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Ruiqi Gao1* Aleksander Hołyński1* Philipp Henzler2 Arthur Brussee1
Ricardo Martin-Brualla2 Pratul Srinivasan1 Jonathan T. Barron1 Ben Poole1*

1Google DeepMind 2Google Research *equal contribution

Text-to-image-to-3D Real image to 3D Sparse multi-view to 3D

Figure 1: CAT3D enables 3D scene creation from any number of generated or real images.

Abstract

Advances in 3D reconstruction have enabled high-quality 3D capture, but require a
user to collect hundreds to thousands of images to create a 3D scene. We present
CAT3D, a method for creating anything in 3D by simulating this real-world capture
process with a multi-view diffusion model. Given any number of input images and
a set of target novel viewpoints, our model generates highly consistent novel views
of a scene. These generated views can be used as input to robust 3D reconstruction
techniques to produce 3D representations that can be rendered from any viewpoint
in real-time. CAT3D can create entire 3D scenes in as little as one minute, and
outperforms existing methods for single image and few-view 3D scene creation.

1 Introduction

The demand for 3D content is higher than ever, since it is essential for enabling real-time interactivity
for games, visual effects, and wearable mixed reality devices. Despite the high demand, high-quality
3D content remains relatively scarce. Unlike 2D images and videos which can be easily captured
with consumer photography devices, creating 3D content requires complex specialized tools and a
substantial investment of time and effort.
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Fortunately, recent advancements in photogrammetry techniques have greatly improved the accessibil-
ity of 3D asset creation from 2D images. Methods such as NeRF [1], Instant-NGP [2], and Gaussian
Splatting [3] allow anyone to create 3D content by taking photos of a real scene and optimizing a rep-
resentation of that scene’s underlying 3D geometry and appearance. The resulting 3D representation
can then be rendered from any viewpoint, similar to traditional 3D assets. Unfortunately, creating
detailed scenes still requires a labor-intensive process of capturing hundreds to thousands of photos.
Captures with insufficient coverage of the scene can lead to an ill-posed optimization problem, which
often results in incorrect geometry and appearance and, consequently, implausible imagery when
rendering the recovered 3D model from novel viewpoints.

Reducing this requirement from dense multi-view captures to less exhaustive inputs, such as a
single image or text, would enable more accessible 3D content creation. Prior work has developed
specialized solutions for different input settings, such as geometry regularization techniques targeted
for sparse-view reconstruction [4, 5], feed-forward models trained to create 3D objects from single
images [6], or the use of image-conditioned [7] or text-conditioned [8] generative priors in the
optimization process—but each of these specialized methods comes with associated limitations in
quality, efficiency, and generality.

In this paper, we instead focus on the fundamental problem that limits the use of established 3D
reconstruction methods in the observation-limited setting: an insufficient number of supervising views.
Rather than devising specialized solutions for different input regimes [8, 9, 7], a shared solution is
to instead simply create more observations—collapsing the less-constrained, under-determined 3D
creation problems to the fully-constrained, fully-observed 3D reconstruction setting. This way, we
reformulate a difficult ill-posed reconstruction problem as a generation problem: given any number
of input images, generate a collection of consistent novel observations of the 3D scene. Recent video
generative models show promise in addressing this challenge, as they demonstrate the capability
to synthesize video clips featuring plausible 3D structure [10, 11, 12, 13, 14, 15]. However, these
models are often expensive to sample from, challenging to control, and limited to smooth and short
camera trajectories.

Our system, CAT3D, instead accomplishes this through a multi-view diffusion model trained specifi-
cally for novel-view synthesis. Given any number of input views and any specified novel viewpoints,
our model generates multiple 3D-consistent images through an efficient parallel sampling strategy.
These generated images are subsequently fed through a robust 3D reconstruction pipeline to produce
a 3D representation that can be rendered at interactive rates from any viewpoint. We show that our
model is capable of producing photorealistic results of arbitrary objects or scenes from any number
of captured or synthesized input views in as little as one minute. We evaluate our work across various
input settings, ranging from sparse multi-view captures to a single captured image, and even just a
text prompt (by using a text-to-image model to generate an input image from that prompt). CAT3D
outperforms prior works for measurable tasks (such as the multi-view capture case) on multiple
benchmarks, and is an order of magnitude faster than previous state-of-the-art. For tasks where
empirical performance is difficult to measure (such as text-to-3D and single image to 3D), CAT3D
compares favorably with prior work in all settings.

2 Related Work

Creating entire 3D scenes from limited observations requires 3D generation, e.g., creating content in
unseen regions, and our work builds on the ever-growing research area of 3D generative models [16].
Due to the relative scarcity of 3D datasets, much research in 3D generation is centered on transferring
knowledge learned by 2D image-space priors, as 2D data is abundant. Our diffusion model is built
on the recent development of video and multi-view diffusion models that produce highly consistent
novel views. We show that pairing these models with 3D reconstruction, similar to [17, 18], enables
efficient and high quality 3D creation. Below we discuss how our work is related to several areas of
prior work.

2D priors. Given limited information such as text, pretrained text-to-image models can provide a
strong generative prior for text-to-3D generation. However, distilling the knowledge present in these
image-based priors into a coherent 3D model currently requires an iterative distillation approach.
DreamFusion [8] introduced Score Distillation Sampling (SDS) to synthesize 3D objects (as NeRFs)
from text prompts. Research in this space has aimed to improve distillation strategies [19, 20, 21, 22,
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Figure 2: Qualitative results (renders): CAT3D can create high-quality 3D objects or scenes from a
number of input modalities: an input image generated by a text-to-image model (top row), a single
captured real image (middle row), and multiple captured real images (bottom row).
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23], swap in other 3D representations [24, 25, 26, 27, 28], and amortize the optimization process [29].
Using text-based priors for single-image-to-3D has also shown promise [30, 31, 32], but requires a
complex balancing of the image observation with additional constraints. Incorporating priors such as
monocular depth models or inpainting models has been useful for creating 3D scenes, but tends to
result in poor global geometry [33, 34, 35, 36].

2D priors with camera conditioning. While text-to-image models excel at generating visually
appealing images, they lack precise control over the pose of images, and thus require a time-consuming
3D distillation process to encourage the 3D model to conform to the 2D prior. To overcome this
limitation, several approaches train or fine-tune generative models with explicit image and pose
conditioning [7, 37, 38, 39, 40, 41, 42]. These models provide stronger priors for what an object
or scene should look like given text and/or input image(s), but they also model all output views
independently. In cases where there is little uncertainty in what should appear at novel views,
reasoning about generated views independently is sufficient for efficient 3D reconstruction [43].
But when there is some uncertainty exists, these top-performing methods still require expensive 3D
distillation to resolve the inconsistencies between different novel views.

Multi-view priors. Modeling the correlations between multiple views provides a much stronger
prior for what 3D content is consistent with partial observations. Methods like MVDream [44],
ImageDream [9], Zero123++ [45], ConsistNet [46], SyncDreamer [47] and ViewDiff [48] fine-tune
text-to-image models to generate multiple views simultaneously. CAT3D is similar in architecture
to ImageDream, where the multi-view dependency is captured by an architecture resembling video
diffusion models with 3D self-attention. Given this stronger prior, these papers also demonstrate
higher quality and more efficient 3D extraction.

Video priors. Video diffusion models have demonstrated an astonishing capability of generating
realistic videos [49, 50, 10, 12, 15, 13, 51], and are thought to implicitly reason about 3D. However,
it remains challenging to use off-the-shelf video diffusion models for 3D generation for a number of
reasons. Current models lack exact camera controls, limiting generation to clips with only smooth
and short camera trajectories, and struggle to generate videos with only camera motion but no
scene dynamics. Several works have proposed to resolve these challenges by fine-tuning video
diffusion models for camera-controled or multi-view generation. For example, AnimateDiff [52]
LoRA fine-tuned a video diffusion model with fixed types of camera motions, and MotionCtrl [53]
conditioned the model on arbitrary specified camera trajectories. ViVid-1-to-3 [54] combines a novel
view synthesis model and a video diffusion model for generating smooth trajectories. SVD-MV [55],
IM-3D [17] and SV3D [55] further explored leveraging camera-controlled or multi-view video
diffusion models for 3D generation. However, their camera trajectories are limited to orbital ones
surrounding the center content. These approaches mainly focus on 3D object generation, and do not
work for 3D scenes, few-view 3D reconstruction, or objects in context (objects that have not been
masked or otherwise separated from the image’s background).

Feed-forward methods. Another line of research is to learn feed-forward models that take a
few views as input, and output 3D representations directly, without an optimization process per
instance [6, 56, 57, 58, 18, 59, 60]. These methods can produce 3D representations efficiently (within
a few seconds), but the quality is often worse than approaches built on image-space priors.

3 Method

CAT3D is a two-step approach for 3D creation: first, we generate a large number of novel views
consistent with one or more input views using a multi-view diffusion model, and second, we run
a robust 3D reconstruction pipeline on the generated views (see Figure 3). Below we describe our
multi-view diffusion model (Section 3.1), our method for generating a large set of nearly consistent
novel views from it (Section 3.2), and how these generated views are used in a 3D reconstruction
pipeline (Section 3.3).
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Figure 3: Illustration of the method. Given one to many views, CAT3D creates a 3D representation
of the scene in as little as one minute. CAT3D has two stages: (1) generate a large set of synthetic
views with a multi-view latent diffusion model conditioned on the input views and target poses; (2)
run a robust 3D reconstruction pipeline on the observed and generated views. This decoupling of
the generative prior and 3D reconstruction process results in efficiency improvements and reduced
methodological complexity relative to prior work [7, 8, 42], while also improving visual quality.

3.1 Multi-View Diffusion Model

We train a multi-view diffusion model that takes a single or multiple views of a 3D scene as input
and generates multiple output images given their camera poses (where “a view” is a paired image
and its camera pose). Specifically, given M conditional views containing M images Icond and their
corresponding camera parameters pcond, the model learns to capture the joint distribution of N target
images Itgt assuming their N target camera parameters ptgt are also given:

p
(
Itgt|Icond,pcond,ptgt

)
. (1)

Model architecture. Our model architecture is similar to video latent diffusion models (LDMs) [49,
11], but with camera pose embeddings for each image instead of time embeddings. Given a set of
conditional and target images, the model encodes every individual image into a latent representation
through an image variational auto-encoder [61]. Then, a diffusion model is trained to estimate the
joint distribution of the latent representations given conditioning signals. We initialize the model
from an LDM trained for text-to-image generation similar to [62] trained on web-scale image data,
with an input image resolution of 512 × 512 × 3 and latents with shape 64 × 64 × 8. As is often
done in video diffusion models [50, 10, 11], the main backbone of our model remains the pretrained
2D diffusion model but with additional layers connecting the latents of multiple input images. As in
[44], we use 3D self-attention (2D in space and 1D across images) instead of simple 1D self-attention
across images. We directly inflate the existing 2D self-attention layers after every 2D residual block
of the original LDM to connect latents with 3D self-attention layers while inheriting the parameters
from the pre-trained model, introducing minimal amount of extra model parameters. We found that
conditioning on input views through 3D self-attention layers removed the need for PixelNeRF [63]
and CLIP image embeddings [64] used by the prior state-of-the-art model on few-view reconstruction,
ReconFusion [7]. We use FlashAttention [65, 66] for fast training and sampling, and fine-tune all the
weights of the latent diffusion model. Similar to prior work [10, 67], we found it important to shift
the noise schedule towards high noise levels as we move from the pre-trained image diffusion model
to our multi-view diffusion model that captures data of higher dimensionality. Concretely, following
logic similar to [67], we shift the log signal-to-noise ratio by log(N) towards the high signal-to-noise
ratio region, where N is the number of target views. Similar shifts have been adopted empirically
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by [11, 10]. For training, latents of target images are noise perturbed while latents of conditional
images are kept as clean, and the diffusion loss is defined only on target images. A binary mask is
concatenated to the latents along the channel dimension, to denote conditioning vs. target images. To
deal with multiple 3D generation settings, we train a single versatile model that can model a total
of 8 conditioning and target views (N +M = 8), and randomly select the number of conditional
views M to be 1 or 3 during training, corresponding to 7 and 5 target views respectively. The noise
schedule is shifted based on 5 target views. See Appendix B for more model details.

Camera conditioning. To condition on the camera pose, we use a camera ray representation
(“raymap”) that is the same height and width as the latent representations [38, 68] and encodes the
ray origin and direction at each spatial location. The rays are computed relative to the camera pose
of the first conditional image, so our pose representation is invariant to rigid transformations of 3D
world coordinates. Raymaps for each image are concatenated channel-wise onto the latents for the
corresponding image.

3.2 Generating Novel Views

Given a set of input views, our goal is to generate a large set of consistent views to fully cover the
scene and enable accurate 3D reconstruction. To do this, we need to decide on the set of camera
poses to sample, and we need to design a sampling strategy that can use a multi-view diffusion model
trained on a small number of views to generate a much larger set of consistent views.

Camera trajectories. Compared to 3D object reconstruction where orbital camera trajectories
can be effective, a challenge of 3D scene reconstruction is that the views required to fully cover
a scene can be complex and depend on the scene content. We empirically found that designing
reasonable camera trajectories for different types of scenes is crucial to achieve compelling few-view
3D reconstruction. The camera paths must be sufficiently thorough and dense to fully-constrain the
reconstruction problem, but also must not pass through objects in the scene or view scene content
from unusual angles. In summary, we explore four types of camera paths based on the characteristic
of a scene: (1) orbital paths of different scales and heights around the center scene, (2) forward
facing circle paths of different scales and offsets, (3) spline paths of different offsets, and (4) spiral
trajectories along a cylindrical path, moving into and out of the scene. See Appendix C for more
details.

Generating a large set of synthetic views. A challenge in applying our multi-view diffusion model
to novel view synthesis is that it was trained with a small and finite set of input and output views —
just 8 in total. To increase the total number of output views, we cluster the target viewpoints into
smaller groups and generate each group independently given the conditioning views. We group target
views with close camera positions, as these views are typically the most dependent. For single-image
conditioning, we adopt an autoregressive sampling strategy, where we first generate a set of 7 anchor
views that cover the scene (similar to [42], and chosen using the greedy initialization from [69]), and
then generate the remaining groups of views in parallel given the observed and anchor views. This
allows us to efficiently generate a large set of synthetic views while still preserving both long-range
consistency between anchor views and local similarity between nearby views. For the single-image
setting, we generate 80 views, while for the few-view setting we use 480-960 views. See Appendix C
for details.

Conditioning larger sets of input views and non-square images. To expand the number of views
we can condition on, we choose the nearest M views as the conditioning set, as in [7]. We experi-
mented with simply increasing the sequence length of the multi-view diffusion architecture during
sampling, but found that the nearest view conditioning and grouped sampling strategy performed
better. To handle wide aspect ratio images, we combine square samples from square-cropped input
views with wide samples cropped from input views padded to be square.

3.3 Robust 3D reconstruction

Our multi-view diffusion model generates a set of high-quality synthetic views that are reasonably
consistent with each other. However, the generated views are generally not perfectly 3D consistent.
Indeed, generating perfectly 3D consistent images remains a very challenging problem even for
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Input ReconFusion [7] CAT3D (ours) Ground Truth

Figure 4: Qualitative comparison, few-view reconstruction (renders). A comparison of rendered
reconstructions on scenes from mip-NeRF 36 (top row) and CO3D (bottom row), given 3 input
captured views. Compared to ReconFusion [7], CAT3D better aligns with ground-truth in seen
regions, while hallucinating plausible content in unseen regions. See supplemental website for
additional comparisons.

current state-of-the-art video diffusion models [70]. Since 3D reconstruction methods have been
designed to take photographs (which are by definition perfectly consistent) as input, we modify the
standard NeRF training procedure to improve its robustness to inconsistent input views.

We build upon Zip-NeRF [71], whose training procedure minimizes the sum of a photometric
reconstruction loss, a distortion loss, an interlevel loss, and a normalized L2 weight regularizer.
We additionally include a perceptual loss (LPIPS [72]) between the rendered image and the input
image. Compared to the photometric reconstruction loss, LPIPS emphasizes high-level semantic
similarity between the rendered and observed images, while ignoring potential inconsistencies in
low-level high-frequency details. Since generated views closer to the observed views tend to have
less uncertainty and are therefore more consistent, we weight the losses for generated views based on
the distance to the nearest observed view. This weighting is uniform at the beginning of the training,
and is gradually annealed to a weighting function that more strongly penalizes reconstruction losses
for views closer to one of the observed views. See Appendix D for additional details.

4 Experiments

We trained the multi-view diffusion model at the core of CAT3D on four datasets with camera pose
annotations: Objaverse [73], CO3D [74], RealEstate10k [75] and MVImgNet [76]. We then evaluated
CAT3D on the few-view reconstruction task (Section 4.1) and the single image to 3D task (Section
4.2), demonstrating qualitative and quantitative improvements over prior work. The design choices
that led to CAT3D are ablated and discussed further in Section 4.3.

4.1 Few-View 3D Reconstruction

We first evaluate CAT3D on five real-world benchmark datasets for few-view 3D reconstruction.
Among those, CO3D [74] and RealEstate10K [75] are in-distribution datasets whose training splits
were part of our training set (we use their test splits for evaluation), whereas DTU [77], LLFF [78] and
the mip-NeRF 360 dataset [79] are out-of-distribution datasets that were not part of the training dataset.
We tested CAT3D on the 3, 6 and 9 view reconstruction tasks, with the same train and eval splits as [7].
In Table 1, we compare to the state-of-the-art for dense-view NeRF reconstruction with no learned
priors (Zip-NeRF [71]) and methods that heavily leverage generative priors such as ZeroNVS [42]
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RealEstate10K
Zip-NeRF∗ [71] 20.77 0.774 0.332 27.34 0.906 0.180 31.56 0.947 0.118
ZeroNVS∗ [42] 19.11 0.675 0.422 22.54 0.744 0.374 23.73 0.766 0.358
ReconFusion [7] 25.84 0.910 0.144 29.99 0.951 0.103 31.82 0.961 0.092
CAT3D (ours) 26.78 0.917 0.132 31.07 0.954 0.092 32.20 0.963 0.082
LLFF
Zip-NeRF∗ [71] 17.23 0.574 0.373 20.71 0.764 0.221 23.63 0.830 0.166
ZeroNVS∗ [42] 15.91 0.359 0.512 18.39 0.449 0.438 18.79 0.470 0.416
ReconFusion [7] 21.34 0.724 0.203 24.25 0.815 0.152 25.21 0.848 0.134
CAT3D (ours) 21.58 0.731 0.181 24.71 0.833 0.121 25.63 0.860 0.107
DTU
Zip-NeRF∗ [71] 9.18 0.601 0.383 8.84 0.589 0.370 9.23 0.592 0.364
ZeroNVS∗ [42] 16.71 0.716 0.223 17.70 0.737 0.205 17.92 0.745 0.200
ReconFusion [7] 20.74 0.875 0.124 23.62 0.904 0.105 24.62 0.921 0.094
CAT3D (ours) 22.02 0.844 0.121 24.28 0.899 0.095 25.92 0.928 0.073
CO3D
Zip-NeRF∗ [71] 14.34 0.496 0.652 14.48 0.497 0.617 14.97 0.514 0.590
ZeroNVS∗ [42] 17.13 0.581 0.566 19.72 0.627 0.515 20.50 0.640 0.500
ReconFusion [7] 19.59 0.662 0.398 21.84 0.714 0.342 22.95 0.736 0.318
CAT3D (ours) 20.57 0.666 0.351 22.79 0.726 0.292 23.58 0.752 0.273
Mip-NeRF 360
Zip-NeRF∗ [71] 12.77 0.271 0.705 13.61 0.284 0.663 14.30 0.312 0.633
ZeroNVS∗ [42] 14.44 0.316 0.680 15.51 0.337 0.663 15.99 0.350 0.655
ReconFusion [7] 15.50 0.358 0.585 16.93 0.401 0.544 18.19 0.432 0.511
CAT3D (ours) 16.62 0.377 0.515 17.72 0.425 0.482 18.67 0.460 0.460

Table 1: Quantitative comparison of few-view 3D reconstruction. CAT3D outperforms baseline
approaches across nearly all settings and metrics (modified baselines denoted with ∗ taken from [7]).

and ReconFusion [7]. We find that CAT3D achieves state-of-the-art performance across nearly all
settings, while also reducing generation time from 1 hour (for ZeroNVS and ReconFusion) down to a
few minutes. CAT3D outperforms baseline approaches on more challenging datasets like CO3D and
mip-NeRF 360 by a larger margin, thereby demonstrating its value in reconstructing large and highly
detailed scenes. Figure 4 shows the qualitative comparison. In unobserved regions, CAT3D is able to
hallucinate plausible textured content while still preserving geometry and appearance from the input
views, whereas prior works often produce blurry details and oversmoothed backgrounds.

4.2 Single image to 3D

CAT3D supports the efficient generation of diverse 3D content from just a single input view. Evalua-
tion in this under-constrained regime is challenging as there are many 3D scenes consistent with the
single view, for example scenes of different scales. We thus focus our single image evaluation on
qualitative comparisons (Figure 5), and quantitative semantic evaluations with CLIP [64] (Table 2).
On scenes, CAT3D produces higher resolution results than ZeroNVS [42] and RealmDreamer [80],
and for both scenes and objects we better preserve details from the input image. On images with
segmented objects, our geometry is often worse than existing approaches like ImageDream [9] and
DreamCraft3D [81], but maintains competitive CLIP scores. Compared to these prior approaches that
iteratively leverage a generative prior in 3D distillation, CAT3D is more than an order of magnitude
faster. Faster generation methods have been proposed for objects [6, 82, 83], but produce significantly
lower resolution results than their iterative counterparts, so they are not included in this comparison.
IM-3D [17] achieves better performance on segmented objects with similar runtime, but does not
work on scenes, or on objects in context.

4.3 Ablations

At the core of CAT3D is a multi-view diffusion model that has been trained to generate consistent
novel views. We considered several model variants, and evaluated both their sample quality (on
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Figure 5: 3D creation from single input images. Renderings of 3D models from CAT3D (middle
row) are higher quality than baselines (bottom row) for scenes, and competitive for objects. Note that
scale ambiguity amplifies the differences in renderings between methods. See supplemental website
for additional comparisons.

Model Time (min) CLIP (Image)

ImageDream [9] 120 83.77 ± 5.2
One2345++ [84] 0.75 83.78 ± 6.4
IM-3D (NeRF) [17] 40 87.37 ± 5.4
IM-3D [17] 3 91.40 ± 5.5
CAT3D (ours) 1 88.54 ± 8.6

Table 2: Evaluating image-to-3D quality with
CLIP image scores on examples from [9]
(numbers reproduced from [17]). CAT3D
produces competitive results to object-centric
baselines while also working on whole
scenes. (Note: shown images are 3D ren-
ders, and time for CAT3D was evaluated on
16 A100 GPUs.)

in-domain and out-of-domain datasets) and few-view 3D reconstruction performance. We also
compare important design choices for 3D reconstruction. Results from our ablation study are reported
in Table 3 and Figure 6 in Appendix A and summarized below. Overall, we found that video
diffusion architectures, with 3D self-attention (spatiotemporal) and raymap embeddings of camera
pose, produce consistent enough views to recover 3D representations when combined with robust
reconstruction losses.

Image and pose. Previous work [7] used PixelNerf [63] feature-map conditioning for multiple
input views. We found that replacing PixelNeRF with attention-based conditioning in a conditional
video diffusion architecture using a per-image embedding of the camera pose results in improved
samples and 3D reconstructions, while also reducing model complexity and the number of parameters.
We found that embedding the camera pose as a low-dimensional vector (as in [37]) works well for
in-domain samples, but generalizes poorly compared to raymap conditioning (see Section 3.1).

Increasing the number of views. We found that jointly modeling multiple output views (i.e., 5 or 7
views instead of 1) improves sample metrics — even metrics that evaluate the quality of each output
image independently. Jointly modeling multiple outputs creates more consistent views that result in
an improved 3D reconstruction as well.
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Attention layers. We found that 3D self-attention (spatiotemporal) is crucial, as it yields improved
performance relative to factorized 2D self-attention (spatial-only) and 1D self-attention (temporal-
only). While models with 3D self-attention in the finest feature maps (64× 64) result in the highest
fidelity images, they incur a significant computational overhead for training and sampling for relative
small gain in fidelity. We therefore decided to use 3D self-attention only in feature maps of size
32× 32 and smaller.

Multi-view diffusion model training. Initializing from a pre-trained text-to-image latent diffusion
model improved performance on out-of-domain examples. We experimented with fine-tuning the
multi-view diffusion model to multiple variants specialized for specific numbers of inputs and outputs
views, but found that a single model jointly trained on 8 frames with either 1 or 3 conditioning views
was sufficient to enable accurate single image and few-view 3D reconstruction.

3D reconstruction. LPIPS loss is crucial for achieving high-quality texture and geometry, aligning
with findings in [17, 7]. On Mip-NeRF 360, increasing the number of generated views from 80 (single
elliptical orbit) to 720 (nine orbits) improved central object geometry but sometimes introduced
background blur, probably due to inconsistencies in generated content.

5 Discussion

We present CAT3D, a unified approach for 3D content creation from any number of input images.
CAT3D leverages a multi-view diffusion model for generating highly consistent novel views of a
3D scene, which are then input into a 3D multi-view reconstruction pipeline. CAT3D decouples the
generative prior from 3D extraction, leading to efficient, simple, and high-quality 3D generation.

Although CAT3D produces compelling results and outperforms prior works on multiple tasks, it
has limitations. Because our training datasets have roughly constant camera intrinsics for views of
the same scene, the trained model cannot handle test cases well where input views are captured by
multiple cameras with different intrinsics. The generation quality of CAT3D relies on the expressivity
of the base text-to-image model, and it performs worse in the cases where scene content is out of
distribution for the base model (e.g. human faces, since the base model was trained on limited human
data). The number of output views supported by our multi-view diffusion model is still relatively
small, so when we generate a large set of samples from our model, not all views may be 3D consistent
with each other (see Supplementary website). Finally, CAT3D uses manually-constructed camera
trajectories that cover the scene thoroughly (see Appendix C), which may be difficult to design for
large-scale open-ended 3D environments.

There are a few directions worth exploring in future work to improve CAT3D. The multi-view
diffusion model may benefit from being initialized from a pre-trained video diffusion model, as
observed by [10, 17]. The consistency of samples could be further improved by extending the number
of conditioning and target views handled by the model. Automatically determining the camera
trajectories required for different scenes could increase the flexibility of the system.

Acknowledgements We would like to thank Daniel Watson, Rundi Wu, Jason Y. Zhang, Richard
Tucker, Jason Baldridge, Michael Niemeyer, Rick Szeliski, Dana Roth, Jordi Pont-Tuset, Andeep
Torr, Irina Blok, Doug Eck, and Henna Nandwani for their valuable contributions to this work. We
also extend our gratitude to Shlomi Fruchter, Kevin Murphy, Mohammad Babaeizadeh, Han Zhang
and Amir Hertz for training the base text-to-image latent diffusion model.

References
[1] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,

and Ren Ng. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV,
2020.

[2] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. SIGGRAPH, 2022.

[3] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3D Gaussian
Splatting for Real-Time Radiance Field Rendering. SIGGRAPH, 2023.

10



[4] Jiawei Yang, Marco Pavone, and Yue Wang. FreeNeRF: Improving Few-shot Neural Rendering
with Free Frequency Regularization. CVPR, 2023.

[5] Nagabhushan Somraj, Adithyan Karanayil, and Rajiv Soundararajan. SimpleNeRF: Regulariz-
ing Sparse Input Neural Radiance Fields with Simpler Solutions. SIGGRAPH Asia, 2023.

[6] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan
Sunkavalli, Trung Bui, and Hao Tan. LRM: Large Reconstruction Model for Single Image to
3D. arXiv:2311.04400, 2023.

[7] Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong Park, Ruiqi Gao, Daniel Watson,
Pratul P. Srinivasan, Dor Verbin, Jonathan T. Barron, Ben Poole, and Aleksander Holynski.
Reconfusion: 3d reconstruction with diffusion priors, 2023.

[8] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. DreamFusion: Text-to-3D using
2D Diffusion. ICLR, 2022.

[9] Peng Wang and Yichun Shi. Imagedream: Image-prompt multi-view diffusion for 3d generation.
arXiv:2312.02201, 2023.

[10] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-
minik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion:
Scaling latent video diffusion models to large datasets. arXiv:2311.15127, 2023.

[11] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja
Fidler, and Karsten Kreis. Align your latents: High-resolution video synthesis with latent
diffusion models. CVPR, 2023.

[12] Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Sai Saketh
Rambhatla, Akbar Shah, Xi Yin, Devi Parikh, and Ishan Misra. Emu Video: Factorizing
Text-to-Video Generation by Explicit Image Conditioning. arXiv:2311.10709, 2023.

[13] Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
Junhwa Hur, Yuanzhen Li, Tomer Michaeli, et al. Lumiere: A space-time diffusion model for
video generation. arXiv, 2024.

[14] Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Li Fei-Fei, Irfan Essa, Lu Jiang,
and José Lezama. Photorealistic video generation with diffusion models, 2023.

[15] Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024.

[16] Ryan Po, Wang Yifan, Vladislav Golyanik, Kfir Aberman, Jonathan T Barron, Amit H Bermano,
Eric Ryan Chan, Tali Dekel, Aleksander Holynski, Angjoo Kanazawa, et al. State of the art on
diffusion models for visual computing. arXiv:2310.07204, 2023.

[17] Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, Natalia Neverova, Andrea Vedaldi, Oran
Gafni, and Filippos Kokkinos. IM-3D: Iterative Multiview Diffusion and Reconstruction for
High-Quality 3D Generation, 2024.

[18] Jiahao Li, Hao Tan, Kai Zhang, Zexiang Xu, Fujun Luan, Yinghao Xu, Yicong Hong, Kalyan
Sunkavalli, Greg Shakhnarovich, and Sai Bi. Instant3D: Fast Text-to-3D with Sparse-View
Generation and Large Reconstruction Model. arXiv:2311.06214, 2023.

[19] Yukun Huang, Jianan Wang, Yukai Shi, Xianbiao Qi, Zheng-Jun Zha, and Lei Zhang. Dream-
Time: An Improved Optimization Strategy for Text-to-3D Content Creation. arXiv, 2023.

[20] Peihao Wang, Zhiwen Fan, Dejia Xu, Dilin Wang, Sreyas Mohan, Forrest Iandola, Rakesh
Ranjan, Yilei Li, Qiang Liu, Zhangyang Wang, et al. SteinDreamer: Variance Reduction for
Text-to-3D Score Distillation via Stein Identity. arXiv, 2023.

[21] Subin Kim, Kyungmin Lee, June Suk Choi, Jongheon Jeong, Kihyuk Sohn, and Jinwoo Shin.
Collaborative score distillation for consistent visual editing. NeurIPS, 36, 2024.

11



[22] Zhengyi Wang, Cheng Lu, Yikai Wang, Fan Bao, Chongxuan Li, Hang Su, and Jun Zhu.
ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score
Distillation. NeurIPS, 2023.

[23] Ayaan Haque, Matthew Tancik, Alexei A Efros, Aleksander Holynski, and Angjoo Kanazawa.
Instruct-nerf2nerf: Editing 3d scenes with instructions. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 19740–19750, 2023.

[24] Rui Chen, Yongwei Chen, Ningxin Jiao, and Kui Jia. Fantasia3d: Disentangling geometry and
appearance for high-quality text-to-3d content creation. ICCV, 2023.

[25] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten
Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3D: High-Resolution Text-to-3D
Content Creation. CVPR, 2023.

[26] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative
gaussian splatting for efficient 3d content creation. arXiv:2309.16653, 2023.

[27] Taoran Yi, Jiemin Fang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian, and
Xinggang Wang. Gaussiandreamer: Fast generation from text to 3d gaussian splatting with
point cloud priors. arXiv:2310.08529, 2023.

[28] Dave Epstein, Ben Poole, Ben Mildenhall, Alexei A Efros, and Aleksander Holynski. Disentan-
gled 3d scene generation with layout learning. arXiv preprint arXiv:2402.16936, 2024.

[29] Jonathan Lorraine, Kevin Xie, Xiaohui Zeng, Chen-Hsuan Lin, Towaki Takikawa, Nicholas
Sharp, Tsung-Yi Lin, Ming-Yu Liu, Sanja Fidler, and James Lucas. ATT3D: Amortized
Text-to-3D Object Synthesis. ICCV, 2023.

[30] Luke Melas-Kyriazi, Iro Laina, Christian Rupprecht, and Andrea Vedaldi. Realfusion: 360deg
reconstruction of any object from a single image. CVPR, 2023.

[31] Guocheng Qian, Jinjie Mai, Abdullah Hamdi, Jian Ren, Aliaksandr Siarohin, Bing Li, Hsin-
Ying Lee, Ivan Skorokhodov, Peter Wonka, Sergey Tulyakov, et al. Magic123: One Image to
High-Quality 3D Object Generation Using Both 2D and 3D Diffusion Priors. arXiv:2306.17843,
2023.

[32] Junshu Tang, Tengfei Wang, Bo Zhang, Ting Zhang, Ran Yi, Lizhuang Ma, and Dong Chen.
Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior. ICCV, 2023.

[33] Lukas Höllein, Ang Cao, Andrew Owens, Justin Johnson, and Matthias Nießner. Text2Room:
Extracting Textured 3D Meshes from 2D Text-to-Image Models. ICCV, 2023.

[34] Saurabh Saxena, Abhishek Kar, Mohammad Norouzi, and David J Fleet. Monocular depth
estimation using diffusion models. arXiv:2302.14816, 2023.

[35] Hong-Xing Yu, Haoyi Duan, Junhwa Hur, Kyle Sargent, Michael Rubinstein, William T
Freeman, Forrester Cole, Deqing Sun, Noah Snavely, Jiajun Wu, et al. WonderJourney: Going
from Anywhere to Everywhere. arXiv:2312.03884, 2023.
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A Ablations

Here we conduct ablation studies over several important decisions that led to CAT3D. We consider
several multi-view diffusion model variants, and evaluated them on novel-view synthesis with held-out
validation sets (4k samples) from the training datasets (in-domain samples) and from the mip-NeRF
360 dataset (out-of-domain samples), as well as 3-view reconstruction on the mip-NeRF 360 dataset
(out-of-domain renders). Unless otherwise specified, models in this section are trained with 3 input
views and 5 output views, evaluated after 120k optimization iterations. Quantitative results are
summarized in Table 3. Then we discuss important 3D reconstruction design choices, with qualitative
comparison in Figure 6.

Number of target views. We start from the setting where the model takes 3 conditional views as
input and generates a single target view, identical to the ReconFusion baseline [7]. Results show
that our multi-view architecture is favored when dealing with multiple input views, compared to the
PixelNeRF used by [7]. We also show that going from a single target view to 5 target views results in
a significant improvement on both novel-view synthesis and few-view reconstruction.

Camera conditioning. As mentioned in Section 3.1, we compared two camera parameterizations,
one is an 8-dimensional encoding vector fed through cross-attention layers that contains relative
position, relative rotation quaternion, and absolute focal length. The other is camera rays fed through
channel-wise concatenation with the input latents. We observe that the latter performs better across
all metrics.

Attention layers. An important design choice is the type and number of self-attention layers used
when connecting multiple views. As shown in Table 3, it is critical to use 3D self-attention instead of
temporal 1D self-attention. However, 3D attention is expensive; 3D attention at the largest feature
maps (64× 64) is of 32k sequence length and this incurs a significant computation overhead during
training and sampling with a marginal performance gain, especially for out-of-domain samples and
renderings. We therefore chose to use 3D attention only for feature maps of size 32× 32 and smaller.

Multi-view diffusion model training. We compared the settings of training the multi-view diffusion
models from scratch with initializing from a pre-trained text-to-image latent diffusion model. The
latter performs better, especially for out-of-domain cases. We further trained the model for more
iterations and observed a consistent performance gain up until 1M iterations. Then we fine-tuned
the model for handling both cases of 1 conditional + 7 target views and 3 conditional + 5 target
views (jointly), for another 0.4M iterations. We found this joint finetuning leads to better in-domain
novel-view synthesis results with 3 conditional views, and out-of-domain results that are on-par with
the previous model.

3D reconstruction. We found perceptual distance (LPIPS) loss is crucial in recovering high-quality
texture and geometry, similar to [17, 7]. We also compared the use of 80 views along one orbital path
with 720 views along nine variably scaled orbital paths. In the Mip-NeRF 360 setting, increasing
the number of views helps better regularize the geometry of central objects, but sometimes leads to
blurrier textures in the background, due to inconsistencies in generated content.

B Details of Multi-View Diffusion Model

We initialize the multi-view diffusion model from a latent diffusion model (LDM) trained for text-to-
image generation similar to [62] trained on web scale image datasets. See Figure 7 for a visualization
of the model architecture. We modify the LDM to take multi-view images as input by inflating the
2D self-attention after every 2D residual blocks to 3D self-attention [44]. Our model adds minimal
additional parameters to the backbone model: just a few additional convolution channels at the input
layer to handle conditioning information. We drop the text embedding from the original model. Our
latent diffusion model has 850M parameters, smaller than existing approaches built on video diffusion
models such as IM-3D [17] (4.3B) and SV3D [55] (1.5B).

We fine-tune the full latent diffusion model for 1.4M iterations with a batch size of 128 and a learning
rate of 5 × 10−5. The first 1M iterations are trained with the setting of 1 conditional view and 7
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In-domain Out-of-domain
diffusion samples diffusion samples NeRF renderings

Setting PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Baseline
ReconFusion [7] — — — 14.01 0.265 0.568 15.49 0.358 0.585
# target views
3 cond 1 tgt 18.85 0.638 0.359 14.12 0.262 0.553 16.17 0.360 0.546
3 cond 5 tgt 21.66 0.733 0.277 14.63 0.278 0.515 16.29 0.368 0.530
Camera conditioning
Low-dim vector 21.17 0.710 0.304 14.19 0.266 0.530 15.97 0.359 0.544
Raymap 21.66 0.733 0.277 14.63 0.278 0.515 16.29 0.368 0.530
Attention layers
Temporal attention 18.62 0.653 0.362 13.41 0.250 0.582 15.03 0.330 0.595
3D attention until 16× 16 21.41 0.730 0.281 14.23 0.274 0.530 16.21 0.364 0.541
3D attention until 32× 32 21.66 0.733 0.277 14.63 0.278 0.515 16.29 0.368 0.530
3D attention until 64× 64 (full) 22.83 0.783 0.235 14.64 0.274 0.509 16.35 0.367 0.528
Model training
From scratch, 3 cond 5 tgt 21.16 0.722 0.282 13.88 0.255 0.546 15.68 0.348 0.557
From pretrained, 3 cond 5 tgt 21.66 0.733 0.277 14.63 0.278 0.515 16.29 0.368 0.530
From pretrained, 3 cond 5 tgt, 1M iters 22.49 0.757 0.256 15.19 0.303 0.482 16.58 0.384 0.509
From pretrained, jointly, 1.4M iters 22.96 0.777 0.235 15.15 0.294 0.488 16.62 0.377 0.515

Table 3: Ablation study of multi-view diffusion models. A comparison of model variants and
parameters settings across in-domain sequences (a mixture of Objaverse, Co3D, RealEstate10k and
MVImgNet — all sequences in the corresponding eval sets of our training data) and out-of-domain
sequences (examples from the mip-NeRF 360 dataset). We evaluate the quality of samples from the
diffusion model, as well as renderings from the subsequently optimized NeRF.

target views, while the rest 0.4M iterations are trained with an equal mixture of 1 condition + 7 target
views and 3 conditional + 5 target views. Our model was trained for 16 days on 128 TPU-v4 chips.
Following [7] we draw training samples with equal probability from the four training datasets. We
enable classifier-free guidance (CFG) [85] by randomly dropping the conditional images and camera
poses with a probability of 0.1 during training.

C Details of Generating Novel Views

We use DDIM [86] with 50 sampling steps and CFG guidance weight 3 for generating novel views.
It takes 5 seconds to generate 80 views on 16 A100 GPUs. As mentioned in Section 3.2, selecting
camera trajectories that fully cover the 3D scene is important for high-quality 3D generation results.
See Figure 8 for an illustration of the camera trajectories we use. For the single image-to-3D setting
we use two different types of camera trajectories, each containing 80 views:

• A spiral around a cylinder-like trajectory that moves into and out of the scene.
• An orbit trajectory for images with a central object.

For few-view reconstruction, we create different trajectories based on the characteristics of different
datasets:

• RealEstate10K: we create a spline path fitted from the input views, and shift the trajectories
along the xz-plane by certain offsets, resulting in 800 views.

• LLFF and DTU: we create a forward-facing circle path fitted from all views in the training
set, scale it, and shift along the z-axis by certain offsets, resulting in 960 and 480 views
respectively.

• CO3D: we create a spline path fitted from the input views, and scale the trajectories by
multiple factors, resulting in 640 views.

• Mip-NeRF 360: we create a elliptical path fitted from all views in the training set , scale it,
and shift along the z-axis by certain offsets, resulting in 720 views.

For generating anchor views in the single-image setting, we used the model with 1 conditional input
and 7 target outputs. For generating the full set of views (both in the single-image anchored setting,
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(a) 720 generated views

(b) 80 generated views

(c) Without LPIPS loss

Figure 6: Qualitative comparison of 3D reconstruction design choices. Rendered images (left) and
depth maps (right) of a Mip-NeRF 360 scene under different settings: (a) 720 generated views along
multiple orbital paths, (b) 80 generated views on a single orbital path, and (c) 720 views, without the
perceptual (LPIPS) loss.

as well as in the multi-view setting), we used the model with 3 conditional inputs and groups of 5
target outputs, selected by their indices in the camera trajectories.

Anchor selection. For single-image conditioning, we first select a set of target viewpoints as
anchors to ground the scene content. To select a set of anchor views that are spread throughout the
scene and provide good coverage, we use the initialization strategy from [69]. This method greedily
selects the camera whose position is furthest away from the already selected views. We found this to
work well on a variety of trajectory-like view sets as well as random views that have been spread
throughout a scene.

Dealing with non-square images. While the multi-view latent diffusion model we trained only
supports 512×512 square images, we found the model still performed well when padding non-square
images to square. However, this method often reduces resolution, so we also run our model on a
square-cropped version of the inputs, and then compose the square-cropped outputs with the edges
from the padded outputs to create a different aspect ratio image.

D Details of 3D Reconstruction

For the Zip-NeRF [71] baseline, we follow [7] to make a few modifications of the hyperparameters
(See Appendix D in [7]) that better suit the few-view reconstruction setting. We use a smaller view
dependence network with width 32 and depth 1, and a smaller number of training iterations of 1000,
which helps avoid overfitting and substantially speeds up the training and rendering. Our synthetic
view sampling and 3D reconstruction process is run on 16 A100 GPUs. For few-view reconstruction,
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Figure 7: Illustration of the network. CAT3D builds on a latent text-to-image diffusion model. The
input images of size 512 are 8× downsampled to latents of size 64 × 64, which are concatenated
with the relative camera raymap and a binary mask that indicates whether or not the image has been
observed. A 2D U-Net with temporal connections is utilized for building the latent diffusion model.
After each residual block with resolution ≤ 32× 32, we inflate the original 2D self-attention (spatial)
of the text-to-image model to be 3D self-attention (spatiotemporal). We remove the text embedding
conditioning of the original model.

we sample 128× 128 patches of rays and train with a global batch size of 1M that takes 4 minutes
to train. For single image to 3D, we use 32× 32 patches of rays and a global batch size of 65k that
takes 55 seconds to train. Learning rate is logarithmically decayed from 0.04 to 10−3. The weight
of the perceptual loss (LPIPS) is set to 0.25 for single image to 3D and few-view reconstruction
on RealState10K, LLFF and DTU datasets, and to 1.0 for few-view reconstruction on CO3D an
MipNeRF-360 dataets.

Distance based weighting. We design a weighting schedule that upweights views closer to captured
views in the later stage of training to improve details. Specifically, the weighting is given by a Gaussian
kernel: w ∝ exp

(
−bs2

)
, where s is the distance to the closest captured view and b is a scaling factor.

For few-view reconstruction, b is linearly annealed from 0 to 15. We also anneal the weighting of
generated views globally to further emphasize the importance of captured views.
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(a) Single image to 3D, forward (b) Single image to 3D, orbit

(c) RealEstate10K (d) LLFF

(e) DTU (f) CO3D

(g) Mip-NeRF 360

Figure 8: Camera trajectories for generating novel views. Within each panel, left shows the side
view and right shows the top view of the trajectories, colored by indices of views. (a)-(b): two
types of trajectories used by single image to 3D. Observed view is highlighted in red, while anchor
views are highlighted in orange. (c)-(g): trajectories used by 3D reconstruction. 3 input views are
highlighted in red.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims around performance, runtime, and comparison to existing methods
are described in the experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our method for certain categories, generalizing
to different camera intrinsics, genearting large sets of consistent views, and requiremenet
of manually constructed camera trajectories in the discussion section. We also describe
limitations in the experiments section, e.g. image-to-3D for segmented objects having room
for improvement.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We aimed to provide the full details necessary to reproduce these results, includ-
ing architecture details and a diagram, description of the training datasets and procedures,
evaluation protocols for 3D, and several detailed appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We have not open sourced the code used in this work, but the datasets we used
are all publicly available (Re10K, CO3D, MVImgNet, Objaverse).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details on the diffusion model architecture in Appendix B, includ-
ing learning rate and optimization hyperparameters, data mixtures, CFG masking probability,
and more. The dataset splits were used and shared in previous work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: For few-view reconstruction metrics, we follow prior work and do not report
error bars. For single-image CLIP metrics we use standard deviation over prompts, as in
prior work. Evaluation of 3D generative models is challenging, and better metrics are an
active area of research.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For 3D reconstruction, Appendix D describes the compute requirements and
iterations. For diffusion model training, the compute requirements are specified in Appendix
B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We believe we have followed the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]
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Justification: We currently discuss mostly the positive impacts of this work, but can add
more acknowledgement of the potential for harm caused by 3D generative models if the
reviewers believe it is useful.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We do not plan to release these models and have not planned safeguards around
the release.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the papers that created the datasets we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We produce 3D assets in the form of videos and 3D models that have been
linked to in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Paper does not involve crowdsourcing nor resarch with human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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