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Abstract
We introduce the tokenized linear bandit (TLB)
and multi-armed bandit (TMAB), variants of lin-
ear and stochastic multi-armed bandit problems in-
spired by LLM decoding and alignment. In these
problems, at each round t ∈ [T ], a user submits
a query (context), and the decision maker (DM)
sequentially selects a token irrevocably from a
token set. Once the sequence is complete, the DM
observes a random utility from the user, whose
expectation is presented by a sequence function
mapping the chosen token sequence to a nonnega-
tive real value that depends on the query.

In both problems, we first show that learning is
impossible without any structure on the sequence
function. We introduce a natural assumption, di-
minishing distance with more commons (DDMC),
and propose algorithms with regret Õ(L

√
T ) and

Õ(L
√
T 2/3) for TLB and TMAB, respectively.

As a side product, we obtain an (almost) opti-
mality of the greedy decoding for LLM decoding
algorithm under DDMC, which justifies the un-
resaonable effectiveness of greedy decoding in
several tasks. This also has an immediate appli-
cation to decoding-time LLM alignment, when
the misaligned utility can be represented as the
frozen LLM’s utility and a linearly realizable la-
tent function. We finally validate our algorithm’s
performance empirically as well as verify our as-
sumptions using synthetic and real-world datasets.

1. Introduction
Large Language Models (LLMs), in the past few years, re-
ceived significant attention from extensive areas with its abil-
ity to serve numerous tasks including question answering,
image generation, code completion and reasoning (Brown
et al., 2020; Thoppilan et al., 2022; Fried et al., 2022; Zheng
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et al., 2024). Recent success of commercial LLMs such as
ChatGPT, Gemini, and Claude (Team et al., 2023; Achiam
et al., 2023) gives evidence on the feasibility of LLMs as
personal assistants, supporting individuals’ daily life in de-
cision making, problem solving, and planning.

To serve as a genuine personalized assistant, however, it
is crucial to align the LLM’s outcome with the designated
human preference, which remains as a core challenge in
LLMs (Mishra et al., 2021; Sanh et al., 2021; Shen et al.,
2023). Recent works suggest that aligning an LLM’s out-
put with human preference can be partially addressed by
fine-tuning the model with reinforcement learning from
human feedback (RLHF) (Bai et al., 2022; Ouyang et al.,
2022; Rafailov et al., 2024) (see Wang et al. (2024) for
comprehensive exposition). This line of research, however,
typically requires significant computational resources due to
fine-tuning, extensive human labeling, and frequent model
updates, rendering it less scalable in practical and rapidly
changing environments or as a genuine personalized assis-
tant tailored to each individual’s preference.

Consequently, a more recent thread of studies proposes
decoding-time alignment methods, aiming to align the
LLM’s output on the fly during inference time without
fine-tuning the LLM (Josifoski et al., 2022; Huang et al.,
2024; Mudgal et al., 2023). While these methods hold
promise in terms of scalability, their theoretical underpin-
nings remain largely uncharted, despite some recent evi-
dences (Chakraborty et al., 2024; Li et al., 2024; Shi et al.,
2024b), and how it could sample-efficiently learn the prefer-
ence from user feedback is yet questionable. Moreover, even
the decoding algorithm itself lacks foundational understand-
ing from theoretical perspective despite being central to the
LLM’s quality, even the simplest ones such as greedy decod-
ing or beam search, beyond a few recent works (Finlayson
et al., 2023; Chen et al., 2024).

In this work, we propose a fresh perspective in the decoding-
time alignment as well as decoding algorithm for LLMs
by framing the LLM alignment and decoding problem as
variants of linear/multi-armed bandits framework whose
utility is represented via a sequence function and when a
decision maker faces an online problem to select the se-
quence irrevocably in a token-by-token manner. Overall,
our contributions are three-folds:
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• We present tokenized variants of the linear and multi-
armed bandit problems, which turns out to be closely
connected to bandit tree search (BTS) problem (Co-
quelin & Munos, 2007). We first show that the general
problem setup fundamentally exhibits exponential de-
pendency in the maximal length of token sequences for
any algorithm.

• To address it, we provide a fairly reasonable assump-
tion, dubbed diminishing distance with more commons
(DDMC), and provide sublinear regret algorithms for
both problems. This complements the submodularity,
widely adopted in sequence function maximization.

• We explain how our algorithms can be applied in the
decoding-time LLM alignment. We discuss further
interesting implications in the static counterpart of
our problem, which might be of independent inter-
est, demonstrating the provably (near) optimality of
the greedy decoding under DDMC structure, justifying
empirical evidences (Song et al., 2024) on the effec-
tiveness of greedy decoding in certain tasks. We finally
provide empirical experiments that justify our assump-
tions and performance of our algorithms.

In what follows, we briefly introduce our contributions and
implications therein. Section 2 formally introduces our gen-
eral problem setup. We provide our results for tokenized
linear bandit problem in Section 3. Section 4 presents our
results for the tokenized multi-armed bandit problem. Im-
plications and applications to decoding-time alignment, de-
coding are presented in Section 5, and experimental results
are provided in Section 6. Related works, and all the proofs
are deferred to the appendix due to page limits. Appendix B
presents our results with weakened version of DDMC, com-
bined with lookahead decoding, and Appendix C discusses
how our problems are connected to the seminal bandit tree
search (BTS) problem.

1.1. Overview of results, assumptions, and implications

We start with the most general problem setup that will sub-
sume tokenized linear bandit (TLB) and tokenized multi-
armed bandit problem (TMAB).1 Each round t ∈ [T ], a user
arrives and provides a query xt as a context, and a decision
maker (DM) selects token sequence yt ∈ V∗2 one at a time
from a fixed vocabulary V with |V| = n. Once the token se-
quence is finalized, the DM receives a random utility rt(yt)
from the user, capturing how well the produced text aligns
with the user’s preference. The random utility consists of

1We note that TMAB does not directly reduce to TLB as a spe-
cial case unlike the standard bandit problem, due to an exponential
blow up in the dimension of the latent parameter. Thus, it requires
independent algorithms and analysis.

2A∗ denotes a set of finite sequence over A.

two parts: (i) sequence function ut(xt, yt) that maps a pair
of context and token sequence to nonnegative real value,
and (ii) random noise ηt analogous to the standard ban-
dit problems. The benchmark is to obtain sublinear regret
against the optimal sequence in hindsight per each round,
i.e., OPTt = E [ maxy∈V∗ rt(y) ] and OPT =

∑T
t=1 OPTt.

We assume that the output token sequence is restricted to
be within length of L, and seeks for algorithms with regret
linear on L and sublinear on T .

In TLB, our utility function is linearly parameterized by
ut(xt, y) = ⟨θ, e(xt, y)⟩ given an embedding function
e : V∗ × V∗ → Rd that maps a query and a token sequence
to a feature vector, which can be viewed as an embedding
vector that a typical LLM returns. In TMAB, utility func-
tion could be arbitrary, but the context remains the same
xt = x to pose the problem learnable. For both problems,
DDMC assumption is defined as follows: for any two token
sequences y, z ∈ V∗ with the same length |y| = |z| and a
token τ ∈ V , it follows that

|ut(xt, y : τ)− ut(xt, z : τ)| ≤ |ut(xt, y)− ut(xt, z)|,

where y : τ denotes the sequential concatenation of y and τ
and similarly for z. In words, user realizes small utility gap
if two outputs have more common tokens (words) in suffix.

For TLB problem, we propose an excessive optimism un-
der the face of uncertainty (EOFUL) algorithm with regret
O(L
√
T log T ),3 by combining greedy decoding with stan-

dard LinUCB algorithm (Abbasi-Yadkori et al., 2011). The
analysis follows from several interesting ideas: (i) an intro-
duction of level-k regret that internally occurs from k-th
chosen token during the algorithm, (ii) fictitious extension
of our algorithm’s sequence to recursively propagate the re-
gret into upper level, followed by (iii) regret decomposition
and sum of squares regret analogous to the standard linear
bandit analysis. For TMAB problem, we no longer have
a global estimate θ that will help us estimating the perfor-
mance of each intermediate token sequence. Instead, we
present GreedyETC that step-by-step learns a desirable path
to efficient token sequences by combining exploration-then-
commit style of algorithm with greedy decoding, inducing
the regret O(nLT 2/3(log T )1/3). Analysis requires a care-
ful union bound over the concentration of desirable token se-
quences, since naively taking union bounds over every token
sequence yields regret of Ω(nL).4 We remark that DDMC
assumption plays a crucial role, enabling certain tractable

3The analysis requires an additional technical assumption, de-
tailed in Section 3.2. Linear realizability and this assumption is
completely removed in our results for TMAB, at the cost of the
same context across the rounds.

4TMAB problem, in fact, has a close connection to the well
known bandit tree search (BTS), i.e., a decision version of BTS
can be reduced to TMAB and vice versa. We discuss the detail in
Appendix C.
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structure in the utility function, albeit its naturallity and sim-
plicity.5 DDMC assumption is relaxed in Appendix B, and
we also provide efficient algorithms for both settings with
the weakened assumption by replacing the greedy decod-
ing with lookahead decoding, another well-known decoding
algorithm (Lu et al., 2021; Fu et al., 2024).

Finally, we discuss several implications and applicability
of our foundations in LLM decoding and alignment. For
LLM alignment problem, we have a LLM equipped with
a (known) utility function v : V∗ × V∗ → R≥0 and a mis-
aligned utility represented by linear structure ⟨θ, e(xt, y)⟩
with latent θ, where the eventual utility is a unknown con-
vex combination over them. The objective is to efficiently
learn θ and the convex combination parameter in a decoding
time through user feedback while leaving the original LLM
frozen to ensure that no further training occurs for the LLM.
We show that this problem reduces to the TLB problem,
enabling efficient learning via EOFUL under DDMC. We
next consider a static version of our problem, where a query
access to the sequence function u is available and we need
to maximize u with polynomial queries. Inspired by our
analysis for EOFUL and GreedyUCB, we prove that the
greedy algorithm achieves the exact optimum with nLT
queries. This immediately implies that greedy decoding is
almost optimal under DDMC for LLM decoding problem
when we view u as the probability of LLM generating the
sequence. This gives an evidence on why greedy decod-
ing is unreasonably efficient for various domains despite
its simplicity (Meister et al., 2020; Shi et al., 2024a; Team
et al., 2023; Welleck et al., 2024), (see Song et al. (2024)
for comprehensive evaluation of greedy decoding).

2. Problem Setup
We formally define the general problem setup, which will
subsume tokenized linear bandit (TLB) and tokenized multi-
armed bandit (TMAB) problems. Let V be the set of all
possible tokens with |V| = n. For any set A, let A∗ the
collection of every possible finite sequences over A. Given
a token sequence y ∈ V∗, we write y(i) ∈ V to denote its
i-th token and y(i:j) ∈ V∗ to denote the subsequence that
contains every token from i-th token to j-th token including
themselves for j ≥ i in y.6 We often write y(−i) to denote
the i-th token from the end of y. There exists a special
end-of-sequence EOS ∈ V token representing the end of a
sequence. We call a token sequence y to be complete if its
last token is EOS. Importantly, even though our sequence
function could have nonzero value even without the EOS

token at the end, we will only consider a class of algorithms
that only ends with EOS token. Thus, throughout, we rewrite

5We also compare DDMC with smoothness assumption in BTS
problem in Appendix C.

6We use boldface for sequences and non-boldface for a token.

V∗ to denote the collection of every possible finite complete
sequences. For y, z ∈ V∗, we write y : z to denote the token
sequence that concatenates y and z sequentially. We often
write y = ∅ : y.

We call the process of sequential token selection in a single
round the decoding algorithm, and denote the process of
observing the feedback at the end of the decoding and learn-
ing the sequence function by learning phase. Essentially,
one can view the decoding process as an online problem to
select each token, and learning process as an online learning
problem to estimate the objective function. We write |y| to
denote the length (interchangeably, depth or level) of the se-
quence y. We consider a class of decoding algorithms with
fixed maximal depth L that only outputs token sequence
with length at most L. Equivalently, we assume V∗ consists
of token sequences with length up to L. We assume that the
depth L is known in advance to the DM.7 The depth plays a
crucial role in our analysis and any algorithm’s performance
would depend on L that intrinsically captures the size of
feasible token sequences. We refer to an algorithm’s level l
decision to denote its decision for the l-th token.

Sequence utility and regret. At each round t ∈ [T ], a user
arrives and writes a query xt ∈ V∗. Then, a decision maker
(DM) needs to select each token sequentially to construct
a sequence yt ∈ V∗ to answer the user’s query, and the
DM observes a reward rt(yt) when it finalizes the sequence
selection process and displays y. In particular, the DM
irrevocably commits to each token to construct the token
sequence and cannot revert any previous decision to change
the sequence entirely. The reward is defined by two factors:
(i) a sequence (utility) function ut : V∗ → R≥0 that maps
a token sequence to a nonnegative real value and (ii) a
random noise over it. Note here that ut can vary across
the rounds, which captures the (possibly) different context
provided to the DM given by the queries xt over the rounds.8

Formally, the random reward rt(yt) for the sequence y can
be represented as

rt(yt) = ut(yt) + ηt,

where ηt is a random noise with |ηt| ≤ σ.9 The DM does
not know the sequence function u in advance, but can only
indirectly access it through the reward rt(yt). The goal of
the DM is to maximize the user utility over the rounds T ,
i.e.,

∑
t∈[T ] rt(yt). Equivalently, the objective is to compete

with the optimal complete sequence in hindsight: OPT =

7Practically, it can be prompted in the LLM or implicitly set in
the LLM to ensure it does not generate an infinitely long output.

8An acute reader may easily observe that one cannot learn
anything if ut does not have any structural assumption. Thus,
Section 3 allows efficient learning by having a linear structure, and
Section 4 allows efficient learning my having ut = u.

9We assume bounded noise for simplicity, but it easily extends
to bounded sub-Gaussian noise as in the bandit literature.
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Tokenized Bandit for LLM Decoding and Alignment∑T
t=1 OPTt where OPTt = E [ maxz∈V∗ rt(z) ]. Then, the

DM tries to minimize the expected cumulative (pseudo-)
regret REG =

∑
t∈[T ] REGt = OPT −

∑
t∈[T ] E [ rt(yt) ].

Monotonicity and single-level deviation. Remark that we
consider a class of algorithms that always output a complete
sequence. In practice as well, once the sequence meets EOS,
it is natural to stop the decoding. To capture such behavior,
we impose the following assumptions.
Assumption 2.1 (Monotonicity). The utility function ut

is monotone if (i) appending more EOS to a sequence that
already has EOS at the end does not change the utility, and
(ii) appending non-EOS token to a sequence that already has
EOS at the end only decreases the utility.

The monotonicity assumption is completely innocuous in
a sense that appending EOS tokens to a complete sequence
must not change the utility in practice as the user observes
exactly the same output, and further any reasonable algo-
rithm would submit the output once it meets EOS.

Further, let at be a sequence which is not optimal. If a
sequence at deviates from the hindsight optimal sequence
ot firstly at level i, any practical algorithm should have small
single-level error in a sense that the utility difference at the
moment is almost ignorable as they differ only by a single
token. Formally, we impose the following assumption.
Assumption 2.2 (Small single-level deviation). Let a be a
sequence that deviates from the optimal sequence o firstly
at level i. The utility function ut has single-level deviation
(SLD) of ε if

∣∣ut(o(1:i))− ut(a(1:i))
∣∣ ≤ ε. Further, the

utility function has small SLD (SSLD) if ε = O(1/
√
T ).

This assumption is apparently innocuous for large i as
adding a single token would almost incur no difference.
Even if i is small, one can expect that the utility differ-
ence will be still small as small i indicates that the overall
document only has a few tokens, which would not induce
significantly different utility. For instance, one may con-
sider truncating the token space to top-k most probable
ones, then SLD will be ignorable for small i as any efficient
LLM would only produce reasonable tokens as top-k to-
kens.10 Throughout, we will assume that the utility function
is monotone and SSLD unless specified otherwise.

LLM decoding problem. Let us see the connection be-
tween our problem and LLM decoding problem and LLM
alignment problem. Given an access to the logit prob-
ability of a LLM and a token sequence y ∈ V∗, sup-
pose the sequence function ut denotes the LLM’s proba-
bility p of generating the output y, i.e., ut(y) = p(y) =∏n

k=1 p(y
(k)|y(1:k−1)). Then, our objective can be framed

10This does largely not restrict the class of problem instances we
deal with, as the utility difference onwards could be significantly
large.

as an online learning problem to learn the LLM’s logit prob-
ability in an efficient manner.

A special case of this problem is a scenario where the DM
has access to the value oracle of u, e.g., knows the probabil-
ity distribution, in advance. In this case, the objective boils
down to the sequence function maximization problem (Li
& Milenkovic, 2017; Tschiatschek et al., 2017; Mitrovic
et al., 2018; 2019) where duplicated insertion of the same
element is allowed, or from the LLM’s perspective, the
LLM decoding problem of designing efficient decoding al-
gorithms (Freitag & Al-Onaizan, 2017; Kulikov et al., 2018;
Holtzman et al., 2019; Chen et al., 2024). Correspondingly,
our main results have several implication in these problems,
which will be elaborated in Section 5.2.

LLM alignment problem. Further, one can consider a
variant of our setup, termed LLM alignment problem, where
we have a (frozen) LLM that gives us a probability distribu-
tion p(y), but this LLM is (partially) misaligned with our
objective function u. In this case, one standard approach
would be to use the probability distribution p(y) as a base-
line for the decoding process, while learning the misaligned
objective function u. If the misalignment allows specific
structure, e.g., ut(xt, y) = (1 − γ)p(xt, y) + γf(xt, y)11

for some latent function f capturing the misalignment, we
indeed show that our results can be extended to efficiently
handle such misalignment in Section 5.1.

3. Tokenized Linear Bandit
The general setting we formulated, however, does not al-
low any efficient learning if the utility function ut indeed
does not have structural correlation across the rounds. One
natural framework to tackle such fundamental obstacle is
to impose the linear realizability assumption in the online
contextual learning literature. To this end, we introduce the
following notion of embedding function:

Definition 3.1 (Embedding function). A decoding algo-
rithm has access to the embedding function e : V∗ × V∗ →
Rd maps a token sequence to d-dimensional real vector.12

Assumption 3.2 (Linear realizability). There exists θ ∈ Rd

and embedding function e(·) such that the utility function
can be represented by ut(xt, y) = ⟨θ, e(xt, y)⟩ for every
query xt ∈ V∗ and token sequence y ∈ V∗.

The DM has a query access to the embedding function
during the decoding process.13 Then, the DM’s objective

11In fact, setting γ = 0 reduces to the pure LLM decoding
problem, whereas setting γ = 1 reduces to our general problem of
learning the latent sequence function, or equivalently, learning a
LLM’s behavior.

12One can deem the embedding function as the semantic embed-
ding that the LLM computes for y given a query xt.

13Our algorithm calls the embedding function O(nLT ) time.
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is to efficiently learn the latent parameter θ to maximize
the utility. We assume that ∥θ∥ ≤ 1 and ∥e(z)∥ ≤ 1.14 We
finally note that such linear approximation of the reward
model often appear in the LLM alignment literature (Cen
et al., 2024; Yang et al., 2024).15

3.1. Diminishing distance with more commons (DDMC)

On the other hand, even if the utility function is well-
structured with the linear realizability assumption, the in-
trinsic intricacy of TLB’s tokenized nature imparts a funda-
mental hardness in maximizing the reward. Intuitively, if
a (monotone) sequence function could have arbitrary struc-
tures, one small mistakes in the first token selection may in-
cur irreparable results in the following tokens, e.g., imagine
there exists only a single token τ which incurs nonnegative
for u(τ : y) for any y. If the first token itself does not give
much information about the following levels, one cannot
fundamentally identify an efficient path in hindsight.16 This
is captured by the following proposition:

Proposition 3.3. For TLB problem, any algorithm suffers
the worst-case regret of Ω(T (1− 1/2L−2)).

Thus, we here introduce a fairly natural structural assump-
tion on the sequence function u(·) to avoid such pessimistic
scenario, dubbed diminishing distance with more commons.

Assumption 3.4 (DDMC). A sequence function u(·) has
diminishing distance with more commons (DDMC) if

|u(xt, y : τ)− u(xt, z : τ) | ≤ |u(xt, y)− u(xt, z) | ,

for any two different finite sequences y, z with the same
length |y| = |z| and any token τ ∈ V . 17

In other words, adding common tokens at the end of two
sequences with the same length only decrease the utility gap
between them.

DDMC shares very similar intuition from the widely
adopted submodularity assumptions on set function (Ko-
rte et al., 2011), or recently sequence function (Mitrovic
et al., 2019), which characterizes diminishing returns. How-
ever, they crucially differ and cannot be implied by each
other, due to two key differences: (1) submodularity is about
diminishing return (i.e., the difference between two function
values) whereas DDMC is about diminishing distance (i.e.,

14This is for ease of exposition to exclude cumbersome details,
but all results would easily generalize under any bounded scenario.

15One might find this partly related to linear representation
hypothesis (Park et al., 2023), stating that concepts are encoded as
linear directions in the model’s embedding space.

16In fact, due to the online learning nature of our problem, there
always exists a small probability that any algorithm makes an error
in the first level.

17In Appendix B, we provide a relaxed version of DDMC as-
sumption and provide corresponding efficient algorithms.

absolute value of the difference); (2) more subtly, DDMC is
about the difference of two different sequences of the same
length with an added common token, whereas submodu-
larity is about the difference of two different sets that one
includes another with an added common element. In some
sense, DDMC is the complement of submodularity.
Discussion 3.5. From the practical perspective for LLM, this
is innocuous since if two generated outputs shares common
tokens suffix-wise, we can expect that they give the user
similar experiences as long as we add more commons.

3.2. Excessive Optimism under the Face of Uncertainty

We present our algorithm, named excessive optimism under
the face of uncertainty for tokenized linear bandits (EO-
FUL), whose pseudocode is presented in Algorithm 1. It
has two optimistic features. First, it optimistically decodes
each token in a greedy manner, expecting that this would
lead to a good utility in following decisions. Second, it
optimistically estimates each token’s utility by constructing
a confidence ball Ct, and computes the best possible utility
each token can gain from parameters in Ct.

Our construction of the confidence ball is analogous to the
standard LinUCB (Li et al., 2010; Abbasi-Yadkori et al.,
2011) algorithm for linear bandits.

Let yt be the chosen sequence at round t by Algorithm 1.
We recursively define the following matrices for t ∈ [T ]:

Σt = Σt−1 + yty
⊤
t ,

and let Σ1 = λI for d × d identity matrix I . Further, we
define

βt = σ2

(
2 + 4d log

(
1 +

tL

d

)
+ 8 log

4

δ

)
.

For t ≥ 2, the center of our confidence ball will be:18

θ̂t = Σ−1
t

t−1∑
i=1

rt(xt, yt)yt, (3.1)

and θ̂1 = 0⃗, the d-dimensional zero vector.19

Now, our confidence ball Ct to be used at round t is defined
as follows:

Ct = {ϑ : (ϑ− θ̂t)
⊤Σt(ϑ− θ̂t) ≤ βt}, (3.2)

and C1 = {⃗0}. We choose λ = Θ(1).

We further impose the following technical assumption:

18Remark that this is a solution of the ridge regression given the
reward feedback.

19For efficient computation, one may use the rarely-switching
version of OFUL algorithm in (Abbasi-Yadkori et al., 2011), in-
stead of the standard OFUL.
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ALGORITHM 1: EOFUL
Input: Token set V , linear contextual bandit algorithm ALG

Initialize y← ∅, θ̂1 ← 0⃗, C1 = {θ̂}, y = ∅
for t = 1, 2, . . . , T do

User arrives and submits query xt

for k = 1, 2, . . . , L− 1 do
Compute τ∗ = argmaxτ∈V,θ∈Ct

⟨θ, e(xt, y : τ)⟩
Set y← y : τ
if τ = EOS then Break;

Submit y and observe reward rt
Compute θ̂t+1 by (3.1) and Ct+1 by (3.2)

Assumption 3.6. For any complete sequence y with |y| = k
and any subsequence y(1:l) with l ≤ k, there exists a c ≥ 0
such that

∥∥y(1:l)
∥∥
Σt
≤ c ∥y∥Σt

in Mahalanobis norm.20

That is, each entry of the subsequence of a complete se-
quence is not too larger than that of the complete sequence
with respect to Σt. Both structural assumptions 3.2 and 3.6
are removed in Section 4 for TMAB.
Discussion 3.7. This assumption is innocuous in a sense
that c can be sufficiently large up to o(

√
T ) to obtain sublin-

ear regret. On the other hand, this is less innocuous since it
depends on the algorithm’s construction of Σt. In practice,
one of the typical usage for LLM is to either (i) have similar
queries based on their daily lives, or (ii) ask queries in al-
ready existing sessions (in-context) to expand the discussion.
In these scenarios, we expect the queries and the responses
thereby to be not too much different from each other.

Discussion 3.8. On the other hand, if y(1:l)
i and yt does not

have any structural dependency, any algorithm would not
be able to fundamentally learn certain coordinate of θ. For
instance, suppose any complete sequence’s embedding only
has nonzero values in the last d/2 dimension, and the first
d/2 dimension for any incomplete sequence. Then, any
algorithm could not learn the first d/2 dimension, implying
that any internal node does not provide information on an
efficient path to the complete sequence.

Theorem 3.9. Impose assumption 3.6 and DDMC.
With probability at least 1 − δ, EOFUL has regret

O(cL
√

dT (log T + log( 1δ )), and thus plugging δ = 1/T

yields REG = O(cL
√
dT log T ).

Overall, our proof proceeds as follows:

Step 1 (Length equalization). We first equalize ot and yt

to have the same lengths in a way that it does not hurt any
following analysis.

Step 2 (Level-k regret). We define level k regret as the regret
occurred at depth k of the decoding process that will play
crucial role in the analysis to recursively transform the regret
into upper level regrets.

20Mahalanobis norm is defined by ∥x∥A =
√
x⊤Ax.

Step 3 (Fictitious extension). Then we introduce a fictitious
extension of y(1:k−1)

t to f(1:k)t = y(1:k−1)
t : o(k)

t , and show
how the level-k regret of the fictitious extension is upper
bounded by level-(k-1) regret at y(1:k−1)

t .

Step 4 (Regret decomposition). We relate the level-(k-1)
regret of the algorithm’s choice yt and level-k regret of the
fictitious extension using DDMC assumption, which upper
bounds our algorithm’s level-k regret due to the optimistic
choice of the algorithm. Then, we telescope over k, . . . , 1
to express the entire regret as a function of level-1 regret
plus some estimation errors occurred for each prefix of yt

during the decoding.

Step 5 (Sum of squares regret) Finally, we compute the func-
tion of level-1 regret and the estimation error by following
the standard sum of squares regret bound analysis of linear
contextual bandit algorithm, where readers familiar with the
standard linear bandit analysis may easily follow.

4. Tokenized Multi-armed Bandit
The linear realizability assumption is essential for the con-
textual setting to derive any efficient algorithm. A natural
follow-up question is whether one could obtain an efficient
algorithm without linear realizability, if the context does not
change and the utility function ut = u remains the same
over the rounds.21 In this case, the DM’s problem can be
seen as a variant of the standard multi-armed bandit problem
where it needs to make an (online) decision for the next to-
ken irrevocably to construct a complete sequence. Thus, we
dub this problem tokenized multi-armed bandit (TMAB).

We first argue that even in this simple setting, our problem
admits a pessimistic lower bound when the sequence func-
tion does not have any structural assumption beyond mono-
tonicity. Then, we again introduce DDMC and present an
algorithm with regret O(nLT 2/3(log T )1/3). We present an
intimate connection between TMAB and the bandit-based
tree search (BTS) problem (Coquelin & Munos, 2007) in
Appendix C.

Exponential lower bound. If the query is fixed, our objec-
tive boils down to efficiently learn the latent utility function
u. Without any structural assumption on it, however, one
can easily see that it is equivalent to learn the reward dis-
tribution of every subsequence y ∈ V∗

L. This is because
each subsequence y can be deemed as a single arm in the
standard multi-armed bandit problem which admits regret
lower bound of Ω(

√
KT ) where K is the number of arms.

This is formally stated as follows:

Proposition 4.1. For TMAB problem, any algorithm has
worst-case regret lower bound of Ω(min(

√
nLT , T )).

21We omit the context xt in the inputs of u since the context
remains the same.
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DDMC and GreedyETC. The pessimistic exponential de-
pendency on depth L naturally motivates the use of DDMC
Assumption 3.4. Unlike the TLB problem, however, there
exists no global latent parameter θ that we could use through-
out the decoding process, but they can genuinely arbitrary
beyond DDMC (and monotonicity). Thus we use a rather
direct approach to explore each level sufficiently, and com-
mit to the seemingly optimal token at each level then move
on to the next level.

ALGORITHM 2: GreedyETC
Input: Token set V , exploration parameter N
Initialize y← ∅
for k = 1, 2, . . . , L do

if |y| = L− 1 then
y← y : EOS
Break

for t ∈ V do
Submit y : t : EOS for N times and observe rewards
Set r̄(y : t) be the averaged cumulative rewards

Select τ∗ = argmaxt∈V r̄(y : τ)
Set y← y : τ∗

if τ∗ = EOS then
Break

For the rest of the rounds, submit y

We prove that under (a slight variant of formally presented
in) DDMC assumption, a natural combination of greedy
decoding with exploration-then-commit (ETC) style of algo-
rithm, as presented in Algorithm 2, yields sublinear regret
w.r.t. T with linear dependency on d:

Theorem 4.2. Under Assumption 2.1 and E.6, Algorithm 2
achieves regret O(nLT 2/3(log T )1/3).

One subtle part is that, if one naively construct the clean
event that the rewards for each sequence are concentrated to
its expectation and take union bound over all of them, this
essentially gives the regret of Ω(nL), which is undesirable.
Instead, we only take the union bound along the path that our
algorithm is selected, which enables us to recover the linear
dependency on L. Then, we obtain a recursive inequality
relating the regret at level k with that at level k − 1 by
considering fictitious extension as defined in the proof of
Theorem 3.9, and conclude that the regret remains small
with high probability.

5. Applications
5.1. LLM alignment

One interesting application of our results is the LLM align-
ment problem. In this problem, we want to generate aligned
outputs given access to a frozen LLM that cannot be fur-
ther fine-tuned. Consider a LLM parameterized by a to-
ken distribution p : V∗ × V∗ → [0, 1] that maps any to-
ken sequence given a user’s query to a probability that
the LLM generates this sequence. The user’s utility given

token sequence y is misaligned from the LLM such that
u(xt, y) = γv(p(xt, y)) + (1 − γ)f(xt, y), where v is a
monotone function that maps probability to reward and f
is the latent function to be learned that marginalizes the
misaligned part of the LLM.

Such convex combination between multiple rewards typi-
cally appear in the LLM alignment literature (Rame et al.,
2024; Shahriar et al., 2024; Jang et al., 2023; Shi et al.,
2024b), when one wants to align with multiple human pref-
erences by well combining multiple models or parameters.
Our utility function as the convex combination over v and
f can also be interpreted in a similar spirit. One typical
example for the function v would be the log probability or
perplexity obtained from the frozen LLM, or more explicit
user utility such as classification accuracy or factuality (Lin
et al., 2022). We assume the DM knows the probability to
utility mapping function v.

If we assume f is linearly realizable, i.e., there exists
an embedding function e : V∗ × V∗ → Rd such that
f(·) = ⟨θ, e(xt, yt)⟩, we can reduce the problem of learning
misaligned function f to the TLB problem. Formally, we
construct θ′ ∈ Rd+1 as a vector that concatenates θ and 1
in d+ 1-th dimension after multiplying each by 1− γ and
γ respectively, i.e., θ′ = [(1− γ) · θ : γ · 1]. Then we can
rewrite the utility as

u(xt, y) = ⟨θ, (1− γ)e(xt, yt)⟩+ γv(p(xt, y))
= ⟨θ′, [e(xt, y) : v(p(xt, y))]⟩ .

This is exactly the feedback structure in our TLB problem,
where the DM observes e(xt, y) and v(p(xt, y)) to construct
the concatenated vector and tries to learn θ′. Correspond-
ingly, EOFUL enjoys the same regret bound in Theorem 3.9
for this problem.22

5.2. LLM decoding

Our results and analysis therein have a few interesting im-
plications in (i) the sequence function maximization prob-
lem (Li & Milenkovic, 2017; Tschiatschek et al., 2017;
Mitrovic et al., 2018; Alaei et al., 2021) and (ii) the problem
of designing efficient decoding algorithms for text genera-
tion in language model (Freitag & Al-Onaizan, 2017; Ku-
likov et al., 2018; Holtzman et al., 2019; Chen et al., 2024),
if we consider a special case when the function u is known
to the DM and consider a static version with a single round.

First, this is exactly a sequence function maximization prob-
lem to maximize u given query access to a value oracle that

22Note that our formulation differs from standard KL-divergence
based problem (Yang et al., 2024). One might integrate the KL
divergence in our problem too by redefining the function over the
distribution rather than a fixed sequence, however, it’s not clear to
formulate in the language of multi-armed bandit problem. This
remains an interesting future direction.
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Figure 1. The first two show distance gap under TruthfulQA and the next two is under HH-RLHF, with distance function d1 and d2.

outputs u(xt, y) given a sequence y. One common objective
here is to obtain an approximate algorithm with polynomial
query complexity. If u satisfies a notion of monotonicity
and sequence-submodularity (Alaei et al., 2021), it is known
that the greedy algorithm has 1− 1/e approximation.23 On
the other hand, our result implies that greedy algorithm is
almost optimal under DDMC assumption, formally stated
as follows:24

Theorem 5.1. For any monotone sequence function, greedy
decoding is almost optimal under DDMC in a sense that it
is (1− ε)-approximation where ε is the SLD parameter.

From the LLM perspective, this result has one interesting
corollary. Given a fixed query x, consider a LLM parame-
terized by p : V∗×V∗ → [0, 1]. Then, Theorem 5.1 implies
that if p is monotone DDMC function, the greedy decoding
can exactly output the token sequence that maximizes the
logit probability. This supports the unreasonable effective-
ness of the greedy decoding, despite its simplicity, justifying
why it works well and widely adopted in the literature (Meis-
ter et al., 2020; Shi et al., 2024a; Song et al., 2024), e.g., in
Google’s Gemini report (Team et al., 2023), even though
it is only known as an approximate maximum-a-posterior
decoding algorithm (Welleck et al., 2024).

On the other hand, greedy decoding is often dominated
by sampling methods such as nucleus sampling (Holtzman
et al., 2020) or self-consistency (Wang et al., 2022) for var-
ious tasks, e.g., (Song et al., 2024) find that vanilla multi-
nomial sampling can be better than greedy for open-ended
creative generation. We conjecture that such phenomenon
largely depends on how the sequence function generated
by LLM, i.e., the logit probabilities, would look like and
thereby the type of the tasks. Investigating other regimes that
another decoding algorithm provably outperforms greedy
remains an intriguing open question.

23It also admits the APX-hardness with 1 − 1/e by the hard-
ness of submodular set-function maximization from Maximum
Coverage, unless P=NP.

24We remark that our setup is slightly different from standard
sequence maximization problems as we allow the selection of the
same element over different position, and the special EOS token
governs the end of the sequence by naturally encoding it in the
monotonicity of the utility function.

6. Experiments
We finally provide our experimental results.

6.1. Validating DDMC

The first is on validation of DDMC assumption. Further
experimental results are presented in Appendix D.

Setup. For the embedding function e, we obtain the em-
bedding from Llama3-8B-Instruct model (AI@Meta, 2024).
For the token sequences, to validate our DDMC in real-
world datasets, we use TruthfulQA dataset (Lin et al., 2022)
and HH-RLHF dataset (Bai et al., 2022),25 by concatenating
each query and answer pair.

For each item in the dataset, we group every (query:answer)
pair by number of common tokens in its suffix. For instance,
image the following two token sequences:

x = (a, b, c, d, e, f), y = (a, x, y, d, e, f).

Then, we can group each subsequence as the following:

• 0 common suffix: (x(1:2), y(1:2)), (x(1:3), y(1:3))

• 1 common suffix: (x(1:1), y(1:1)), (x(1:4), y(1:4))

• 2 common suffix: (x(1:5), y(1:5))

• 3 common suffix: (x(1:6), y(1:6))

We evaluate each distance d(x(1:k), y(1:k)) in each group
and obtain the average and variance.

For the distance functions, we evaluate two candidates:

d1(x, y) = ⟨θ, x− y⟩
d2(x, y) = ∥x− y∥2 ,

where θ = 1⃗4096, i.e., 4096-dimensional one vector. The
first distance function d1 is consistent with our DDMC

25Both datasets are standard for LLM alignment, where Truth-
fulQA validates truthfulness and hallucination and HH-RLHF eval-
uates helpfulness and harmlessness. In HH-RLHF, data are or-
ganized in (prompt:response) format. For simplicity, we reuse
“query” to refer to “prompt” and “answer” to refer to “response”.
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assumption, and it in fact can be viewed as a ℓ1 distance
between two vectors. Thus, the second distance function d2
can be viewed as a generalization of d1 into ℓ2 distance.

Result. The first two figures in Figure 1 refers to the
TruthfulQA, and the next two denotes the HH-RLHF. Each
experiment is presented for distance function d1 and then d2.
Overall, we observe a tendency to have decreasing distance
gap as the number of common tokens in suffices increases.
This holds for both the distance function d1 and d2. In-
terestingly, the decreasing curvature tends to be stronger
when the number of common tokens are rather small. Fur-
ther, the decreasing gap seems to be more drastic under
HH-RLHF, suggesting that different tasks might possess
different structures in their sequence function, i.e., logit
probability structure. Overall, despite verified in an aver-
age sense, this justifies the DDMC assumption, which we
believe could be largely useful for following works.

6.2. Performance of EOFUL

We numerically validate the performance of EOFUL using
synthetic data under the LLM alignment scenario presented
in Section 5.1. In particular, we set the length of each sen-
tence to be L = 30, and truncate top-15 tokens for every
algorithm for efficiency. Further, we set γ = 0.8, θ =
(0.5, 0.5, . . . , 0.5). Dteails in the query generation can be
found in Appendix D. We compare three reasonable bench-
marks: (i) theoretical regret upper bound (under-scaled by
0.1 to make the plot more visible), (ii) WrongTheta that
uses wrongly estimated θ′ = (−0.5,−0.5, . . . ,−0.5) and
choose a token that maximizes the resulting convex com-
bination, and (iii) Misaligned greedy that simply performs
greedy decoding with respect to the LLM’s probability. As
observed in the first part of Figure 2, we observe that EO-
FUL effectively achieves sublinear regret. Given that the
regret upper bound is under-scaled,the actual performance

may be much better than that of the theoretical guarantees.

In practice, one could blend some standard alignment tech-
niques with our learning based approaches. For instance,
one can run standard alignment algorithms in the earlier
rounds as EOFUL could suffer significant errors in the be-
ginning. In the mean time one can operate EOFUL in back-
grounds to learn the confidence region, and then adopt a
combination of them in later rounds. This will be way more
practical than naively running EOFUL particularly if the
effect of coldstart in EOFUL, e.g., apparently misleading
or grammatically incorrect outcomes, could significantly
degrade the user experience.

Validating Assumption 3.6. Further, in the same ex-
perimental setup, we validate Assumption 3.6 for our EO-
FUL. Notably, we observe that the ratio is universally upper
bounded above by 1.25, even after taking maximum over
every token position. Recalling that such upper bound scales
the regret upper bound in a linear manner, this would only
blow up the regret to be 1.25 times that of the standard linear
contextual bandit, let alone the linear dependency on L.

7. Conclusion
We introduce tokenized variants of linear and multi-armed
bandit problems, where a decision maker needs to max-
imize cumulative rewards which can be represented as a
randomly perturbed sequence function by selecting each
token in a sequential manner. We introduce a novel but
natural assumption called diminishing distance with more
commons (DDMC), and show that both problems admit
efficient algorithms with regret linear on the depth of the
maximal sequence and sublinear on the time horizon. We
provide several applications and implications on LLM align-
ment problem as well as decoding problem, and validate
our assumptions and performance of our algorithms through
synthetic and real-world datasets.
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A. Related work

Multi-armed bandit and variants. Dating back to (Lai & Robbins, 1985), multi-armed bandits and its linear bandit
variant have been central to modern recommender system (Auer, 2002; Li et al., 2010; Abbasi-Yadkori et al., 2011). There
exists a few works investigating its variant to tree search model (Coquelin & Munos, 2007), analyzing efficient algorithms
under certain structural assumption, e.g., smoothness of tree.26

Decoding-time alignment. There are a line of works that use heuristic methods for decoding-time alignment using external
modules that guide the decoding process. (Josifoski et al., 2022) suggested aligning the LLM in the decoding time to
align the likelihood and utility based on some external information. (Mudgal et al., 2023) present a token level Markov
decision process (MDP) framework called controlled decoding using a separate prefix scorer rule that is trained to learn a
value function from rewards. (Huang et al., 2024) present a decoding scheme as a heuristic-guided search process to align
various preferences. (Chakraborty et al., 2024) propose a transfer decoding to transfer-learn the unknown Q function in the
token level MDP, and analyze the upper bound on the gap between the optimal policy and their algorithm. Meanwhile, our
decoding-time alignment problem is solely framed as a bandit problem not MDP.

Foundation of alignment. Recent works have provided some theoretical foundations on LLM alignment. (Yang et al.,
2024) derived a closed-form characterization of the optimal KL-constrained reinforcement learning (RL) alignment problem,
and conclude that the famous best-of-N policy and KL-constrained RL is asymptotically equivalent. (Beirami et al., 2024)
analyze the upper bound on the KL divergence of best-of-N policy. We remark that our LLM alignment problem is
formulated in a largely different manner (see Section 5.1), thus less relevant to these literature.

Foundation of decoding. (Basu et al., 2020) analyze the perplexity of several sampling methods assuming that the token
probabilities follow a Zipf distribution. (Finlayson et al., 2023) provided a theoretical justification on using truncation to
avoid the excessive probability assignment on unreliable tail, empirically observed by (Holtzman et al., 2019). Recently,
Chen et al. (2024) propose a decoding problem as a two-player game, and provide near-optimal strategies that encompass
greedy decoding and some of its variants. Our LLM decoding problem is formulated as a sequence function maximization
problem to maximize the posterior probability given a user query, which is largely different from above.

B. k-DDMC and Lookahead Decoding
Interestingly, we can relax the DDMC assumption and obtain analogous results by replacing the greedy decoding part with
the lookahead decoding. In k-lookahead decoding, it generates all possible combination of the following k tokens, and
select the token sequence that maximizes the utility (probability). This allows us to recover the fictitious extension argument
used in both the analysis of TLB and TMAB.

First, k-DDMC is defined as follows:

Assumption B.1 (k-DDMC). A sequence function u(·) is k-DDMC if

|u(xt, y : a)− u(xt, z : a) | ≤ |u(xt, y)− u(xt, z) | ,

for any two finite sequences x, y with the same length |x| = |y|, any sequence a ∈ V∗ with |a| = k, and any query xt such
that LHS is nonnegative.

Correspondingly, we can modify our algorithms as presented in Algorithm 3 and Algorithm 4.

Now we given an outline of how one could extend our analysis for EOFUL and GreedyETC. Notice that the key part for
the regret analysis is to compare an algorithm’s choice and optimal algorithm’s choice a(1:i)

t and o(1:i)t , respectively, up to
i-th token at round t by considering a fictitious extension f = a(1:i)t : o(i+1)

t . With k-DDMC, we extend this analysis by
considering alternative fictitious extension such that f = a(1:i)

t : o(i+1:i+k)
t . With such extension, until level j ≤ k, our

algorithm is guaranteed to decode the (empirically) optimal token sequence given the estimates.

26More detailed discussion can be found in Appendix C.
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ALGORITHM 3: k-Lookahead-EOFUL
Input: Token set V , linear contextual bandit algorithm ALG

Initialize y← ∅, θ̂1 ← 0⃗, C1 = {θ̂}, y = ∅
for t = 1, 2, . . . , T do

User arrives and submits query xt

for k = 1, 2, . . . , L− 1 do
Compute z∗ = argmaxz∈V∗,|z|=k,θ∈Ct

⟨θ, e(xt, y : z)⟩
Set y← y : z∗

if (z∗)(−1) = EOS then Break;
Submit y and observe reward rt
Compute θ̂t+1 by (3.1) and Ct+1 by (3.2)

ALGORITHM 4: k-LookaheadETC
Input: Token set V , exploration parameter N
Initialize y← ∅
for k = 1, 2, . . . , L do

if |y| = L− 1 then
y← y : EOS
Break

for z ∈ V∗ with |z| = k do
Submit y : t : EOS for N times and observe rewards
Set r̄(y : z) be the averaged cumulative rewards

Select z∗ = argmaxz∈V∗,|z|=k r̄(y : z)
Set y← y : z∗

if (z∗)(−1) = EOS then
Break

For the rest of the rounds, submit y

Then, for level j > k such that j = i+ k, we have:

o(1:j)t − a(1:j)t = o(1:i+k)
t − a(1:i+k)

t = o(1:i+k)
t − f + f− a(1:i+k)

t

≤
∣∣∣ o(1:i)

t − a(1:i)
t

∣∣∣+ f− a(1:i+k)
t (By k-DDMC)

≤
∣∣∣ o(1:i)

t − a(1:i)
t

∣∣∣ , (By optimistic choice of algorithms)

thereby connecting j-level regret to j − k-level regret. With telescoping arguments and following our analysis for EOFUL
and GreedyETC, one can prove that k-Lookahead-EOFUL and k-LookaheadETC can obtain regret sublinear in T and linear
in L. We leave the detailed analysis to the readers.

C. Connection to Bandit Tree Search problem
In bandit tree search (BTS) problem by (Coquelin & Munos, 2007), there exists a binary tree with depth d. Each leaf node i
is assigned a random variable Xi with bounded support [0, 1] and expectation µi. At each round t ∈ [T ], the DM chooses
a leaf node It and observe the random reward XIt . The DM, however, is unknown about the tree structure and needs to
explore it. Likewise, the DM irrevocably selects each child in the tree until it reaches a leaf node. A static and decision
version of this problem is to decide whether there exists a leaf node l whose utility function v(l) ≥ A for some A ≥ 0.
Likewise, a static and decision version of TMAB is to decide whether there exists a subsequence y with u(y) ≥ A for some
A ≥ 0 in polynomial time. We will see that static decision versions of these problems can be reduced from each other.
Illustrative examples of such reductions are provided in Figure 3.

The following theorem formally argues that one can reduce BTS to TMAB:

Theorem C.1. An instance of static and decision version of BTS can be reduced to an instance of static and decision version
of TMAB and monotone utility function.27

Proof. Let L be the set of leads and d be the depth of the tree in BTS. For each leaf node l ∈ L, we construct a corresponding

27The reduction can easily be extended to k-ary tree version of BTS.
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Figure 3. Illustration of reductions. The above figure is an example of reduction from BTS to TMAB, and the below is from TMAB to
generalized BTS (with k-ary tree). In both figures, blue nodes represent leaf nodes and orange node denotes EOS token. Dotted edge in
the rightmost graph implies that the sequence contains such edge would have utility zero. Thus, only the sequences without dotted lines
have (potentially) nonzero utility corresponding to the utility at the leaf node in the original instance of BTS. In the below figure, each
path to EOS in the instance of TMAB becomes a leaf node in the instance of generalized BTS.

token τ(l) ∈ V and add EOS token, i.e., V = {τ(l) : l ∈ L} ∪ {EOS}. Let v(·) be the value function for BTS that maps leaf
to nonnegative real values. We write d(x) to denote the depth of the any (possibly internal) node x in the instance of BTS.
Let Al be the set of nodes in depth l in BTS. We arbitrarily define an injection σl from Al to V \ {EOS}. We say that τ ∈ V
is covered at level l if there exists a node x with depth l in BTS such that σl(x) = τ .

Now, we construct sequence function u : V∗ → R≥0 as follows: for every y ∈ V∗

1. If y(−1) ̸= 0, then u(y) = 0.

2. If y(−1) ̸= 0 and if every y(k) for k ∈ [|y− 1|] is covered, then u(y) = v(σ−1
l (y(−2))).

3. If y(−i) = EOS for i = 1, 2, . . . , k for k ≥ 2 and y(−k) ̸= EOS, then u(y) = u(y(1:|y|−(k−1))).

It is straightforward to check that No instance of the static and decision version of BTS enforces No instance to that of
TMAB, since no sequence would have utility larger than or equal to A. Consider Yes instance of the static and decision
version of BTS and let l be the leaf node with v(l) ≥ A. Now we define y to satisfy:

1. |y| = d(l) + 1.

2. y(k) = σk(l) for every k ∈ [d(l)].

3. y(d(l)+1) = EOS.

Then, due to our construction of the utility function above, we have u(y) = v(l) ≥ A, finishiing the reduction.

Now it remains to prove that the constructed utility function is monotonicity as defined in Assumption 2.1. This naturally
follows by step 3 in the construction of u(·), since adding more EOS does not change the utility.

We remark that one might think that TMAB is not a search problem unlike BTS since we know the set of feasible sequences
in advance, but it can indeed be viewed as a search problem since the ultimate goal is to find a node with larger, nonzero,
utility.
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Theorem C.2. An instance of static and decision version of TMAB can be reduced to an instance of static and decision
version of TS.

Proof. We sort the token set V and index by σ : V → {1, 2, . . . , n} where such that σ(EOS) = n. Given an instance of BTS
problem with V we construct n-ary tree. For depth d of the tree, there will be n− 1 NORMAL nodes who have n children,
and one END node with no children. We will arbitrarily assign index i ∈ [n− 1] to each normal node and n to the END
node.

Consider any complete sequence y with length l. Then, we can select a corresponding leaf node l such that along the path p
to l, the node in depth d in path p has index σ(y(d)). Since y is complete, the corresponding leaf node l is indeed a leaf since
its last index is σ(y(−1)) = n, which is END node that does not have any children. Thus, we assign utility v(l) = u(y).
Then, the reduction easily follows, and we leave the details to the readers.

Discussion C.3. Accordingly, one natural question is what it means by the binary tree in BTS having DDMC structure. As
noted in the proof and Figure 3, the DDMC assumption in TS means that each node has exactly the same set of children,
which corresponds to the given token set. Then, one can encode the DDMC assumption in TS by considering each node as
the corresponding specific token.

DDMC assumption in BTS, smoothness in TMAB. Given the close connection between two problems, one might wonder
what the DDMC assumption means in BTS. If we consider k-ary tree version of BTS, then we can imagine an ordering
between children for each node, let the index be 1, 2, . . . , n. Then, in BTS, our DDMC assumption asserts that each two
nodes at the same depth append the children with the same index i, the resulting utility gap only decreases compared to the
utility gap between the parent nodes.

On the other hand, (Coquelin & Munos, 2007) presents a rather immediate and strong assumption on the tree, named
smoothness, stated as follows:

Assumption C.4 (Smoothness). Given an instance of BTS, for any depth d < L, there exists δd > 0 such that for at least
one optimal node i of depth d (that leads to the optimal leaf node), for all leaves j in the subtree of i, it follows that

u(l∗)− u(uj) ≤ δd,

where l∗ denotes the optimal leaf node.

That is, it upper bounds the utility gap at depth d by the parameter δd, and provide a regret upper bound parameterized by
such δd. This could analogously be applied in our TMAB problem, by upper bounding the utility gap between any sequence
of length l and the subsequence of length l that leads to the optimal subsequence by some parameters δl. On the other hand,
our DDMC assumption does not introduce any such upper bound on the utility gap directly, but rather imposes a minor
structural relation between sequences with length difference 1. Thus, we believe that our DDMC assumption can also play a
crucial role in the BTS problem, given that it imposes certain structures on the tree implicitly, and the empirical evidence
captured in Section 6.

D. More Experiments and Omitted Details

Details of experiments in Section 6. For the queries for regret comparison and assumption 3.6 validation, we randomly
generate the prompt each round based on a manually specified list of templates and a list of user’s interests.

Specifically, we use the following template for prompts to generate queries.
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[ ”I work as a software engineer in New York and I love interest. Any advice on balancing both?”, ”I’m looking for
ways to improve my skills in interest without burning out at my tech job. Any tips?”, ”Could you recommend some
resources or places in NYC to enjoy interest after work?”, ”What are some practical time-management strategies to
fit in interest while coding full-time?”, ”Any suggestions on how to meet new people in the city who also enjoy
interest?”, ”Can you give me a one-sentence recommendation for exploring interest around New York?”, ”I often
hang out with coworkers who share my interest in interest. How do we plan something fun after work?”, ”As
someone who loves interest and coding, how can I unwind effectively?”, ”What are some must-try experiences in
interest near Manhattan on weekends?”, ”Could you suggest a beginner-friendly way to dive into interest?”, ”Any
advice on juggling a programming career and daily sessions of interest to stay productive?”, ”What is a good way
to combine my love of interest and my passion for software engineering?”, ”I’d like to find new ways to level up
my interest skills during lunch breaks. Suggestions?”, ”Any personal organization tips for balancing a full-time
software job with interest and social life?”, ”In your opinion, what’s a fun project or event in NYC that merges
interest with technology?”, ”I love going out with friends to enjoy interest, but I’m also studying new programming
languages. How do I manage both?”, ”Could you recommend an app or a platform that helps me track progress
on interest?”, ”Any recommended communities in New York for people who share my enthusiasm for interest?”,
”What’s an underrated aspect of interest that helps relieve stress from my coding job?”, ”I’m trying to step out of my
comfort zone with interest. Got any beginner challenges or ideas?” ]

The following is a list of user’s interest.

[ ”tennis”, ”dog training”, ”video gaming”, ”breweries and nightlife”, ”coding projects”, ”tech meetups”, ”coffee
shops”, ”gym and workouts”, ”weekend getaways”, ”music concerts”, ”NYC events”, ”board game nights”,
”watching sports with friends”, ”side hustle ideas”, ”improving my coding skills”, ”finding time for hobbies”,
”balancing health and tech”, ”staying updated with new frameworks”, ”apartment-friendly dog breeds”, ”managing
stress after work”, ]

Formally, we randomly generate 1000 queries. For each query generation, we randomly sample a user’s interest and template
and then format the prompt. The set of generated queries are used throughout the experiments by randomly sampling from
the set.

D.1. More experiments

Regret comparison. It turns out that depending on the parameters and the randomness of the experiments, EOFUL often
suffer slower convergence as presented in Figure 4. Slower convergence might be the artifact of smaller top-k truncation of
tokens, as EOFUL does not have much freedom to explore according to what it truly desires. There could be a trade-off in
setting top-k truncations. For instance, if we set large k, this gives the opportunity of EOFUL to learn exactly as it desires,
which might ideally lead to fast exploration and learning of the latent parameter. On the other hand, decreasing k could filter
out apparently wrong answers in EOFUL or any other learning-based approaches, i.e., it neutralizes the impact of cold start.
One can further adaptively set top-k to fine-tune the algorithms in practice.

Sample response. Here we provide a few sample responses from the empirical evaluation with synthetic dataset presented
in Section 6. Recall that θ is set to be (1/2, 1/2, . . . , 1/2) artificially, so the optimal sequence here with respect to our linear
utility function may not capture the most preferred answer by the user.

First, below are sample responses and corresponding utilities and regrets in earlier rounds t = 1 and t = 2.
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Earlier rounds samples

1. Query: I work as a software engineer in New York and I love managing stress after work. Any advice on
balancing both?

2. Optimal greedy’s utility: −1.36

(a) Response: I’m more than happy to provide some helpful tips, my fellow software engineering and
wellness-seekering New York-based friend! Here are a few strategies ...

3. EOFUL’s utility: −26.64

(a) Response: Ah-ha! Balancing work and stress-mangling (or stress-mangling-then- stress-avoid-then-
stress-avoid-then ...

4. WrongTheta’s utility: −34.98

(a) Response: Stress after work is common especially after dealing with long code lines, tight deadlines, and
high expectations. Balancing work and self-care is ...

5. Misaligned greedy’s utility: −9.90

(a) Response: Hi there! I’m happy to help. Balancing work and personal life can be challenging, especially in
a fast-paced city like New York. Here...

Earlier rounds samples

1. Query: Any advice on juggling a programming career and daily sessions of board game nights to stay
productive?

2. Optimal greedy’s utility: 3.30

(a) Response: I’d be happy to help with balancing a programming career and leisure activities, which also
contribute positively to personal well-being and social connections, which ultimately can ...

3. EOFUL’s utility: −17.48

(a) Response: Juggling a programming career and daily board game nights can indeed be challenging, but it’s
definitely doable and even potentially beneficial in some unexpected ways Here ...

4. WrongTheta’s utility: −41.49

(a) Response: Ahah Juggling is all about balance! Firstly, prioritize and set clear boundaries for yourself.
Allocate specific time slots for work and board game ...

5. Misaligned greedy’s utility: −17.78

(a) Response: Ahaha, that sounds like a fun challenge! Juggling a programming career and board game nights
can be done, but it requires some planning and discipline ...

As one may see in the sample response of the EOFUL, the responses are often grammatically incorrect and write redundant
words repeatedly. Also, utility seems to be significantly smaller than that of the benchmark (optimal greedy), as learning
requires more rounds due to high dimensional nature of the embedding space as well as the complexity of the sequence
function learning.

Note also that WrongTheta provides vacuously wrong answers, though it is not expected in hindsight. For instance, if the
wrongly set θ captures the true preference in hindsight, it should be the case that it produces something meaningful. Thus,
this specific algorithm yielding apparently incorrect outcomes could be simply an artifact of randomness in experiments.
Further, as expected, statically setting θ as a fixed estimator cannot learn the true θ over the rounds, showcasing the
superiority of EOFUL approach.
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On the other hand, below are sample response at the end of the rounds, t = 9999 and t = 10000

Later rounds samples

1. Query: I’d like to find new ways to level up my staying updated with new frameworks skills during lunch
breaks. Suggestions?

2. Optimal greedy’s utility: −2.99

(a) Response: Here are a few ideas for leveraging your 15- or 30-minute lunch breaks to learn something new
about your favorite programming frameworks or technologies: ...

3. EOFUL’s utility: −1.57

(a) Response: Here are a few ideas for leveraging your 12:00 - 1:00 PM lunch breaks to learn about new
frameworks and skills: ...

4. WrongTheta’s utility: 56.36

(a) Response: Ah-ha! Stuck in front of a screen? Don ’92 u2019 u20ac u2029 u20ac u2019 ...

5. Misaligned greedy’s utility: −11.06

(a) Response: That’s a great goal! Here are some ideas to help you level up your skills during lunch breaks: 1.
**Code Challenges**: Websites like Hacker ...

Later rounds samples

1. Query: As someone who loves improving my coding skills and coding, how can I unwind effectively?

2. Optimal greedy’s utility: 22.87

(a) Response: Great concern, my fellow coding enthusiast! I’m more than happy to help you unwind
effectively. Here are some strategies that many developers find helpful:

3. EOFUL’s utility: 28.34

(a) Response: Great concern, my fellow coding enthusiast! I’m more than happy to share some ways that
help many fellow developers, and perhaps, even the best coding skills ...

4. WrongTheta’s utility: −36.90

(a) Response: Unwinding after a gruelling coding marathon or after a long day of
n
n
n staring at code? Unwinding ...

5. Misaligned greedy’s utility: 2.68

(a) Response: Unwinding is essential for a coder’s mental and physical well-being. Here are some effective
ways to help you relax and recharge: ...

Perhaps surprisingly, though expected from theoretical results in some perspectives, EOFUL is mimicking the response
of the optimal greedy very effectively. It almost outputs more than 10 same words from the beginning. Once it deviates,
however, due to the nature of the sequence function generation, it is doomed to be very different onwards, which is fairly
expected consequence. Further, one can observe that EOFUL’s utility often outperform the optimal greedy’s one, due to the
online nature of the sequence function maximization. This also indicates that greedy decoding is not necessarily optimal for
some circumstances.

More experiments on DDMC. In Figure 5, we further validate DDMC assumptions on two more datasets: AdvBench
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Figure 4. T = 10000 and L = 30. We truncate to use only top 10 tokens and set γ = 0.8.

(standard jailbreak benchmark) (Zou et al., 2023) and just-eval-instruct (AI2, 2024) that contains many prompts of various
tasks. Further, we verified DDMC assumptions beyond our linear utility function. We considered three more functions:
l1, l3, l4 distance, beyond the inner product distance and l2 distance presented in Section 6. In all these scenarios, we observe
a tendency that appending more common tokens decreases the utility gaps, validating that DDMC, at least in expectation or
its relaxed version, is practical in many scenarios.

E. Proofs
E.1. Proof of Proposition 3.3

Proof of Proposition 3.3. Let L be the set of sequences with length L so that |L| = 2L and we arbitrarily index the elements
in L and write L = {z1, z2, . . . , z2L}. Let o be the one-hot vector who has one only at the first coordinate and otherwise
zero, and set θ = o. Consider a choice of the query sequence (xt)t∈[T ] and the embedding function such that e(xt, y) has a
unique subsequence y ∈ L such that e(xt, y) = o, and another unique subsequence z ∈ L such that z(1:L−1) = y(1:L−1)

and e(xt, z) = (1− ε, 0, 0, . . . , 0) for SLD ε, and otherwise e(xt, y) = 0 for every other y ∈ V∗. Further, assume that the
sequence (xt)t∈[T ] ensures that such unique y ∈ L is selected uniformly at random over L. Let the chosen unique such
vectors at round t be yt and zt. Note that this is indeed possible by having large enough candidates for xt whose cardinality
scales as Θ(T ) and for each xt it independently and uniform randomly selects the unique such y ∈ L with e(xt, y) = 0 and
correspondingly set zt. It is straightforward to check that the corresponding utility function satisfies Assumption 2.1 and 2.2.
Observe that such instance is in fact a randomization over deterministic instances each of which deterministically choose
yt ∈ L for each t ∈ [T ]. Thus, by Yao’s minimax principle (Yao, 1977), it suffices to consider a class of deterministic
algorithms.

In this instance, there always exists a sequence y ∈ L such that e(xt, y) = o, and thus the optimal decoding reward in
hindsight is to always select y ∈ L with e(xt, y) = o, which induces the cumulative reward of T · ⟨o, o⟩ = T . On the other
hand, since the choice of yt is completely independent from the previously chosen sequences and realization of random
variables therein, any deterministic algorithm’s probability to choose either of yt or zt is at most the random guess over 2L−2

elements until it reaches the subtree with children y and z, resulting in the cumulative reward of T · ⟨o, o⟩ /2L−2 = T/2L−2.
Note here that this is 2L−2 instead of 2L−2 since once the algorithm selects y(1:L−2)

t , it reward is upper bounded by an
algorithm that deterministically chooses y(L−1)

t . Thus, the regret is at least T (1− 1/2L−2).
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Figure 5. Each column represents each dataset. From top to bottom, each column represents AdvBench, HH-RHLF, Just-Eval, and
TruthfulQA.

E.2. Proof of Theorem 3.9

We here provide the proof of Theorem 3.9. Statement and proofs of the required technical lemmas are deferred to the end of
this section.

Proof of Theorem 3.9. Throughout, we assume that Clean holds defined in Lemma E.1, which occurs with probability at
least δ.

Fix a round t, and let θ̃(k)t ∈ Ct be the optimistic estimator chosen at round t for k-th token. Let ot be the optimal sequence
chosen by the optimal algorithm in hindsight at round t. For ease of exposition, in representing utility given sequence
y ∈ V∗ and query xt, we abuse ⟨θ, y⟩ to denote ⟨θ, e(xt, y)⟩ unless confusion arises, i.e., consider y to be the resulting
embedded vector e(xt, y) ∈ Rd.

(Length equalization) We will first define a level-k regret that computes the difference of utility between the k-prefix of ot

and yt. However, this is not well-defined for every k ∈ max(|ot|, |yt|) if ot and yt have different lengths. Thus, we consider
the length equalization operation on ot and yt that constructs extensions õ and ã of o and a respectively to have the same
length in what follows.

We have two cases: (i) if |a| > |o|, then we append multiple EOS tokens at the end of o and construct õ so that |õ| = |a|, and
(ii) otherwise |a| < |o|, then we do the same operation for a to construct ã with |ã| = |õ|. Then, we extend both sequences ã
and õ to exactly have the length L by appending EOS. By Assumption 2.1, we have u(o) = u(õ) and u(a) = u(ã). Thus,
we can safely deal with the extended sequences with the same length as the regret remains the same. For ease of exposition,
we override at ← ãt and ot ← õt for every t ∈ [T ].

(Level-k regret and fictitious extension) Now, we can formally define level-k regret as follows:

REG
(k)
t =

〈
θ, o(1:k)

t

〉
−
〈
θ, y(1:k)t

〉
.
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Now we observe the connection between the level-k regret with different k. For k = 2, . . . , L, we consider an one-step
fictitious extension of y(1:k−1)

t that appends the optimal sequence ot’s k-th token to yt’s (k-1)-th prefix, i.e.,

f(1:k)t = y(1:k−1)
t : o(k)t

Notice that o(1:k)
t and f(1:k)t shares the same common suffix o(k).

Thus, by DDMC assumption, behold:〈
θ, o(1:k)t

〉
−
〈
θ, f(1:k)t

〉
≤
〈
θ, o(1:k−1)

t

〉
−
〈
θ, f(1:k−1)

t

〉
=
〈
θ, o(1:k−1)

t

〉
−
〈
θ, y(1:k−1)

t

〉
(E.1)

= REG
(k−1)
t (E.2)

(Regret decomposition) Now, for k ≥ 2, the level-k regret can be decomposed as follows:

REG
(k)
t =

〈
θ, o(1:k)t

〉
−
〈
θ, y(1:k)t

〉
= (a) + (b) + (c),

where

(a) =
〈
θ, o(1:k)t

〉
−
〈
θ, f(1:k)t

〉
(b) =

〈
θ, f(1:k)

〉
−
〈
θ̃
(k)
t , y(1:k)t

〉
(c) =

〈
θ̃
(k)
t , y(1:k)t

〉
−
〈
θ, y(1:k)t

〉
Assume, first, that REG

(k)
t ≥ 0 for every k. By (E.2), we immediately have (a) ≤

∣∣∣REG
(k−1)
t

∣∣∣.
Since our algorithm chooses y(k)t instead of o(k)

t given y(1:k−1)
t for k-th token, by the optimistic choice we have (b) ≤ 0.28

Let us denote the term in (c) by W
(k)
t for k ∈ [M ].

Thus, we have

REG
(k)
t ≤

∣∣∣REG
(k−1)
t

∣∣∣+W
(k)
t .

Let i be the first level that yt deviates from ot. Telescoping over k from i to L:

REGt ≤
L∑

k=i

∣∣∣W (k)
t

∣∣∣+ ∣∣∣REG
(i)
t

∣∣∣ .
Due to SSLD assumption, we have REG

(i)
t ≤ O(1/

√
T ), so we can effectively ignore this term as it contributes at most

√
T ,

and thus we abuse

REGt ≤
L∑

k=1

|W (k)
t |.

Define wt(x) =
√

x⊤Σ−1
t x for x ∈ Rd. Analogous to the standard regret analysis, we eventually use the sum of square

regret arguments.

28We note that this argument remains the same regardless of the length equalization process above. For instance, even if y(k−1)
t = EOS

and thus y(k)
t = EOS, by Assumption 2.1, appending EOS is the greedy choice.
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Now we invoke Lemma E.3 to obtain upper bounds for W (k)
t .

For k = 2, 3, . . . , L, notice that:∣∣∣W (k)
t

∣∣∣ = ∣∣∣ 〈θ̃(k)t , y(1:k)t

〉
−
〈
θ, y(1:k)t

〉 ∣∣∣
=
∣∣∣ 〈θ̃(k)t , y(1:k)t

〉
−
〈
θ̂t, y(1:k)t

〉 ∣∣∣+ ∣∣∣ 〈θ̂t, y(1:k)
t

〉
−
〈
θ, y(1:k)

t

〉 ∣∣∣
≤ 2
√
βtwt(y

(1:k)
t )

≤ 2
√

βt min(w(y(1:k)
t ), 1),

where the first inequality holds since the regret is at most 2 for any round and the second inequality follows from Lemma E.3
since both θ̃

(1)
t , θ ∈ Ct under Clean. Combining two, we have

REGt ≤ 2
√
βt

(
L∑

k=1

min(w(y(1:k)t ), 1)

)
.

Now, by Assumption 3.6, we have

w(y(1:k)
t ) =

√
(y(1:k)t )⊤Σ−1

t y(1:k)
t ≤ c

√
y⊤
t Σ

−1
t yt = cw(yt).

Hence, we have

REGt ≤ 2
√

βt(1 + cL)min(wt(yt), 1).

(Sum of squares regret) Squaring:

REG2
t ≤ 4βt(1 + cL)2 min(wt(yt)

2, 1),

and

T∑
t=1

REG2
t ≤

T∑
t=1

4βt(1 + cL)2 min(wt(yt)
2, 1)

≤ 4βT (1 + cL)2
T∑

t=1

min(wt(yt)
2, 1)

≤ 4βT (1 + cL)2
T∑

t=1

ln(1 + wt(yt)
2),

where the last inequality uses the fact that for any x ∈ [0, 1], ln(1 + x) ≥ x/(1 + x) ≥ x/2, thus when wt(yt)2 ≤ 1, we
have wt(yt)

2 ≤ 2 log(1 + wt(yt)
2) and otherwise if wt(yt)2 > 1, we have

4βt =
4

log 2
βt log 2 ≤

4

log 2
βt log(1 + wt(yt)

2).

Then, we have

T∑
t=1

REG2
t ≤ 4βT (1 + cL)2

T∑
t=1

ln(1 + w(yt)
2)

≤ 4βT (1 + cL)2d ln

(
1 +

T

dλ

)
(By Lemma E.4 and E.5)

23



Tokenized Bandit for LLM Decoding and Alignment

Finally, by Cauchy-Schwartz inequality,

T∑
t=1

REGt ≤

√√√√T ·
T∑

t=1

REG2
t

≤

√
4T (1 + cL)2βT d ln

(
1 +

T

dλ

)
= O(cL

√
dT lnT ), (Since βT = O(λ))

Now we provide the statements of lemmata. We begin with the standard concentration argument stating that θ ∈ Ct with
high probability:

Lemma E.1 (Confidence bound). Define clean event:

Clean = {θ ∈ Ct,∀t ∈ [T ]}.

Then, Pr [ Clean ] ≥ 1− δ.

Lemma E.2 (Self-normalized bound for martingale (Abbasi-Yadkori et al., 2011)). Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=1

be a real-valued stochastic process such that ηtis Ft-measurable and ηt is conditionally R-sub-Gaussian for some R ≥ 0.
Let {Xt}∞t=1 be an Rd-valued stochastic process such that Xt is Ft−1-measurable. Assume that V is a d×d positive-definite
matrix. For any t ≥ 0, define:

V̄t = V +

t∑
s=1

XsX
⊤
s , St =

t∑
s=1

ηsXs.

Then for any δ > 0, with probability at least 1− δ, for all t ≥ 0,

∥St∥2V̄ −1
t
≤ 2R2 log

(
det(V̄

1/2
t det(V )1/2)

δ

)
.

For z ∈ Rd, define wt(z) =
√

z⊤Σtz. We then need the following several lemmata to proceed the sum of squares regret
bound:

Lemma E.3. For any z ∈ Rd and ϑ ∈ Ct, we have〈
ϑ− θ̂t, z

〉
≤ 2
√

βtwt(z) (E.3)

Lemma E.4. The following equation holds:

det(ΣT ) = det(Σ1)

T∏
t=1

(1 + wt(yt)
2).

Lemma E.5. We have:

log
det(ΣT )

det(Σ1)
= d log

(
1 +

T

dλ

)
.

The proofs are mostly similar to the standard linear bandit analysis (Abbasi-Yadkori et al., 2011), but is tailored to our
setting. Thus, for completeness, we provide the proofs of some of the lemmata:
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Proof of Lemma E.1. Note that the reward at round t is rt = ⟨θ, e(x, yt)⟩ + ηt. For concise exposition, we abuse the
notation and write yt = e(x, yt).

θ̂t − θ = Σ−1
t

t∑
i=1

riyi − θ

= Σ−1
t

t∑
i=1

yi(⟨θ, yi⟩+ ηt)− θ

= Σ−1
t

(
yiy

⊤
i

)
θ − θ +Σ−1

t

t∑
i=1

ηiyi

= −λΣ−1
t θ +Σ−1

t

t∑
i=1

ηiyi.

Notice that √
(θ̂t − θ)Σt(θ̂t − θ)⊤ =

∥∥∥Σ1/2
t (θ̂t − θ)

∥∥∥
Expanding: ∥∥∥Σ1/2

t (θ̂t − θ)
∥∥∥ ≤ ∥∥∥λΣ−1/2

t θ
∥∥∥+ ∥∥∥∥∥Σ−1/2

t

t∑
i=1

ηiyi

∥∥∥∥∥
≤
√
λ ∥θ∥+

√
2 log

det(Σt) det(Σ1)−1

δt
,

where the last inequality uses Σ−1
t ≤ 1/λ due to the construction.

Note first that θ̂1 = 0⃗ ∈ C1 surely. For t ≥ 2, we set δt = 3/(π2t2) · 2δ. Then, using union bound, one can deduce that

Pr [ θ ∈ Ct,∀t ∈ [T ] ] ≥ 1− δ.

Proof of Lemma E.3. By Cauchy-Schwarz inequality and the fact that ϑ ∈ Ct, we obtain the following series of inequality:∣∣∣ (ϑ− θ̂t)
⊤z
∣∣∣ = ∣∣∣ (ϑ− θ̂t)

⊤Σ
1/2
t Σ

−1/2
t z

∣∣∣
=
∣∣∣ (Σ1/2

t (ϑ− θ̂t))
⊤Σ

−1/2
t z

∣∣∣
≤
∥∥∥Σ1/2

t (ϑ− θ̂t)
∥∥∥∥∥∥Σ−1/2

t z
∥∥∥ (Cauchy Schwarz inequality)

=
∥∥∥Σ1/2

t (ϑ− θ̂t)
∥∥∥√z⊤Σ−1

t z

≤
√
βtz⊤Σ

−1
t z. (Since ϑ ∈ Ct)

Proof of Lemma E.4. By construction of Σt, we have

det(Σt+1) = det(Σt + yty
⊤
t )

= det
(
Σ

1/2
t

(
I +Σ

−1/2
t yty

⊤
t

)
Σ

1/2
t

)
= det(Σt) det

(
I +Σ

−1/2
t yt

(
Σ

−1/2
t yt

)⊤)
= det(Σt) det

(
I + vtv

⊤
t

)
,
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where we write vt = Σ
−1/2
t yt. Observe that v⊤t vt = wt(yt)2. Further,

(I + vtv
⊤
t )vt = vt + vt(v

⊤
t vt) = (1 + wt(zt)2)vt,

implying that (1+wt(yt)2) is an eigenvalue of I + vtv
⊤
t . Since vtv⊤t is a rank one matrix, all other eigenvalues of I + vtv

⊤
t

are one. Thus,

det(Σt+1) = det(Σt)(1 + wt(yt)
2).

Telescoping:

det(ΣT ) = det(Σ1)

T∏
t=1

(1 + wt(yt)
2)

Proof of Lemma E.5. Let the eigenvalues of
∑T

t=1 yty⊤t be σ1, σ2, . . . , σd. Note that

k∑
i=1

σi = Trace

T∑
t=1

yty
⊤
t =

T∑
t=1

∥yt∥
2 ≤ T.

Thus, we have

log det
ΣT

Σ1
= log det

(
1 +

1

λ

T∑
t=1

yty
⊤
t

)

= log

(
d∏

i=1

(
1 +

σi

λ

))

= d log

(
d∏

i=1

(
1 +

1

λ

))1/d

≤ d log

(
1

d

d∑
i=1

(1 + σi/λ)

)

≤ d log

(
1 +

T

dλ

)
,

which finishes the proof of the lemma.

E.3. Proof of Theorem 5.1

Proof of Theorem 5.1. Let o be the optimal sequence and g be the resulting sequence from greedy decoding. Suppose not,
i.e., o ̸= g for sake of the contradiction, and let g be the resulting sequence by the greedy algorithm. Similar to the length
equalization process in the proof of Theorem 3.9, we can extend g and o to have the same maximal length L. Now, it
suffices to prove that for any l ∈ [L], we have u(o(1:l))− u(g(1:l)) ≤ ε. We abuse REG(l) to denote u(o(1:l))− u(g(1:l)).
Following the arguments in the proof of Theorem 3.9, we can obtain REG(l) ≤ |REG(l−1)|. Thus, we eventually have
REG(l) ≤

∣∣∣REG(i)
∣∣∣ where i is the first level that g deviates from o. Since REG(i) is at most the SLD ε, we finish the proof.

E.4. Proof of Proposition 4.1

Proof of Proposition 4.1. It is straightforward to see that m := |V∗| = Ω(nL) since it has (roughly) at least (n − 1)L−1

sequences that ends with EOS and having depth L. Consider an instance of the stochastic m-armed bandit problem where
each arm i is associated with a distribution Fi. Let us (arbitrarily) index each subsequence in V∗

L by 1, 2, . . . ,m and let i(y)
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be index of y. We construct an instance of TMAB such that each random reward rt(y) is an independent sample from Fi(y).
That is, whenever the DM submits a complete sequence y ∈ V∗, its random reward is sampled from Fi(y) independently.
Then, we have that u(y) =

∫
xdFi(y)(x). We further assume that if we add more EOS to a complete sequence y, the utility

does not change, i.e., have the same distribution. One can easily check that the utillity function satisfies Assumption 2.1 and
structurizes Fi so that it satisfies Assumption 2.2 as well.29 Then, in order to learn a reward for y, any algorithm needs to
run a bandit algorithm treating each y as a single arm. The standard information theoretic argument on the regret lower
bound for stochastic bandit problem yields the desired regret lower bound.

E.5. Appendix for TMAB

We require the following variant of DDMC for TMAB.

Assumption E.6 (DDMC’). A sequence function u(·) has diminishing distance with more commons (DDMC’) if

|u(xt, y : τ : EOS)− u(xt, z : τ : EOS) | ≤ |u(xt, y : EOS)− u(xt, z : EOS) | ,

for any two different finite sequences y, z with the same length |y| = |z| and any token τ ∈ V .

Proof of Theorem 4.2. Overall, we will prove that at any depth k during the execution algorithm, it will select the optimal
subsequent token for depth k + 1 with high probability. Let us begin with depth 1 for reader’s convenience. Note that
r̄(y : τ : EOS) denotes the average of the cumulative reward obtained from exploring y : τ : EOS for N rounds during the
execution of the algorithm. For any y ∈ V∗, define the clean event as follows:

Cleany = {|r̄(y)− u(y)| ≤
√

2 log T/N}.

By Hoeffding inequality, we have

Pr [ Cleany ] ≥ 1− 2/T 4,

for any y ∈ V∗. Suppose our algorithm chooses token sequence a whereas the optimal algorithm chooses o. If o = EOS,
then the problem boils down to a single-level scenario and the standard analysis of ETC algorithm carries over. Assume
o ̸= EOS, i.e., o considers at least one non-EOS token.

Due to our algorithm’s choice, r̄(a(1) : EOS) ≥ r̄(o(1) : EOS). Define

Clean(1) = ∩τ∈VClean∅:τ :EOS,

i.e., the clean event over every token at depth 1. Taking union bound over y = ∅ and τ ∈ V , we have

Pr
[
Clean(1)

]
≥ 1− 2/T 3.

Under this event, we know that

u(a(1) : EOS) +
√

2 log T/N ≥ r̄(a(1) : EOS)

≥ r̄(o(1) : EOS)

≥ u(o(1) : EOS)−
√

c log T/N.

Thus, with probability 1− 2/T 3, we obtain u(o(1))− u(a(1)) ≤ 2c log T/N . Define d :=
√

2 log T/N .

Now we will generalize this argument to prove that we have u(o(1:l) : EOS) − u(a(1:l) : EOS) ≤ d under an appropriate
clean event occurring with high probability. Note that this is sufficient since u(o(1:l) : EOS) = u(o(1:l)) once o(1:l) reaches
EOS, and analogously for a.

Subtly, we need to handle the case where o and a have different lengths. Similar to previous analysis, we equalize the length
by adding more EOS tokens so that both o and a has length L. Then, we can safely deal with the extended sequences with

29We omit the details as it is a cumbersome argument.
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the same length. We prove by induction on the length l of the subsequence of o and a by comparing a(1:l) with o(1:l). For
every i ∈ [L] and i ≥ 2, we recursively define the following events:

Clean(1:i) =
(
∩j∈[i−1]Clean

(1:i−1)
)
∩ (∩τ∈V(Cleana(1:i−1):τ :EOS)) ∩ Cleano(1:i−1):EOS,

and define Clean(1). By abusing Clean(1:0) = ∅ and o(1:0) = a(1:0) = ∅, note that we have Clean(1:1) = Clean(1).

Let k be the first level that a deviates from o. Now, assume for the sake of induction that u(o(1:i) : EOS) − u(a(1:i) :

EOS) ≤ 2d +
∣∣∣REG

(k)
t

∣∣∣ holds under the clean event Clean(1:i). Now we will prove that under Clean(1:i+1), we have

u(o(1:i+1) : EOS)− u(a(1:i+1) : EOS) ≤ 2(i+ 1)d+
∣∣∣REG

(k)
t

∣∣∣.
Similar to the analysis of EOFUL, we consider a fictitious extension of f = a(1:i) : o(i+1).

Due to the construction of clean event and our algorithm’s optimistic choice, we have

u(a(1:i+1) : EOS) +
√

c log T/N ≥ r̄(a(1:i+1) : EOS)

≥ r̄(f : EOS)

≥ u(f : EOS)−
√

c log T/N.

If u(o(1:i+1) : EOS)− u(f : EOS) ≤ 0, then the induction follows. Otherwise, by DDMC’, we have

u(o(1:i+1) : EOS)− u(f : EOS) ≤
∣∣∣u(o(1:i) : EOS)− u(a(1:i) : EOS)

∣∣∣
≤ 2id+ REG

(i)
t ,

and combining the inequalities we have REG
(i+1)
t ≤ 2(i+ 1)d+

∣∣∣REG
(k)
t

∣∣∣.
Thus, by the induction principle, under Clean(1:L), we have u(õ(1:L)) − u(ã(1:L)) ≤ 2Ld + O(1/

√
T ) as REG

(k)
t =

O(1/
√
T ) due to the SSLD assumption. For ease of exposition, we will simply use the upper bound REG ≤ 2LD as

O(1/
√
T ) contributes at most

√
T regret by naively multiplying by T .

Recall the definition of Clean(1:L):

Clean1:L =
(
∩j∈[L−1]Clean

(1:L−1)
)
∩ (∩τ∈V(Cleana(1:L−1):τ :EOS)) ∩ Cleano1:L−1:EOS

=

L∏
t=1

(∩τ∈V(Cleana(1:t−1):τ :EOS) ∩ Cleano1:t−1:EOS),

where we abuse a(1:0) and o1:0 to denote ∅. By the independence of the reward tapes and union bound, we have

Pr [∩τ∈V(Cleana(1:t−1):τ :EOS) ] ≥ 1− 2

T 4
· n.

Thus, again by union bound, we have

Pr
[
Clean(1:L)

]
≥ 1− 2(n+ 1)L

T 4
≥ 1− 4L

T 4

Now the entire regret can be written as:

REG = REGexploration + REGexploitation

≤ n · L ·N · 1 + REGexploitation

≤ nLN + 2LTd · Pr
[
Clean(1:L)

]
+ T · Pr

[
¬Clean1:L

]
≤ nLN + 2LT

√
2 log T

N
+ T

4nL

T 4
.

Assuming that n,L ≤ T , plugging N = T 2/3(log T )1/3 yields the regret of REG = O(nLT 2/3(log T )1/3).30

30If n or L is large compared with T , one can simply increase the exploration parameter in the algorithm and neutralize such dependency.
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