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Abstract

In this paper, we focus on Novel Class Discovery for Point Cloud Segmentation
(3D-NCD), aiming to learn a model that can segment unlabeled (novel) 3D classes
using only the supervision from labeled (base) 3D classes. The key to this task
is to setup the exact correlations between the point representations and their base
class labels, as well as the representation correlations between the points from
base and novel classes. A coarse or statistical correlation learning may lead to
the confusion in novel class inference. If we impose a causal relationship as a
strong correlated constraint upon the learning process, the essential point cloud
representations that accurately correspond to the classes should be uncovered. To
this end, we introduce a structural causal model (SCM) to re-formalize the 3D-NCD
problem and propose a new method, i.e., Joint Learning of Causal Representation
and Reasoning. Specifically, we first analyze hidden confounders in the base
class representations and the causal relationships between the base and novel
classes through SCM. We devise a causal representation prototype that eliminates
confounders to capture the causal representations of base classes. A graph structure
is then used to model the causal relationships between the base classes’ causal
representation prototypes and the novel class prototypes, enabling causal reasoning
from base to novel classes. Extensive experiments and visualization results on 3D
and 2D NCD semantic segmentation demonstrate the superiorities of our method.

1 Introduction

Point Cloud Semantic Segmentation is one of the key tasks in autonomous driving [Landrieu and
Simonovsky| (2017) and robotic perception |Ghosh et al.| (2017). However, traditional approaches
adopt a “closed-world” assumption, which limits their applicability in real-world scenarios. The task
of novel class discovery in point cloud semantic segmentation aims to learn a model that can segment
unlabeled (novel) 3D classes using only the supervision from labeled (base) 3D classes |Riz et al.
(2023}, [2024));  Xu et al.|(2024). The key to this task is to setup the exact correlations between the
point representations and their base class labels, as well as the representation correlations between
the points from base and novel classes. However, in practical scenarios, the base class classifier often
learns shortcut features from the point cloud (Geirhos et al.| (2020); Hermann and Lampinen| (2020)),
which are spurious correlations that hinder the learning of unbiased semantic representations for the
base class, thereby easily misleading the model into making wrong predictions. Furthermore, due to
the absence of labels and clear semantic connections with the base class, the novel class is prone to
being misclassified as a base class. To this end, we analyze the problems as follows:
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Figure 1: (a) On the left, misled by the shortcut feature of ‘circular support’, learning with statistical
correlation fails to identify the novel class ‘chair’ but assign the label ‘stool’ straightforwardly. On
the right, causality-based learning captures the base classes’ causal representation (leg) and uses it as
a key element for causal reasoning, correctly predicting the novel class. (b) SCM of 3D NCD: B is
the base class, N the novel class, X the original point cloud, and U the confounding factor.

Firstly, traditional base class classifiers are essentially statistical models that focus on superficial
dependencies between data and labels, without uncovering the intrinsic causal mechanisms. As
a result, they tend to learn shortcut features, which are regarded as confounding factors in the
field of causal learning |[Scholkopf et al.|(2021). As shown in Figure |I| (a), statistical correlation
learning may cause confusion in novel class inference. If we impose a causal relationship as a
strongly correlated constraint during the learning process, the essential point cloud representations
that accurately correspond to the classes should be uncovered.

Secondly, novel classes are often variations of base class through some causal mechanisms. For
example, in point clouds, the posture of a ‘rider’ can be viewed as a causal variation of ‘person’
under the influence of the ‘bicycle’ context. Similarly, the structural similarity between ‘truck’” and
‘car’ reflects shared causal prior knowledge of ‘vehicle.” Therefore, we need to leverage the causal
relationships between base and novel classes to enhance the model’s ability to infer novel classes.

To this end, we introduce a structural causal model (SCM) |Pearl et al.[ (2016)) to re-formalize the
3D-NCD problem. As shown in Figure [T] (b) , This SCM consists of four causal variables: the
base class B and novel class IV extracted from the original point cloud data X, the confounding
factors U (representing shortcut features or non-causal features). The path U — B indicates that
the confounding factor affects the point cloud representation learning of the base class, while the
path B — N reflects the causal impact of the base class on the novel class. Our goal is to remove
U to obtain the causal point cloud representation of base class and establish the causal relationship
between the base and novel classes, thus enabling causal reasoning from B to N.

To achieve this, we first introduce causal representation prototype learning, which eliminates con-
founding factors through causal adversarial mechanisms and extracts causal representations to obtain
base class prototypes. Next, to enable causal reasoning, we introduce a graph structure with nodes
representing the prototypes of the base and novel classes, and edges denoting their causal rela-
tionships. We then apply two constraints: causal pruning, which removes edges with low causal
correlations to reduce irrelevant base class features on novel class learning, and inference direction
consistency, which ensures the information flow in the graph aligns with causal relationships. Finally,
the optimized graph is input into a graph convolutional network [Kipf and Welling| (2016) to generate
base class labels and novel class pseudo-labels.

Our contribution can be summarized in three folds. First, we introduce a causality-based approach
to excavate intrinsic causal mechanisms. This is the first method to incorporate causality into 3D
NCD. Second, we propose causal representation prototype learning and graph-based causal reasoning
methods to learn base classes’ causal representation and model the causal relationships between
base and novel classes. Third, extensive experiments and visualization results on 3D and 2D NCD
semantic segmentation demonstrate the superiorities of our method.

2 Related work

Point Cloud Semantic Segmentation. The goal of 3D point cloud semantic segmentation is to
partition a point cloud scene into different meaningful semantic parts. Traditional 3D semantic



segmentation methods (Charles et al.| (2017); |Q1 et al.| (2017); Milioto et al.| (2019) rely on full
annotations, segmenting classes labeled in the training set. Several task settings extends the traditional
3D segmentation to the novel class. Among these, few-shot 3D segmentation |An et al.| (2025} 2024)
reduces annotation burden but still requires limited labeled samples for novel classes. Similarly,
zero-shot [Liu et al.| (20244); |Yang et al.| (2023) and open-vocabulary Wei et al.| (2025)); [Liu et al.
(2024b) 3D segmentation rely on external semantic information like textual descriptions to identify
novel classes. Novel class discovery |Riz et al.|(2023],/2024); Xu et al.|(2024) in 3D segmentation aims
to learn a model that can segment novel classes using only the supervision from labeled known classes.
Critically, 3D-NCD demands neither the novel class samples of few-shot learning nor the textual
guidance required by zero-shot and open-vocabulary methods. Instead, 3D-NCD autonomously
discovers and segments novel classes by identifying patterns distinct from the known classes, offering
a more practical and unconstrained solution for dynamic open-world environments (e.g., autonomous
driving and domestic robotics), where objects may suddenly appear without prior definition or labels.

Novel Class Discovery. NCD leverages known classes to infer the semantics of novel classes. The 2D-
NCD primarily follows two approaches. The first approach |Hsu et al.| (2018)); [Yen-Chang Hsu| (2019)
trains a classification network on known data and then clusters novel data based on the network’s
predictions. However, this method often overfits to the base classes, thereby limiting its performance
on novel classes. The second approach Han et al.[(2021); [Wang et al.| (2020a) incorporates both
known and novel samples into clustering to promote shared feature representations, thus improving
generalization. Although NCD has made some progress in 2D, research on NCD in the domain
of 3D remains limited [Weng et al.|(2023); Riz et al.| (2023} |2024); [ Xu et al.| (2024)). Additionally,
these 3D-NCD methods rely on statistical similarity and overlook the causal relationships between
base-novel classes. To address this, we introduce causal representation learning |Scholkopft et al.
(2021); Zhang et al.|(2023) to capture the causal representation of base classes and model the causal
relationships from base to novel classes, using a graphical structure to implement causal reasoning.

Causal Learning in Computer Vision. Causal relationships have recently been widely applied in
learning-based 2D computer vision tasks|Liu et al.| (2024c)); Zhang et al.| (2023)); /Chen et al.| (2023]).
Incorporating causality into machine learning helps to produce more learnable and interpretable
models, since traditional CNN architectures consider only statistical correlation without accounting
for causal structure. In the 3D point cloud domain, previous work such as CausalPC Huang et al.
(2024)) constructs a SCM |Pearl et al.| (2016)), treating adversarial perturbations and sensor noise as the
confounding factor U, and purifies point-cloud inputs by identifying and removing its causal effect to
maintain classifier accuracy under various attacks. In contrast, in our method U denotes non-causal
shortcut features |Geirhos et al.| (2020); [Hermann and Lampinen|(2020) in the point cloud, which are
eliminated via an adversarial network to enable novel class discovery and precise segmentation.

3 Method

Problem Definition. In point cloud segmentation, the NCD problem aims to train a segmentation
network to process 3D datasets that contain partially labeled points from known classes and unlabeled
points from novel classes, enabling the network to classify the 3D points in the scene into known or
novel semantic classes. Formally, the training set consists of multiple 3D scenes, each containing
two parts: 1) Labeled part: Dy = {(pgl), 1) H ., where p{¥) represents the i-th point, and I € A,
is its corresponding known class label. 2) Unlabeled part: D,, = {pgj ) le, where pgf ) represents
the j-th point belonging to the novel class set A,, and A; N A,, = & (the known class set and the
novel class set do not overlap). The goal is to train a point cloud segmentation network F’ that can

accurately classify each point in novel scenes from the test set into one of the classes in Ag U A,,.

3.1 A Causal View of Novel Class Discovery in Point Cloud Segmentation

We model this task using an SCM [Pearl et al.| (2016) shown in the FigureE] (b). This SCM consists of
four causal variables: the base class B and novel class N extracted from the original point cloud data
X, the confounding factors U. We now present the three main causal paths in this task.

1) B + X — N: This represents the the base class point cloud data B and novel class point cloud
data N extracted from the original point cloud data X, with a causal path between them.



2) B — N: The base class B influence the novel class N through some causal mechanisms. For
example, the features of ‘person’ are adjusted by the context of ‘bicycle’ to generate the features of
‘rider’. The similarity between ‘truck’ and ‘car’ reflects shared causal prior knowledge of ‘vehicle.

3) U — B: The model often learns shortcut features |Geirhos et al.| (2020) from the base class point
cloud data B, which are regarded as confounding factors U that hinder the learning of base classes’
causal representations. As shown in Figure[I|(a), U could be a visually prominent but non-causal
element like a ‘circular support’, whereas the base classes’ causal representation is the ‘leg’.

3.2 Causal Representation Prototype Learning

We first use the feature extractor f, to extract the initial features Z € R”*? for the base class and
7' € R4 for the novel class from the point cloud data X, where P is the number of sampled points
and d is the feature dimension. We use MinkowskiUNet|Choy et al.|(2019)) as the backbone. For the
base class, we denote the point cloud as X g, and Y5 is the corresponding label. After clustering, we
obtain the set of novel class prototypes {ni,ns, ..., nk}, and at time ¢ = 0, we define the base class
causal representation prototypes as C' = {C(O) C(O) . c(o)}.
1 %2 » » VM

In Figure [1] (b), the causal path U — B leads to spurious correlations in the learned P(B|Z)
rather than the true causal relationship P(B|do(Zcausal)), where the do(+) operator denotes causal
intervention Pearl et al.[(2016). Our core objective is to learn a pure causal representation 2. for the
base class B, uncontaminated by the confounding factor U. Theoretically, if U were observable, its
influence could be eliminated via the backdoor adjustment formula Pearl et al.[(2016): P(B|do(Z)) =
> P(B|Z,u)P(u). However, confounding factors are often unknown or difficult to define explicitly.
Existing representative 2D causality-based methods simplify them to the average of visual features
Wang et al.| (2021} 2020b)), but this may not be accurate enough for complex point cloud data.

Therefore, we aim to learn a feature representation Z that is mutually independent of the confounding
factor U (i.e., Z L U), which involves minimizing the mutual information I(Z; U) between them.
This objective aligns closely with the following fundamental causal principle:

Principle 1 (Schoelkopf et al.| (2012)). Independent Causal Mechanisms (ICM) Principle: The
conditional distribution of each variable given its causes (i.e., its mechanism) does not inform or
influence the other mechanisms.

According to the /CM principle, the true causal mechanism generating the base class B should be
independent of the mechanism producing the confounder U. Striving for Z L U helps to disentangle
these mechanisms, enabling Z to stably represent the intrinsic properties of B without being perturbed
by variations in U. Adversarial training provides an indirect way to handle implicit confounding
factors. Drawing inspiration from GAN Goodfellow et al.|(2014)) , we design an adversarial process:

min max Lapv = Las(fo(XB),YB) — AadvLadv(96(Z),U). ()]

Here, A4, is the weight coefficient of the adversarial loss, balancing the losses. The feature extractor
fo aims to extract the causal features of base class data X 5 while minimizing components related
to U, whereas the adversarial network g4 attempts to recover the confounding factor U from Z.
If g4 successfully recovers U, it indicates that Z still contains confounding information; if not, Z
has effectively removed the interference from U. This process can be seen as a mechanism for
approximating Z L U and encouraging the learning of representations compliant with the ICM
principle. L is the classification loss, implemented with a cross-entropy loss function:

Las(fo(Xp),Yr) = =) Yilog(fo(Xp):). 2)

L4y is the adversarial loss, aiming to maximize the ability of the adversarial network g4 to recover
U from Z, while minimizing the correlation between Z and U. This is achieved using binary
cross-entropy loss:

Ladn(94(2),U) = —E[log(g4(Z) - U + (1 = g4(2)) - (1 = U))]. )
After adversarial training, we update the prototypes C' from the optimized features Z. The normalized
similarity weight between j-th point cloud feature and ¢-th prototype is:

Wi - eXp(Sim(Zja Cl))
Sl exp(sim(Z;, Cy))

“
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Figure 2: Overview of our method. We extract the base and novel class representations from the
initial point cloud. In the base class point cloud data, there exist noisy confounding factors. We
obtain causal representations through causal adversarial deconfounding and then generate base class
prototypes. Meanwhile, the novel class representation also generates prototypes, which are combined
with the base class causal representation prototypes as nodes to construct the graph. The causal
adaptive adjacency matrix dynamically adjusts the graph structure, Lpmuning aims to identify and
remove ineffective edges, and Lgirection €nsures that the information propagation direction between
nodes aligns with the actual causal path. After these causal reasoning optimizations, the updated
graph is input into the GCN to generate labels for base classes and pseudo-labels for novel classes.

where sim(Z;, C;) is the similarity between the point cloud feature Z; and the prototype C;, imple-
mented using cosine similarity. Here, j € {1,2,..., P} represents all sampled points in the point
cloud. The updated value of the i-th prototype after the ¢ 4 1-th iteration is computed as:

C_(t+1) _ Zj Wij - Z;
! > Wij

To ensure efficient and effective matching between the point cloud features Z and the prototypes C,
we use the causal prototype matching loss, which is computed as:

&)

M P
Lpro=—»_ > Wi sim(Z;,C;) + A- ||Cilf3, ©)

i=1j=1
where ) is the regularization coefficient that controls prototype complexity and prevent overfitting.

Please note that the extraction of causal representations relies on learning clear and reliable causal
relationships from data. Although novel class features Z’ also contain confounding factors, due to
the lack of explicit labels, no direct supervision can be provided. The pseudo-labels for the novel
class relies on the model’s assumptions and reasoning, which may introduce bias or noise, and we
cannot ensure that the features learned from the pseudo-labels are consistent with the true causal
relationships. Thus, this work focuses on extracting causal representations for base classes. During
novel class inference, these representations serve as reliable prior knowledge, helping the model
understand novel class features through causal reasoning.

3.3 Causal Reasoning Graph Construction

Figure [I] (b) illustrates the causal path from the base to the novel class (B — N), and our key
challenge is how to effectively model this causal path in a high-dimensional representation space. A
natural idea is to impose a structured representation of the potential causal influences from base to
novel classes, yielding a more robust and interpretable framework for knowledge transfer. To this end,
we draw inspiration from Causal Bayesian Networks (CBNs) [Pearl| (2009), which use directed edges
to unambiguously encode causal dependencies. Underlying CBNs is a fundamental assumption:

Principle 2 (Spirtes et al.| (1993). Causal Markov Principle: In a causal DAG G, each variable is
conditionally independent of all non-descendant variables given its direct parents.

This aligns with the essence of NCD task: the representation of a novel class should be influenced
by the base classes that are its direct causes, while also incorporating novel features inherent to
the novel class and not fully explained by the bases. Based on the above thinking, we construct



a graph to explicitly model the hypothesized causal path (B — N). The graph consists of causal
representation prototypes of M base classes, denoted as C' = {cy, ¢a, ..., car}, and K novel class
prototypes, denoted as N = {ny,na,...,nxk}. The node setis V = C' U N. The graph contains a
set of edges Eausal = {(ci,nj) | 1 <4 < M, 1 < j < K}, where w;; is the weight of the edge.

To address dynamic novel class inputs and the catastrophic forgetting problem in open world, we
design a causal adaptive adjacency matrix A = [A;;|x ik, Where each element A;; = w;; represents
the causal relationship strength from the node ¢; to the node n;. By introducing a self-attention
mechanism Vaswani et al.| (2017), the weight w;; of each edge is dynamically adjusted:

Attention(c;, n;) )
- )
-

w;; = softmax ( @)
where 7 is the temperature coefficient. During information propagation in the set F,ysa1, the causal
path B — N may not always be strictly followed, leading to ineffective causal knowledge transfer
or interference. To ensure causal directionality, we introduce the inference direction consistency

constraint: )
Edirection = Z (w7] : (1 - ]I(Cf — n]))) . (8)
(cinj)eE

I(¢; — n;) is an indicator function where I(¢; — n;) = 1 indicates a correct causal path with zero
loss. If the propagation direction is incorrect, the loss increases with the edge weight w;;, guiding the
model to learn the correct direction.

In the NCD task, many base class nodes may have a weak or irrelevant impact on the novel class
nodes, leading to ineffective information transmission and interfering with the generation of pseudo-
labels for the novel class. To mitigate this, we introduce a causal pruning constraint, removing edges
with causal weights below a learnable threshold 6:

Epruning(a) = Z ]I(U)U < 0) . UJ?J )

(ci;nj)€E

Here, H(w” < 0) indicates edge removal, while w?; ; penalizes weak connections. As causal relation-
ships in the E,usa change with novel class nodes input, the model dynamically adjusts the threshold
#, which is set as a learnable parameter.

3.4 Pseudo-label Generation Based on GCN

Existing 3D NCD methods generate pseudo-labels by directly measuring similarity between novel
and base classes, ignoring the complex higher-order dependencies between classes. To address this,
we introduce a graph convolutional network, which can handle the complex relationships between
novel and base classes by leveraging multi-layer propagation and neighbor aggregation to generate
high-quality labels. The update rule for each novel class node n; is:

(t+1) Wi (t) (f)
(X e ).

Here, d;, d;, d;, are node degrees, and o is LeakyReLU. After multiple GCN layers, the final repre-
sentation of novel class node ntmal is used to assign pseudo-labels:

g; = argminsim(n™ ¢;). (an
2

Where g; is the predicted pseudo-label for the novel class final representation and similarity is
measured via cosine similarity.

4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Metrics. We evaluated our method on the SemanticKITTI Behley et al.
(2019) and SemanticPOSS [Pan et al.| (2020) datasets. We adopted the same dataset partitioning



Table 1: The novel class discovery results on SemanticPOSS dataset. ‘Full’ denotes the results
obtained by supervised learning. The green values are the novel classes in each split.

Split Method \bike build. car cone fence grou. pers. plants pole rider traf. trashc. trunk \ Novel Known All
Full ‘48.3 86.9 572 385 4938 79.1 63.8 81.7 370 58.1 335 9.1 27.4\ - - 51.5

EUMS|Zhao et al.|(2021) | 25.7 4.0 06 164 294 368 438 28.5 131 268 182 33 16.9 17.4 215 203
NOPS|Riz et al. |(2023] 355 304 1.2 135 241  69.1 447 421 192 477 244 8.2 21.8 357 26.6 29.4

0 SNOPSRiz et al.|(2024) | 342 588 100 132 187 773 458 586 173 484 226 8.7 229 Sil.22 25.8 33.6
DASL|Xu etal.[(2024] | 463  51.5 6.0 357 485 830 679 531 355 593 310 2.8 15.5 48.4 38.0 41.2

Ours 46.1 604 83 404 51.1 808 67.1 553  39.1 582 194 2.1 133 51.3 374 41.7

EUMS|Zhao et al.[(2021) | 152 680 280 240 119 751 36.0 745 269 48,6 260 5.6 23.1 21.0 40.0 356
NOPS|Ri1z et al. [(2023] 294 714 287 122 39 782  56.8 742 183 389 233 13.7 235 30.0 38.2 36.4

1 SNOPS|Riz et al.|(2024) | 163 714 300 198 249 771 550 734 158 384 223 15.7 23.6 32.1 38.7 372
DASL|Xu et al.|[(2024) 31,5 832 487 254 239 773 531 77.1 325 573 350 9.3 18.0 36.2 46.4 44.0

Ours 322 840 491 324 173 715 623 719 340 620 368 9.1 20.8 373 48.4 45.8

EUMS|Zhao et al.|(2021) | 40.1  69.5 27.7 13.5 349 760 547 75.6 53 392 1718 8.5 11.9 83 44.0 357
NOPS|Riz et al.|(2023] 372 718 297 146 284 715 521 730 115 471 05 10.2 14.8 9.0 44.2 36.0

2 SNOPS|Riz et al.|(2024) | 384 725 280 145 262 781 547 743 100 483 23.0 10.2 17.7 16.9 44.5 38.1
DASL|Xuetal.[(2024] | 453 828 498 284 463 767 662 772 109 584 186 7.3 8.2 12.6 53.8 443

Ours 451 833 526 380 469 789 686 787 198 594 1438 9.0 6.2 13.6 56.1 46.3
EUMS|Zhao et al.[(2021) | 41.2  70.7 28.1 43 383 767 383 754 258 343 283 0.4 24.4 13.0 44.7 374
NOPS|Ri1z et al. [(2023] 386 704 309 00 294 765 560 71.8 170 319 363 1.0 22,6 10.9 43.9 363

3 SNOPS|Riz et al.|(2024) | 39.4 703  30.0 9.1 268 776 543 72.5 160 499 281 13 235 20.1 439 384
DASL|Xu et al.|[(2024) 455 829 477 0.0 451 718 663 777 343  49.1 305 4.0 15.3 17.7 52.8 44.7
Ours 447 817 500 362 474 751 65.1 76.5 31.0 475 339 0.0 249 27.9 53.0 47.2

Table 2: The novel class discovery results on the SemanticKITTI dataset. ‘Full’ denotes the results
obtained by supervised learning. The four groups represent the four splits in turn.

Method bi.cle b.clst build. car fence mt.cle m.clst oth-g. oth-v. park. pers. pole road sidew. terra. traff. truck trunk veget.‘Novel Known All
Full 48 592 87.1 925 365 280 25 40 278 39.1 354 634 908 77.1 637 415 550 581 90.1 ‘ - 50.3
EUMSZhao et al.|(2021)| 5.3 400 158 79.2 9.0 169 25 0.1 114 144 127 292 426 261 0.1 103 474 379 384 246 21.1 231

NOPSRiz et al.[(2023) | 5.6 47.8 52.7 82.6 138 256 14 1.7 145 198 259 32.1 567 8.1 238 143 494 362 442 371 265 293
SNOPS[Riz et al.|(2024) | 6.6 439 72.0 833 13.6 247 25 24 151 187 24.6 31.6 495 432 274 157 421 385 375 459 260 312
DASL[Xuetal.[(2024) | 55 51.1 746 923 298 228 00 00 233 248 277 59.7 414 225 236 393 43.6 51.1 664 457 337 368
Ours 52 489 705 904 298 214 0.6 0.0 260 225 230 563 53.1 241 237 335 41.1 514 632 469 322 369
EUMS|Zhao et al.|(2021)| 7.5 424 800 768 86 196 14 0.6 120 141 140 407 863 66.5 563 120 448 209 724 242 371 356
NOPSRizetal.[(2023) | 7.4 512 845 509 73 289 18 0.0 222 194 304 37.6 90.1 722 608 168 573 493 851 254 462 40.7
SNOPS[Riz et al.|(2024) | 7.6 43.5 85.1 68.7 18.9 244 35 0.0 239 19.1 27.0 365 89.3 71.9 620 172 559 294 844 272 452 404
DASLXuetal.[(2024) | 3.7 574 892 565 173 203 0.0 0.0 200 30.6 348 60.6 932 77.6 620 387 569 392 867 287 50.1 445
Ours 43 519 894 826 139 255 00 0.0 252 287 347 620 926 77.0 627 375 623 428 876 336 509 46.6

EUMS Zhao et al.[(2021)| 8.3 50.8 83.0 88.1 179 28 2.3 02 32 254 250 202 8.3 71.0 579 86 272 384 770 124 422 36.6
NOPSRiz et al.|(2023) | 6.7 492 864 90.8 237 2.7 0.6 1.9 155 295 279 364 903 734 612 178 103 462 843 165 480 397
SNOPS[Riz et al.|(2024) | 6.8 483 86.1 89.9 222 93 0.6 3.6 105 284 27.1 238 90.6 738 619 223 221 46.1 838 176 48.0 398
DASLXuetal.[(2024) | 3.6 542 889 933 284 102 0.0 09 96 334 322 36.1 927 774 622 107 342 517 869 20.1 504 425
Ours 80 660 892 933 277 217 00 02 9.6 338 340 33.1 931 779 617 205 7.8 528 868 185 518 43.0
EUMS|Zhao et al.|(2021) 4.0 25 80.1 872 168 140 150 03 141 208 6.8 37.6 8.8 66.5 553 162 406 384 762 7.1 434 357
NOPSRizet al.|(2023) 2.3 27.8 86.0 89.9 23.1 245 29 3.1 182 30.1 163 399 90.7 735 61.0 174 498 440 832 124 490 412
SNOPS[Riz et al.|(2024) 4.7 31.5 84.6 887 228 233 82 26 179 287 151 383 897 725 608 16.1 433 457 829 149 479 409
DASL[Xuetal.[(2024) 2.6 325 887 933 281 240 0.1 1.0 237 356 153 59.8 932 776 614 378 56.6 521 867 12.6 546 458
Ours 05 40.0 894 935 297 246 62 02 248 364 138 615 935 778 626 400 609 529 874 151 557 468

strategy as NOPS Riz et al.| (2023), where one subset is designated as the novel classes, and the
remaining subsets as the base classes. We evaluated on sequences 08 and 03 from the SemanticKITTI
and SemanticPOSS datasets, respectively, which include both known and novel classes. For the
known classes, we report the IoU for each class. For the novel classes, we use the Hungarian
algorithm |Kuhn| (2010) to match cluster labels with ground truth labels and then present the IoU
values for each novel class.

Implementation Details. We implemented our network using the MinkowskiUNet-34C Choy et al.
(2019) architecture, consistent with existing methods Riz et al.[ (2023} 2024)); Xu et al.| (2024)). We
extracted point-level features from the penultimate layer. The number of prototypes for both base and
novel classes is consistent with the number of classes in the dataset. The optimizer used is AdamW,
with an initial learning rate of le-3, decaying every 5 epochs until reaching a minimum value of le-5.
The weight coefficient \,4,,, which balances classification and adversarial losses, and the threshold
0 in the causal pruning constraint are both initially set to 0.5 and are dynamically adjusted during
network training. For the hyperparameters, we set the temperature parameter 7 to 0.06 and the
regularization coefficient A to 0.02. The number of graph convolution layers is set to 3.

4.2 Comparison with the State of the Art

SemanticPOSS dataset. The results in Table [I] show that our method achieves the highest mIoU
across all classes in all splits. In split 2, the base class mIoU reaches 56.1%, a 3.3% improvement over
DASL, demonstrating effective mitigation of base class confounding through causal representation
learning. In the challenging split 3, our method outperforms DASL on novel classes by 10.2%, with
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Figure 3: Visualization comparison between our method, NOPS, and DASL on the Seman-
ticPOSS and SemanticKITTI datasets. In the first row, NOPS and DASL, relying on statistical
methods, fail to eliminate non-causal features, causing confusion between ‘Plants’ and ‘Building’. In
the second row, they also confuse ‘Road’ with ‘Sidewalk’ and ‘Terrain’ with ‘Vegetation’. In contrast,
our method achieves better results and generates high-quality pseudo labels.

Baseline Baseline+CRP Baseline+CRP+CRG Ours GT
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Figure 4: Ablation experiment visualization.The introduction of CRP significantly reduced the
misclassification between ‘Plant’” and ‘Building.” Subsequently, integrating CRG further alleviated the
confusion between ‘Plant” and ‘Car.” Finally, incorporating GCPL effectively reduced the confusion
among ‘Plant,” ‘Car,” and ‘Building.’ .

a notable 36.2% for the cone-stone class, while both DASL and NOPS achieve 0. These results
demonstrate that our use of causal reasoning enhances the segmentation accuracy for novel classes.

SemanticKITTI dataset. The results in Table 2] show that our method achieves the highest mIoU
across all classes in all splits. Our method improves novel class segmentation by 4.9% on split 1.
Specifically, in the car class, it achieves an IoU of 82.6%, a 13.9% improvement over SNOPS. In the
motorcycle class of split 3, our method achieves an 11.5% improvement. Figurepresents a visual
comparison of NOPS, DASL, and our method.

4.3 Ablation Study

Our method consists of three components: causal representation prototype learning (CRP), causal
reasoning graph (CRG), and graph convolutional based pseudo-label generation (GCPL). Table 3]
presents the performance improvements at each stage. The first row shows the baseline model, a
modified MinkowskiUNet-34C [Choy et al.|(2019). The second row demonstrates that introducing
CRP enhances novel class segmentation by capturing causal features. In the third row, we replace
the causal representation prototypes with prototypes generated by traditional clustering as graph

Table 3: Component Analysis. The four classes represent the novel classes in split 0. The final
column, Avg, shows the average mloU for novel classes across four split in the SemanticPOSS.

Method | Split 0 | Overall
Baseline CRP CRG GCPL | Building Car Ground Plants Avg | Avg

58.6 6.0 449 437 383 24.7

v 52.4 7.3 54.5 523 416 25.9
56.3 2.6 73.2 49.8 455 28.8

56.5 7.1 73.1 529 474 30.1

v 60.4 8.3 80.8 553 512 32.5
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Figure 5: Comparison of novel class Grad-CAM

visualization on the PASCAL-5° dataset. Figure 6: Comparison of novel class feature map
visualization on the COCO-20" dataset.

nodes, further improving performance. The fourth row combines CRP and CRG, enhancing causal
representation capture and causal relationship modeling. Here we generate pseudo-labels for novel
classes using Sinkhorn-Knopp (2013)), consistent with existing methods. The last row uses
GCN to generate pseudo-labels for novel classes, boosting novel class segmentation. A visualization
analysis is provided in Figure [4]

4.4 Extension for 2D NCD Semantic Segmentation

Comparison with the SOTA method. We extend our method to 2D NCD semantic segmentation.
The current SOTA method is EUMS [Zhao et al| (2021)), which lacks the ability to capture causal
representations and model the relationship between the base-novel classes as effectively as ours.
To ensure fairness, we follow the same dataset partitioning strategy and experimental setup. We
conducted experiments on the PASCAL-5?|Shaban et al.| (2017) and COCO-20?Nguyen and Todorovic]
datasets. As shown in the Table[d] and Table 5| our method outperforms EUMS in most fold,
showing that our causal representation and reasoning approach is equally effective in 2D NCD.

Table 4: Performance on PASCAL-5¢ dataset. Table 5: Performance on COCO-20? dataset.

PASCAL-5¢ | COCO0-20°
Method | "E0ld0 Foldl  Fold2  Fold3  Avg Method  "E0ld0 Foldl  Fold2  Fold3  Avg
EUMS | 698  60.1 563 502 59.1 EUMS | 4239 2689 1975 1819 2681
Ous | 719 625 573 531 612 Ours | 4323 2591 2030 1856 27.00

Visualization Analysis. Figure [3] presents the Grad-CAM [Selvaraju et al| (2016) visualization
results. EUMS generates scattered feature maps, highlighting vague regions of interest that may miss
important causal features. In contrast, our method produces more focused and clearer feature maps,
effectively highlighting key causal regions and demonstrating superior causal reasoning capabilities.
Figure[f]illustrates that EUMS results in sparse and dispersed activation regions, failing to capture key
causal features. Our approach, however, through causal representation and reasoning, generates more
concentrated and clear activations, better identifying causal relationships and significantly improving
feature localization and visual accuracy.

5 Conclusion

We introduce a SCM to re-formalize the 3D-NCD problem and propose a novel approach called joint
learning of causal representation and reasoning. Specifically, we first analyze the hidden confounding
factors in the base class representations and the causal relationships between the base and novel
classes through SCM. Based on this, we propose a causal representation prototype that captures the
causal representation of the base class by eliminating hidden confounding factors. Then, we use a
graph to model the causal relationship between the base class causal representation prototype and the
novel class prototype, enabling causal reasoning from the base to the novel. Extensive experiments
results on 3D and 2D NCD semantic segmentation demonstrate the superiorities of our method.

Acknowledgment. This work is supported by the National Nature Science Foundation of China (Nos.
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