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Abstract

Diabetic Retinopathy (DR) is a neurovascular com-
plication of diabetes and the leading cause of blind-
ness in adults in developed countries. Because DR
progresses through ordered severity levels, its grad-
ing is naturally an ordinal classification problem.
Yet, most deep learning methods treat it as a cat-
egorical task, disregarding the inherent class order
and worsening performance under class imbalance.

In this work, we introduce a novel ordinal loss
function that emphasizes the predictive tendencies of
the whole model output rather than the class output
probabilities individually. This design promotes
unimodal predictions aligned with the underlying
severity scale and is particularly robust to class
imbalance. To place our method in context, we
also evaluate a range of existing ordinal approaches
on five publicly available DR datasets. with cross-
entropy serving as a nominal baseline.

Extensive experiments demonstrate that our pro-
posed loss function consistently preserves the ordinal
structure of DR grades, even under severe imbalance,
outperforming both nominal and alternative ordinal
formulations.

The code is publicly available at https:
//github.com/Trustworthy-AI-UU-NKI/
Ordinal-DR-Grading.

1 Introduction

Diabetic Retinopathy (DR) is a complication of
both type 1 and type 2 diabetes, where prolonged
elevated blood glucose levels damage retinal blood
vessels. Depending on severity, DR can progress
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from mild vision impairment to complete blindness,
and it is the leading cause of blindness in adults
aged 20-74 in developed countries [2]. Severity is
typically categorised into five stages: no DR, mild
DR, moderate DR, severe DR, and proliferative DR.
Severity grades are depicted in Figure 1. Diagnosis
can be performed by an ophthalmologist through
eye examinations or retinal photography, the latter
enabling more cost-effective and scalable screening
through expert annotation and, increasingly, Deep
Learning (DL) methods [3].

A crucial aspect of DR grading is that these sever-
ity levels are not arbitrary categories, but follow
a natural order. This makes DR grading an or-
dinal classification problem. However, most DL
approaches treat it as a nominal multi-class task,
ignoring the structural information in the class or-
dering [4]. While some ordinal methods have been
explored, they remain far less common than nominal
formulations. Standard classifiers assume indepen-
dence between classes and optimize predictions to-
ward one-hot targets, which may limit their ability
to capture the progression of disease severity.

Formally, ordinal classification aims to learn a
function ¥ : X — Y, mapping inputs x € X C R?
to labels {co,...,cxk—1} € Y, while respecting the
well-defined order cg < ¢1 < ... < cx_1.

Recent research has emphasized the importance of
unimodal output distributions for ordinal classifica-
tion [5-7]. A unimodal posterior ensures that, given
a predicted class I%, the neighboring classes ¢; _, and
Cj41 hold the next highest probabilities, with prob-
abilities decaying monotonically as the class index
moves away from k. This behavior reflects the con-
tinuity of disease progression and has been shown
to improve alignment with ordinal structure [7, 8].
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Figure 1. Diabetic Retinopathy (DR) grading. Images from the Aptos [1] dataset for each severity level cg: no
DR, mild DR, moderate DR, severe DR and proliferate DR [2].

Another important aspect is the taxonomy of
ordinal approaches. Methods can be broadly cat-
egorized into non-unimodal, soft-unimodal, and
hard-unimodal [7]. While enforcing unimodality can
strongly align predictions with ordinal assumptions,
recent work has shown that promoting unimodality
in a softer manner can achieve competitive or even
superior performance, finding a balance between
order preservation and predictive accuracy.

Finally, DR datasets, like many medical datasets,
suffer from class imbalance. Mild and moderate
cases are much more frequent than severe or prolifer-
ative stages, which complicates both model training
and evaluation [9]. Despite its prevalence, the in-
teraction between class imbalance and ordinality
remains unexplored.

In this work, we address these challenges by
proposing a new approach to ordinal DR grading.
Specifically:

e We introduce a novel non-parametric ordinal
loss function, Expectation Mean Squared Error
(exp-MSE) that encourages unimodal model
outputs with limited hyperparameter tuning.
By computing the mean and variance of the
categorical distribution, our formulation penal-
izes deviations from the true class in proportion
to their distance, thereby preserving local or-
dinal structure. This design yields consistent
performance across diverse DR datasets.

e We provide a comprehensive empirical anal-
ysis of ordinal prediction behavior using
visualization-based diagnostics (t-SNE plots,
confusion matrices, and distributional analy-
ses), offering insight into how different ordinal
losses shape model outputs.

e We analyze the impact of class imbalance
through multiple imbalance measures, highlight-
ing how dataset characteristics influence predic-
tive structure and model reliability.

e We contribute an evaluation framework that
connects quantitative performance with qual-
itative prediction behavior, encouraging more
transparent assessment of ordinal methods.

2 Related Work

2.1 Deep Learning for Diabetic

Retinopathy Grading

DL has been extensively applied to DR, address-
ing tasks ranging from binary classification (no DR
vs. DR) to the full five-stage grading, and in some
cases also lesion or vessel segmentation [10]. Most
studies employ image pre-processing techniques such
as data augmentation, resizing, cropping, denoising,
contrast enhancement, or color normalization to mit-
igate limited dataset size and heterogeneous image
quality [11].

Model architectures vary from custom Convolu-
tional Neural Networks (CNNs) to established back-
bones such as ResNet, AlexNet, or VGG, often en-
hanced by transfer learning to improve generaliza-
tion. Attention mechanisms and Transformer-based
models have been increasingly integrated to high-
light fine-grained retinal patterns, provide more in-
terpretable predictions, and address generalization
issues across heterogeneous datasets [12, 13]. At-
tention has also been explored as a mechanism to
mitigate class imbalance. Furthermore, generative
models such as autoencoders and GANs have been
used to augment training sets and enhance image
quality [10, 13].

Despite these advances, most DL approaches treat
DR grading as a nominal classification problem,
thereby ignoring the inherent ordering of severity
stages. This motivates the exploration of ordinal
methods, which explicitly incorporate class order
into the learning process.

2.2 Ordinal Classification Methods

Ordinal classification has been widely studied in
Machine Learning (ML) as a way to incorporate
ordering information into class predictions. Tradi-
tional approaches include non-unimodal methods
such as Ordinal Encoding (OE) [14], which reformu-
lates the ordinal task as a set of binary classification
problems. More recent research has focused on pro-
moting unimodality in model outputs, either softly
or strictly.

Soft-unimodal constraints encourage unimodal dis-
tributions through loss formulations. Examples in-
clude label smoothing approaches that soften one-



hot targets [5], Binomial Cross-Entropy (BCE) [15],
or distance-based smoothing functions [7], which
penalize deviations from the closest unimodal distri-
bution.

Hard-unimodal constraints, in contrast, enforce
unimodality by design, typically via architectural
components. For instance, UnimodalNet (UN) [7]
introduces a dedicated output layer that guarantees
unimodal predictions regardless of the learned logits.

Taxonomies have emerged to organize these ap-
proaches into non-unimodal, soft-unimodal, and
hard-unimodal methods [7], with different trade-offs
between flexibility and strict adherence to ordinal as-
sumptions. While promoting unimodality has shown
strong empirical benefits, the balance between or-
der preservation and predictive accuracy remains an
open challenge, especially under class imbalance.

2.3 Ordinal Methods for Diabetic
Retinopathy Grading

Several works have adapted ordinal methods specif-
ically for DR grading. De la Torre et al. [16] in-
troduced a quadratic weighted kappa loss, directly
aligning optimization with ordinal agreement. Gal-
dran et al. [17] proposed cost-sensitive regularization
of Cross-Entropy (CE) to better capture the ordinal
nature of DR stages. Aratijo et al. [18] combined CE
with an uncertainty-based regularizer: the network
outputs both a class prediction and an uncertainty
estimate, modeled as a Gaussian distribution with
mean given by the prediction and variance given by
the uncertainty.

Other approaches integrate hybrid architectures
and loss functions. Ma et al. [19] combined CNN and
Transformer components with a joint cross-entropy
and weighted kappa loss to capture both local and
global features while preserving ordinal structure.
Tian et al. [20] employed a soft-labelling strategy
with a metric loss to cluster features and focal loss
to counter class imbalance.

More recent work has incorporated language and
multimodal learning. CLIP-DR [21] leverages text
prompts of DR grades and aligns image—text embed-
dings, thereby mitigating class imbalance and pre-
serving ordinal relations. Building on OrdinalCLIP,
it introduces rank-aware embeddings that explicitly
encode ordinal constraints. The AOR-DR frame-
work [22] extends this line with an autoregressive
ordinal regression design, while Lawate et al. [23]
proposed a multi-stage pipeline combining Efficient-
Net for initial screening with a Transformer-based
ordinal regression head, further supported by uncer-
tainty estimation and optional lesion segmentation
modules.

Together, these works highlight growing interest
in integrating ordinal formulations into DR grad-
ing. While these approaches adapt ordinal methods

specifically for DR grading, they are often highly tai-
lored to particular datasets, incorporate additional
modalities (e.g., text, segmentation), or optimize
task-specific metrics such as quadratic kappa. In
contrast, our goal is to benchmark general-purpose
ordinal methods under controlled conditions across
multiple datasets, providing a systematic compari-
son and introducing a novel loss designed to facilitate
generalization beyond DR.

3 Materials and Methods

3.1 Mathematical Notation

Let X C RY denote the input space and Y =
{co,...,cx—1} the set of ordered class labels with
co < ¢4 < -+ < ¢cx_1. Given an input x €
X, a model outputs posterior probabilities y =
[Jo, - - Ur—1], where §; = p(c;|x), obtained via the
softmax function. From here on we refer to the
softmax outputs as posterior probabilities, i.e. the
model’s estimated posterior distribution over classes
given the input.

We denote the true class index by k € {0,..., K —
1} and the predicted class index by

k= argmax  g;.

i€{0,...,.K—1}

(1)

3.2 Expectation Mean Squared Error
(exp-MSE)

The intuition behind our approach is illustrated in
Figure 2. Conventional nominal approaches, such as
CE (Figure 2a), often produce dispersed posterior
distributions that are not well aligned with the true
class, as they optimize for one-hot targets without
accounting for class order. In contrast, our proposed
loss (Figure 2b) encourages predictions that are
both centered on the correct class and concentrated
around it, thereby reflecting the ordinal structure of
the labels.

To formalize this intuition, we first assume a con-
tinuous approximation of the posterior distribution.
Let y* denote the predicted posterior, which we
approximate by a Gaussian distribution:

y* = N(isp,0?), i€ Rsg, (2)
where p and o2 denote the mean and variance of
the distribution. Ideally, we want predictions that
converge to the correct class index k£ with vanishing
variance, i.e.,

y* — lim N(i;p,0?) = 6(i — k),
n—k
020

(3)

where §(i — k) is the Dirac delta centered at the true
class.
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(a) When trained with a nominal loss such as cross-entropy
(CE), the posterior may be dispersed and misaligned, with
the expectation E[§|x] (dashed line) deviating from the true
class and the variance Var[y|x] remaining high.
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(b) When trained with the proposed exp-MSE loss, the distri-
bution becomes centered on the true class and concentrated
around it. Conceptually, this corresponds to approximating
the posterior by a Gaussian N (u,02) and driving it toward
a Dirac delta 6(i — k), with 4 — k and o2 — 0.

Figure 2. Intuition behind the proposed exp_-MSE loss.
The histogram shows the model’s predicted posterior
distribution ¥ over classes, with the true class at k = 3
indicated by the blue bin, approximated by a Gaussian
N (u,0?) (black line) with 4 = E[§|x] and 0® = Var[y|x].

Since ordinal classification is inherently discrete,
we instead model the posterior as a categorical dis-
tribution y. In this setting, the mean and variance
of the predicted distribution are given by

Ely|x] = Z i (4)
K-
Var[y|x] = Z E[y[x])*. (5)

i=0
We then define the exp MSE loss as

(6)

where A controls the influence of the variance term.
The first term ensures the mean prediction aligns
with the true class, while the second term reduces
uncertainty by penalizing wide distributions.

Loprise(§, k) = [E[F[x] — k| + A Var[g[x],

This formulation thus directly operationalizes the
intuition: predictions should be accurate (mean close
to k) and unimodal (low variance).

3.3 Baseline Methods

We compare our proposed exp MSE loss against
several established ordinal classification approaches,
covering non-unimodal, soft-unimodal, and hard-
unimodal strategies.

Cross-Entropy (CE). For multi-class nominal
classification, the CE loss is the standard objective.
Given a one-hot encoded label y € {0,1}¥ and a
model prediction ¥ € [0,1]%, CE is defined as

K—-1
Loy, §) ==Y yilog i (7)
1=0

We treat CE as our nominal (non-unimodal) base-
line.

Ordinal Encoding (OE). Frank et al. [14] pro-
posed OE as a non-unimodal approach that reformu-
lates the K-class problem into K — 1 binary tasks.
For a given true class k, the cumulative binary labels
are defined as

1, ifi<k,

Yi = {O,

Each binary classifier is trained with binary CE.
At inference time, the class probabilities ¢; are

reconstructed from the logits g; via the sigmoid
() = Ty

fori e {0,...,K —2}. (8)

otherwise,

1+exp(—x):
1 _U(g()), if 4 207
g =1q0(gi-1) —ol(g), f1<i<K-2 (9
o(gr_1), ifi=K— 1.
Binomial Cross-Entropy (BCE). Label

smoothing [5] replaces the one-hot target with a
softened distribution:

h/(i’ k) = (1 - 77)51',16 + Uf(@ k)a

where 7 € [0,1] controls smoothing and f(i, k) is a
distribution centered on the true class. In the BCE
formulation [15], f(¢, k) is chosen as a binomial:

flk) = ("7 Npi(1 - pr —1},
(11)

(10)

YyE=1=i e ]0,...,K

with py the success probability.

L, Label Smoothing. Vargas et al. [24] proposed
an alternative smoothing function:

exp ( —|i— k‘\p)

.,k - — ’
f(Z ) Zfzolexp(_u_klp)




Smaller values of p produce broader distributions,
while larger values concentrate mass closer to the
true class.

Wasserstein-Unimodal-Wasserstein (Wu-
Wass). Cardoso et al. [7] introduced a regular-
ization scheme that encourages unimodality. The
method projects the predicted distribution ¥ to the
closest unimodal distribution §¥ with mode at k
using the Wasserstein distance Ds:

AP

' =argminDy(y,y), (13)
yeS

where S is the set of unimodal distributions with
mode k. The loss is then defined as

Ewu,wass (ya y) = LCE(ya y) + A D2 (yP’ y)? (14)

where D5 is typically instantiated as Wasserstein
distance or KL divergence.

Mean-Variance Loss (MVL) The Mean-
Variance Loss (MVL) introduced by Pan et al. [25]
extends CE by incorporating additional mean and
variance terms:

Lo = (B[]~ })?
L, = Var[y|x]

as defined in Equations 4 and 5. The final objective
combines these components with two hyperparame-
ters A1 and Aq:

Lave, = Log + 3Ly + ALy (17)
Unlike our method, MVL uses mean and variance
solely as regularizers.

UnimodalNet (UN). Finally, a hard-unimodal
approach is UN [7], which enforces unimodality by
construction. Given model outputs v € R¥ non-
negative activations z; = f(v;) are computed. Two
cumulative sums are then formed:

Ir or

Y2 .
z5 = 2o, zi =zl 1tz i=1,...,K—1,
(18)

4 14 74 .
g = AKk-1, % =z ta, i=K—=2,...,0.
(19)
The elementwise minimum z¥ = min(z{", 27¢) en-

sures unimodality, and the final prediction is ob-
tained via softmax:

¥ = softmax(z“). (20)

3.4 Datasets

We evaluate our method on five publicly available
DR datasets: Aptos [1], IDRiD [26], DeepDR [27],

Table 1. Overview of the Diabetic Retinopathy (DR)
datasets, including training, validation and test sample
counts and total sample counts.

Dataset Train Validation Test Total
DeepDR [27] 1278 322 400 2000
IDRiD [26] 328 85 103 516

Aptos [1] 2334 587 741 3662
RLDR [28] 1023 258 312 1593
DDR [29] 7008 1754 3759 12521

Table 2. Imbalance statistics for the five DR datasets,
reported using the Imbalance Ratio (IR), the Min—-Max
Imbalance Ratio (IRminmax), and the normalized Shan-
non entropy (H). Datasets are ordered from least to
most imbalanced according to IR. Arrows indicate the
direction of increasing imbalance.

Dataset IR 1T IRminmax + Shannon |
DeepDR [27] 1.691 0.129 0.873
IDRID [26] 1.789 0.147 0.894
Aptos [1] 2.169 0.101 0.797
RLDR [28] 2.506 0.073 0.740
DDR [29] 4.325 0.038 0.702

RLDR [28], and DDR [29]. For consistency, we
adopt the pre-processing and splits provided by
GDRBench [4], including black border removal, back-
ground masking, and resizing to 512x512 pixels.
Table 1 summarizes the dataset statistics.

Data Augmentation. To improve generalization,
we apply several augmentation techniques during
training. Specifically, each image is randomly ro-
tated by 90° with probability 0.5, and random hori-
zontal and vertical flips are applied with the same
probability. Color jittering is performed with bright-
ness, contrast, saturation, and hue adjustments of
0.3. We also apply random resized cropping, where
the image is randomly scaled before being center-
cropped. All images are resized to 224 x 224 pixels
and normalized to ImageNet’s channel-wise mean
and standard deviation.

3.5 Quantifying Class Imbalance

To characterize the imbalance in the DR datasets,
we report three complementary metrics: the Im-
balance Ratio (IR), the Min-Max Imbalance Ratio
(IR minmax ), and the normalized Shannon entropy

Imbalance Ratio (IR). The IR [30] measures
the average pairwise imbalance across all classes K



and is defined as

1K71

where N is the total number of samples and N; the
number of samples in class i. A balanced dataset
yields IR = 1, while higher values indicate increasing
imbalance. Following Perez et al. [30], we consider
datasets with IR > 1.5 as highly imbalanced.

N — N;

"D (21)

Min—Max Imbalance Ratio (IRminmax). To
capture the imbalance between the majority and
minority class, we compute the min—max ratio [31]:

in; NV;

IRminmax = m
Here, values close to 1 correspond to balanced
datasets, while lower ratios indicate greater imbal-
ance.

Normalized Shannon Entropy (H). The nor-
malized Shannon entropy measures the uncertainty
of the class distribution:

H=—

o E
log(K) & N *\N )’

(23)

This metric ranges between 0 and 1, where H =1
indicates a perfectly balanced dataset (uniform dis-
tribution) and H = 0 corresponds to complete im-
balance (all samples concentrated in a single class).

The imbalance statistics for the five DR datasets
are reported in Table 2.

3.6 Evaluation Metrics

In ordinal classification, evaluation should capture
both nominal classification quality and the ordinal
structure of the labels. To this end, we report the
following metrics:

e Balanced Accuracy (BA): evaluates classi-
fication quality across all classes by averaging
recall per class, ensuring robustness against im-
balance.

e Average Mean Absolute Error
(AMAE) [32]: measures the average distance
between true and predicted classes across all
labels, providing a distance-based error robust
to class imbalance.

e Kendall’s 7, [34]: quantifies the rank correla-
tion between true and predicted labels, assess-
ing whether predictions preserve ordinal order-
ing.

e Uniform Ordinal Classification Index
(Auoc) [33, 35]: a composite ordinal metric
that integrates both ranking agreement and
distance-based penalties, and accounts for class
imbalance.

Mathematical formulations of these metrics are
provided in Appendix A.

3.7 Model Architecture and Training
Settings

We adopt a ResNet-50 [36] initialized with Ima-
geNet [37] pre-trained weights. The training set
provided by GDRBench is further split into training
and validation subsets using a ratio of 80:20.

We train for 100 epochs using five train/validation
splits (seeds 0-4). Optimization is performed using
the Adam [38] optimizer with a learning rate of 0.001
and a batch size of 64.

Hyperparameters for exp MSE, Wasserstein-
Unimodal-Wasserstein (Wu-Wass) and L, losses are
tuned using Optuna [39] on the validation sets. De-
tails of the search ranges and the final hyperparam-
eters are reported in B.

4 Results

4.1 Quantitative Results

Table 3 summarizes the averaged performance across
the five DR datasets. Dataset-specific results are
provided in the Appendix (Tables C.1-C.2). For
each metric, the best results are shown in bold and
the second-best results are underlined.

On average, our proposed method achieves the
best performance across the three ordinal metrics
AMAE, Ayuoc, and Kendall’s 7, while ranking
second in BA behind the soft-unimodal Wu-Wass
method. The L, approach consistently provides the
second-best ordinal results. Interestingly, not all
ordinal-aware methods outperform the nominal CE
baseline: BCE, UN, and MVL yield weaker perfor-
mance, with UN performing worst overall. While
MVL performs well across datasets, albeit still below
our proposed method, its weaker results may reflect
challenges in effectively tuning its two hyperparam-
eters.

The Ayoc score, which integrates ranking quality,
error distance, and class imbalance, is the most com-
prehensive ordinal measure. According to Ayoc,
exp_MSE achieves the best results on Aptos (Ta-
ble C.1), RLDR (Table C.3), and DeepDR (tied
with L,, see Table C.4), the second-best score on
DDR (after L,, see Table C.2), and the third-best
score on IDRID (behind Wu-Wass and CE).



Table 3. Averaged results for all five DR datasets. Performance in terms of the Average Mean Absolute Error
(AMAE) [32], Uniform Ordinal Classification Index (Avoc) [33], Kendall’s 73, [34] and the Balanced Accuracy (BA),
comparing: Cross-Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet
(UN) [7], Lp [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our
proposed method exp_MSE. Arrows indicate the direction of better performance for each metric. The best results

are reported in bold, the second best results are underlined.

Experiment AMAE | Ayoc 4 Kendall’s 7, 1 BA 1

CE 0.668 £ 0.059 0.631 £ 0.030 0.674 + 0.025 0.518 £ 0.035
OE 0.653 = 0.051 0.626 £ 0.029 0.675 = 0.031 0.520 £ 0.033
BCE 0.659 + 0.030 0.634 £+ 0.017 0.680 = 0.025 0.509 + 0.026
UN 0.766 + 0.041 0.675 £+ 0.019 0.659 + 0.033 0.465 + 0.025
L, 0.648 + 0.035 0.622 + 0.017 0.683 &+ 0.016 0.522 4+ 0.021
Wu-Wass 0.652 + 0.034 0.628 £+ 0.014 0.676 + 0.022 0.520 4+ 0.018
MVL 0.667 £ 0.034 0.630 £ 0.018 0.670 = 0.023 0.518 + 0.021
exp_-MSE 0.615 + 0.046 0.609 £+ 0.027 0.695 + 0.023 0.535 + 0.031

4.2 Impact of Class Imbalance

All datasets exhibit substantial class imbalance,
quantified by IR, IRinmax, and Shannon entropy
H (Table 2). Our method achieves the best results
on three of the four most imbalanced datasets (by
IR), and second-best on DDR, the most imbalanced
dataset. Performance relative to IR,,inmax indicates
robustness to strong minority /majority discrepan-
cies, while results on Shannon entropy H suggest
that datasets with more uniform distributions (e.g.
IDRID) remain more challenging.

4.3 Confusion Matrices and Class
Distributions

Figures C.1-C.9 in the Appendix visualize the
confusion matrices and class distributions. Well-
performing methods are expected to exhibit con-
centrated diagonals with errors distributed to adja-
cent classes. On Aptos and DeepDR, both L, and
exp_MSE display the clearest diagonal structures,
reflecting strong ordinal consistency. On DDR, the
most imbalanced dataset, all methods show disper-
sion, but exp_MSE maintains a more stable diago-
nal. For IDRiD, no method preserves the ordinal
structure strongly, reflecting its relatively balanced
distribution and higher entropy.

4.4 Feature Analysis

To further analyze the learned representations, we
applied t-SNE [40] to the feature embeddings (Fig-
ures C.11-C.15 in the Appendix). Datasets such as
Aptos (classes 1-4), DDR, and DeepDR exhibit clear
ordinal gradients across classes, while RLDR shows
weak ordering and IDRiD shows almost none.

exp_MSE generally preserves ordinal gradients as
well as or better than other baselines, consistent
with its quantitative performance.

4.5 Posterior Distributions

To better understand the predictive behavior of the
different methods, we visualize the normalized poste-
rior distributions for each class across all samples of
the DeepDR dataset (Figure 3). This provides an ag-
gregated view of how strongly and consistently each
method concentrates probability mass around the
true class. Similar plots for the remaining datasets
are reported in Appendix C.4.

As expected, the two soft-labelling approaches
(BCE and L,) produce unimodal posteriors that
reflect the smoothed target distributions, often lead-
ing to broader probability spreads. In contrast,
exp_MSE exhibits sharper and more concentrated
posteriors, with smaller variance across classes, con-
sistent with the variance-penalization in its formu-
lation. This effect is especially visible in minority
classes, where exp_MSE predictions remain more
peaked compared to the other methods.

5 Conclusion

In this work, we evaluated ordinal methods for DR
grading, focusing on approaches that encourage uni-
modal model outputs. We proposed a novel soft-
unimodal loss, exp_MSE, which penalizes both de-
viations of the posterior mean from the true class
and high variance in the predicted distribution.
Across five publicly available DR datasets, all of
which exhibit substantial class imbalance, exp MSE
consistently outperformed baseline methods on the
three ordinal metrics AMAE, Ayoc, and Kendall’s
7. It also ranked second in BA, despite this metric
being outside the primary scope of ordinal evalua-
tion. While some baselines occasionally surpassed
exp_MSE on individual datasets or metrics, none
matched its overall consistency across all experi-
ments. Posterior distribution analyses further con-
firmed that exp MSE yields sharper, lower-variance
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Figure 3. Normalized posterior distributions on the DeepDR dataset for the train/validation split seed 0,
shown per true class (columns) comparing the methods (rows): Cross-Entropy (CE), Ordinal Encoding (OE) [14],
Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass)
[7], and Mean-Variance Loss (MVL) [25] to our proposed method exp-MSE.

predictions compared to soft-labelling approaches
such as BCE and L,. Feature-space analysis via
t-SNE showed that exp MSE preserves ordinal gra-
dients in most datasets, performing comparably or
better than competing methods even in challenging
scenarios of high imbalance.

Limitations and Future Work. While effec-
tive, the current formulation of exp MSE affects
classes differently depending on their position in the
ordinal scale. Edge classes tend to be penalized with
stronger variance constraints, whereas inner classes
encourage more symmetric distributions. Future
research could address this limitation through adap-
tive normalization strategies or by exploring alter-

native class topologies (e.g., circular arrangements)
to ensure more uniform treatment of boundary and
intermediate classes.

Summary. Overall, exp_MSE provides a robust
and effective solution for ordinal DR grading, par-
ticularly under class imbalance. Its consistent per-
formance across multiple datasets and evaluation
metrics highlights its potential for broader applica-
tions in medical image analysis and other domains
where ordinal structure plays a central role.
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A Ordinal Metrics

In ordinal classification, the evaluation of ordinality in the data involves both ranking agreement and
distance-based error (distance between true and predicted class).

Average Mean Absolute Error (AMAE). The AMAE [32] determines the error of each class
separately for each class and then gives the average error, quantifying the uniformity of the prediction:
[33]

1 N-1
MAE; = Z k) — k| (24)
=0
1 K-1
AMAE = — )  MAE;
E=_ Z; E; (25)

This metric is also suitable for imbalanced data. However, it overlooks the importance of ranking, which
is central to ordinal tasks [33]. It is worth noting that for a perfectly balanced dataset the AMAE agrees
with the Mean Absolute Error (MAE) [32], thus, making the MAE more robust to class imbalance [33].

Kendall’s 7,. The Kendall’s 7, [34] measures the association between predicted and true rankings,
reflecting the relative order of class predictions, but ignoring the magnitude of errors. In particular, it is
independent of the numerical encoding of each class [33]. The score lies in [—1, 1], where 7, = 1 indicates
perfect rank agreement, 7, = —1 complete rank inversion and 7, = 0 no rank correlation [41].

Z qijPij
\/ > Q?j szzj

Here, ¢;; = 1if ¢; > q;, ¢;; = 0if ¢; = q; and ¢;; = —1 if ¢; < g;, p;; is computed analogously. These
value form the ranking matrices @ (ground truth) and P (prediction), which are asymmetric (g;; = —g;;
and Dij = 7pjl') [33*35]

Ty =

(26)

Uniform Ordinal Classification Index (Auoc). The Ayoc [33] is based on the Uniform Ordinal
Classification Index (UOC})), and evaluates ordinal classification performance by capturing both ranking
quality and distance-based error. This is done by traversing through the confusion matrix M from entry
My to entry Mg 1 x—1, characterizing each possible path by a penalty or a benefit. Benefits are given
to paths with many correct predictions, while penalties are assigned for deviations from the diagonal,
depending on the distance between true and predicted class.

In addition to assessing magnitude of error and ranking, the metric also generalizes to class imbalance
and unobserved classes in a dataset. The metric brings robustness to class imbalance by adding a prior
p(k): .

p(k) = 5 (27)
to the metric, similarly as the AMAE brings robustness for class imbalance for MAE. Unobserved classes

are accounted for by an indicator function

1, ifkeQ
lo(k) =4 28
a(k) {07 if k ¢ Q (28)

in a set of observed classes 2. To account for both class imbalance and unobserved classes, both
assumptions can be combined to a total prior p(k) by

1
p(k) = 5 1o(k), (29)
where K’ < K defines the number of observed classes of set 0, i.e. K’ = |Q2|. Under these settings, the
UOC] is defined as

Sk ireoatn PEIE) Lo B 3 ?
iy, — 2 S plbR ol - A 30)
K+ 35 (S iy pURIR) Logs = F17) (s ycpat

UOC% = min {1 —
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Table B.1. For each dataset, the best hyperparameters were obtained by Optuna [39]: X for exp_MSE (Equation 6),
A for Wu-Wass (Equation 14) and p for L, (Equation 12) and A1, A2 for MVL.

Dataset exp_MSE L, Wu-Wass MVL

IDRiD [26] A = 0.0867573447798667 p = 1.82602171336898 A = 0.9118427146809470 A; = 0.800045755932323500
A2 = 0.407117010948758200
RLDR [28] A = 0.0465538229994773 p = 1.30201892088105 A = 3.1668410016395200 A; = 0.538463844037895000
Ay = 0.661145716810206400
DeepDR [27] A = 0.0400201073104795 p = 1.08456996367382 )\ = 0.0527391141324065 A; = 0.363572972291989700
Ay = 0.318344694660245300

Aptos [1] A = 0.0189014846330842 p = 1.29425445876255 A = 1.9747675885985000 A; = 0.011839109647973772
Ay = 0.903222322149407700
DDR [29] A = 0.1049552111518660 p = 1.35477076647998 A = 0.8850007162074970 A, = 0.965743024434928500

Ay = 0.633033834277408200

For this formulation, § is a tunable parameter controlling the balance between ranking accuracy and
distance-based error. For g > 1, the index prioritizes correctness over ordinal structure. For ideal
evaluation £ should be in the interval of [0,1], where 8 — 0 emphasizes ranking and S — 1 prioritizes
precise predictions [33, 42]. Parameter 7 controls the penalty of distance error. The Ayoc uses v =1,
thus a linearly increasing error distance.

Finally, the Ayoc can be obtained by

1
Avoc = / vocy ag, (31)
0

therefore, removing the sensitivity of the S parameter [33].

B Hyperparameters Fine-tuning

To tune the hyperparameters of the Wu-Wass, L,, MVL and exp_MSE loss functions, we use Optuna
[39], a library specifically designed for hyperparameter optimization via Bayesian processes. Each tuning
was performed across all five train/validation split seeds for 25 epochs. The Ayoc scores for each final
epoch of a train/validation split seed was then averaged for all seeds. The hyperparameter was chosen
for the lowest average Ayoc score from the final epoch and then averaged across all five folds. Final
hyperparameter selections are shown in Table B.1.

The search intervals we used:

e exp MSE: X € [0.001, 1.0], interval was set logarithmically
e Wu-Wass: A € [0.01, 100.0], interval was set logarithmically
o L,: pel,2]

o MVL: A\, A € [0,1]

The hyperparameter 7 in Equation 10 for BCE and Ly, is set to 1 as given as default in the dlordinal
library [15].
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C Additional Results

C.1 Quantitative Results

Table C.1. Results on the Aptos dataset. Performance in terms of the Average Mean Absolute Error (AMAE) [32],
Uniform Ordinal Classification Index (Auoc) [33], Kendall’s 7, [34] and the Balanced Accuracy (BA), comparing:
Cross-Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7],
L, [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed
method exp_MSE. Arrows indicate the direction of better performance for each metric. The best results are
reported in bold, the second best results are underlined.

Experiment AMAE | Avoc } Kendall’s 7, 1 BA ¢t

CE 0.505 £ 0.029 0.538 + 0.019 0.849 + 0.012 0.632 + 0.015
OE 0.489 + 0.027 0.527 +£ 0.018 0.856 + 0.007 0.635 4+ 0.021
BCE 0.510 £+ 0.028 0.551 + 0.021 0.853 + 0.006 0.605 + 0.024
UN 0.662 + 0.033 0.624 + 0.015 0.816 + 0.007 0.541 + 0.023
L, 0.485 £+ 0.035 0.527 £+ 0.022 0.854 £ 0.004 0.639 £+ 0.026
Wu-Wass 0.491 £ 0.034 0.527 £+ 0.016 0.854 + 0.013 0.638 £ 0.012
MVL 0.484 + 0.009 0.523 + 0.007 0.856 + 0.007 0.642 + 0.009
exp-MSE 0.471 + 0.033 0.519 + 0.021  0.853 4+ 0.012 0.638 + 0.013

Table C.2. Results on the DDR dataset. Performance in terms of the Average Mean Absolute Error (AMAE)
[32], Uniform Ordinal Classification Index (Auoc) [33], Kendall’s 73, [34] and the balanced accuracy, comparing;:
Cross-Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7],
L, [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed
method exp-MSE. Arrows indicate the direction of better performance for each metric. The best results are

reported in bold, the second best results are underlined.

Experiment AMAE | Ayoc 4 Kendall’s 7, 1 BA 1

CE 0.549 + 0.040 0.562 + 0.024 0.752 + 0.021  0.585 + 0.019
OE 0.560 + 0.036 0.574 + 0.021 0.761 + 0.020 0.566 + 0.021
BCE 0.545 £ 0.013 0.571 £ 0.008 0.768 £ 0.004 0.563 £ 0.012
UN 0.641 4+ 0.017 0.624 + 0.010 0.747 + 0.013 0.500 + 0.009
L, 0.522 + 0.010 0.552 4+ 0.007 0.774 + 0.007 0.585 + 0.008
Wu-Wass 0.571 + 0.030 0.577 £ 0.018 0.755 + 0.011 0.570 + 0.021
MVL 0.566 + 0.033 0.575 £ 0.018 0.754 + 0.006 0.572 £+ 0.013
exp-MSE 0.526 + 0.066 0.561 £ 0.047 0.769 + 0.006 0.579 + 0.060

Table C.3. Results on the RLDR dataset. Performance in terms of the Average Mean Absolute Error (AMAE)
[32], Uniform Ordinal Classification Index (Auoc) [33], Kendall’s 7, [34] and the balanced accuracy, comparing:
Cross-Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7],
L, 6], Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed
method exp-MSE. Arrows indicate the direction of better performance for each metric. The best results are

reported in bold, the second best results are underlined.

Experiment AMAE | Avoc 4 Kendall’s 7, 1 BA ¢t

CE 0.899 + 0.064 0.762 £+ 0.030 0.413 £ 0.014 0.360 £+ 0.058
OE 0.878 £ 0.071 0.756 £+ 0.026 0.427 £ 0.075 0.367 £+ 0.036
BCE 0.825 + 0.022 0.743 + 0.015 0.467 £ 0.038 0.383 + 0.032
UN 0.956 + 0.074 0.774 + 0.028 0.400 £ 0.077 0.333 £+ 0.038
L, 0.862 + 0.049 0.748 + 0.020 0.435 + 0.042 0.384 + 0.033
Wu-Wass 0.849 + 0.041 0.747 £ 0.012 0.420 £ 0.039 0.379 £+ 0.010
MVL 0.884 + 0.038 0.758 + 0.011 0.441 + 0.027 0.364 + 0.013
exp_MSE 0.799 + 0.077 0.720 + 0.032 0.485 + 0.064 0.411 + 0.042
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Table C.4. Results on the DeepDR dataset. Performance in terms of the Average Mean Absolute Error (AMAE)
[32], Uniform Ordinal Classification Index (Avoc) [33], Kendall’s 7, [34] and the balanced accuracy, comparing:
Cross-Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7],
L, [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed
method exp_MSE. Arrows indicate the direction of better performance for each metric. The best results are

reported in bold, the second best results are underlined.

Experiment AMAE | Ayoc 4 Kendall’s 7, 1 BA 1

CE 0.594 + 0.120 0.578 £ 0.063 0.752 + 0.039 0.590 + 0.061
OE 0.524 £ 0.078 0.548 £ 0.052 0.754 = 0.023 0.619 £ 0.053
BCE 0.541 £ 0.027 0.557 £ 0.017 0.768 = 0.016 0.611 &+ 0.021
UN 0.651 + 0.036 0.611 + 0.021 0.736 + 0.016 0.562 + 0.027
L, 0.493 + 0.040 0.528 4+ 0.028 0.783 + 0.012  0.633 + 0.023
Wu-Wass 0.575 £ 0.028 0.578 + 0.011 0.750 + 0.021 0.589 + 0.018
MVL 0.548 + 0.047 0.563 £ 0.029 0.738 + 0.031 0.600 £ 0.024
exp-MSE 0.495 + 0.040 0.528 + 0.026 0.788 &+ 0.019  0.628 + 0.025

Table C.5. Results on the IDRiD dataset. Performance in terms of the Average Mean Absolute Error (AMAE)
[32], Uniform Ordinal Classification Index (Avoc) [33], Kendall’s 7, [34] and the balanced accuracy, comparing:
Cross-Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7],
L, [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed
method exp_MSE. Arrows indicate the direction of better performance for each metric. The best results are

reported in bold, the second best results are underlined.

Experiment AMAE | Avoc Kendall’s 7, 1 BA 1

CE 0.791 4+ 0.045 0.714 £ 0.019 0.606 + 0.040  0.423 £ 0.025
OE 0.814 4+ 0.045 0.723 + 0.027 0.577 + 0.030 0.412 + 0.039
BCE 0.876 + 0.063 0.746 + 0.027 0.543 £+ 0.062 0.383 £+ 0.041
UN 0.919 £+ 0.048 0.741 £ 0.024 0.594 £+ 0.053 0.391 £+ 0.031
L, 0.879 £ 0.045 0.755 + 0.010 0.568 + 0.016 0.367 + 0.017
Wu-Wass 0.777 + 0.040 0.711 + 0.014 0.602 £ 0.026 0.424 + 0.031
MVL 0.856 4+ 0.041 0.733 £+ 0.024 0.562 + 0.041 0.414 + 0.047
exp-MSE 0.787 + 0.018 0.717 + 0.009 0.580 £+ 0.019 0.419 £+ 0.017
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C.2 Confusion Matrices and Class Distributions
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Figure C.1. Confusion matrices on the Aptos dataset for train/validation split seed 0 comparing: Cross-Entropy
(CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6], Wasserstein-
Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed method exp-MSE.
The color intensity is normalized per row.
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Figure C.2. True and predicted data distributions of the Aptos dataset for train/validation split seed 0 comparing;:
Cross-Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7],
L, [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed
method exp_MSE. Predicted data distributions distinguish between correct and incorrect predictions.
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Figure C.3. Confusion matrices on the DDR dataset for train/validation split seed 0 comparing: Cross-Entropy
(CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6], Wasserstein-
Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed method exp_MSE.
The color intensity is normalized per row.
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Figure C.4. True and predicted data distributions of the DDR dataset for train/validation split seed 0 comparing;:
Cross-Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7],
L, [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed
method exp_MSE. Predicted data distributions distinguish between correct and incorrect predictions.
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Figure C.5. Confusion matrices on the RLDR dataset for train/validation split seed 0 comparing: Cross-Entropy
(CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6], Wasserstein-
Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed method exp_MSE.
The color intensity is normalized per row.
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Figure C.6. True and predicted data distributions of the RLDR dataset for train/validation split seed 0 comparing;:
Cross-Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7],
L, [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed
method exp_MSE. Predicted data distributions distinguish between correct and incorrect predictions.
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Figure C.7. Confusion matrices on the DeepDR dataset for train/validation split seed 0 comparing: Cross-
Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6],
Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed method
exp-MSE. The color intensity is normalized per row.
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Figure C.8. True and predicted data distributions of the DeepDR dataset for train/validation split seed 0
comparing: Cross-Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet
(UN) [7], Lp [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our
proposed method exp_MSE. Predicted data distributions distinguish between correct and incorrect predictions.
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Figure C.9. Confusion matrices on the IDRID dataset for train/validation split seed 0 comparing: Cross-Entropy
(CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6], Wasserstein-
Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed method exp_MSE.
The color intensity is normalized per row.
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Figure C.10. True and predicted data distributions of the IDRiD dataset for train/validation split seed 0
comparing: Cross-Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet
(UN) [7], Lp [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our
proposed method exp_MSE. Predicted data distributions distinguish between correct and incorrect predictions.
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C.3 Feature Analysis
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Figure C.11. t-SNE [40] analysis on the Aptos dataset for train/validation split seed 0 comparing: Cross-Entropy
(CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6], Wasserstein-
Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed method exp -MSE.
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Figure C.12. t-SNE [40] analysis on the DDR dataset for train/validation split seed 0 comparing: Cross-Entropy
(CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6], Wasserstein-
Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed method exp MSE.
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Figure C.13. t-SNE [40] analysis on the RLDR dataset for train/validation split seed 0 comparing: Cross-
Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6],
Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed method
exp_-MSE.
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Figure C.14. t-SNE [40] analysis on the DeepDR dataset for train/validation split seed 0 comparing: Cross-
Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6],
Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed method
exp_MSE.
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Figure C.15. t-SNE [40] analysis on the IDRiD dataset for train/validation split seed 0 comparing: Cross-
Entropy (CE), Ordinal Encoding (OE) [14], Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6],
Wasserstein-Unimodal-Wasserstein (Wu-Wass) [7], and Mean-Variance Loss (MVL) [25] to our proposed method
exp_-MSE.
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C.4 Posterior Distributions
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Figure C.16. Normalized posterior distributions on the Aptos dataset for the train/validation split seed 0,
shown per true class (columns) comparing the methods (rows): Cross-Entropy (CE), Ordinal Encoding (OE) [14],
Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass)
[7], and Mean-Variance Loss (MVL) [25] to our proposed method exp-MSE.
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Figure C.17. Normalized posterior distributions on the DDR dataset for the train/validation split seed 0,
shown per true class (columns) comparing the methods (rows): Cross-Entropy (CE), Ordinal Encoding (OE) [14],
Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass)
[7], and Mean-Variance Loss (MVL) [25] to our proposed method exp-MSE.

25



Class 0

E[X]=1.20, Var[X]=0.57

Class 1

E[X]=1.27, Var[X]=0.54

Class 2

E[X]=1.91, Var[X]=0.17

Class 3

E[X]=2.29, Var[X]=0.26

Class 4

E[X]=2.40, Var[X]=0.76

>1 >1 >1 >1 >1
%o.a %ne %os %o.a %ue
3] Sos Soe Sose Soe Soe
O Sos S oa <04 % o4 % 04
Bo2 202 o2 Bo2 202
3o 3o 3o — 3o 3,
o 1 2 3 4 o 1 2 3 o 1 2 3 2 o 1 2 3 2 o 1 2 3 a
Class Class Class Class Class
E[X]=1.43, Var[X]=1.22 E[X]=1.46, Var[X]=1.21 E[X]=1.87, Var[X]=1.23 E[X]=2.57, Var[X]=1.13 E[X]=2.24, Var[X]=1.30
>1 2! 2t 2! 2t
S os 508 S08 G508 508
] ] @ ] ]
B S o6 So6 Soe Soe
8 S oa Soa %04 o4 % o4
32 ’—‘ énz ’—‘ éoz ’—‘ 32 ’—‘ énz ’—‘
3o, 3o 3o —— 3o, Boolem
o 1 2 3 o 1 2 3 i o 1 2 3 a i 2z 3 a4 o 1 2 3 i
Class Class Class Class Class
> E[X]=1.34, Var[X]=0.64 >1 E[X]=1.38, Var[X]=0.50 >1 E[X]=1.92, Var[X]=0.44 > E[X]=2.79, Var[X]=0.57 >1 E[X]=2.72, Var[X]=0.73
Fos 3 o8 o8 Zos o8
© < < © <
= Soe g 06 g 0.6 Sos g 06
QO Soa Soa % oa Soa %04
Goa Zoz Bo2 302 302
3o 3, 8 ool== 3o 3o
6 1 2 3 o 1 32 3 i o 1 2 3 [ 2 3 o 1 32 3 i
Class Class Class Class Class
Z E[X]=1.43, Var[X]=0.54 21 E[X]=1.39, Var[X]=0.49 > E[X]=1.90, Var[X]=0.51 o E[X]=2.68, Var[X]=0.59 > E[X]=2.63, Var[X]=0.61
Z08 Fo08 308 Zo08 08
© ® @ © ®
Z Sos So6 o6 So6 So6
D Soa S04 %04 %04 % o4
202 Bo2 22 22 Bo2
ool ool 5 ool = EN EN W
o 1 2 3 o 1 2 3 o 1 2 3 2 o 1 2 3 4 o 1 2 3 a
Class Class Class Class Class
E[X]=1.25, Var[X]=1.09 E[X]=1.27, Var[X]=1.07 E[X]=1.80, Var[X]=1.14 E[X]=2.68, Var[X]=0.91 E[X]=2.64, Var[X]=1.06
>1 >1 2! EX 2!
Z o8 508 508 Gos8 508
B06 06 206 B0s 206
a 2 [ [ 2 [
~ S oa Soa %04 S04 % 04
302 202 o2 302 ’—‘ 202 ’—‘
3o, 3o 3o —1 3o, 3o
o 1 2 3 a o 1 2 3 2 o 1 2 3 a o 1 2 3 a o 1 2 3 2
Class Class Class Class Class
@ > E[X]=1.28, Var[X]=0.41 >1 E[X]=1.54, Var[X]=0.33 >1 E[X]=1.9: ,7Var[x]=0.03 > E[X]=2.53, Var[X]=0.29 >1 E[X]=2.37, Var[X]=0.57
% Fo8 G508 S08 So8 G508 I
© ] ] © <
g g 06 g 06 § 06 g 06 g 06
L Soe Toa Soa T o4 =04
g ,:3'!-0 2 E-m 2 ;}o 2 :"-o 2 E‘ﬂ 2
3o, 3 ool== 3o 3o 3,
6 1 32 3 i o 1 2 3 i o 1 2 3 a o 1 2 3 a4 o 1 2 3 i
Class Class Class Class Class
o E[X]=1.30, Var[X]=0.44 21 E[X]=1.53, Var[X]=0.39 > E[X]=2.00, Var[X]=0.04 o E[X]=2.34, Var[X]=0.24 2 E[X]=2.39, Var[X]=0.56
[ 308 508 S08 508 508 .
> © ] o © ]
Sos So6 So6 Sos So6
S Sos S oa = 04 =04 <04
5 5 5 5 5
So2 So2 So2 So2 So2
s —/ S = 5 S
Oo. Oo. Qo Qo Oo.
o 1 2 3 o 1 2 3 a o 1 2 3 2 o 1 2 3 2 3 4
Class Class Class Class Class
E[X]=1.33, Var[X]=0.24 E[X]=1.33, Var[X]=0.24 E[X]=2.04, Var[X]=0.12 E[X]=2.83, Var[X]=0.19 E[X]=2.72, Var[X]=0.46
& >1 >1 >1 >1 >1
0 Z o8 Fos Fos Zos Fos
© ® @ © ®
E Sos Soe Soe Soe Soe
a“ T oa oa < o4 < oa <04
» §0.2 é-uz éoz §0.2 é-uz
® 3. 3o 3o — 3o, 3o
o 1 2 3 a o 1 2 3 o 1 2 3 2 o 1 2 3 1 2 3
Class Class Class Class Class

Figure C.18. Normalized posterior distributions on the RLDR dataset for the train/validation split seed 0,
shown per true class (columns) comparing the methods (rows): Cross-Entropy (CE), Ordinal Encoding (OE) [14],
Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass)
[7], and Mean-Variance Loss (MVL) [25] to our proposed method exp-MSE.
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Figure C.19. Normalized posterior distributions on the IDRiD dataset for the train/validation split seed 0,
shown per true class (columns) comparing the methods (rows): Cross-Entropy (CE), Ordinal Encoding (OE) [14],
Binomial Cross-Entropy (BCE) [5], UnimodalNet (UN) [7], L, [6], Wasserstein-Unimodal-Wasserstein (Wu-Wass)
[7], and Mean-Variance Loss (MVL) [25] to our proposed method exp-MSE.
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