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ABSTRACT

Transformers have demonstrated remarkable performance in a wide range of ap-
plications, making in-context learning an essential technique. Although the in-
context learning has been widely applied, our understanding of its underlying pro-
cesses still remains limited. In-context learning in transformers primarily relies
on two types of information: in-context samples and task descriptions. While pre-
vious research has extensively investigated the influence of in-context samples on
learning behavior, the role of task descriptions has not been adequately explored,
despite their practical significance. In this paper, we present a study examining
the impact of task descriptions on in-context learning performance of transform-
ers. We devise a synthetic experiment setting, making the information of task
description controllable. Through a series of well-designed experiments, we sys-
tematically vary task description information and assess the resulting effects on
model performance across multiple tasks. Our findings reveal the complex roles
of task descriptions: task descriptions will lead the model to ignore in-context ex-
amples; task descriptions will increase the lower bound of the in-context learning
performance. This study contributes to a deeper understanding of the in-context
learning mechanism in transformers, paving the way for more effective real-world
applications of these powerful models.

1 INTRODUCTION

The impressive performance of transformers highlights the significance of in-context learning for
real-world applications. In-context learning pertains to the Transformer’s ability to learn from
context-based prompts. This learning approach is utilized in numerous practical applications, in-
cluding Al planning (Valmeekam et al., 2022; Xie et al., 2023), reasoning (Huang & Chang, 2022),
image understanding (Alayrac et al., 2022) and autonomous agents (Wang et al., 2023), and can
provide theoretical derivation for experimental results in other fields like cognitive science Sumers
et al. (2023).

Despite the extensive use of in-context learning, our comprehension of its underlying mechanisms
remains limited. Recent research has investigated in-context learning within a meta-learning frame-
work (Gu et al., 2023; Min et al., 2021), offering insights into how Transformers utilize in-context
demonstrations to tackle new tasks. However, Transformer employ in-context information in two
ways: through in-context demonstrations and task descriptions. The role of task descriptions, though
practically significant, has not been thoroughly examined. In this work, we adopt a different perspec-
tive by concentrating on how task descriptions influence in-context learning within a meta-learning
framework.

The meta-learning framework (Gu et al., 2023; Min et al., 2021) is used to enrich in-context learning
of Transformer, where the Transformer is directly trained to implement in-context learning. The task
dataset for this framework is constructed by equations in the form of (x o y) mod p = r, where p
is a prime number, o represents for operators, and r is the result of equation to be predicted.

Under this framework, the prompt is formulated as [{(x;, vi, 7)oy, (g, yo)]- (@i, vismi) Foey
can be regarded as few shot examples, while z, is the validation examples. The Transformer is
expected to learn this task from the few show examples. This framework is also leveraged for
exploration of in-context learning (Akyiirek et al., 2022; Von Oswald et al., 2023; Garg et al., 2022;
Chan et al., 2022a;b; Fu et al., 2023). Following previous studies, we also use this framework.
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However, we are different in that the task description is given. That is, the prompt in our task
is [d, {(zi,yi,7) Y1, (4, y4)], where d denotes task description. To investigate the role of task
description, we devise a synthetic experiment, where we can flexible control the complexity of the
task description by assign the task description with different level of information. Specifically, given
a task ground truth label ¢, we design task description d to control the mutual information I (¢; d).

In the proposed experimental setup, we investigate the impact of task descriptions on in-context
learning. Our findings are: (i) task descriptions can divert model’s attention in in-context ex-
amples, and this effect is related to the task description’s information, and (i¢) task descriptions
can raise the lower bound of in-context learning performance. Consequently, we observe a phase
transition regarding the impact of task descriptions: those with insufficient information can impair
in-context learning performance due to (¢), while task descriptions with abundant information can
aid in-context learning due to (i7). We find two cases where Transformers can achieve good in-
context learning performance: 1) a large number of in-context examples with low-information task
descriptions, and 2) high-information task descriptions. Additionally, we explore whether incorpo-
rating task prediction as an auxiliary task during training improves in-context learning performance.
The results indicate that task prediction as a surrogate task benefits in-context learning in nearly all
cases. To verify the generality of our findings, we conduct further studies on more realistic NLP
tasks, which align with our experimental results on the synthetic tasks.

Our contributions can be summarized as

* The development of a new synthetic task for investigating the role of task description in
in-context learning.

* The identification of a phase transition of the in-context learning performance when in-
creasing the information of task description.

* The conduction of further research beyond synthetic tasks to corroborate the universality
of our findings.

2 RELATED WORK

In-context learning In recent years, the field of natural language processing (NLP) has witnessed
significant advancements, particularly in the development of large-scale language models designed
for in-context learning. These models, such as GPT-4 (OpenAl, 2023) by OpenAl, PaLM2 (Anil
et al., 2023) by Google, and Llama (Touvron et al., 2023) by Facebook, have demonstrated remark-
able capabilities to understand and generate human-like text by leveraging massive amounts of data
and sophisticated algorithms. In-context learning refers to the model’s ability to adapt its under-
standing and responses based on the specific context provided (Brown et al., 2020), which has been
proven to be crucial in enhancing their performance across various NLP tasks, including Al planning
(Valmeekam et al., 2022; Xie et al., 2023), reasoning (Huang & Chang, 2022), image understanding
(Alayrac et al., 2022), and autonomous agents (Wang et al., 2023). However, despite the impres-
sive progress, challenges remain in terms of the mechanism driving in-context learning. This paper
focuses on understanding the mechanism of in-context learning from a synthetic tasks. The results
make a further step towards understanding in-context learning from the aspect of task description.

Exploration of in-context learning from synthetic tasks. Exploring in-context learning mech-
anisms in real applications poses a significant challenge due to the complexities and intricacies
involved in practical scenarios (Min et al., 2022). Consequently, recent studies have shifted their
focus towards understanding the mechanisms of in-context learning on specific synthetic tasks,
which offer a more controlled environment for examining individual aspects of the learning pro-
cess. For instance, linear regression tasks have been employed in several studies (Akyiirek et al.,
2022; Von Oswald et al., 2023; Garg et al., 2022) to delve into the in-context learning behavior of
Transformer, while some researchers have turned their attention to image data to analyze the learn-
ing process. Moreover, investigations (Chan et al., 2022a;b; Fu et al., 2023) have been conducted
from in-context and in-weights perspectives, examining the learning process through the lens of the
model’s internal representations and the role of weights. However, despite these valuable contribu-
tions, most explorations mentioned above tend to overlook the influence of task descriptions on the
in-context learning process. Considering the practical significance of task descriptions in guiding
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Transformer towards desired learning outcomes, it is essential to examine their impact on in-context
learning performance to gain a more comprehensive understanding of the in-context learning mech-
anisms and improve the effectiveness of these powerful models in real-world applications.

Task description in real in-context learning application. In the realm of in-context learning, the
prompt plays a crucial role in guiding the language model’s response generation. A prompt is a
textual input provided to the model, containing the necessary context and instructions that help the
model understand the user’s requirements and produce relevant responses. The task description in
the prompt often includes specific questions, statements, or examples that outline the desired output,
enabling the model to adapt and generate contextually appropriate text (Brown et al., 2020). The task
description plays a important role in in-context learning by providing information about recognizing
the task in real application (Pan, 2023; Cho et al., 2023). However, systematic studies about the role
of task description and the mechanisms behind are lacking. This paper fills this gap by providing
the analysis of task description under different situations.

3 FORMULATION AND MOTIVATION

We assume a dataset D, comprising N data samples D = {x; = (d;, ¢, q;, i, )}, where d;
denotes the task description for the i-th sample, and ¢; represents a sequence of task examples
associated with ¢;. For each data sample, given a query ¢;, our objective is to predict the output
of q; for task ¢;, labeled as ;. We partition the dataset into two subsets: Dyyqin and Diegs. This
partitioning should ensure that tasks in the test dataset remain unseen in the training dataset, i.e., for
each task ¢ in the testing set Dyyqn, DO t; exists in Dy such that t; = t;. The primary aim of
in-context learning is to utilize the task description and examples for adapting the model, thereby
optimizing its performance on previously unseen tasks. To accomplish this objective, we maximize
the following function:

Ep(dp,q)qu(r\d}c,q) lOg p(r\d, c, Q) (1)

Here qy(r|d, c, q) denotes the predicted distribution of target 7, while p refers to real distribution.
To analyze the aforementioned objective associated with task ¢, we employ the variational method,
constructing an evidence lower bound. Given the intractable nature of the distribution p(t|r, d, ¢, q),
we approximate it using a parameterized distribution gy (t|d, c, ¢) as follows:

KL(go(t|d, ¢, 9)|p(t|r, d; ¢, q))

2

= KL(qs(t|d, c, q)p(tld, c,q)) — Eqytid,c.q) log p(r[t, d, ¢, q) + log p(r|d, c, ).
Please refer to appendix A.1 for the proof. Considering the non-negative nature of the KL diver-
gence, we can express the log-likelihood in the following manner:

10gp(’l”|d, c, Q) > _KL(QQ (t‘dv c, q)‘p(ﬂdv c, q)) + Eq@(t\d,c,q) 10gp(7‘|t, da c, Q) (3)

The first term signifies the task label prediction, whereas the subsequent term corresponds to the loss
function employed in the in-context training for the GPT model. This equation, therefore, demon-
strates that accurate task label prediction contributes to the maximization of the log-likelihood.

Incorporating the task description as a component of the input allows it to serve as a representation of
the task itself. To assess the efficacy of this description, we examine encoder and decoder models that
yield conditional distributions ¢(d|t) and p(t|d). Given that ¢(¢) embodies the marginal distribution
of task ¢, we define the reconstruction error, denoted as R, in the following manner:

R = Eq)Eqaj) [~ log p(t|d)] < KLL(q(t, d)|p(t, d)) — I4(t, d) + Hy(t). )
Please see appendix A.2 for the proof. The aforementioned equation indicates that increasing the
mutual information can reduce the negative log likelihood of ¢. The mutual information, denoted as
I,(t, d), between task label ¢ and the task description d can be formulated as follows:

0< I(t;d) = Eygra [log (M} — H,(t) — H,(td) < H,(¢). )
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Figure 1: Experimental Setup. A: Our synthetic task dataset is constructed by simple equations.
In training, the model will be given a sequence including task description, in-context examples
and query. Only an inexact range of a and b will be implied in task description, and we train
the model to calculate the answer r of the operation given x and y as query. B: An example of
input sequence. r, and r, are the inexact ab ranges implied in task description. r, = a, — ay,
ry = by, — br,and ay,a4,,0;,b, stands for the possible lower and upper bounds of a and b. C: Model,
input and output. We use standard decoder-only Transformer, which takes a token sequence as
input. The auto-regression is used to training the model. We calculate loss for the output sequence,
and accuracy is calculated only on the answer of query equation. For task prediction, exact task
t = (a,b, op) will be added to the end of input token

Based on the aforementioned equation, we observe that the mutual information ranges from 0 to
H,(t). Consequently, to examine the impact of mutual information, we propose incorporating its
control in our experimental design. Please see Sec. 4 for the details.

In summary, we consider an in-context learning setting where the task is unseen in the training
set. However, to simplify the problem, we assume that the task labels in the testing set are novel
recombinations of the training ones. In order to reformulate the prediction into a compositional gen-
eralization problem, we derive a variational lower bound of the log likelihood as a new objective, as
shown in Equation 3. The first term in it is for task prediction. Since we consider the task descrip-
tion as a representation of the task, the goodness of it has an impact on the model performance. By
modeling it as a representation, we derive a quantity to estimate its goodness, as shown in Equation
4. Therefore, we design our experiments with some principles to analyze how to train our model
for better in-context ability from the following perspectives: 1) the mutual information between the
task description and the task; 2) with or without task prediction.

4 EXPERIMENTAL DESIGN

In this section, we will delve into the experimental design and its various components. We begin
by outlining the design principles, which serve as the foundation for the entire experiment. With
these principles in mind, the experimental design aims to study the factors impacting the model’s
in-context ability by a robust and flexible framework. Furthermore, this design allows for the future
research on in-context learning, since it is a controllable benchmark for in-context learning.

Design Principle 1) Controllable task description information: The information provided in
the task description can be directly manipulated, allowing for a precise control over the quantity of
information presented to the model. 2) Unseen evaluation tasks: To ensure the model’s ability to
generalize, the evaluation tasks presented to the model are not included in the training data. This
helps assess the model’s performance in handling novel tasks. 3) Information inference from mul-
tiple sources: The model is designed to extract information of task from both the task description
and in-context examples provided. This enables the model to adapt and learn from various sources
of information.

4.1 TASK DESIGN

Our synthetic task dataset is constructed by equations in the form of ((a - ) o (b-y)) mod p = r,
where p is a prime number, and o can represent +, — or /. For each task, a, b and o are randomly
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selected and fixed, but only an inexact range of a and b will be implied in task descriptions, and
we train the model to calculate the answer 7 of the operation given = and y as query. Only half of
available ab pairs and xy queries are seen in the training, and the remaining equations are used for
evaluation. We choose p = 11 in all experiments.

The task description is given as {(a;){a,)(b;)(b.){op), while (a;),{(a.),(b;),(b,) stands for the pos-
sible lower and upper bounds of a and b separately, and (op) stands for the operator +, — or / used
in this task. We change the given range of a,b to control the quality of task description, and a larger
ab range refers to lower task description quality as more possible ab pairs can be deduced. For a
given task ((a - z) o (b-y)) mod p = r, several examples are randomly selected and constructed as
< i, Y, r; >, whiler; = ((a- ) o (b-y)) mod p.

4.2 MODEL AND TRAINING

Model For most experiments on synthetic tasks, we use a standard decoder-only causal Trans-
former (Vaswani et al., 2017) with 24 layers, an embedding length of 256, and 8 attention heads.
For experiments on the natural language task CoFE (An et al., 2023), we follow their approach and
use fine-tuned GPT2-Large as our model.

Loss Function The auto-regression is used to train the model. Following GPT (Radford &
Narasimhan, 2018), given a token sequence x = (x1,...,2r), we train the model to predict
p(z) = Hthl (|2 <1). We calculate loss for in-context examples, query, and the answer of query
equation. The in-context examples are denoted as set C;_1. For¢ > 1, C;_; represents for in-context
example sequence {(x1,y1,71), ..., (Ti—1,Yi—1,7i—1)}. Fori = 1, Cy is an empty. Specifically,
we calculate the loss for the sequence s = {(2z1,v1,71),. .., (1, yr, )} and task description d as
follows:
L

Zl(f({dfcifl'/wi-/yi})vri)a (6)

=1

L(0,s,d) =

Sl

where [ denotes the loss function, e.g., crossentropy loss is adopted in our setting. The task de-
scription is d = (ay, ay, by, by, 0p). Accuracy is calculated only for the answer of query equation.
For task prediction, task t = (a, b, op) will be added to the end of input token, and loss for task
prediction can be re-formulated as:

L
L:(0,s,d) = %Zl(f({d, Ci—1,24,Yi}), iy t). 7

i=1

Training configure We train the model for 200k steps, and use Adam optmizer with learning rate
le~* for all experiments. Minibatch size is set to 128 for training and validation on our synthetic
tasks, and 4 for CoFE.

4.3 IMPACT FACTORS IN PROMPT

Task description We leverage the mutual information to evaluate the task description. Since only
inexact ranges of a and b are implied in task description as r, = a,, —a; and r, = b, — by, the quality
of task description can be controlled and quantified by changing r, and r;. To be specific, suppose
the full number of available ab pairs is 1., and the inexact ab range implied in task description are
r, and 7p,. Then, given this task description, we can narrow down possible ab pair numbers from 7,
to rq - rp. This indicates that the information gain given by the task description is log(nap /(74 - 75))

Number of Examples We use the number of examples to control the information conveyed by
demonstration. For a given task, adding more in-context examples refers to providing more infor-
mation by demonstration.



Under review as a conference paper at ICLR 2024

5 EXPERIMENTS RESULTS

A B Number of Examples c ” Accuracy D Ratio of Example
Number of z o g 0 3 I Ratio of Task
L . pre E z o o8
Q o4 4 g 5 bl 0.4 -
® 1 <7 $ - . ]
S % 5 2- € 06
3 03 ] 8 Task Info 0 (nats) 5 g
Q 1 16 S o 14 2 o4
02 o | | £ 0
= V| —=2 g e 02 &
o g0 £ g o2
00 05 101418 23 32 40 < . . . H 05 110 1'5 2.0 2'5 25 3.0 3.5 0 2 4
Task Info (nats) Task Info 4.02 (nats) Task Info (nats) Task Info (nats)

Figure 2: Phase Transition when increasing the information of task description.Shaded areas indi-
cates +/- variance. A: The task description will distract in-context learning ability of transformer
when its information is less than a threshold, while it will improve in-context learning after that.
B: Before the Phase Transition, the number of in-context examples significantly impacts in-context
learning, while after that, it has almost no influence. C: The model can obtain in-context learning
only under two cases: 1) low info under large number of in-context examples. 2) High info task
description. D:Attention explanation. The ratio of in-context examples in attention keeps declining
with more task description information.The task description will divert the model’s attention in in-
context examples.

5.1 HOW DOES TASK DESCRIPTION IMPACT IN-CONTEXT LEARNING

We use the accuracy of the predicted results of query examples to reflect in-context learning per-
formance, and use the mean of five runs to reduce the randomness. The results are presented in
Figure 2. Our main findings are as following:

A Phase Transition course can be observed. Figure 2A depicts the variation of accuracy with
the amount of information and the number of in-context examples. Before a certain information
threshold, the accuracy remains at a low level. At this stage, significant accuracy gain can only
be observed when more in-context examples are added. However, after this information threshold,
the accuracy grows rapidly with information gain, but keeps relatively stable with changes in the
number of in-context examples.

Before the Phase Transition, the task description will distract in-context learning ability of
transformer, but will improve in-context learning after that. Figure 2B gives a clearer demon-
stration of Phase Transition. The accuracy grows as the number of in-context examples increases
before Phase Transition, but stays relatively constant within a large range of in-context example
numbers after Phase Transition.

Phase Transition course leads to two in-context learning stage of transformer. As shown in
Figure 2C. The model can achieve a high accuracy only when given low-information task description
under large number of in-context examples, or given high-information task description.

5.2 THE PHASE TRANSITION OF TASK DESCRIPTION.

In the previous section, we discover the phase transition of task description. Here, we further inves-
tigate the reason behind it. Specifically, we infer the possible reasons from the follow two perspec-
tives:

The task description will lead the model to ignore the information from in-context examples.
We calculate the ratio of in-context examples and task description in transformer attention, given
same input sequence. As shown in Figure 2D, the ratio of in-context examples in attention keeps
declining with more task description information. On the contrary, the attention ratio of task de-
scription increases when more task-related information are given. This indicates that adding task
description info will divert model’s attention in in-context examples.
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Figure 3: Results of task prediction. A: A demonstration of accuracy gain (Predicting tasks v.s.
without predicting tasks). Acc(p.t.) refers to accuracy on predicting results under predicting tasks
setting, Acc(w/o p.t.) refers to corresponding accuracy without task prediction. Accuracy gain
means the value of Acc(p.t.) - Acc(w/o p.t.). Using task prediction as proxy task can significantly
improve in-context learning ability of Transformer. B: Task accuracy increases with task description
info. C: The number of in-context examples can impact task prediction accuracy only under low
info task description. D: Task info have greater influence than the number of examples.

Higher information of task description will increase the lower bound of performance. As
illustrated in Eq 3, higher mutual information signifies that the task description is a good represen-
tation of the actual task. In other words, the task description captures the essential aspects and the
underlying structure of the task, providing the model with valuable insights and a more accurate
understanding of the problem it needs to solve. When the mutual information is high, it means
that knowing the task description reduces the uncertainty about the prediction of task itself. Conse-
quently, when the task description has high mutual information with the task, the model can leverage
this strong representation to make better decisions and predictions, even when faced with limited or
ambiguous examples.

To study how predicting task label impacts the performance of in-context learning (measured using
the accuracy of validation query examples), we conduct experiments by adding an extra loss between
the predicted task label and ground truth task label. By comparing the gain (with predicting task label
v.s w/o predicting task label), we can evaluate the impact of task prediction.

Predicting the task can improve in-context learning performance. The results are presented in
Figure 3A. A warm color in Figure 3A refers to positive accuracy gain. A performance improvement
can be observed under different task descriptions and in-context example settings, as the points in
Figure 3A are mainly colored warm. And the accuracy gain increases sharply with mutual info,
at a similar threshold with that in Figure 2A, demonstrating a phase transition for the accuracy
gain. Before Phase Transition, such accuracy gain tends to grow with the number of in-context
examples. There are some cases where the performance slightly drops due to randomness. After
Phase Transition, the accuracy gain remains significant and stable.

The performance of task label prediction can also reflect whether the model understand what the
task is. Besides the accuracy of query examples, we further examine the accuracy of the predicted
task label (denoted as task accuracy for simple). As shown in Figure 3B and Figure 3C, the model
can predict tasks better when given more task description information or more in-context examples.
Figure 3C depicts that the number of in-context examples has an obvious impact on task prediction
accuracy only under low info task descriptions. According to Figure 3D, increasing both task de-
scription information and the number of in-context examples can enhance the model’s ability in task
prediction, but the influence of task description is relatively more significant.

5.3 BEYOND THE SYNTHETIC EXPERIMENT

To verify that the discovery from the synthetic experiment also hold on the real task, we conduct
another experiment on the more realistic task on a realistic natural language dataset.

We experiment on CoFE (An et al., 2023), a natural language dataset for compositional general-
ization. The training set covers all the primitives while lacking certain combinations, this enforces
the model to understand and re-combine known components in language. We select 3 categories of
combinations of primitives in the dataset: Primitive Substitution, Primitive Structural Alternation
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Figure 4: Experiments on real tasks. We design three different settings of task description. In
Full Task Info experiment, all task information are given. In Part Task Info experiment, the info
of target primitive is excluded. In No Task Info experiment, no task description is added. We
experiment on all three info settings given 2, 4, 6, 8, 10 in-context examples separately. We find that
the conclusions of experiments of synthetic tasks are also held in real tasks

and Phrase Recombination. The model is trained to predict 4 types of primitives for each combi-
nation category, resulting in 12 tasks. In our experiment, the training set consists of 4 randomly
selected tasks, covering all 4 types of target primitives and all 3 combination categories. The test set
consists of the remaining 8 tasks. Examples of data in CoFE are provided in the appendix.

We design three settings of task description containing different amount of information. All task
information are given in Full Task Info experiment. In Part Task Info experiment, we only imply
the combination category of the task in task description, but leave out the type info of the target
primitive. In No Task Info experiment, no task description is added. We experiment on all three info
settings under different numbers of in-context examples. The results are given in Figure 4.

The conclusions of synthetic experiments are still held. In all three settings, using task predic-
tion as proxy task can significantly improve accuracy, confirming the impact of task prediction on
model’s in-context learning ability. Figure 4A depicts that experiments on Full Task Info achieve
the highest accuracy across all settings. This indicates that when given high info task descriptions,
the model can obtain higher in-context learning ability than given low info. However, when given
incomplete and limited task information, as shown in Figure 4B, the model achieve relatively low
accuracy and obtains limited accuracy gain with an increasing number of in-context examples. The
results demonstrate that low info task descriptions mislead in-context learning. Those observations
are well-aligned with the findings on the above synthetic experiment, indicating our findings on
synthetic experiments can be well scale to real word cases.

5.4 ABLATIONS

No task description during training. We present the model’s accuracy given no task description
and different number of in-context examples. It can be depicted in Table 1 that the accuracy grows
with in-context example number. This table actually refers to zero mutual information in Figure 2A
and Figure 2C, and it can be inferred from Figure 2 that model given full info task description always
outperforms model given zero task info.

No in-context examples during training. Table 2 lists the model’s accuracy given different
amount of task info and no in-context examples. When given maximal info (4.6052, referring to
totally accurate task description), the model can achieve 0.8641 accuracy, better than all other info
level settings, but fall behind models given both full task description and in-context examples. This
infers model’s ability in understanding task description. Also, it can be seen that under no example
setting, the accuracy grows with information gain. The growing trend is relatively tiny given low
task info, but speeds up when more task info added. Such performance pattern keeps align with
experiments given both task description and in-context examples.
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Task Info (nats) 0 021 04462 0.7133 1.0217 1.609 23026 32189 3.6243 3.912 43175 4.6052
Accuracy 0.1017 0.1027 0.1036 0.1041 0.1038 0.1053 0.1083 0.1089 0.2104 0.2834 0.4267 0.8641

Table 1: Ablation Experiments: No in-context example and different amount of task information.

Number of In-context Examples 0 4 8 12 16 24 32 36
Accuracy 0.1017 0.1117 0.1234 0.1320 0.2094 0.2955 0.3670 0.5367

Table 2: Ablation Experiments: No task info and different numbers of in-context examples.

6 LIMITATION

A potential limitation of this work lies in the synthetic experimental setting that has been employed
to investigate the impact of task descriptions on in-context learning performance of Transformers.
While this approach enables the systematic exploration of task description information and its in-
fluence on model performance, it may not fully capture the nuances and challenges encountered in
real-world scenarios. The simplification and controlled nature of the synthetic setting might result
in findings that do not entirely generalize to practical applications, where language models have to
deal with diverse tasks, more complex instructions, and ambiguous or incomplete information.

Moreover, the study’s focus on task descriptions may not comprehensively address other factors
that could significantly influence the performance of Transformers, such as the quality and repre-
sentativeness of training data, model architecture, or the fine-tuning process. In the pursuit of a
deeper understanding of in-context learning, it is essential to consider these additional elements to
ensure a more holistic perspective on the behavior and performance of Transformers in real-world
applications.

7 CONCLUSION

In conclusion, transformers have exhibited exceptional performance in various applications, with
in-context learning emerging as a vital technique in the field. Despite its widespread use, our com-
prehension of the underlying mechanisms of in-context learning remains limited. This study delves
into the crucial yet underexplored role of task descriptions in in-context learning performance, shed-
ding light on their impact on transformers. By conducting a series of well-designed experiments in a
synthetic setting, the research systematically investigates the influence of task description informa-
tion on model performance across diverse tasks and domains. The results underscore the importance
of task descriptions as a guiding factor for transformers to achieve desired learning outcomes. The
well-designed experiments conducted in a synthetic setting highlight the need for carefully crafting
task descriptions to enhance model performance and generalization because of the phase transition.
Ultimately, this study deepens our understanding of the in-context learning processes in transform-
ers and lays the foundation for more efficient and effective real-world applications of these advanced
models.

However, it is crucial to acknowledge the limitations of the synthetic experimental setting and con-
sider the additional factors that may influence transformer performance in real-world scenarios.
While this study sheds light on the impact of task descriptions, future work should address the var-
ious challenges and complexities that transformers face in practical applications, such as diverse
tasks, ambiguous instructions, and incomplete information.

In future work, several avenues can be pursued to further advance our understanding of in-context
learning on task description in Transformers and enhance their practical applications. For exam-
ple, it is valuable to explore the development of automated methods for generating optimal task
descriptions, which could alleviate the challenges in crafting effective prompts and improve model
performance across a range of tasks. Secondly, investigating the impact of incorporating more struc-
tured or hierarchical task descriptions could provide valuable insights into the model’s ability to
understand complex instructions and generate more contextually appropriate responses.
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A APPENDIX

A.1 THE DERIVATION OF EQUATION 3

In the following two sections, we have primarily drawn upon the proofs VAE (Kingma & Welling,
2013) and in Belghazi et al. (2018) as key literature sources to prove our claims.
Using Bayes rule, we can obtain the following derivation:

KL (qo(t|d, c,q)|p(t|r, d, ¢, q))

= Ey,(t)d,c.q) [log qo(t|d, ¢, q) — log p(t|r, d, ¢, q)]
(rlt,d, c, g)p(t|d, c, q)}

p
=Eqy (t1d,c,0) [log qo(t|d, c,q) — log

p(rld, c,q) (®)
qe (t‘da C, Q)
=E log ————= —1 t,d 1 d
qe (t|d,c,q) |:Og p(t|d, c, q) ng(?“| , @y C, Q) + ng(?"‘ y Gy q)
= KIL(qo(t|d, ¢, q)[p(t|d, ¢, q)) — Egy(t|d,c,q) log p(T(t, d, ¢, q) + logp(r|d, ¢, q)
A.2 THE DERIVATION OF EQUATION 4
We can rewrite the reconstruction error with the conditional distribution p(t|d) = p(t, d)/p(d):
_ _ q(t,d)
R =Eq)Eq(aje) [~ log p(t|d)] = Eq(z,a) |log pd) | Ey(t,a)[log q(t, d)] + Eq(a)[log p(d)] ©)

= KL(q(t,d)|p(t,d)) — Eq,qa)[log q(t, d)] + Eqa)[log p(d)],

where the first term is KL divergence, the second term is the joint entropy H, (¢, d). We focus on the
third term:

p(d
Eq(a)[log p(d)] = Eq(g)[log qugl + Eq(a)llog ¢(d)] = —=KL(q(d)|p(d)) + He(d)  (10)
We bring Eq. 10 into Eq. 9, then the joint entropy and entropy can be formulated as:
~Eyalloga(t )] + Hy(@) = By [log L] 4y llog o)

’ ’ q(t)q(d) (11)

= —1Iy(t;d) + Hy ()

Since the KL-divergence is non-negative, we obtain the bound:
R = KL(q(t, d)|p(t,d)) = KL(g(d) ]p(d)) — L, (t: ) + Hy (1) -

< KL(g(t, d)|p(t, d)) — I,(t:d) + H(t)

A.3 SUPPLEMENTARY DESCRIPTION FOR FIGURE 2
Figure 2A. Figure 2A and its numeral results (Table 3) depicts the variation of accuracy with the

amount of information and the number of in-context examples. Before a certain information thresh-
old (about 3.2 nats), the accuracy remains at a low level. At this stage, significant accuracy gain can
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Task Info(nats) 0 0.21 0.45 0.73 1.02 1.39 1.61 1.83 2.30 3.22 3.40 391 4.02 4.27 4.61

Accuracy(0ex)  0.1017  0.1020  0.1027 0.1030 0.1034 0.1030 0.1042 0.1048 0.1062 0.1119 0.1164 0.2104 0.2834 0.4267 0.8641
Accuracy(4ex) 0.1118 0.1071 0.1062 0.1036 0.1023 0.1020 0.1030 0.1062 0.1083 0.1174 0.1202 0.2216 0.5052 0.5877 0.9323
Accuracy(32ex) 0.3670 0.2083 0.1670 0.1046 0.1062 0.1070 0.1084 0.1097 0.1101 0.1211 0.1314 02137 0.4548 0.7926 0.9688

Table 3: Numerical Results in Figure 2A. Val Accuracy given different task info and number of in-
context examples. Accuracy(0 ex), Accuracy(4 ex), Accuracy(32 ex) refer to val accuracy of models
trained with no in-context example, 4 in-context examples, 32 in-context examples, respectively.

Number of Examples 0 2 4 8 12 16 20 24 28 32 36

Accuracy (Mutual Info 0 nats) 0.1017 0.1052 0.1117 0.1234 0.1320 0.2094 0.1876 0.2414 0.2955 0.3670 0.5367
Accuracy (Mutual Info 4.02 nats)  0.3530 0.4267 0.5052 0.4067 0.4695 0.4687 0.4656 0.4573 0.4678 0.4548 0.4674

Table 4: Numerical Results in Figure 2B. Val Accuracy given different numbers of in-context exam-
ples before and after phase transition threshold.

only be observed when more in-context examples are added. However, after this information thresh-
old, the accuracy grows rapidly with information gain, but keeps relatively stable with changes in
the number of in-context examples. Some digital results are listed in Table 3, and we choose some
special settings: no in-context examples given, few in-context examples given(Accuracy(4 ex)), and
plentiful in-context examples given(Accuracy(32 ex)). Under all settings, accuracy basically grows
with mutual info gain. However, before a certain information threshold (around 3.2 nats concern-
ing results sampled in Table 3), the accuracy gain remains relatively subtle to be 0.001 between
neighbouring info settings.

For clarity and readability, not all sampled info settings are labeled in x axis of Figure 2A. As shown
in Table 3, we actually sampled 15 info points given same number of in-context examples.The
minimal mutual info given by task description is 0, referring to no valid information added by task
description. The maximal possible mutual task info, under our experiment setting, is 4.61 nats.
The mutual information we utilized here is formulated by In(ng/(re - 7)), 7o = ay — a; and
rp, = b, — by stand for the inexact ranges of a and b are implied in task description, and n,;, stands
for the full number of available ab pairs. Given maximal upper bound(a,, b,,) 10 and minimal lower
bound(ay, b;) 1, there can be 100 different r,, r, range pairs if ab are restricted to integers. Thus,
100 levels of task info can be experimented, resulting in maximal info 4.61 nats. We sample several
mutual info settings, trying to keep uniform sampling intervals in task info.

We perform 5-fold experiments and the variances are given as shaded areas. Only after information
threshold (around 4 nats), the variances can be obviously observed in figure.

Figure 2B. It can be seen in Fig 2B and its numeral results (Table 4) that before the threshold (task
info less than 3.2 nats), the number of in-context examples significantly impact in-context learning,
while after that, it has almost no influence. And the lower sub-figure in Fig 2B corresponding to the
right most info point in Fig 2A( mutual Info 4.02 nats), which clearly depicts that the accuracy stays
relatively constant within a large range of in-context example numbers.

A.4 COFE DATASET

CoFE dataset (An et al., 2023) is constructed based on COGS, a compositional generalization bench-
mark designed for the fine-tuning paradigm. Here, compositional generalization refers to under-
standing and producing novel expressions by recombining known components in language, and is
an important human ability. COGS, as well as CoFE, are designed for semantic parsing tasks. In
these datasets, the training set covers all the primitives but lacks certain combinations, and the test
set is made up of these missing combinations, so the model has to learn to translate natural language
expressions into semantic representations.

The combinations in CoFE can be divided into five categories: Primitive Substitution (Compose a
primitive with a grammatical role), Primitive Structural Alternation (Compose a primitive with a
sentence structure (e.g., “‘subj. verb obj.”), Phrase Recombination (Compose a prepositional phrase
with a grammatical role), Longer Chain and Deeper Nesting. We only employ the former three
combinations in our experiments, since the latter two are not suitable for our mutual task info setting.
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Category In-context Examples Test Case

input:shark
output:NONE(SHARK,NONE,NONE)
Primitive Substitution input:A girl grew the boy.
output: DRAW(Girl, BOY,NONE)
input:The goose baked.
output: BAKE(GOOSE,NONE,NONE)
Primitive Structural Alternation input:A teachernoticed a chicken.
output:NOTICE(TEACHER,CHICKEN,NONE)
input:Logan mailed Stella the cake in the pile.
output: MAIL(LOGAN,IN,STELLA)
Phrase Recombination input: The goose rolled a baby in a room.
output:ROLL(GOOSE,IN,NONE)

input:The shark drew a boy.
output: DRAW(SHARK,BOY,NONE)

input:A teacherbaked the chicken.
output: BAKE(TEACHER,CHICKEN,NONE)

input:A visitor in the pile rolled a resident.
output:ROLL(IN,RESIDENT,NONE)

Table 5: *
Examples of data in CoFE.

Some data examples are given in Table 5. The three combination categories( or main tasks) refer to
different forms of language composition, while the output are corresponding primitives like subject,
verb or object. For each main task, four types of primitives are predicted, and can be split into four
sub tasks, resulting in 12 different tasks.The model is trained to predict 4 types of primitives for
each combination category, resulting in 12 tasks. In our experiment, the training set consists of 4
randomly selected tasks, covering all 4 types of target primitives and all 3 combination categories.
The test set consists of the remaining 8 tasks.

We design three settings of task description containing different amount of information. All task
information are given in Full Task Info experiment. In Part Task Info experiment, we only imply
the combination category of the task in task description, but leave out the type info of the target
primitive. In No Task Info experiment, no task description is added. We experiment on all three
info settings under different numbers of in-context examples. In task description, the combination
categories are tokenized as 1,2,3 and the target primitive type are denoted as 11-14. All words in
CoFE are tokenized starting from 100 to avoid messing up with task description.
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