In order to quantify this discrepancy, we propose a simple experiment in which we measure the
difference between the ground truth xxx0 and the predicted x̂xx0 in the pixel space. The complete
algorithm is described in Alg. 3. Given a real image xxx0, we first compute xxxt by Eq. 5, then we
use the reverse process of a pre-trained network ϵϵϵθθθ. Specifically, ϵϵϵθθθ is trained using the standard
algorithm (Alg. 1) and then frozen. To reduce the stochasticity of the sampling chain, we adopt the
equation in line 4 of Alg. 2 but removing the stochastic term σtzzz. This deterministic reverse diffusion

4

Under review as a conference paper at ICLR 2023

process decreases the generation diversity and it enables the model to target at the mode of xxx0 rather
than falling into other modes (images) Luo (2022). Finally, we use the L1-distance between xxx0 and
x̂xx0 in the pixel space to estimate the cumulative error computed in the whole trajectory of t steps.
In this experiment, we use ADM (Dhariwal & Nichol, 2021) and the ImageNet 32 × 32 dataset
(Chrabaszcz et al., 2017).

Algorithm 3 Measuring the inference-time prediction error
1: Initialize δt = 0, nt = 0 (∀t ∈ {1, ..., T})
2: repeat
3: xxx0 ∼ q(xxx0)
4: t ∼ U({1, ..., T})
5: ϵϵϵ ∼ N (000, I)
6: compute xxxt using Eq. 5
7: for τ := t, ..., 1 do
8: x̂xxτ−1 = 1√

ατ
(x̂xxτ − 1−ατ√

1−ᾱτ
ϵϵϵθθθ(x̂xxτ , τ))

9: end for
10: δt := δt + ||xxx0 − x̂xx0||1
11: nt := nt + 1
12: until N iterations
13: ∀t ∈ {1, ..., T}, nt ̸= 0 : δ̄t =

δt
nt

In Tab. 1, we show the training-inference discrepancy measured using δ̄t with respect to different
trajectory lengths (t). This table shows that the discrepancy grows up with the increase of the
number of reverse diffusion steps. In other words, the errors most likely accumulate over different
steps during sampling. In the Appendix A.2, we visualize a few sample images xxx0 used in this
experiment, jointly with the corresponding predicted images x̂xx0, which further illustrates the strong
increase of the error with respect to the number of reverse time steps t.

Table 1: A measure of the error accumulation (δ̄t) with respect to different prediction trajectory
lengths. Note that, due to the pixel scaling, the error is upper bounded by 2.

Model Number of reverse diffusion steps

100 300 600 1000

ADM (baseline) 0.0539 0.1074 0.1812 0.8165

5 USING INPUT PERTURBATION TO ALLEVIATE THE TRAINING-INFERENCE
DISCREPANCY

The solution we propose to alleviate the training-inference discrepancy (Sec. 4) is very simple: at
training time we explicitly model the prediction error using input perturbation. More specifically,
we assume that the error of the prediction network in the reverse process at time t + 1 is normally
distributed with respect to the ground-truth vectorxxxt (computed using Eq. 5). Hence, given a random
noise vector ξξξ ∼ N (000, I), we create a perturbed version (yyyt) of the input ground truth:

yyyt =
√
ᾱtxxx0 +

√
1− ᾱt(ϵϵϵ+ γtξξξ). (7)

For simplicity, we use a flat noise schedule for ξξξ and we set γ0 = ..., γT = γ. In fact, although
selecting the best noise schedule (β1, ..., βT) in DDPMs is usually very important to get high-quality
results (Ho et al., 2020; Chen et al., 2021), it is nevertheless an expensive hyperparameter tuning
operation (Chen et al., 2021). Hence, to avoid adding a second noise schedule (γ0, ..., γT) to the
training procedure, we opted for a simpler, although most likely sub-optimal, solution, in which γt
does not vary depending on t. In Alg. 4 we show the proposed training algorithm, in which xxxt is
replaced by yyyt.

5

Under review as a conference paper at ICLR 2023

Note that, in line 8, we use yyyt as input of the prediction network ϵϵϵθθθ but we keep using ϵϵϵ as the
regression target. In other words, the new additive noise term (ξξξ) we introduce is used asymmetri-
cally, because it is not included in the prediction target (ϵϵϵ). For this reason, the proposed training
protocol (Alg. 4) is not equivalent to choose a different value of ϵϵϵ in Alg. 1, where ϵϵϵ is instead used
symmetrically both in the forward process (Eq. 5) and as the target of the prediction network (line 6
of Alg. 1). Finally, at inference time, we use Alg. 2 without any change.

Algorithm 4 DDPM-IP: Training with input perturbation
1: repeat
2: xxx0 ∼ q(xxx0)
3: t ∼ U({1, ..., T})
4: ϵϵϵ ∼ N (000, I)
5: ξξξ ∼ N (000, I)
6: compute yyyt using Eq. 7
7: take a gradient descent step on
8: ∇θθθ||ϵϵϵ− ϵϵϵθθθ(yyyt, t)||2
9: until converged

5.1 LIPSCHITZ CONTINUOUS FUNCTIONS

The proposed input perturbation resembles Denoising Autoencoders Vincent et al. (2008) which
learn a smooth prediction function with small gradients around each data sample Goodfellow et al.
(2016). Specifically, in the procedure described in Sec. 5, we train the network to be more robust the
prediction errors by randomly perturbing its input (ϵϵϵθθθ(yyyt, ·)) while simultaneously asking to predict
the original noise vector ϵϵϵ independently of the added noise (γ

√
1− ᾱtξξξ). Since the perturbation is

locally distributed around the ground truth xxxt (yyyt ∼ N (xxxt, γ
2(1− ᾱt)I)), the simplest way to solve

this task for the network is to smooth the prediction output with respect to its input.

An alternative way to obtain smooth predictions which mitigate the effects of the inference-time
prediction errors is to explicitly encourage ϵϵϵθθθ() to be Lipschitz continuous, i.e. to satisfy:

||ϵϵϵθθθ(xxx, t)− ϵϵϵθθθ(yyy, t)|| ≤ K||xxx− yyy||, ∀(xxx,yyy) (8)

for a small constant K. We implemented this idea using two standard Lipschitz constant minimiza-
tion methods, i.e., gradient penalty Rifai et al. (2011), Gulrajani et al. (2017) and weight decay
Krogh & Hertz (1991), Miyato et al. (2018). In both cases we do not perturb the prediction network
input and we use the original training algorithm (Alg. 1), with the only difference being the loss
function used in line 6, where the L2 loss is used jointly with a regularization term, as described
below.

Gradient penalty. In this case, the regularization is based on the Frobenius norm of the Jacobian
matrix (Rifai et al., 2011; Goodfellow et al., 2016), and the final loss is:

LGP (θθθ) = ||ϵϵϵ− ϵϵϵθθθ(xxxt, t)||2 + λGP

∥∥∥∥∂ϵϵϵθθθ(xxxt, t)

∂xxx

∥∥∥∥2
F

, (9)

where λGP is the weight of the gradient penalty term, and the latter is used to encourage ϵϵϵθθθ() to
have a low Lipschitz constant Rifai et al. (2011). However, a gradient penalty regularization is very
slow Yoshida & Miyato (2017) because it involves one forward and two backward passes for each
training image: We first need to compute ϵϵϵθθθ(xxxt, t) and backpropagate the corresponding gradients
through the network till the input layer, then we can compute the whole loss function (Eq. 9) and
finally we need to backpropagate the loss gradients (∇θθθLGP (θθθ)) to update the weights (θθθ). In our
preliminary experiments using this approach, we observed that, despite having encouraging results
in terms of the quality of the generated images, the training time increased about three times with
respect to the baseline. This is also due to the Pytorch implementation, in which the computational
graph should keep in memory much more information than in the case in which there is only one
forward and one backward pass. Since our goal is to speed up the training (besides the testing) time
of DDPMs, this approach is clearly counterproductive.

6

Under review as a conference paper at ICLR 2023

Weight decay. As shown in (Liu et al., 2022), Lipschitz continuity can also be encouraged using a
weight decay regularization (see Appendix A.1 for more details). In this case, the final loss is:

LWD(θθθ) = ||ϵϵϵ− ϵϵϵθθθ(xxxt, t)||2 + λWD||θθθ||2, (10)

where λWD is the weight of the regularization term. Weight decay is simple to implement and
computationally efficient. However, it involves changing the loss function, which may be not easy
to do in some domain-specific DDPMs. Moreover, in Sec. 7 we compare this approach with the input
perturbation presented in Sec. 5 and we show that, using the latter, the generation quality improves.

6 MAIN RESULTS

To evaluate the effectiveness of DDPM-IP, we use the state-of-the-art diffusion model ADM Dhari-
wal & Nichol (2021) (without classifier guidance) as the baseline. The generation quality is esti-
mated using standard metrics: the Fréchet Inception Distance (FID) (Heusel et al., 2017) and Spatial
Fréchet Inception Distance (sFID) (Nash et al., 2021). As a variant of FID, sFID uses spatial fea-
tures rather than the standard pooled features to better capture spatial relationships, rewarding image
distributions with coherent high-level structure. In our experiments, we focus on image generation
tasks and train the models on the Cifar10 Krizhevsky et al. (2009), the ImageNet 32×32 Chrabaszcz
et al. (2017) and the LSUN tower 64× 64 Yu et al. (2015) dataset.

Following prior work (Ho et al., 2020; Nichol & Dhariwal, 2021), we produce 50K samples for each
trained model and we use the full training set to compute the reference distribution statistics, except
for LSUN tower where we use 50K training samples as the reference data and produce 10K samples.
Regarding the main hyperparameters, we choose T = 1000 for training in all the experiments,
while we use the time step respacing technique (Nichol & Dhariwal, 2021) to generate samples with
different numbers of times teps (see Tab. 2). Moreover, we empirically found that γ = 0.1 (Sec. 5)
is optimal in both Cifar10 and ImageNet 32 × 32, and we used γ = 0.1 in all the experiments
and the datasets (including LSUN, in which the value of γ was not tuned). The complete list of
hyperparameters (e.g. the learning rate, the batch size, etc.) and network architecture setting, which
are shared by all the tested models, can be found in Appendix A.3.

The results of all the models are shown in Tab. 2. This table shows that, independently of the
dataset, the metric (either FID or sFID), and the number of sampling steps (T), DDPM-IP is always
significantly better that ADM, sometimes drastically better. For instance, on LSUN with T = 80,
we have a more than 5 sFID score improvement with respect to ADM, tested with the same number
of sampling steps. Moreover, DDPM-IP converges much faster than the baseline model during
training in the LSUN tower dataset, where DDPM-IP converges at 200K training iterations while
ADM saturates around 300K iterations (see Fig. 2). A similar phenomenon is also observed while
training of Cifar10. On ImageNet 32 × 32, although the two models converge at similar iterations,
DDPM-IP consistently achieves a lower FID along the whole training. Furthermore, on this dataset,
DDPM-IP reaches the same FID score (with T = 1000) as the final ADM FID scores in much less
training time. For example, our model reaches FID 3.83 at 1000K training iterations whereas the
baseline model gets FID 3.78 at 2500K iterations, showing a 2.5x speed-up in the training time.

Tab. 2 also shows that DDPM-IP can drastically accelerate the inference time, obtaining better
results than the baseline with shorter sampling trajectories. For example, using only 80 sampling
time steps, in all three datasets, both the FID and the sFID scores of DDPM-IP are better than the
corresponding baseline values (independently of the number of sampling steps used for the latter).
Moreover, comparing the DDPM-IP results with 80 sampling steps with the results of ADM with a
standard number of sampling steps (i.e., T = 1000), DDPM-IP is almost always better (except the
comparable values of sFID on ImageNet 32 × 32), which leads to a remarkable 12.5x speed-up of
the inference stage.

Another interesting finding is that the best FID and sFID scores of both ADM and DDPM-IP are
obtained in the range from 100 to 300 sampling steps, while the models are all trained with 1000
diffusion steps. A similar phenomenon was also observed by Nichol & Dhariwal (2021), enve
though they did not provide an explanation. We believe that exposure bias problem may contribute to
explain this apparently counterintuitive phenomenon in which fewer sampling steps lead to a better
generation quality. Indeed, while on the one hand more sampling steps correspond to a diffusion

7

Under review as a conference paper at ICLR 2023

Table 2: The best FID and sFID using different sampling time steps

Sampling
time steps Model Cifar10 32× 32 ImageNet 32× 32 LSUN tower 64× 64

FID sFID FID sFID FID sFID

1000 ADM (baseline) 3.58 4.05 3.6 3.3 4.66 17.21
DDPM-IP 3.25 3.75 2.87 2.39 4.05 15.63

300 ADM 3.47 4.12 3.58 3.48 4.54 17.46
DDPM-IP 3.14 3.72 2.74 2.58 3.79 15.56

100 ADM 3.56 4.42 4.26 4.48 4.79 19.51
DDPM-IP 3.12 3.86 3.24 3.13 4.13 16.11

80 ADM 3.74 4.66 4.61 4.76 5.66 21.58
DDPM-IP 3.26 3.89 3.57 3.33 4.27 16.51

process which can be more easily approximated with Gaussian distributions (Ho et al., 2020), on
the other hand, longer sampling trajectories correspond to a larger accumulation of the prediction
errors. Hence, the range [100, 300] leads to the best generation quality because, presumably, it is a
good trade-off between these two opposite aspects.

7 COMPARISON WITH EXPLICIT LIPSCHITZ CONTINUOUS FUNCTIONS

In this section, we compare DDPM-IP with the two alternative methods proposed in Sec. 5.1 which
are based on an explicit Lipschitz constant minimization. We use “ADM-WD” to indicate the weight
decay method and “ADM-GP” for the gradient penalty approach. The corresponding loss weights
we used are: λGP = 1e− 6 and λWD = 0.03. For this experiment, we use Cifar10 because ADM-
GP is too time consuming to be trained on larger datasets (Sec. 5.1). The results in Tab. 3 show
that all the three models outperform the baseline, but DDPM-IP gets the best FID and sFID scores.
These results show the effectiveness of Lipschitz continuous functions in boosting the image quality
generated by DDPMs.

Table 3: FID and sFID scores using 1000 sampling steps.

Model Cifar10 32× 32

FID sFID

ADM (baseline) 3.58 4.05
ADM-GP 3.28 3.92
ADM-WD 3.34 3.94
DDPM-IP 3.25 3.75

8 CONCLUSIONS

In this paper, we proposed DDPM-IP, a training protocol for DDPMs which is based on input per-
turbation to explicitly model the prediction errors and alleviate the DDPM exposure bias problem.
We empirically showed that DDPM-IP can significantly improve the image quality and drastically
reduce the number of sampling steps at inference time. The proposed method is straightforward and
does not require any change in the network architecture or the specific loss function. This simplicity
makes it very easy to be reproduced and plugged into existing DDPMs. Although we tested DDPM-
IP only on an image domain, there are no domain-specific assumptions behind our method, hence
we presume it can be more generally applied to other domains.

8

Under review as a conference paper at ICLR 2023

(a) Cifar10 (b) ImageNet 32× 32

(c) LSUN 64× 64

Figure 2: The FID scores computed using models trained with different numbers of training itera-
tions. At inference time, for all the models and all the training iterations, we use T = 1000 sampling
steps. The dashed line in (b) indicates that DDPM-IP, trained with 1000K iterations, reaches the
same FID scores as ADM when trained with almost 2500K iterations.

REFERENCES

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence
prediction with recurrent neural networks. In NeurIPS, 2015.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and William Chan. Wave-
grad: Estimating gradients for waveform generation. In ICLR, 2021.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv:1707.08819, 2017.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models in
vision: A survey. arXiv preprint arXiv:2209.04747, 2022.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis.
In NeurIPS, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NeurIPS, 2014.

9

Under review as a conference paper at ICLR 2023

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. arXiv:2111.14822,
2021.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. NeurIPS, 30, 2017.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS, 30,
2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. In NeurIPS, 2021.

Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and
Tim Salimans. Autoregressive diffusion models. In ICLR, 2022.

Gwanghyun Kim and Jong Chul Ye. DiffusionCLIP: text-guided image manipulation using diffusion
models. arXiv:2110.02711, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. NeurIPS, 4,
1991.

Hsueh-Ti Derek Liu, Francis Williams, Alec Jacobson, Sanja Fidler, and Or Litany. Learning smooth
neural functions via lipschitz regularization. arXiv preprint arXiv:2202.08345, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. ICLR, 2019.

Calvin Luo. Understanding diffusion models: A unified perspective. arXiv preprint
arXiv:2208.11970, 2022.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv:1710.03740, 2017.

Gautam Mittal, Jesse H. Engel, Curtis Hawthorne, and Ian Simon. Symbolic music generation
with diffusion models. In Proceedings of the 22nd International Society for Music Information
Retrieval Conference, ISMIR, 2021.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Charlie Nash, Jacob Menick, Sander Dieleman, and Peter W Battaglia. Generating images with
sparse representations. arXiv:2103.03841, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In ICML, 2021.

Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob
McGrew, Ilya Sutskever, and Mark Chen. GLIDE: towards photorealistic image generation and
editing with text-guided diffusion models. In ICML, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. NeurIPS, 32, 2019.

10

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Under review as a conference paper at ICLR 2023

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning Transferable Visual Models From Natural Language Supervision. In ICML,
2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with CLIP latents. arXiv:2204.06125, 2022.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level train-
ing with recurrent neural networks. In ICLR, 2016.

Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. In Marina Meila and Tong
Zhang (eds.), ICML, 2021.

Steven J Rennie, Etienne Marcheret, Youssef Mroueh, Jarret Ross, and Vaibhava Goel. Self-critical
sequence training for image captioning. In CVPR, 2017.

Salah Rifai, Xavier Muller Pascal Vincent, Xavier Glorot, and Yoshua Bengio. Contractive auto-
encoders: Explicit invariance during feature extraction. In ICML, 2011.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. arXiv:2112.10752, 2021.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
ICLR, 2022.

Florian Schmidt. Generalization in generation: A closer look at exposure bias. In Proceedings of
the 3rd Workshop on Neural Generation and Translation@EMNLP-IJCNLP, 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR,
2021.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In ICML, pp. 1096–1103, 2008.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynamics. In
ICML, 2011.

Ling Yang, Zhilong Zhang, and Shenda Hong. Diffusion models: A comprehensive survey of
methods and applications. arXiv:2209.00796, 2022.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In NeurIPS, 2019.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning. arXiv preprint arXiv:1705.10941, 2017.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

A APPENDIX

A.1 RELATION BETWEEN THE LIPSCHITZ CONSTANT MINIMIZATION AND WEIGHT DECAY
MINIMIZATION

For functions that satisfy a low Lipschitz constant K, the output difference ∥fw(x1)− fw(x2)∥
should be small if the input difference ∥x1 − x2∥ is small, which is expressed as follows:

11

Under review as a conference paper at ICLR 2023

∥fw(x1)− fw(x2)∥ ≤ K · ∥x1 − x2∥ (11)

Since a neural network is usually a stack of layers, we consider a single layer neural network,
f(x) = ReLU(Wx+ b), thus we have:

∥f(Wx1 + b)− f(Wx2 + b)∥ ≤ K · ∥x1 − x2∥ (12)

Using the first order term of Tylor Series to approximate the left side of the above equation, we get:∥∥∥∥∂f∂y ·W (x1 − x2)

∥∥∥∥ ≤ K · ∥x1 − x2∥ , (13)

where the details of Tylor Series approximation are:

• let y = Wx+ b, we approximate f(y) at the point y = 0

• therefore, f(y) ≈ f(0) + f ′(0)(y − 0)

• substitute y with y1 and y2 where y1 = Wx1 + b, y2 = Wx2 + b

• thus, f(y1)−f(y2) ≈ f(0)+f ′(0)y1−f(0)−f ′(0)y2 = f ′(0)(y1−y2) = f ′(0)W (x1−
x2)

Since ∂f
∂y is bounded by 1 when f = ReLU , we can ignore it, and we have:

∥W (x1 − x2)∥ ≤ K ∥x1 − x2∥ . (14)

We now introduce the Spectral Norm ∥W∥2. According to the definition ∥W∥2 = max
x ̸=0

∥Wx∥
∥x∥

, we

have:

∥W (x1 − x2)∥ ≤ ∥W∥2 · ∥x1 − x2∥ (15)

Comparing Eq.14 with Eq.15, we can use ∥W∥2 as the Lipschitz constant K. For the simple case,
we can use the Frobenius Norm ∥W∥F to approximate the Spectral Norm ∥W∥2 because, using the
Cauchy inequality, we have:

∥Wx∥ ≤ ∥W∥F · ∥x∥ , (16)

where the definition of the Frobenius Norm is: ∥W∥F =
√∑

i,j w
2
i,j .

Thus, we can use the Frobenius Norm ∥W∥F to approximate the constant K. Minimizing this
constant during training is often implemented by adding a loss term λ ∥W∥2F to the loss function.

This loss term is exactly the Weight Decay according to the definition of ∥W∥F =
√∑

i,j w
2
i,j .

A.2 EXPOSURE BIAS

We visualize the ground truth xxx0 and the predicted x̂xx0 under different diffusion steps. Fig. 3 shows
that the distance between xxx0 and x̂xx0 increases with the diffusion chain getting longer.

A.3 HYPERPARAMETERS

Since ADM Dhariwal & Nichol (2021) is the baseline model in this paper, we keep the hyperparam-
eters consistent with the parameters in ADM, except that we only train LSUN in the resolution of
64 × 64. The hypterparameters for training the diffusion models are shown in Tab. 4. We train all
of our models using AdamW Loshchilov & Hutter (2019) optimizer. Furthermore, 16-bit precision
and loss-scaling Micikevicius et al. (2017) are adopted for mixed precision training, but maintain

12

Under review as a conference paper at ICLR 2023

Figure 3: Visualization of the exposure bias problem at different diffusion chain lengths.

32-bit weights, EMA, and optimizer state. We use an EMA rate of 0.9999 for all experiments. These
settings are the same as the configuration in Dhariwal & Nichol (2021).

As for the platform and training cost, we use Pytorch 1.8 Paszke et al. (2019) and train all the models
on several NVIDIA Tesla V100s (16G memory). In details, we use 2 GPUs to train the models on
Cifar10 for 1 day, use 4 GPUs to train the models on ImageNet 32 × 32 for 23 days, and use 16
GPUs to train the models on LSUN tower 64× 64 for 3 days.

Table 4: Hyperparameters for diffusion models

Cifar10 32× 32 ImageNet 32× 32 LSUN tower 64× 64

Diffusion steps 1000 1000 1000
Noise schedule cosine cosine cosine
Model size 57M 57M 295M
Channels 128 128 192
Residual blocks 3 3 3
Channels multiple 1,2,2,2 1,2,2,2 1,2,3,4
Heads channels 32 32 64
Attention resolution 16, 8 16, 8 32, 16, 8
BigGAN up/downsample True True True
Dropout 0.3 0.3 0.1
Batch size 128 512 256
Iterations 200K 3500K 340K
Training images 60K 1281K 708K
Learning rate 1e-4 1e-4 1e-4

A.4 SAMPLES

We show some random image samples generated by our DDPM-IP models below. The sampling
steps are fixed at 300 since it produces the best image quality among Cifar10, ImageNet 32×32 and
LSUN tower 64× 64 datasets.

13

Under review as a conference paper at ICLR 2023

Figure 4: A few samples generated by DDPM-IP using Cifar10 (FID 3.14, 300 sampling steps)

Figure 5: A few samples generated by DDPM-IP using ImageNet 32× 32 (FID 2.74, 300 sampling
steps)

14

Under review as a conference paper at ICLR 2023

Figure 6: A few samples generated by DDPM-IP using LSUN tower 64 × 64 (FID 3.79 , 300
sampling steps)

15

	Introduction
	Related work
	Background
	The exposure bias problem in Diffusion Models
	Using input perturbation to alleviate the training-inference discrepancy
	Lipschitz continuous functions

	Main results
	Comparison with explicit Lipschitz continuous functions
	Conclusions
	Appendix
	Relation between the Lipschitz constant minimization and weight decay minimization
	Exposure bias
	Hyperparameters
	Samples

