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Abstract

In this paper, we focus on Novel Class Discovery for Point Cloud Segmentation
(3D-NCD), aiming to learn a model that can segment unlabeled (novel) 3D classes
using only the supervision from labeled (base) 3D classes. The key to this task
is to setup the exact correlations between the point representations and their base
class labels, as well as the representation correlations between the points from
base and novel classes. A coarse or statistical correlation learning may lead to
the confusion in novel class inference. lf we impose a causal relationship as a
strong correlated constraint upon the learning process, the essential point cloud
representations that accurately correspond to the classes should be uncovered. To
this end, we introduce a structural causal model (SCM) to re-formalize the 3D-NCD
problem and propose a new method, i.e., Joint Learning of Causal Representation
and Reasoning. Specifically, we first analyze hidden confounders in the base
class representations and the causal relationships between the base and novel
classes through SCM. We devise a causal representation prototype that eliminates
confounders to capture the causal representations of base classes. A graph structure
is then used to model the causal relationships between the base classes’ causal
representation prototypes and the novel class prototypes, enabling causal reasoning
from base to novel classes. Extensive experiments and visualization results on 3D
and 2D NCD semantic segmentation demonstrate the superiorities of our method.

1 Introduction
Point Cloud Semantic Segmentation is one of the key tasks in autonomous driving Landrieu and
Simonovsky (2017) and robotic perception Ghosh et al. (2017). However, traditional approaches
adopt a “closed-world” assumption, which limits their applicability in real-world scenarios. The task
of novel class discovery in point cloud semantic segmentation aims to learn a model that can segment
unlabeled (novel) 3D classes using only the supervision from labeled (base) 3D classes Riz et al.
(2023, 2024); Xu et al. (2024). The key to this task is to setup the exact correlations between the
point representations and their base class labels, as well as the representation correlations between
the points from base and novel classes. However, in practical scenarios, the base class classifier often
learns shortcut features from the point cloud Geirhos et al. (2020); Hermann and Lampinen (2020),
which are spurious correlations that hinder the learning of unbiased semantic representations for the
base class, thereby easily misleading the model into making wrong predictions. Furthermore, due to
the absence of labels and clear semantic connections with the base class, the novel class is prone to
being misclassified as a base class. To this end, we analyze the problems as follows:
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Figure 1: (a) On the left, misled by the shortcut feature of ‘circular support’, learning with statistical
correlation fails to identify the novel class ‘chair’ but assign the label ‘stool’ straightforwardly. On
the right, causality-based learning captures the base classes’ causal representation (leg) and uses it as
a key element for causal reasoning, correctly predicting the novel class. (b) SCM of 3D NCD: B is
the base class, N the novel class, X the original point cloud, and U the confounding factor.

Firstly, traditional base class classifiers are essentially statistical models that focus on superficial
dependencies between data and labels, without uncovering the intrinsic causal mechanisms. As
a result, they tend to learn shortcut features, which are regarded as confounding factors in the
field of causal learning Schölkopf et al. (2021). As shown in Figure 1 (a), statistical correlation
learning may cause confusion in novel class inference. If we impose a causal relationship as a
strongly correlated constraint during the learning process, the essential point cloud representations
that accurately correspond to the classes should be uncovered.

Secondly, novel classes are often variations of base class through some causal mechanisms. For
example, in point clouds, the posture of a ‘rider’ can be viewed as a causal variation of ‘person’
under the influence of the ‘bicycle’ context. Similarly, the structural similarity between ‘truck’ and
‘car’ reflects shared causal prior knowledge of ‘vehicle.’ Therefore, we need to leverage the causal
relationships between base and novel classes to enhance the model’s ability to infer novel classes.

To this end, we introduce a structural causal model (SCM) Pearl et al. (2016) to re-formalize the
3D-NCD problem. As shown in Figure 1 (b) , This SCM consists of four causal variables: the
base class B and novel class N extracted from the original point cloud data X , the confounding
factors U (representing shortcut features or non-causal features). The path U → B indicates that
the confounding factor affects the point cloud representation learning of the base class, while the
path B → N reflects the causal impact of the base class on the novel class. Our goal is to remove
U to obtain the causal point cloud representation of base class and establish the causal relationship
between the base and novel classes, thus enabling causal reasoning from B to N .

To achieve this, we first introduce causal representation prototype learning, which eliminates con-
founding factors through causal adversarial mechanisms and extracts causal representations to obtain
base class prototypes. Next, to enable causal reasoning, we introduce a graph structure with nodes
representing the prototypes of the base and novel classes, and edges denoting their causal rela-
tionships. We then apply two constraints: causal pruning, which removes edges with low causal
correlations to reduce irrelevant base class features on novel class learning, and inference direction
consistency, which ensures the information flow in the graph aligns with causal relationships. Finally,
the optimized graph is input into a graph convolutional network Kipf and Welling (2016) to generate
base class labels and novel class pseudo-labels.

Our contribution can be summarized in three folds. First, we introduce a causality-based approach
to excavate intrinsic causal mechanisms. This is the first method to incorporate causality into 3D
NCD. Second, we propose causal representation prototype learning and graph-based causal reasoning
methods to learn base classes’ causal representation and model the causal relationships between
base and novel classes. Third, extensive experiments and visualization results on 3D and 2D NCD
semantic segmentation demonstrate the superiorities of our method.

2 Related work

Point Cloud Semantic Segmentation. The goal of 3D point cloud semantic segmentation is to
partition a point cloud scene into different meaningful semantic parts. Traditional 3D semantic
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segmentation methods Charles et al. (2017); Qi et al. (2017); Milioto et al. (2019) rely on full
annotations, segmenting classes labeled in the training set. Several task settings extends the traditional
3D segmentation to the novel class. Among these, few-shot 3D segmentation An et al. (2025, 2024)
reduces annotation burden but still requires limited labeled samples for novel classes. Similarly,
zero-shot Liu et al. (2024a); Yang et al. (2023) and open-vocabulary Wei et al. (2025); Liu et al.
(2024b) 3D segmentation rely on external semantic information like textual descriptions to identify
novel classes. Novel class discovery Riz et al. (2023, 2024); Xu et al. (2024) in 3D segmentation aims
to learn a model that can segment novel classes using only the supervision from labeled known classes.
Critically, 3D-NCD demands neither the novel class samples of few-shot learning nor the textual
guidance required by zero-shot and open-vocabulary methods. Instead, 3D-NCD autonomously
discovers and segments novel classes by identifying patterns distinct from the known classes, offering
a more practical and unconstrained solution for dynamic open-world environments (e.g., autonomous
driving and domestic robotics), where objects may suddenly appear without prior definition or labels.

Novel Class Discovery. NCD leverages known classes to infer the semantics of novel classes. The 2D-
NCD primarily follows two approaches. The first approach Hsu et al. (2018); Yen-Chang Hsu (2019)
trains a classification network on known data and then clusters novel data based on the network’s
predictions. However, this method often overfits to the base classes, thereby limiting its performance
on novel classes. The second approach Han et al. (2021); Wang et al. (2020a) incorporates both
known and novel samples into clustering to promote shared feature representations, thus improving
generalization. Although NCD has made some progress in 2D, research on NCD in the domain
of 3D remains limited Weng et al. (2023); Riz et al. (2023, 2024); Xu et al. (2024). Additionally,
these 3D-NCD methods rely on statistical similarity and overlook the causal relationships between
base-novel classes. To address this, we introduce causal representation learning Schölkopf et al.
(2021); Zhang et al. (2023) to capture the causal representation of base classes and model the causal
relationships from base to novel classes, using a graphical structure to implement causal reasoning.

Causal Learning in Computer Vision. Causal relationships have recently been widely applied in
learning-based 2D computer vision tasks Liu et al. (2024c); Zhang et al. (2023); Chen et al. (2023).
Incorporating causality into machine learning helps to produce more learnable and interpretable
models, since traditional CNN architectures consider only statistical correlation without accounting
for causal structure. In the 3D point cloud domain, previous work such as CausalPC Huang et al.
(2024) constructs a SCM Pearl et al. (2016), treating adversarial perturbations and sensor noise as the
confounding factor U , and purifies point-cloud inputs by identifying and removing its causal effect to
maintain classifier accuracy under various attacks. In contrast, in our method U denotes non-causal
shortcut features Geirhos et al. (2020); Hermann and Lampinen (2020) in the point cloud, which are
eliminated via an adversarial network to enable novel class discovery and precise segmentation.

3 Method

Problem Definition. In point cloud segmentation, the NCD problem aims to train a segmentation
network to process 3D datasets that contain partially labeled points from known classes and unlabeled
points from novel classes, enabling the network to classify the 3D points in the scene into known or
novel semantic classes. Formally, the training set consists of multiple 3D scenes, each containing
two parts: 1) Labeled part: Ds = {(p(i)s , l

(i)
s )}Hi=1, where p(i)s represents the i-th point, and l

(i)
s ∈ As

is its corresponding known class label. 2) Unlabeled part: Du = {p(j)u }Lj=1, where p
(j)
u represents

the j-th point belonging to the novel class set Au, and As ∩ Au = ∅ (the known class set and the
novel class set do not overlap). The goal is to train a point cloud segmentation network F that can
accurately classify each point in novel scenes from the test set into one of the classes in As ∪Au.

3.1 A Causal View of Novel Class Discovery in Point Cloud Segmentation

We model this task using an SCM Pearl et al. (2016) shown in the Figure 1 (b). This SCM consists of
four causal variables: the base class B and novel class N extracted from the original point cloud data
X , the confounding factors U . We now present the three main causal paths in this task.

1) B ← X → N : This represents the the base class point cloud data B and novel class point cloud
data N extracted from the original point cloud data X , with a causal path between them.
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2) B → N : The base class B influence the novel class N through some causal mechanisms. For
example, the features of ‘person’ are adjusted by the context of ‘bicycle’ to generate the features of
‘rider’. The similarity between ‘truck’ and ‘car’ reflects shared causal prior knowledge of ‘vehicle.’

3) U → B: The model often learns shortcut features Geirhos et al. (2020) from the base class point
cloud data B, which are regarded as confounding factors U that hinder the learning of base classes’
causal representations. As shown in Figure 1 (a), U could be a visually prominent but non-causal
element like a ‘circular support’, whereas the base classes’ causal representation is the ‘leg’.

3.2 Causal Representation Prototype Learning

We first use the feature extractor fθ to extract the initial features Z ∈ RP×d for the base class and
Z ′ ∈ RP×d for the novel class from the point cloud data X , where P is the number of sampled points
and d is the feature dimension. We use MinkowskiUNet Choy et al. (2019) as the backbone. For the
base class, we denote the point cloud as XB , and YB is the corresponding label. After clustering, we
obtain the set of novel class prototypes {n1, n2, . . . , nK}, and at time t = 0, we define the base class
causal representation prototypes as C = {c(0)1 , c

(0)
2 , . . . , c

(0)
M }.

In Figure 1 (b), the causal path U → B leads to spurious correlations in the learned P (B|Z)
rather than the true causal relationship P (B|do(Zcausal)), where the do(·) operator denotes causal
intervention Pearl et al. (2016). Our core objective is to learn a pure causal representation Zc for the
base class B, uncontaminated by the confounding factor U . Theoretically, if U were observable, its
influence could be eliminated via the backdoor adjustment formula Pearl et al. (2016): P (B|do(Z)) =∑

u P (B|Z, u)P (u). However, confounding factors are often unknown or difficult to define explicitly.
Existing representative 2D causality-based methods simplify them to the average of visual features
Wang et al. (2021, 2020b), but this may not be accurate enough for complex point cloud data.

Therefore, we aim to learn a feature representation Z that is mutually independent of the confounding
factor U (i.e., Z ⊥ U ), which involves minimizing the mutual information I(Z;U) between them.
This objective aligns closely with the following fundamental causal principle:

Principle 1 (Schoelkopf et al. (2012)). Independent Causal Mechanisms (ICM) Principle: The
conditional distribution of each variable given its causes (i.e., its mechanism) does not inform or
influence the other mechanisms.

According to the ICM principle, the true causal mechanism generating the base class B should be
independent of the mechanism producing the confounder U . Striving for Z ⊥ U helps to disentangle
these mechanisms, enabling Z to stably represent the intrinsic properties of B without being perturbed
by variations in U . Adversarial training provides an indirect way to handle implicit confounding
factors. Drawing inspiration from GAN Goodfellow et al. (2014) , we design an adversarial process:

min
θ

max
ϕ
LADV = Lcls(fθ(XB), YB)− λadvLadv(gϕ(Z), U). (1)

Here, λadv is the weight coefficient of the adversarial loss, balancing the losses. The feature extractor
fθ aims to extract the causal features of base class data XB while minimizing components related
to U , whereas the adversarial network gϕ attempts to recover the confounding factor U from Z.
If gϕ successfully recovers U , it indicates that Z still contains confounding information; if not, Z
has effectively removed the interference from U . This process can be seen as a mechanism for
approximating Z ⊥ U and encouraging the learning of representations compliant with the ICM
principle. Lcls is the classification loss, implemented with a cross-entropy loss function:

Lcls(fθ(XB), YB) = −
∑
i

Yi log(fθ(XB)i). (2)

Ladv is the adversarial loss, aiming to maximize the ability of the adversarial network gϕ to recover
U from Z, while minimizing the correlation between Z and U . This is achieved using binary
cross-entropy loss:

Ladv(gϕ(Z), U) = −E[log(gϕ(Z) · U + (1− gϕ(Z)) · (1− U))]. (3)

After adversarial training, we update the prototypes C from the optimized features Z. The normalized
similarity weight between j-th point cloud feature and i-th prototype is:

Wij =
exp(sim(Zj , Ci))∑M

k=1 exp(sim(Zj , Ck))
, (4)
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Figure 2: Overview of our method. We extract the base and novel class representations from the
initial point cloud. In the base class point cloud data, there exist noisy confounding factors. We
obtain causal representations through causal adversarial deconfounding and then generate base class
prototypes. Meanwhile, the novel class representation also generates prototypes, which are combined
with the base class causal representation prototypes as nodes to construct the graph. The causal
adaptive adjacency matrix dynamically adjusts the graph structure, Lpruning aims to identify and
remove ineffective edges, and Ldirection ensures that the information propagation direction between
nodes aligns with the actual causal path. After these causal reasoning optimizations, the updated
graph is input into the GCN to generate labels for base classes and pseudo-labels for novel classes.

where sim(Zj , Ci) is the similarity between the point cloud feature Zj and the prototype Ci, imple-
mented using cosine similarity. Here, j ∈ {1, 2, . . . , P} represents all sampled points in the point
cloud. The updated value of the i-th prototype after the t+ 1-th iteration is computed as:

C
(t+1)
i =

∑
j Wij · Zj∑

j Wij
. (5)

To ensure efficient and effective matching between the point cloud features Z and the prototypes C,
we use the causal prototype matching loss, which is computed as:

LPRO = −
M∑
i=1

P∑
j=1

Wij · sim(Zj , Ci) + λ · ∥Ci∥22, (6)

where λ is the regularization coefficient that controls prototype complexity and prevent overfitting.

Please note that the extraction of causal representations relies on learning clear and reliable causal
relationships from data. Although novel class features Z ′ also contain confounding factors, due to
the lack of explicit labels, no direct supervision can be provided. The pseudo-labels for the novel
class relies on the model’s assumptions and reasoning, which may introduce bias or noise, and we
cannot ensure that the features learned from the pseudo-labels are consistent with the true causal
relationships. Thus, this work focuses on extracting causal representations for base classes. During
novel class inference, these representations serve as reliable prior knowledge, helping the model
understand novel class features through causal reasoning.

3.3 Causal Reasoning Graph Construction

Figure 1 (b) illustrates the causal path from the base to the novel class (B → N ), and our key
challenge is how to effectively model this causal path in a high-dimensional representation space. A
natural idea is to impose a structured representation of the potential causal influences from base to
novel classes, yielding a more robust and interpretable framework for knowledge transfer. To this end,
we draw inspiration from Causal Bayesian Networks (CBNs) Pearl (2009), which use directed edges
to unambiguously encode causal dependencies. Underlying CBNs is a fundamental assumption:

Principle 2 (Spirtes et al. (1993)). Causal Markov Principle: In a causal DAG G, each variable is
conditionally independent of all non-descendant variables given its direct parents.

This aligns with the essence of NCD task: the representation of a novel class should be influenced
by the base classes that are its direct causes, while also incorporating novel features inherent to
the novel class and not fully explained by the bases. Based on the above thinking, we construct
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a graph to explicitly model the hypothesized causal path (B → N ). The graph consists of causal
representation prototypes of M base classes, denoted as C = {c1, c2, . . . , cM}, and K novel class
prototypes, denoted as N = {n1, n2, . . . , nK}. The node set is V = C ∪N . The graph contains a
set of edges Ecausal = {(ci, nj) | 1 ≤ i ≤M, 1 ≤ j ≤ K}, where wij is the weight of the edge.

To address dynamic novel class inputs and the catastrophic forgetting problem in open world, we
design a causal adaptive adjacency matrix A = [Aij ]M×K , where each element Aij = wij represents
the causal relationship strength from the node ci to the node nj . By introducing a self-attention
mechanism Vaswani et al. (2017), the weight wij of each edge is dynamically adjusted:

wij = softmax
(

Attention(ci, nj)

τ

)
, (7)

where τ is the temperature coefficient. During information propagation in the set Ecausal, the causal
path B → N may not always be strictly followed, leading to ineffective causal knowledge transfer
or interference. To ensure causal directionality, we introduce the inference direction consistency
constraint:

Ldirection =
∑

(ci,nj)∈E

(wij · (1− I(ci → nj)))
2
. (8)

I(ci → nj) is an indicator function where I(ci → nj) = 1 indicates a correct causal path with zero
loss. If the propagation direction is incorrect, the loss increases with the edge weight wij , guiding the
model to learn the correct direction.

In the NCD task, many base class nodes may have a weak or irrelevant impact on the novel class
nodes, leading to ineffective information transmission and interfering with the generation of pseudo-
labels for the novel class. To mitigate this, we introduce a causal pruning constraint, removing edges
with causal weights below a learnable threshold θ:

Lpruning(θ) =
∑

(ci,nj)∈E

I(wij < θ) · w2
ij . (9)

Here, I(wij < θ) indicates edge removal, while w2
ij penalizes weak connections. As causal relation-

ships in the Ecausal change with novel class nodes input, the model dynamically adjusts the threshold
θ, which is set as a learnable parameter.

3.4 Pseudo-label Generation Based on GCN

Existing 3D NCD methods generate pseudo-labels by directly measuring similarity between novel
and base classes, ignoring the complex higher-order dependencies between classes. To address this,
we introduce a graph convolutional network, which can handle the complex relationships between
novel and base classes by leveraging multi-layer propagation and neighbor aggregation to generate
high-quality labels. The update rule for each novel class node nj is:

n
(t+1)
j = σ

(
M∑
i=1

wij√
didj

· c(t)i +

K∑
k=1

wjk√
djdk

· n(t)
k

)
. (10)

Here, di, dj , dk are node degrees, and σ is LeakyReLU. After multiple GCN layers, the final repre-
sentation of novel class node nfinal

j is used to assign pseudo-labels:

ŷj = argmin
i

sim(nfinal
j , ci). (11)

Where ŷj is the predicted pseudo-label for the novel class final representation and similarity is
measured via cosine similarity.

4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Metrics. We evaluated our method on the SemanticKITTI Behley et al.
(2019) and SemanticPOSS Pan et al. (2020) datasets. We adopted the same dataset partitioning
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Table 1: The novel class discovery results on SemanticPOSS dataset. ‘Full’ denotes the results
obtained by supervised learning. The green values are the novel classes in each split.

Split Method bike build. car cone fence grou. pers. plants pole rider traf. trashc. trunk Novel Known All
Full 48.3 86.9 57.2 38.5 49.8 79.1 63.8 81.7 37.0 58.1 33.5 9.1 27.4 - - 51.5

0

EUMS Zhao et al. (2021) 25.7 4.0 0.6 16.4 29.4 36.8 43.8 28.5 13.1 26.8 18.2 3.3 16.9 17.4 21.5 20.3
NOPS Riz et al. (2023) 35.5 30.4 1.2 13.5 24.1 69.1 44.7 42.1 19.2 47.7 24.4 8.2 21.8 35.7 26.6 29.4

SNOPS Riz et al. (2024) 34.2 58.8 10.0 13.2 18.7 77.3 45.8 58.6 17.3 48.4 22.6 8.7 22.9 51.2 25.8 33.6
DASL Xu et al. (2024) 46.3 51.5 6.0 35.7 48.5 83.0 67.9 53.1 35.5 59.3 31.0 2.8 15.5 48.4 38.0 41.2

Ours 46.1 60.4 8.3 40.4 51.1 80.8 67.1 55.3 39.1 58.2 19.4 2.1 13.3 51.3 37.4 41.7

1

EUMS Zhao et al. (2021) 15.2 68.0 28.0 24.0 11.9 75.1 36.0 74.5 26.9 48.6 26.0 5.6 23.1 21.0 40.0 35.6
NOPS Riz et al. (2023) 29.4 71.4 28.7 12.2 3.9 78.2 56.8 74.2 18.3 38.9 23.3 13.7 23.5 30.0 38.2 36.4

SNOPS Riz et al. (2024) 16.3 71.4 30.0 19.8 24.9 77.1 55.0 73.4 15.8 38.4 22.3 15.7 23.6 32.1 38.7 37.2
DASL Xu et al. (2024) 31.5 83.2 48.7 25.4 23.9 77.3 53.1 77.1 32.5 57.3 35.0 9.3 18.0 36.2 46.4 44.0

Ours 32.2 84.0 49.1 32.4 17.3 77.5 62.3 77.9 34.0 62.0 36.8 9.1 20.8 37.3 48.4 45.8

2

EUMS Zhao et al. (2021) 40.1 69.5 27.7 13.5 34.9 76.0 54.7 75.6 5.3 39.2 7.8 8.5 11.9 8.3 44.0 35.7
NOPS Riz et al. (2023) 37.2 71.8 29.7 14.6 28.4 77.5 52.1 73.0 11.5 47.1 0.5 10.2 14.8 9.0 44.2 36.0

SNOPS Riz et al. (2024) 38.4 72.5 28.0 14.5 26.2 78.1 54.7 74.3 10.0 48.3 23.0 10.2 17.7 16.9 44.5 38.1
DASL Xu et al. (2024) 45.3 82.8 49.8 28.4 46.3 76.7 66.2 77.2 10.9 58.4 18.6 7.3 8.2 12.6 53.8 44.3

Ours 45.1 83.3 52.6 38.0 46.9 78.9 68.6 78.7 19.8 59.4 14.8 9.0 6.2 13.6 56.1 46.3

3

EUMS Zhao et al. (2021) 41.2 70.7 28.1 4.3 38.3 76.7 38.3 75.4 25.8 34.3 28.3 0.4 24.4 13.0 44.7 37.4
NOPS Riz et al. (2023) 38.6 70.4 30.9 0.0 29.4 76.5 56.0 71.8 17.0 31.9 36.3 1.0 22.6 10.9 43.9 36.3

SNOPS Riz et al. (2024) 39.4 70.3 30.0 9.1 26.8 77.6 54.3 72.5 16.0 49.9 28.1 1.3 23.5 20.1 43.9 38.4
DASL Xu et al. (2024) 45.5 82.9 47.7 0.0 45.1 77.8 66.3 77.7 34.3 49.1 30.5 4.0 15.3 17.7 52.8 44.7

Ours 44.7 81.7 50.0 36.2 47.4 75.1 65.1 76.5 31.0 47.5 33.9 0.0 24.9 27.9 53.0 47.2

Table 2: The novel class discovery results on the SemanticKITTI dataset. ‘Full’ denotes the results
obtained by supervised learning. The four groups represent the four splits in turn.

Method bi.cle b.clst build. car fence mt.cle m.clst oth-g. oth-v. park. pers. pole road sidew. terra. traff. truck trunk veget. Novel Known All
Full 4.8 59.2 87.1 92.5 36.5 28.0 2.5 4.0 27.8 39.1 35.4 63.4 90.8 77.1 63.7 41.5 55.0 58.1 90.1 - - 50.3

EUMS Zhao et al. (2021) 5.3 40.0 15.8 79.2 9.0 16.9 2.5 0.1 11.4 14.4 12.7 29.2 42.6 26.1 0.1 10.3 47.4 37.9 38.4 24.6 21.1 23.1
NOPS Riz et al. (2023) 5.6 47.8 52.7 82.6 13.8 25.6 1.4 1.7 14.5 19.8 25.9 32.1 56.7 8.1 23.8 14.3 49.4 36.2 44.2 37.1 26.5 29.3

SNOPS Riz et al. (2024) 6.6 43.9 72.0 83.3 13.6 24.7 2.5 2.4 15.1 18.7 24.6 31.6 49.5 43.2 27.4 15.7 42.1 38.5 37.5 45.9 26.0 31.2
DASL Xu et al. (2024) 5.5 51.1 74.6 92.3 29.8 22.8 0.0 0.0 23.3 24.8 27.7 59.7 41.4 22.5 23.6 39.3 43.6 51.1 66.4 45.7 33.7 36.8

Ours 5.2 48.9 70.5 90.4 29.8 21.4 0.6 0.0 26.0 22.5 23.0 56.3 53.1 24.1 23.7 33.5 41.1 51.4 63.2 46.9 32.2 36.9
EUMS Zhao et al. (2021) 7.5 42.4 80.0 76.8 8.6 19.6 1.4 0.6 12.0 14.1 14.0 40.7 86.3 66.5 56.3 12.0 44.8 20.9 72.4 24.2 37.1 35.6
NOPS Riz et al. (2023) 7.4 51.2 84.5 50.9 7.3 28.9 1.8 0.0 22.2 19.4 30.4 37.6 90.1 72.2 60.8 16.8 57.3 49.3 85.1 25.4 46.2 40.7

SNOPS Riz et al. (2024) 7.6 43.5 85.1 68.7 18.9 24.4 3.5 0.0 23.9 19.1 27.0 36.5 89.3 71.9 62.0 17.2 55.9 29.4 84.4 27.2 45.2 40.4
DASL Xu et al. (2024) 3.7 57.4 89.2 56.5 17.3 20.3 0.0 0.0 20.0 30.6 34.8 60.6 93.2 77.6 62.0 38.7 56.9 39.2 86.7 28.7 50.1 44.5

Ours 4.3 51.9 89.4 82.6 13.9 25.5 0.0 0.0 25.2 28.7 34.7 62.0 92.6 77.0 62.7 37.5 62.3 42.8 87.6 33.6 50.9 46.6
EUMS Zhao et al. (2021) 8.3 50.8 83.0 88.1 17.9 2.8 2.3 0.2 3.2 25.4 25.0 20.2 88.3 71.0 57.9 8.6 27.2 38.4 77.0 12.4 42.2 36.6
NOPS Riz et al. (2023) 6.7 49.2 86.4 90.8 23.7 2.7 0.6 1.9 15.5 29.5 27.9 36.4 90.3 73.4 61.2 17.8 10.3 46.2 84.3 16.5 48.0 39.7

SNOPS Riz et al. (2024) 6.8 48.3 86.1 89.9 22.2 9.3 0.6 3.6 10.5 28.4 27.1 23.8 90.6 73.8 61.9 22.3 22.1 46.1 83.8 17.6 48.0 39.8
DASL Xu et al. (2024) 3.6 54.2 88.9 93.3 28.4 10.2 0.0 0.9 9.6 33.4 32.2 36.1 92.7 77.4 62.2 10.7 34.2 51.7 86.9 20.1 50.4 42.5

Ours 8.0 66.0 89.2 93.3 27.7 21.7 0.0 0.2 9.6 33.8 34.0 33.1 93.1 77.9 61.7 20.5 7.8 52.8 86.8 18.5 51.8 43.0
EUMS Zhao et al. (2021) 4.0 2.5 80.1 87.2 16.8 14.0 15.0 0.3 14.1 20.8 6.8 37.6 86.8 66.5 55.3 16.2 40.6 38.4 76.2 7.1 43.4 35.7
NOPS Riz et al. (2023) 2.3 27.8 86.0 89.9 23.1 24.5 2.9 3.1 18.2 30.1 16.3 39.9 90.7 73.5 61.0 17.4 49.8 44.0 83.2 12.4 49.0 41.2

SNOPS Riz et al. (2024) 4.7 31.5 84.6 88.7 22.8 23.3 8.2 2.6 17.9 28.7 15.1 38.3 89.7 72.5 60.8 16.1 43.3 45.7 82.9 14.9 47.9 40.9
DASL Xu et al. (2024) 2.6 32.5 88.7 93.3 28.1 24.0 0.1 1.0 23.7 35.6 15.3 59.8 93.2 77.6 61.4 37.8 56.6 52.1 86.7 12.6 54.6 45.8

Ours 0.5 40.0 89.4 93.5 29.7 24.6 6.2 0.2 24.8 36.4 13.8 61.5 93.5 77.8 62.6 40.0 60.9 52.9 87.4 15.1 55.7 46.8

strategy as NOPS Riz et al. (2023), where one subset is designated as the novel classes, and the
remaining subsets as the base classes. We evaluated on sequences 08 and 03 from the SemanticKITTI
and SemanticPOSS datasets, respectively, which include both known and novel classes. For the
known classes, we report the IoU for each class. For the novel classes, we use the Hungarian
algorithm Kuhn (2010) to match cluster labels with ground truth labels and then present the IoU
values for each novel class.

Implementation Details. We implemented our network using the MinkowskiUNet-34C Choy et al.
(2019) architecture, consistent with existing methods Riz et al. (2023, 2024); Xu et al. (2024). We
extracted point-level features from the penultimate layer. The number of prototypes for both base and
novel classes is consistent with the number of classes in the dataset. The optimizer used is AdamW,
with an initial learning rate of 1e-3, decaying every 5 epochs until reaching a minimum value of 1e-5.
The weight coefficient λadv, which balances classification and adversarial losses, and the threshold
θ in the causal pruning constraint are both initially set to 0.5 and are dynamically adjusted during
network training. For the hyperparameters, we set the temperature parameter τ to 0.06 and the
regularization coefficient λ to 0.02. The number of graph convolution layers is set to 3.

4.2 Comparison with the State of the Art

SemanticPOSS dataset. The results in Table 1 show that our method achieves the highest mIoU
across all classes in all splits. In split 2, the base class mIoU reaches 56.1%, a 3.3% improvement over
DASL, demonstrating effective mitigation of base class confounding through causal representation
learning. In the challenging split 3, our method outperforms DASL on novel classes by 10.2%, with
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Figure 3: Visualization comparison between our method, NOPS, and DASL on the Seman-
ticPOSS and SemanticKITTI datasets. In the first row, NOPS and DASL, relying on statistical
methods, fail to eliminate non-causal features, causing confusion between ‘Plants’ and ‘Building’. In
the second row, they also confuse ‘Road’ with ‘Sidewalk’ and ‘Terrain’ with ‘Vegetation’. In contrast,
our method achieves better results and generates high-quality pseudo labels.

Car Plants Building KnownGround

Baseline Baseline+CRP

POSS-Sequences-00 

sample:320

Baseline+CRP+CRG Ours GT

Figure 4: Ablation experiment visualization.The introduction of CRP significantly reduced the
misclassification between ‘Plant’ and ‘Building.’ Subsequently, integrating CRG further alleviated the
confusion between ‘Plant’ and ‘Car.’ Finally, incorporating GCPL effectively reduced the confusion
among ‘Plant,’ ‘Car,’ and ‘Building.’ .

a notable 36.2% for the cone-stone class, while both DASL and NOPS achieve 0. These results
demonstrate that our use of causal reasoning enhances the segmentation accuracy for novel classes.

SemanticKITTI dataset. The results in Table 2 show that our method achieves the highest mIoU
across all classes in all splits. Our method improves novel class segmentation by 4.9% on split 1.
Specifically, in the car class, it achieves an IoU of 82.6%, a 13.9% improvement over SNOPS. In the
motorcycle class of split 3, our method achieves an 11.5% improvement. Figure 3 presents a visual
comparison of NOPS, DASL, and our method.

4.3 Ablation Study

Our method consists of three components: causal representation prototype learning (CRP), causal
reasoning graph (CRG), and graph convolutional based pseudo-label generation (GCPL). Table 3
presents the performance improvements at each stage. The first row shows the baseline model, a
modified MinkowskiUNet-34C Choy et al. (2019). The second row demonstrates that introducing
CRP enhances novel class segmentation by capturing causal features. In the third row, we replace
the causal representation prototypes with prototypes generated by traditional clustering as graph

Table 3: Component Analysis. The four classes represent the novel classes in split 0. The final
column, Avg, shows the average mIoU for novel classes across four split in the SemanticPOSS.

Method Split 0 Overall

Baseline CRP CRG GCPL Building Car Ground Plants Avg Avg

✓ 58.6 6.0 44.9 43.7 38.3 24.7
✓ ✓ 52.4 7.3 54.5 52.3 41.6 25.9
✓ ✓ 56.3 2.6 73.2 49.8 45.5 28.8
✓ ✓ ✓ 56.5 7.1 73.1 52.9 47.4 30.1
✓ ✓ ✓ ✓ 60.4 8.3 80.8 55.3 51.2 32.5
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Figure 5: Comparison of novel class Grad-CAM
visualization on the PASCAL-5i dataset.
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Figure 6: Comparison of novel class feature map
visualization on the COCO-20i dataset.

nodes, further improving performance. The fourth row combines CRP and CRG, enhancing causal
representation capture and causal relationship modeling. Here we generate pseudo-labels for novel
classes using Sinkhorn-Knopp Cuturi (2013), consistent with existing methods. The last row uses
GCN to generate pseudo-labels for novel classes, boosting novel class segmentation. A visualization
analysis is provided in Figure 4.

4.4 Extension for 2D NCD Semantic Segmentation

Comparison with the SOTA method. We extend our method to 2D NCD semantic segmentation.
The current SOTA method is EUMS Zhao et al. (2021), which lacks the ability to capture causal
representations and model the relationship between the base-novel classes as effectively as ours.
To ensure fairness, we follow the same dataset partitioning strategy and experimental setup. We
conducted experiments on the PASCAL-5i Shaban et al. (2017) and COCO-20i Nguyen and Todorovic
(2019) datasets. As shown in the Table 4 and Table 5, our method outperforms EUMS in most fold,
showing that our causal representation and reasoning approach is equally effective in 2D NCD.

Table 4: Performance on PASCAL-5i dataset.

Method
PASCAL-5i

Fold0 Fold1 Fold2 Fold3 Avg

EUMS 69.8 60.1 56.3 50.2 59.1
Ours 71.9 62.5 57.3 53.1 61.2

Table 5: Performance on COCO-20i dataset.

Method
COCO-20i

Fold0 Fold1 Fold2 Fold3 Avg

EUMS 42.39 26.89 19.75 18.19 26.81
Ours 43.23 25.91 20.30 18.56 27.00

Visualization Analysis. Figure 5 presents the Grad-CAM Selvaraju et al. (2016) visualization
results. EUMS generates scattered feature maps, highlighting vague regions of interest that may miss
important causal features. In contrast, our method produces more focused and clearer feature maps,
effectively highlighting key causal regions and demonstrating superior causal reasoning capabilities.
Figure 6 illustrates that EUMS results in sparse and dispersed activation regions, failing to capture key
causal features. Our approach, however, through causal representation and reasoning, generates more
concentrated and clear activations, better identifying causal relationships and significantly improving
feature localization and visual accuracy.

5 Conclusion

We introduce a SCM to re-formalize the 3D-NCD problem and propose a novel approach called joint
learning of causal representation and reasoning. Specifically, we first analyze the hidden confounding
factors in the base class representations and the causal relationships between the base and novel
classes through SCM. Based on this, we propose a causal representation prototype that captures the
causal representation of the base class by eliminating hidden confounding factors. Then, we use a
graph to model the causal relationship between the base class causal representation prototype and the
novel class prototype, enabling causal reasoning from the base to the novel. Extensive experiments
results on 3D and 2D NCD semantic segmentation demonstrate the superiorities of our method.

Acknowledgment. This work is supported by the National Nature Science Foundation of China (Nos.
62376186, 62472333).
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instructions for how to replicate the results, access to a hosted model (e.g., in the case698

of a large language model), releasing of a model checkpoint, or other means that are699

appropriate to the research performed.700

• While NeurIPS does not require releasing code, the conference does require all submis-701

sions to provide some reasonable avenue for reproducibility, which may depend on the702

nature of the contribution. For example703

(a) If the contribution is primarily a new algorithm, the paper should make it clear how704

to reproduce that algorithm.705

(b) If the contribution is primarily a new model architecture, the paper should describe706

the architecture clearly and fully.707

(c) If the contribution is a new model (e.g., a large language model), then there should708

either be a way to access this model for reproducing the results or a way to reproduce709

the model (e.g., with an open-source dataset or instructions for how to construct710

the dataset).711

(d) We recognize that reproducibility may be tricky in some cases, in which case712

authors are welcome to describe the particular way they provide for reproducibility.713

In the case of closed-source models, it may be that access to the model is limited in714

some way (e.g., to registered users), but it should be possible for other researchers715

to have some path to reproducing or verifying the results.716

5. Open access to data and code717

Question: Does the paper provide open access to the data and code, with sufficient instruc-718

tions to faithfully reproduce the main experimental results, as described in supplemental719

material?720
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Answer: [Yes]721

Justification: The code will be released upon acceptance. The datasets used derive from722

SemanticPOSS and SemanticKITTI; they are already public and available online.723

Guidelines:724

• The answer NA means that paper does not include experiments requiring code.725

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/726

public/guides/CodeSubmissionPolicy) for more details.727

• While we encourage the release of code and data, we understand that this might not be728

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not729

including code, unless this is central to the contribution (e.g., for a new open-source730

benchmark).731

• The instructions should contain the exact command and environment needed to run to732

reproduce the results. See the NeurIPS code and data submission guidelines (https:733

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.734

• The authors should provide instructions on data access and preparation, including how735

to access the raw data, preprocessed data, intermediate data, and generated data, etc.736

• The authors should provide scripts to reproduce all experimental results for the new737

proposed method and baselines. If only a subset of experiments are reproducible, they738

should state which ones are omitted from the script and why.739

• At submission time, to preserve anonymity, the authors should release anonymized740

versions (if applicable).741

• Providing as much information as possible in supplemental material (appended to the742

paper) is recommended, but including URLs to data and code is permitted.743

6. Experimental setting/details744

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-745

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the746

results?747

Answer: [Yes]748

Justification: The details necessary to faithfully reproduce our experiments (training proce-749

dure, data splits, optimizer, learning rate, etc.) are included in the paper.750

Guidelines:751

• The answer NA means that the paper does not include experiments.752

• The experimental setting should be presented in the core of the paper to a level of detail753

that is necessary to appreciate the results and make sense of them.754

• The full details can be provided either with the code, in appendix, or as supplemental755

material.756

7. Experiment statistical significance757

Question: Does the paper report error bars suitably and correctly defined or other appropriate758

information about the statistical significance of the experiments?759

Answer: [Yes]760

Justification: We report average results of multiple runs in our experimental section. Our761

paper does not report error bars.762

Guidelines:763

• The answer NA means that the paper does not include experiments.764

• The authors should answer "Yes" if the results are accompanied by error bars, confi-765

dence intervals, or statistical significance tests, at least for the experiments that support766

the main claims of the paper.767

• The factors of variability that the error bars are capturing should be clearly stated (for768

example, train/test split, initialization, random drawing of some parameter, or overall769

run with given experimental conditions).770

• The method for calculating the error bars should be explained (closed form formula,771

call to a library function, bootstrap, etc.)772
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• The assumptions made should be given (e.g., Normally distributed errors).773

• It should be clear whether the error bar is the standard deviation or the standard error774

of the mean.775

• It is OK to report 1-sigma error bars, but one should state it. The authors should776

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis777

of Normality of errors is not verified.778

• For asymmetric distributions, the authors should be careful not to show in tables or779

figures symmetric error bars that would yield results that are out of range (e.g. negative780

error rates).781

• If error bars are reported in tables or plots, The authors should explain in the text how782

they were calculated and reference the corresponding figures or tables in the text.783

8. Experiments compute resources784

Question: For each experiment, does the paper provide sufficient information on the com-785

puter resources (type of compute workers, memory, time of execution) needed to reproduce786

the experiments?787

Answer: [Yes]788

Justification: We describe the computational resource in Section C.5789

Guidelines:790

• The answer NA means that the paper does not include experiments.791

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,792

or cloud provider, including relevant memory and storage.793

• The paper should provide the amount of compute required for each of the individual794

experimental runs as well as estimate the total compute.795

• The paper should disclose whether the full research project required more compute796

than the experiments reported in the paper (e.g., preliminary or failed experiments that797

didn’t make it into the paper).798

9. Code of ethics799

Question: Does the research conducted in the paper conform, in every respect, with the800

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?801

Answer: [Yes]802

Justification: We reviewed and ensured that the present work respects the NeurIPS Code of803

Ethics at each individual part.804

Guidelines:805

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.806

• If the authors answer No, they should explain the special circumstances that require a807

deviation from the Code of Ethics.808

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-809

eration due to laws or regulations in their jurisdiction).810

10. Broader impacts811

Question: Does the paper discuss both potential positive societal impacts and negative812

societal impacts of the work performed?813

Answer: [NA]814

Justification: Our paper is not highly related to societal impacts.815

Guidelines:816

• The answer NA means that there is no societal impact of the work performed.817

• If the authors answer NA or No, they should explain why their work has no societal818

impact or why the paper does not address societal impact.819

• Examples of negative societal impacts include potential malicious or unintended uses820

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations821

(e.g., deployment of technologies that could make decisions that unfairly impact specific822

groups), privacy considerations, and security considerations.823
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• The conference expects that many papers will be foundational research and not tied824

to particular applications, let alone deployments. However, if there is a direct path to825

any negative applications, the authors should point it out. For example, it is legitimate826

to point out that an improvement in the quality of generative models could be used to827

generate deepfakes for disinformation. On the other hand, it is not needed to point out828

that a generic algorithm for optimizing neural networks could enable people to train829

models that generate Deepfakes faster.830

• The authors should consider possible harms that could arise when the technology is831

being used as intended and functioning correctly, harms that could arise when the832

technology is being used as intended but gives incorrect results, and harms following833

from (intentional or unintentional) misuse of the technology.834

• If there are negative societal impacts, the authors could also discuss possible mitigation835

strategies (e.g., gated release of models, providing defenses in addition to attacks,836

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from837

feedback over time, improving the efficiency and accessibility of ML).838

11. Safeguards839

Question: Does the paper describe safeguards that have been put in place for responsible840

release of data or models that have a high risk for misuse (e.g., pretrained language models,841

image generators, or scraped datasets)?842

Answer: [NA]843

Justification: This paper does not pose any such risk.844

Guidelines:845

• The answer NA means that the paper poses no such risks.846

• Released models that have a high risk for misuse or dual-use should be released with847

necessary safeguards to allow for controlled use of the model, for example by requiring848

that users adhere to usage guidelines or restrictions to access the model or implementing849

safety filters.850

• Datasets that have been scraped from the Internet could pose safety risks. The authors851

should describe how they avoided releasing unsafe images.852

• We recognize that providing effective safeguards is challenging, and many papers do853

not require this, but we encourage authors to take this into account and make a best854

faith effort.855

12. Licenses for existing assets856

Question: Are the creators or original owners of assets (e.g., code, data, models), used in857

the paper, properly credited and are the license and terms of use explicitly mentioned and858

properly respected?859

Answer: [Yes]860

Justification: All the datasets used to train our models, and the code for the papers utilized861

as benchmarks to evaluate our algorithms are cited.862

Guidelines:863

• The answer NA means that the paper does not use existing assets.864

• The authors should cite the original paper that produced the code package or dataset.865

• The authors should state which version of the asset is used and, if possible, include a866

URL.867

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.868

• For scraped data from a particular source (e.g., website), the copyright and terms of869

service of that source should be provided.870

• If assets are released, the license, copyright information, and terms of use in the871

package should be provided. For popular datasets, paperswithcode.com/datasets872

has curated licenses for some datasets. Their licensing guide can help determine the873

license of a dataset.874

• For existing datasets that are re-packaged, both the original license and the license of875

the derived asset (if it has changed) should be provided.876
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• If this information is not available online, the authors are encouraged to reach out to877

the asset’s creators.878

13. New assets879

Question: Are new assets introduced in the paper well documented and is the documentation880

provided alongside the assets?881

Answer: [NA]882

Justification: We do not release any new assets with this submission. However, we will883

make the code as well as trained models publicly available if/when the paper is accepted.884

Guidelines:885

• The answer NA means that the paper does not release new assets.886

• Researchers should communicate the details of the dataset/code/model as part of their887

submissions via structured templates. This includes details about training, license,888

limitations, etc.889

• The paper should discuss whether and how consent was obtained from people whose890

asset is used.891

• At submission time, remember to anonymize your assets (if applicable). You can either892

create an anonymized URL or include an anonymized zip file.893

14. Crowdsourcing and research with human subjects894

Question: For crowdsourcing experiments and research with human subjects, does the paper895

include the full text of instructions given to participants and screenshots, if applicable, as896

well as details about compensation (if any)?897

Answer: [NA]898

Justification: This research did not involve any crowdsourcing experiments or studies with899

human subjects.900

Guidelines:901

• The answer NA means that the paper does not involve crowdsourcing nor research with902

human subjects.903

• Including this information in the supplemental material is fine, but if the main contribu-904

tion of the paper involves human subjects, then as much detail as possible should be905

included in the main paper.906

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,907

or other labor should be paid at least the minimum wage in the country of the data908

collector.909

15. Institutional review board (IRB) approvals or equivalent for research with human910

subjects911

Question: Does the paper describe potential risks incurred by study participants, whether912

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)913

approvals (or an equivalent approval/review based on the requirements of your country or914

institution) were obtained?915

Answer: [NA]916

Justification: This research did not involve studies with human subjects917

Guidelines:918

• The answer NA means that the paper does not involve crowdsourcing nor research with919

human subjects.920

• Depending on the country in which research is conducted, IRB approval (or equivalent)921

may be required for any human subjects research. If you obtained IRB approval, you922

should clearly state this in the paper.923

• We recognize that the procedures for this may vary significantly between institutions924

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the925

guidelines for their institution.926

• For initial submissions, do not include any information that would break anonymity (if927

applicable), such as the institution conducting the review.928
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16. Declaration of LLM usage929

Question: Does the paper describe the usage of LLMs if it is an important, original, or930

non-standard component of the core methods in this research? Note that if the LLM is used931

only for writing, editing, or formatting purposes and does not impact the core methodology,932

scientific rigorousness, or originality of the research, declaration is not required.933

Answer: [NA]934

Justification: LLM is not an important, original, or non-standard component of the core935

methods in this research.936

Guidelines:937

• The answer NA means that the core method development in this research does not938

involve LLMs as any important, original, or non-standard components.939

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)940

for what should or should not be described.941
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