
CodePMP: Scalable Preference Model Pretraining for Large Language
Model Reasoning

Anonymous ACL submission

Abstract001

Large language models (LLMs) have made sig-002
nificant progress in natural language under-003
standing and generation, driven by scalable004
pretraining and advanced finetuning. How-005
ever, enhancing reasoning abilities in LLMs,006
particularly via reinforcement learning from007
human feedback (RLHF), remains challeng-008
ing due to the scarcity of high-quality pref-009
erence data, which is labor-intensive to anno-010
tate and crucial for reward model (RM) fine-011
tuning. To alleviate this issue, we introduce012
CodePMP, a scalable preference model pre-013
training (PMP) pipeline that utilizes a large014
corpus of synthesized code-preference pairs015
from publicly available high-quality source016
code. CodePMP improves RM finetuning ef-017
ficiency by pretraining preference models on018
large-scale synthesized code-preference pairs.019
We evaluate CodePMP on mathematical reason-020
ing tasks (GSM8K, MATH) and logical reason-021
ing tasks (ReClor, LogiQA2.0), consistently022
showing significant improvements in reason-023
ing performance of LLMs and highlighting the024
importance of scalable preference model pre-025
training for efficient reward modeling.026

1 Introduction027

Large language models (LLMs) have achieved re-028

markable progress in natural language understand-029

ing and generation, driven by advancements in030

scalable pretraining and finetuning techniques, in-031

cluding supervised finetuning (SFT) (Wang et al.,032

2022, 2023a) and Reinforcement Learning from033

Human Feedback (RLHF) (Bai et al., 2022a; Light-034

man et al., 2023; Bai et al., 2022b; Gulcehre et al.,035

2023; Schulman et al., 2017; Rafailov et al., 2024).036

Despite these advances, enhancing LLMs’ rea-037

soning capabilities, particularly for complex log-038

ical and mathematical tasks, remains a signifi-039

cant challenge (Wang et al., 2023b; Zhang et al.,040

2024b). While RLHF has proven effective for im-041

proving model performance, its efficacy is con-042

Figure 1: Compared to directly finetuning reward mod-
els, CodePMP significantly improves the sample effi-
ciency and capability of reward models, which in turn
boosts the generator’s(MetaMath-Mistral-7B) reasoning
performance (Best-of-N accuracy) across both mathe-
matical reasoning tasks (GSM8K and MATH) and logi-
cal reasoning tasks (ReClor and LogiQA2.0).

strained by the availability of high-quality prefer- 043

ence data, which is expensive and labor-intensive 044

to collect (Cobbe et al., 2021; Zheng et al., 2024). 045

This limitation impedes the scalability of reward 046

model (RM) finetuning, which is instrumental in 047

guiding LLMs toward optimal outputs. 048

To alleviate this issue, prior works like 049

Anthropic’s Preference Model Pretraining 050

(PMP) (Askell et al., 2021) have proposed improv- 051

ing reward modeling data efficiency by pretraining 052

preference models on large-scale preference data 053

from public sources like Reddit and Wikipedia, 054

followed by an efficient finetuning on limited 055

high-quality human-annotated data. Concurrent 056

work WorldPM (Wang et al., 2025) also explores 057

scaling human preference modeling. However, 058

this approach is less effective for reasoning 059

tasks due to the scarcity of reasoning preference 060

pairs available online. Compared to other tasks, 061

manually annotating preference data for reasoning 062

is inherently more challenging to scale (Zhang 063

et al., 2024b; Zhou et al., 2023), highlighting 064

the urgent need for a scalable PMP approach for 065

reasoning tasks. 066

In this paper, we propose CodePMP, a scal- 067

able preference model pretraining pipeline that en- 068

hances LLM reasoning abilities using synthesized 069

preference pairs derived from high-quality, publicly 070

available source code. Code, with its inherently 071

1



Figure 2: Overview of CodePMP. First, raw code collected from GitHub is cleaned and summarized into code
prompts (descriptions). Then, a weak CodeLLM generates rejected responses while a stronger CodeLLM produces
chosen responses. Finally, these millions of ⟨chosen, rejected⟩ pairs form the preference model pretraining dataset,
enhancing both sample efficiency and performance for downstream reasoning tasks.

logical and structured nature, provides rich data072

suitable for reasoning tasks. Recent works (Zhang073

et al., 2024b; Aryabumi et al., 2024) also show a074

strong correlation between code training and rea-075

soning improvements in LLMs. By leveraging076

the huge amount and diverse coverage of source077

code available on platforms like GitHub, CodePMP078

offers a scalable solution for pretraining prefer-079

ence models, thereby improving RM finetuning080

efficiency and enhancing LLMs’ reasoning perfor-081

mance.082

Specifically, CodePMP generates preference083

pairs by synthesizing chosen and rejected code084

responses for a given code-related prompt085

or description using CodeLLMs. A strong086

CodeLLM produces higher-quality (chosen) re-087

sponses, while a weaker model generates sub-088

optimal or even low-quality (rejected) responses.089

These ⟨chosen, rejected⟩ pairs, accumulated in the090

millions, form a large-scale synthesized prefer-091

ence dataset. This dataset is then used to pretrain092

the preference model with pairwise ranking objec-093

tives (Cobbe et al., 2021; Charniak and Johnson,094

2005), providing a good initialization for further095

finetuning the reward models.096

We evaluate CodePMP on widely studied rea-097

soning tasks, including mathematical reasoning098

tasks such as GSM8K (Cobbe et al., 2021) and099

MATH (Hendrycks et al., 2021), as well as logical100

reasoning tasks like ReClor (Yu et al., 2020) and101

LogiQA2.0 (Liu et al., 2023). Our experiments102

show that CodePMP significantly improves RM103

finetuning accuracy and Best-of-N performance104

in reasoning tasks, outperforming direct RM fine-105

tuning, as highlighted in Figure 1. Moreover, ad-106

ditional results reveal that RMs initialized with107

CodePMP exhibit greater robustness across differ-108

ent tasks. These results indicate that code-derived 109

preference data provides a scalable, cost-effective 110

solution for enhancing LLM reasoning capabilities 111

while reducing reliance on extensive preference an- 112

notation, achieving more effective reward modeling 113

for reasoning tasks. 114

In summary, our main contributions are: 115

1. We introduce CodePMP, a scalable method that 116

uses code-derived preference pairs to pretrain 117

preference models, improving sample efficiency 118

and robustness for downstream RM finetuning. 119

2. We validate that CodePMP significantly im- 120

proves performance on reasoning tasks, demon- 121

strating that a scalable PMP process positively 122

impacts LLM reasoning abilities. 123

3. We provide a detailed analysis of key design el- 124

ements in CodePMP, offering valuable insights 125

for future research in related areas. 126

2 Preliminaries 127

Language Modeling Language modeling repre- 128

sents a fundamental task in natural language pro- 129

cessing aimed at modeling sequential language 130

data. This is typically implemented through Causal 131

Language Models (Causal LM), which maximize 132

the likelihood of predicting the next token wt given 133

preceding tokens w1, w2, . . . , wt−1. The training 134

process minimizes the negative log-likelihood: 135

LLM = −
T∑
t=1

logP (wt|w1, w2, . . . , wt−1) (1) 136

This loss function LLM encourages the model to 137

capture underlying patterns in the data. Trans- 138

former architectures (Vaswani, 2017) are the stan- 139

dard for Causal LM due to their ability to handle 140

long-range dependencies effectively. 141

2



Reward Modeling Reward modeling (RM) is in-142

tegral to reinforcement learning from human feed-143

back (RLHF), providing scalar reward signals that144

guide learning based on output quality. The reward145

model Rθ predicts the quality of an output y given146

a context x as s = Rθ(x, y). In preference mod-147

eling, RMs predict relative quality by comparing148

output pairs. A standard approach employs the Pair-149

wise Ranking Loss, which assigns higher scores to150

preferred (chosen) outputs:151

LRM = − log
(
σ(schosen − srejected)

)
(2)152

, where schosen = Rθ(x, ychosen) and srejected =153

Rθ(x, yrejected), and σ(·) is the sigmoid function.154

Best-of-N Sampling Best-of-N (BoN) sampling155

enhances LLM reasoning (Cobbe et al., 2021;156

Lightman et al., 2023) by generating N candi-157

date solutions {y1, y2, . . . , yN} for a given prob-158

lem, then using a reward model to score and select159

the highest-scoring candidate:160

ŷ = arg max
yi∈{y1,y2,...,yN}

Rθ(x, yi) (3)161

, where Rθ(x, yi) represents the reward score for162

each candidate yi. This technique is especially ef-163

fective in tasks like mathematical problem-solving164

and logical inference, where selecting the most165

plausible solution from a diverse set of outputs166

improves overall accuracy (Wang et al., 2022).167

3 Code Preference Model Pretraining168

3.1 Model Design169

Code Preference Model Pretraining (CodePMP)170

enhances the sample efficiency of reward mod-171

els, particularly for reasoning tasks where high-172

quality preference data is scarce. Traditionally,173

reward models are finetuned on small, curated174

datasets, limiting their effectiveness in complex175

tasks like mathematical reasoning or logical de-176

duction. CodePMP mitigates this limitation by177

introducing a pretraining phase between basic lan-178

guage model pretraining and finetuning on domain-179

specific reasoning datasets. This phase leverages180

a large, diverse dataset of code-preference pairs,181

enabling the model to learn generalizable patterns182

and ranking strategies.183

CodePMP training involves two components:184

Reward Modeling (RM) and Language Model-185

ing (LM). In RM, the model is trained on code-186

preference pairs, learning to assign higher scores187

PMP MathShepherd
-pair

Reclor
-pair

LogiQA2.0
-pair

Qwen2-1.5B
✗ 0.7226 0.758 0.7538
✓ 0.8186 0.794 0.7774

Qwen2-7B
✗ 0.8777 0.862 0.8263
✓ 0.9274 0.874 0.8441

Table 1: Reward model accuracy comparison:
CodePMP-initialized models perform better on reason-
ing test sets, showing better discrimination ability.

to the chosen code through a pairwise ranking loss. 188

In LM, only the chosen code is used for autore- 189

gressive training to maintain the model’s general 190

capabilities. The overall loss combines the RM and 191

LM losses, ensuring the model enhances its ranking 192

ability without sacrificing general language model- 193

ing performance: LPMP = LRM + LLM. 194

3.2 Data Construction 195

To enable scalable preference model pretraining, 196

we construct a dataset sourced from GitHub, con- 197

taining over 1.3 billion code files from GitHub 198

repositories. The CodePMP dataset is con- 199

structed through a systematic process. First, 200

raw source code is processed by a descrip- 201

tion summarizer—typically an instruction-tuned 202

CodeLLM—to generate prompts describing the 203

code’s functionality. Two CodeLLMs with differ- 204

ent capabilities then generate code snippets based 205

on these prompts: 206

• Chosen response: Generated by a more ad- 207

vanced CodeLLM (e.g., 6.7B parameters). 208

• Rejected response: Generated by a less capa- 209

ble CodeLLM (e.g., 1.3B parameters). 210

This process yields pairs of code responses—one 211

chosen and one rejected—which are used for pref- 212

erence modeling. This scalable approach signifi- 213

cantly enhances pretraining efficiency, improving 214

performance on downstream tasks. The steps of the 215

CodePMP methodology are outlined systematically 216

in Figure 2. 217

4 Experiments 218

In this section, we outline the experimental setup 219

and then the experimental results, highlighting that 220

CodePMP is a highly scalable method. 221

3



4.1 Experimental Settings222

4.1.1 CodePMP Settings223

Data Construction We generate code preference224

pairs by using the deepseek-coder-6.7b-instruct225

model as the strong CodeLLM to generate cho-226

sen responses and the deepseek-coder-1.3b-instruct227

model as the weak CodeLLM to generate rejected228

responses. The constructed CodePMP dataset in-229

cludes 28 million files and 19 billion tokens. The230

diverse datasets provide sufficiently broad prompt231

coverage for preference model pretraining, which232

is conducive to the generalization of preference233

models in reasoning tasks. In addition, the aver-234

age lengths of the chosen and rejected responses235

are similar, ensuring that response length does not236

bias the CodePMP learning process. Details are237

provided in Appendix.238

CodePMP Training By default, we initialize239

the preference models with the publicly available240

Qwen models (Yang et al., 2024), using different241

model sizes, specifically Qwen2-1.5B and Qwen2-242

7B. Detailed hyperparameters for CodePMP train-243

ing are provided in Appendix.244

4.1.2 Reasoning Finetuning Settings245

We evaluate CodePMP on mathematical and log-246

ical reasoning tasks using dedicated preference247

datasets. For mathematical reasoning, we finetune248

reward models on MathShepherd-pair dataset, de-249

rived from MathShepherd (Wang et al., 2023b),250

while logical reasoning models use ReClor-pair251

and LogiQA2.0-pair datasets, derived from Re-252

Clor (Yu et al., 2020) and LogiQA2.0 (Liu et al.,253

2023) respectively. Each model is finetuned on its254

corresponding training set and evaluated on its re-255

spective holdout test set for accuracy assessment.256

Implementation details for dataset construction and257

hyperparameters are provided in Appendix.258

4.1.3 Evaluation Settings259

Following (Zhang et al., 2024a), we evaluate us-260

ing two metrics: (1) RM Accuracy measures the261

reward model’s ability to distinguish chosen from262

rejected solutions on holdout test sets, providing in-263

sight into the model’s ability to classify individual264

sequences; and (2) Best-of-N (BoN) Accuracy as-265

sesses the percentage of correct solutions selected266

by the RM from N candidate responses, evaluat-267

ing the model’s group-wise ranking performance268

and ability to identify the best answer from multi-269

ple candidates. We use MetaMath-Mistral-7B (Yu270

(a) BoN accuracies on mathematical reasoning.

(b) BoN (N=4) accuracies on logical reasoning.
Figure 3: Best-of-N accuracy comparison: CodePMP-
initialized models outperform baselines across various
N values, showing superior ranking capabilities.

et al., 2023) as the generator for BoN evaluation. 271

We evaluate on GSM8K (Cobbe et al., 2021) 272

and MATH (Hendrycks et al., 2021) for mathemat- 273

ical reasoning, and ReClor (Yu et al., 2020) and 274

LogiQA2.0 (Liu et al., 2023) for logical reasoning. 275

For logical reasoning tasks, we use multiple-choice 276

accuracy (equivalent to Best-of-4) where the RM 277

ranks four manually annotated options, as logical 278

reasoning questions typically consist of paragraphs 279

followed by statements to be judged, making stan- 280

dard BoN evaluation challenging. 281

4.2 Experimental Results 282

4.2.1 RM Accuracy Results 283

We first compare RM accuracy on the holdout test 284

set with and without CodePMP initialization. As 285

shown in Table 1, RM finetuned with CodePMP ini- 286

tialization achieves higher accuracy on both 1.5B 287

and 7B models across mathematical and logical 288

reasoning tasks, demonstrating that CodePMP en- 289

hances the model’s ability to differentiate correct 290

from incorrect reasoning. Moreover, CodePMP 291

exhibits strong generalization, yielding significant 292

improvements across different reasoning tasks. 293

4



4.2.2 BoN Accuracy Results294

Evaluations across reasoning tasks demonstrate295

that CodePMP-initialized RMs consistently296

achieve higher BoN accuracy on both mathemat-297

ical and logical reasoning tasks for all model298

sizes (Figure 3). CodePMP models maintain299

performance advantages even as N increases300

to 256, while non-CodePMP models exhibit301

significant accuracy degradation at higher N values,302

highlighting CodePMP’s stability.303

This aligns with research on BoN sam-304

pling (Chow et al., 2024) that identifies an inflec-305

tion point where performance typically deterio-306

rates beyond certain N thresholds due to increased307

base policy stochasticity and verifier misalignment.308

CodePMP-initialized models demonstrate greater309

stability at higher N values, suggesting improved310

alignment with true reward signals and enhanced311

robustness to noise amplification inherent in large-312

N sampling.313

For logical reasoning, the performance gap ap-314

pears smaller as testing was limited to N=4, while315

mathematical reasoning extended to N=256, sug-316

gesting potential for amplified advantages in logical317

reasoning with increased N values.318

4.2.3 Sample Efficiency Analysis319

To assess CodePMP’s impact on sample effi-320

ciency, we evaluated models with varying fine-321

tuning dataset sizes following best practices (Ka-322

plan et al., 2020). Figure 4 shows that CodePMP-323

initialized models consistently outperform base-324

lines across all dataset sizes, with CodePMP achiev-325

ing with just 0.5k samples what baseline models326

require 40k samples to match—an 80× efficiency327

improvement. This advantage, while diminishing328

with larger datasets, significantly reduces annota-329

tion costs for developing effective reward models.330

4.2.4 Scalability Analysis331

A key benefit of using code data for PMP is the332

vast availability of publicly accessible, high-quality333

code-preference pairs, ensuring diversity. To val-334

idate scalability, we vary the number of training335

pairs for CodePMP and retrain models with dif-336

ferent amounts of data. As shown in Figure 5, in-337

creasing the number of code-preference pairs con-338

sistently improves BoN accuracy in both mathemat-339

ical and logical reasoning tasks across model sizes,340

with no sign of diminishing returns. This indicates341

that further scaling the code-preference data would342

likely yield additional performance gains, under-343

(a) GSM8K / 7B (b) MATH / 7B

(c) Reclor / 7B (d) LogiQA2.0 / 7B
Figure 4: Sample efficiency comparison for 7B mod-
els: CodePMP-initialized reward models achieve higher
Best-of-N accuracy with the equivalent sample sizes,
showing better data efficiency. Horizontal axis scales by√
2. Green: with CodePMP; Blue: without CodePMP.

scoring the importance of building a scalable PMP 344

pipeline. 345

5 Ablation Studies 346

This section presents a detailed analysis of 347

CodePMP design. Unless otherwise stated, all ex- 348

periments use the 1B model due to resource lim- 349

itations and present the results of mathematical 350

reasoning due to page limitation. More ablation 351

studies refer to Appendix. 352

5.1 Impact of Pair Construction 353

GitHub-Sourced Pairs vs Web-Crawled We 354

compare GitHub-sourced code with web-crawled 355

data (Askell et al., 2021) from platforms such as 356

StackExchange and Reddit. As shown in Figure 6b, 357

GitHub-sourced pairs (“Source Code”) consistently 358

outperform those from web platforms (“Webpage”), 359

particularly as the number of solutions (N) in- 360

creases. Moreover, the performance improvement 361

of GitHub-sourced pairs shows no sign of plateau- 362

ing, highlighting the importance of diverse, high- 363

quality source code in building a scalable PMP 364

pipeline. 365

Model Generated Data vs Human Data We 366

compare various pair construction methods gener- 367

ated by different models. In Figure 6a, the samples 368

before the “&” are positive, and those after are neg- 369

ative. “Source Code” refers to the original code 370

snippet, while “1.3B-Des-Clip” indicates that 10% 371

of the code description is removed before being 372

input into a 1.3B CodeLLM to generate a rejected 373

response. The green lines represent CodePMP’s 374

5



(a) GSM8K / 7B (b) MATH / 7B

(c) Reclor / 7B (d) LogiQA2.0 / 7B
Figure 5: Scaling analysis of CodePMP for 7B models:
more code-preference pairs consistently improve Best-
of-N accuracy across reasoning tasks without diminish-
ing returns. Horizontal axis scales by

√
2; gray dashed

lines show baseline performance without CodePMP.

choice. Results show that pairing positive samples375

from the 7B model with negative samples from the376

1.5B model consistently delivers the best perfor-377

mance across all test sets. Given that code execu-378

tion can generate reliable outputs, future work will379

explore incorporating execution feedback to create380

more accurate preference pairs.381

5.2 Impact of Loss Function382

CodePMP integrates both Reward Modeling (RM)383

and Language Modeling (LM) loss components. To384

evaluate their contributions, we conducted exper-385

iments comparing three configurations: RM loss386

only, LM loss only, and the combined approach.387

As shown in Table 2, the combined loss func-388

tion consistently outperforms single-loss variants389

across all Best-of-N evaluation settings, with par-390

ticularly notable improvements on the challenging391

MATH dataset. This empirical evidence indicates392

a complementary relationship where RM loss en-393

hances preference ranking while LM loss preserves394

general language capabilities, collectively yielding395

more robust reward model performance.396

5.3 Cross-Architecture Generalization397

To assess CodePMP’s generalization capabilities398

beyond the Qwen architecture family, we evalu-399

ated its effectiveness with Gemma2 and Llama3.2400

as PMP/RM backbones on GSM8K, MATH, Re-401

clor, and LogiQA-v2 benchmarks. As shown in402

(a) Different construction methods.

(b) Different pair sources.
Figure 6: Comparison of BoN accuracy across construc-
tion methods and data sources, demonstrating benefits
of model-based construction and GitHub code.

BoN RM Loss LM Loss RM + LM Loss
GSM8K

N=32 0.834 0.8317 0.8393
N=64 0.8362 0.8271 0.8453
N=128 0.8332 0.8309 0.8362
N=256 0.8271 0.8226 0.8484

MATH
N=32 0.344 0.376 0.418
N=64 0.358 0.376 0.424
N=128 0.366 0.354 0.434
N=256 0.362 0.372 0.41

Table 2: Loss function comparison.

Figure 7, CodePMP: (1) Consistently enhances rea- 403

soning performance across all model families, and 404

(2) Improves robustness at larger N values, miti- 405

gating performance degradation observed in non- 406

initialized models.These results demonstrate that 407

CodePMP generalizes effectively across diverse 408

model architectures, suggesting broad applicability 409

of the approach. 410

5.4 Performance on Larger Backbone Model 411

To investigate CodePMP’s performance on larger 412

model scales, we applied the technique to Qwen2- 413

72B. Table 3 presents results across mathematical 414

and logical reasoning tasks. 415

Results show consistent improvements with 416

6



(a) BoN accuracies on mathematical reasoning.

(b) BoN (N=4) accuracies on logical reasoning.
Figure 7: Cross-architecture performance comparison:
CodePMP enhances reasoning performance across dif-
ferent model families (Gemma2 and Llama3.2), show-
ing broad applicability.

BoN w/o PMP w/ PMP w/o PMP w/ PMP
GSM8K MATH

N=1 0.7718 0.7718 0.298 0.298
N=4 0.8453 0.8453 0.424 0.424
N=32 0.8529 0.8628 0.488 0.500
N=256 0.8249 0.8400 0.506 0.514
BoN Reclor LogiQA-v2
N=4 0.894 0.918 0.7117 0.7927

Table 3: Performance comparison on reasoning tasks
for Qwen2-72B with and without CodePMP initializa-
tion. Note that only N = 4 was tested for Reclor and
LogiQA-v2.

CodePMP initialization across all benchmarks. No-417

tably, performance gains increase with larger N418

values on challenging tasks like MATH, indicating419

that CodePMP’s benefits scale effectively to larger420

model architectures. The significant improvement421

on logical reasoning tasks further demonstrates422

CodePMP’s scalability and broad applicability.423

5.5 Performance on More Powerful Generator424

To determine whether CodePMP maintains its ef-425

fectiveness with more sophisticated generators, we426

conducted experiments with two advanced models:427

Qwen2-Math-7B-Instruct (specialized for mathe-428

BoN GSM8K MATH
w/o PMP w/ PMP w/o PMP w/ PMP

N=4 0.8544 0.8931 0.690 0.724
N=32 0.8446 0.8795 0.643 0.698
N=256 0.8256 0.8590 0.614 0.690

Table 4: BoN accuracy with specialized mathematical
generator (Qwen2-Math-7B-Instruct).

BoN GSM8K MATH
w/o PMP w/ PMP w/o PMP w/ PMP

N=4 0.9604 0.9688 0.798 0.820
N=32 0.9573 0.9581 0.768 0.792
N=256 0.9566 0.9634 0.752 0.798

Table 5: BoN accuracy with large-scale generator
(Qwen2.5-32B-Instruct).

matical reasoning) and Qwen2.5-32B-Instruct (a 429

substantially larger general-purpose model). 430

Tables 4 and 5 demonstrate that CodePMP’s 431

benefits persist across different generator archi- 432

tectures. With the specialized Qwen2-Math-7B- 433

Instruct (Table 4), we observe substantial improve- 434

ments on both GSM8K and MATH. These gains 435

remain consistent with the much larger Qwen2.5- 436

32B-Instruct model (Table 5), despite it being sig- 437

nificantly larger than both the preference pair gener- 438

ation models (7B parameters) and the reward model 439

itself (Qwen2-7B). 440

These findings demonstrate that reward models 441

trained on synthetic preference data from smaller 442

models can effectively guide more powerful and 443

specialized generators, confirming CodePMP’s ro- 444

bustness and cross-scale applicability. This is par- 445

ticularly significant as it suggests that relatively 446

modest investments in reward model training can 447

yield benefits even when deployed with state-of- 448

the-art generation systems. 449

5.6 Performance on General RM Benchmarks 450

We further evaluate CodePMP on general reward 451

modeling benchmarks (RMBench) to assess its ap- 452

plicability beyond reasoning tasks. RMBench pro- 453

vides an out-of-domain assessment covering var- 454

ious tasks including summarization, chat quality, 455

and safety. As shown in Table 6, models fine-tuned 456

with PMP consistently outperform those without 457

PMP across various model sizes and tasks. 458

These results demonstrate that CodePMP en- 459

hances performance not only in reasoning and cod- 460

ing tasks but also improves generalization across 461

a broad range of RM benchmarks. These findings 462

provide compelling evidence for CodePMP’s broad 463

applicability across multiple domains beyond the 464

7



Model PMP RMBench
Summary Chat Chat Hard Safety Reasoning

1.5B ✗ 0.4154 0.4804 0.5351 0.3665 0.2751
✓ 0.6126 0.9050 0.4364 0.3698 0.6041

7B ✗ 0.5839 0.4972 0.5022 0.5240 0.6804
✓ 0.7668 0.9413 0.5373 0.4906 0.9116

Table 6: Performance on RMBench shows that CodePMP generalizes well across various general LLM tasks.

reasoning tasks that were our primary focus.465

6 Related Works466

Reward Modeling In the context of RLHF, re-467

ward models (RMs) have traditionally employed468

ranking models like Bradley-Terry and Plackett-469

Luce to represent human preferences (Bradley and470

Terry, 1952; Plackett, 1975; Cobbe et al., 2021;471

Saunders et al., 2022; Lightman et al., 2023; Wang472

et al., 2023b; Uesato et al., 2022; Luo et al., 2024;473

Yu et al., 2024; Stiennon et al., 2020; Nakano474

et al., 2021). More recently, probability-based ap-475

proaches have emerged, offering more precise pre-476

dictions. Additionally, models such as Critique-477

out-Loud (Ankner et al., 2024) enhance RMs by478

integrating natural language feedback. Genera-479

tive reward models (GRMs) further boost sam-480

ple efficiency. Preference Modeling Pretraining481

(PMP) (Askell et al., 2021) introduces a novel482

pretraining phase, utilizing large-scale pairwise483

ranking data to enhance RM performance. De-484

spite these advancements, many methods are hin-485

dered by the reliance on expensive manual anno-486

tations or limited datasets, constraining scalability.487

CodePMP mitigates this by automating preference488

data generation from code, significantly improving489

RM sample efficiency and reducing dependency on490

manual data collection.491

Code Training The inclusion of code in492

LLM pretraining has led to marked improve-493

ments in tasks such as commonsense reason-494

ing (Madaan et al., 2022) and mathematical495

problem-solving (Liang et al., 2022; Shao et al.,496

2024; Yang et al., 2024). Furthermore, code497

enhances general reasoning capabilities (Muen-498

nighoff et al., 2023; Fu et al., 2022; Ma et al.,499

2023). Recent studies (Dong et al., 2023; Ma et al.,500

2023) indicate that incorporating code during su-501

pervised finetuning strengthens LLMs, particularly502

in complex decision-making tasks. CodePMP takes503

a pioneering approach by utilizing scalable, syn-504

thetically generated code preference pairs, reduc- 505

ing the dependence on manual annotation (Dubey 506

et al., 2024; Gemini-Team et al., 2024; Groen- 507

eveld et al., 2024; Bi et al., 2024). This methodol- 508

ogy enhances sample efficiency and scalability in 509

reasoning-intensive tasks, presenting new opportu- 510

nities for further improving LLM performance. 511

LLM Reasoning Improving reasoning capabili- 512

ties in LLMs remains a significant challenge, with 513

various advanced methods being proposed. Chain 514

of Thought (CoT) prompting (Wei et al., 2022; 515

Fu et al., 2023) improves reasoning by generat- 516

ing intermediate steps, while CoT combined with 517

supervised finetuning (SFT) further enhances per- 518

formance (Cobbe et al., 2021; Liu et al., 2024; Yu 519

et al., 2023). Other approaches focus on expand- 520

ing inference time computation, such as problem 521

decomposition (Zhou et al., 2022), search-based 522

methods like MCTS (Xu, 2023), and using LLMs 523

as verifiers (Huang et al., 2022; Luo et al., 2023). 524

Reward models, including outcome-based (ORM) 525

and process-based (PRM), have also shown success, 526

with PRM delivering superior results (Lightman 527

et al., 2023; Wang et al., 2023b). Encouragingly, 528

CodePMP introduces a scalable preference model 529

pretraining phase that can integrate seamlessly with 530

all the aforementioned techniques. 531

7 Conclusion and Future Works 532

We propose CodePMP, a scalable preference 533

model pretraining method that leverages synthetic 534

code-preference pairs to boost reasoning in large 535

language models. Experiments demonstrate that 536

CodePMP markedly enhances both sample effi- 537

ciency and performance across diverse reasoning 538

tasks, validating the effectiveness of code-based 539

preference pretraining. Future directions include 540

CodePrMP, which will utilize compiler/interpreter 541

verifiability for low-cost process supervision, and 542

GenPMP, aimed at improving generative reward 543

models through code-based pretraining. 544

8



Limitations545

Our current implementation has several limitations.546

First, the synthetic preference pairs rely on mod-547

els with predetermined parameter sizes, potentially548

missing nuanced preference signals that more so-549

phisticated approaches might capture. While we550

demonstrate broad applicability across model fam-551

ilies, architectural differences may affect perfor-552

mance in ways not fully explored in this work. Our553

reliance on GitHub data introduces potential biases554

stemming from the composition of public reposito-555

ries. Additionally, our evaluation focuses primarily556

on mathematical and logical reasoning, leaving the557

method’s effectiveness for other reasoning modali-558

ties (e.g., commonsense or causal reasoning) less559

thoroughly examined. Future work should address560

these limitations to further enhance the generaliz-561

ability and robustness of the approach.562

Ethics Statement563

CodePMP introduces several important ethical con-564

siderations. By enhancing LLMs’ reasoning ca-565

pabilities, it could significantly impact decision-566

making systems that affect human lives, necessi-567

tating careful deployment and monitoring. While568

we utilize publicly available code, we recognize569

the importance of intellectual property rights and570

have focused on data with permissive licenses. Our571

approach reduces reliance on human annotation,572

potentially mitigating certain biases while possibly573

introducing others derived from the training data574

or model preferences. These trade-offs require on-575

going evaluation and refinement to ensure fair and576

beneficial applications. As with any technology577

that enhances AI capabilities, responsible deploy-578

ment with appropriate safeguards is essential.579

Acknowledgments580

We would like to thank all the anonymous review-581

ers for their insightful comments. We also thank582

our colleagues for valuable discussions and feed-583

back throughout this research. This work was par-584

tially supported by research grants from various585

organizations, and we are grateful for their support.586

References587

Zachary Ankner and 1 others. 2024. Critique-out-loud588
reward models. arXiv preprint arXiv:2408.11791.589

Viraat Aryabumi, Yixuan Su, Raymond Ma, Adrien590
Morisot, Ivan Zhang, Acyr Locatelli, Marzieh Fadaee,591

Ahmet "Ust"un, and Sara Hooker. 2024. To code, or 592
not to code? exploring impact of code in pre-training. 593
arXiv preprint arXiv:2408.10914. 594

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, 595
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas 596
Joseph, Ben Mann, Nova DasSarma, and 1 others. 597
2021. A general language assistant as a laboratory 598
for alignment. arXiv preprint arXiv:2112.00861. 599

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda 600
Askell, Anna Chen, Nova DasSarma, Dawn Drain, 601
Stanislav Fort, Deep Ganguli, Tom Henighan, and 602
1 others. 2022a. Training a helpful and harmless 603
assistant with reinforcement learning from human 604
feedback. arXiv preprint arXiv:2204.05862. 605

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, 606
Amanda Askell, Jackson Kernion, Andy Jones, Anna 607
Chen, Anna Goldie, Azalia Mirhoseini, Cameron 608
McKinnon, and 1 others. 2022b. Constitutional 609
ai: Harmlessness from ai feedback. arXiv preprint 610
arXiv:2212.08073. 611

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, 612
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, 613
Qiushi Du, Zhe Fu, and 1 others. 2024. Deepseek llm: 614
Scaling open-source language models with longter- 615
mism. arXiv preprint arXiv:2401.02954. 616

Ralph Allan Bradley and Milton E Terry. 1952. Rank 617
analysis of incomplete block designs: I. the method 618
of paired comparisons. Biometrika, 39(3/4):324– 619
345. 620

Eugene Charniak and Mark Johnson. 2005. Coarse-to- 621
fine n-best parsing and maxent discriminative rerank- 622
ing. In Proceedings of the 43rd Annual Meeting 623
of the Association for Computational Linguistics 624
(ACL’05), pages 173–180. 625

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent 626
Zhuang, Bo Dai, Sridhar Thiagarajan, Craig Boutilier, 627
Rishabh Agarwal, Aviral Kumar, and Aleksandra 628
Faust. 2024. Inference-aware fine-tuning for best- 629
of-n sampling in large language models. Preprint, 630
arXiv:2412.15287. 631

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 632
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 633
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 634
Nakano, and 1 others. 2021. Training verifiers to 635
solve math word problems, 2021. URL https://arxiv. 636
org/abs/2110.14168. 637

Guanting Dong, Hongyi Yuan, Keming Lu, Cheng- 638
peng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang, 639
Zheng Yuan, Chang Zhou, and Jingren Zhou. 2023. 640
How abilities in large language models are affected 641
by supervised fine-tuning data composition. arXiv 642
preprint arXiv:2310.05492. 643

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 644
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 645
Akhil Mathur, Alan Schelten, Amy Yang, Angela 646
Fan, and 1 others. 2024. The llama 3 herd of models. 647
arXiv preprint arXiv:2407.21783. 648

9

https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/2412.15287


Yao Fu, Hao Peng, and Tushar Khot. 2022. How does649
gpt obtain its ability? tracing emergent abilities of650
language models to their sources.651

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and652
Tushar Khot. 2023. Complexity-based prompting for653
multi-step reasoning. In Proceedings of the 11th In-654
ternational Conference on Learning Representations655
(ICLR).656

Gemini-Team, Rohan Anil, Sebastian Borgeaud, Jean-657
Baptiste Alayrac, Jiahui Yu, Radu Soricut, and 1658
others. 2024. Gemini: A family of highly capable659
multimodal models. Preprint, arXiv:2312.11805.660

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bha-661
gia, Rodney Kinney, Oyvind Tafjord, Ananya Harsh662
Jha, Hamish Ivison, Ian Magnusson, Yizhong663
Wang, and 1 others. 2024. Olmo: Accelerating664
the science of language models. arXiv preprint665
arXiv:2402.00838.666

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-667
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek668
Sharma, Aditya Siddhant, Alex Ahern, Miaosen669
Wang, Chenjie Gu, and 1 others. 2023. Reinforced670
self-training (rest) for language modeling. arXiv671
preprint arXiv:2308.08998.672

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul673
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-674
cob Steinhardt. 2021. Measuring mathematical prob-675
lem solving with the math dataset. arXiv preprint676
arXiv:2103.03874.677

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu678
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang679
Huang, Weilin Zhao, and 1 others. 2024. Minicpm:680
Unveiling the potential of small language models681
with scalable training strategies. arXiv preprint682
arXiv:2404.06395.683

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,684
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.685
Large language models can self-improve. arXiv686
preprint arXiv:2210.11610.687

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B688
Brown, Benjamin Chess, Rewon Child, Scott Gray,689
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.690
Scaling laws for neural language models. arXiv691
preprint arXiv:2001.08361.692

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris693
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian694
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-695
mar, and 1 others. 2022. Holistic evaluation of lan-696
guage models. arXiv preprint arXiv:2211.09110.697

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri698
Edwards, Bowen Baker, Teddy Lee, Jan Leike,699
John Schulman, Ilya Sutskever, and Karl Cobbe.700
2023. Let’s verify step by step. arXiv preprint701
arXiv:2305.20050.702

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan 703
Duan, Ming Zhou, and Yue Zhang. 2023. Logiqa 704
2.0—an improved dataset for logical reasoning in 705
natural language understanding. IEEE/ACM Trans- 706
actions on Audio, Speech, and Language Processing. 707

Haoxiong Liu, Yifan Zhang, Yifan Luo, and Andrew 708
Chi-Chih Yao. 2024. Augmenting math word prob- 709
lems via iterative question composing. arXiv preprint 710
arXiv:2401.09003. 711

Liangchen Luo, Zi Lin, Yinxiao Liu, Lei Shu, Yun 712
Zhu, Jingbo Shang, and Lei Meng. 2023. Critique 713
ability of large language models. arXiv preprint 714
arXiv:2310.04815. 715

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat 716
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun 717
Zhu, Lei Meng, Jiao Sun, and 1 others. 2024. Im- 718
prove mathematical reasoning in language models 719
by automated process supervision. arXiv preprint 720
arXiv:2406.06592. 721

Yingwei Ma, Yue Liu, Yue Yu, Yuanliang Zhang, 722
Yu Jiang, Changjian Wang, and Shanshan Li. 2023. 723
At which training stage does code data help llms 724
reasoning? arXiv preprint arXiv:2309.16298. 725

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, 726
and Graham Neubig. 2022. Language models of code 727
are few-shot commonsense learners. arXiv preprint 728
arXiv:2210.07128. 729

Niklas Muennighoff, Alexander M. Rush, Boaz Barak, 730
Teven Le Scao, Aleksandra Piktus, Nouamane Tazi, 731
Sampo Pyysalo, Thomas Wolf, and Colin Raffel. 732
2023. Scaling data-constrained language models. 733
Preprint, arXiv:2305.16264. 734

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, 735
Long Ouyang, Christina Kim, Christopher Hesse, 736
Shantanu Jain, Vineet Kosaraju, William Saunders, 737
and 1 others. 2021. Webgpt: Browser-assisted 738
question-answering with human feedback. arXiv 739
preprint arXiv:2112.09332. 740

Robin L. Plackett. 1975. The analysis of permutations. 741
Applied Statistics, 24(2):193–202. 742

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 743
pher D Manning, Stefano Ermon, and Chelsea Finn. 744
2024. Direct preference optimization: Your language 745
model is secretly a reward model. Advances in Neu- 746
ral Information Processing Systems, 36. 747

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, 748
Long Ouyang, Jonathan Ward, and Jan Leike. 2022. 749
Self-critiquing models for assisting human evaluators. 750
arXiv preprint arXiv:2206.05802. 751

John Schulman, Filip Wolski, Prafulla Dhariwal, 752
Alec Radford, and Oleg Klimov. 2017. Proxi- 753
mal policy optimization algorithms. arXiv preprint 754
arXiv:1707.06347. 755

10

https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://yaofu.notion.site/How-does-GPT-Obtain-its-Ability-Tracing-Emergent-Abilities-of-Language-Models-to-their-Sources-b9a57ac0fcf74f30a1ab9e3e36fa1dc1
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2305.16264


Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,756
Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,757
and Daya Guo. 2024. Deepseekmath: Pushing the758
limits of mathematical reasoning in open language759
models. arXiv preprint arXiv:2402.03300.760

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel761
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,762
Dario Amodei, and Paul F Christiano. 2020. Learn-763
ing to summarize with human feedback. Advances764
in Neural Information Processing Systems, 33:3008–765
3021.766

Jonathan Uesato, Nate Kushman, Ramana Kumar, Fran-767
cis Song, Noah Siegel, Lisa Wang, Antonia Creswell,768
Geoffrey Irving, and Irina Higgins. 2022. Solv-769
ing math word problems with process-and outcome-770
based feedback. arXiv preprint arXiv:2211.14275.771

A Vaswani. 2017. Attention is all you need. Advances772
in Neural Information Processing Systems.773

Binghai Wang, Runji Lin, Keming Lu, Le Yu, Zhenru774
Zhang, Fei Huang, Chujie Zheng, Kai Dang, Yang775
Fan, Xingzhang Ren, An Yang, Binyuan Hui, Dayi-776
heng Liu, Tao Gui, Qi Zhang, Xuanjing Huang, Yu-777
Gang Jiang, Bowen Yu, Jingren Zhou, and Junyang778
Lin. 2025. Worldpm: Scaling human preference779
modeling. Preprint, arXiv:2505.10527.780

Peiyi Wang, Lei Li, Liang Chen, Feifan Song, Binghuai781
Lin, Yunbo Cao, Tianyu Liu, and Zhifang Sui. 2023a.782
Making large language models better reasoners with783
alignment. arXiv preprint arXiv:2309.02144.784

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai785
Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang Sui.786
2023b. Math-shepherd: A label-free step-by-step787
verifier for llms in mathematical reasoning. arXiv788
preprint arXiv:2312.08935.789

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,790
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and791
Denny Zhou. 2022. Self-consistency improves chain792
of thought reasoning in language models. arXiv793
preprint arXiv:2203.11171.794

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten795
Bosma, Fei Xia, Ed Chi, Quoc V Le, and Denny796
Zhou. 2022. Chain-of-thought prompting elicits rea-797
soning in large language models. In Proceedings of798
the 36th Conference on Neural Information Process-799
ing Systems (NeurIPS).800

Haotian Xu. 2023. No train still gain. unleash math-801
ematical reasoning of large language models with802
monte carlo tree search guided by energy function.803
arXiv preprint arXiv:2309.03224.804

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,805
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong806
Tu, Jingren Zhou, Junyang Lin, and 1 others. 2024.807
Qwen2. 5-math technical report: Toward mathe-808
matical expert model via self-improvement. arXiv809
preprint arXiv:2409.12122.810

Fei Yu, Anningzhe Gao, and Benyou Wang. 2024. Ovm, 811
outcome-supervised value models for planning in 812
mathematical reasoning. In Findings of the Associ- 813
ation for Computational Linguistics: NAACL 2024, 814
pages 858–875. 815

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 816
Zhengying Liu, Yu Zhang, James T Kwok, Zhen- 817
guo Li, Adrian Weller, and Weiyang Liu. 2023. 818
Metamath: Bootstrap your own mathematical ques- 819
tions for large language models. arXiv preprint 820
arXiv:2309.12284. 821

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi 822
Feng. 2020. Reclor: A reading comprehension 823
dataset requiring logical reasoning. arXiv preprint 824
arXiv:2002.04326. 825

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran 826
Kazemi, Aviral Kumar, and Rishabh Agarwal. 2024a. 827
Generative verifiers: Reward modeling as next-token 828
prediction. arXiv preprint arXiv:2408.15240. 829

Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang, 830
Lichang Chen, William Yang Wang, and Linda Ruth 831
Petzold. 2024b. Unveiling the impact of coding data 832
instruction fine-tuning on large language models rea- 833
soning. arXiv preprint arXiv:2405.20535. 834

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 835
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 836
Zhuohan Li, Dacheng Li, Eric Xing, and 1 others. 837
2024. Judging llm-as-a-judge with mt-bench and 838
chatbot arena. Advances in Neural Information Pro- 839
cessing Systems, 36. 840

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun 841
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song, 842
Mingjie Zhan, and 1 others. 2023. Solving chal- 843
lenging math word problems using gpt-4 code in- 844
terpreter with code-based self-verification. arXiv 845
preprint arXiv:2308.07921. 846

Denny Zhou, Nathanael Sch"arli, Le Hou, Jason Wei, 847
Nathan Scales, Xuezhi Wang, Dale Schuurmans, 848
Claire Cui, Olivier Bousquet, Quoc Le, and 1 oth- 849
ers. 2022. Least-to-most prompting enables complex 850
reasoning in large language models. arXiv preprint 851
arXiv:2205.10625. 852

Xuekai Zhu, Daixuan Cheng, Hengli Li, Kaiyan Zhang, 853
Ermo Hua, Xingtai Lv, Ning Ding, Zhouhan Lin, 854
Zilong Zheng, and Bowen Zhou. 2024. How to syn- 855
thesize text data without model collapse? Preprint, 856
arXiv:2412.14689. 857

A Hyperparameters and Computational 858

Cost 859

We outline key hyperparameters and computational 860

cost in this section. In the tables, WSD refers 861

to the warmup-stable-decay learning rate sched- 862

uler (Hu et al., 2024), which has the benefit of 863

11

https://arxiv.org/abs/2505.10527
https://arxiv.org/abs/2505.10527
https://arxiv.org/abs/2505.10527
https://arxiv.org/abs/2412.14689
https://arxiv.org/abs/2412.14689
https://arxiv.org/abs/2412.14689


Model Size Number of GPUs Training Time
Qwen2-1.5B 64 H800 12 hours
Qwen2-7B 128 H800 20 hours

Table 7: Computational cost for CodePMP training
across different model sizes.

Hyperparameter Qwen2-1.5B Qwen2-7B
epoch 1 1
batch size 1024 1024
learning rate 3e-6 1e-6
lr scheduler WSD WSD
warmup ratio 0.03 0.03
decay ratio 0.1 0.1
weight decay 0.1 0.1
max length 1024 1024

Table 8: CodePMP training hyperparameters.

Hyperparameter Qwen2-1.5B Qwen2-7B
epoch 1 1
batch size 64 64
learning rate 1e-6 3e-7
lr scheduler WCD WCD
warmup ratio 0.03 0.03
weight decay 0 0
max length 1024 1024

Table 9: Mathematical reasoning RM finetuning hyper-
parameters.

Hyperparameter Qwen2-1.5B Qwen2-7B
epoch 1 1
batch size 64 64
learning rate 1e-5 1e-5
lr scheduler WCD WCD
warmup ratio 0.25 0.25
weight decay 0 0
max length 1024 1024

Table 10: Logical reasoning RM finetuning hyperparam-
eters.

reducing the time required for scaling law experi-864

ments. Specifically, Table 8 lists the hyperparame-865

ters for CodePMP training, Table 9 details those for866

mathematical reasoning RM fine-tuning, Table 10867

covers logical reasoning RM fine-tuning, and Ta-868

ble 11 presents the hyperparameters for BON gen-869

eration.870

The computational cost for CodePMP training871

varies depending on the model size. For CodePMP872

training with the Qwen2-7B model, we utilized 128873

H800 GPUs for approximately 20 hours. For the874

smaller Qwen2-1.5B model, the training required875

64 H800 GPUs for approximately 12 hours. These876

computational requirements reflect the scalability877

of our approach across different model sizes while878

maintaining reasonable training times for the large-879

scale preference model pretraining. Table 7 summa-880

rizes the computational requirements for different881

model sizes.882

Hyperparameter MetaMath-Mistral-7B
temperature 0.7
top-p 1

Table 11: Best-of-N generation hyperparameters.

Language Chosen Rejected
Python 170.0 167.0
Notebook 158.0 155.5
Other Languages 213.2 210.0
Total 194.5 189.9

Table 12: Average token lengths of responses in the
CodePMP dataset by language category.

B CodePMP Dataset Statistics 883

Table 12 presents the average token lengths of 884

responses in the CodePMP dataset. The similar 885

lengths between chosen and rejected responses 886

(194.5 vs. 189.9 tokens) ensure that response 887

length does not introduce bias in the learning pro- 888

cess. The dataset comprises 28 million files total- 889

ing 19 billion tokens, with Python (13.1B tokens), 890

Jupyter Notebooks (2.1B tokens), and other lan- 891

guages (3.8B tokens) providing diverse coverage 892

that facilitates model generalization. 893

C RM Finetuning Dataset 894

C.1 Mathematical Reasoning 895

The RM finetuning for mathematical reasoning 896

uses the MathShepherd dataset (Wang et al., 897

2023b), which contains 444k query-response sam- 898

ples, with some queries having multiple distinct 899

responses. We divide the dataset into a 400k train- 900

ing set and a 44k test set. For RM finetuning, we 901

construct preference pairs by selecting both correct 902

and incorrect responses for the same query. To 903

form the 4.3k test set, we combine one positive and 904

negative sample for each query from the original 905

test set. 906

We also create two training sets of differ- 907

ent sizes: MathShepherd-preference-800k and 908

MathShepherd-preference-40k. The 800k training 909

set is built by combining multiple positive and neg- 910

ative samples for each query in the original training 911

set, resulting in 800k samples. In contrast, the 40k 912

training set randomly selects one positive-negative 913

pair for each query, totaling 40k samples. 914

C.2 Logical Reasoning 915

C.2.1 Reclor 916

Reclor is a human-annotated reading comprehen- 917

sion reasoning dataset, where each sample consists 918

of a passage, a question, and multiple options. To 919

create preference pairs, we combine the correct 920

12



(a) MATH-shepherd / 1.5B (b) MATH-shepherd / 7B (c) Reclor+Logiqa / 1.5B (d) Reclor+Logiqa / 7B
Figure 8: Comparison of sample efficiency of RM fine-tuning: Trends of RM accuracy with sample size increases.

(a) MATH-shepherd / 1.5B (b) MATH-shepherd / 7B (c) Reclor+Logiqa / 1.5B (d) Reclor+Logiqa / 7B
Figure 9: Comparison of sample efficiency of RM fine-tuning: Trends of Multi-choice accuracy or Best-of-4 with
sample size increases.

and incorrect options for the same question. This921

process results in a total of 14.5k preference pairs,922

with 14k pairs used for training and 1.5k for testing,923

forming the Reclor-preference dataset.924

C.2.2 LogiQA2.0925

LogiQA 2.0 is a meticulously curated dataset de-926

signed for logical reasoning in natural language927

understanding, focusing on multi-choice question928

(MCQ). It comprises a substantial dataset of 15,708929

instances, each consisting of a passage, a question,930

and four candidate answers, with the correct answer931

clearly labeled. The questions and passages trans-932

lated by professional linguists to ensure clarity and933

accuracy, while eliminating culturally specific ele-934

ments. The dataset is annotated with fine-grained935

logical reasoning types, making it a robust resource936

for training and evaluating models on complex log-937

ical inference tasks.938

C.3 CodeUltraFeedback_binarized939

CodeUltraFeedback_binarized is a preference940

dataset in the code domain, consisting of 9.5k pref-941

erence pairs. We randomly split the dataset, using942

90% of the samples for finetuning training and 10%943

for testing RM accuracy.944

D Further Comparisons and945

Cross-Domain Evaluations946

D.1 Comparison with Majority Voting947

We compare CodePMP with a majority-voting base-948

line under the same experimental setup on GSM8K949

Method GSM8K MATH
CodePMP 0.8484 0.41
Majority Voting 0.8453 0.37

Table 13: Comparison of CodePMP and majority voting
on GSM8K and MATH.

and MATH. Table 13 shows that CodePMP outper- 950

forms majority voting, especially on more complex 951

tasks like MATH. 952

D.2 Sample Efficiency Improvements on 953

Reclor and LogiQA 954

We finetune the RM on preference pairs using only 955

Reclor or LogiQA and then evaluate them on their 956

respective test sets. As shown in Figures 8 and 957

9, PMP demonstrates a clear advantage in sam- 958

ple efficiency, reflected in both RM accuracy and 959

Best-of-N evaluation. The results reveal that even 960

with substantially fewer training samples, reward 961

models initialized with CodePMP achieve compa- 962

rable or better performance than models trained 963

from scratch with many more samples, highlight- 964

ing the significant sample efficiency benefits of our 965

approach for logical reasoning tasks. 966

D.3 Performance on Coding Tasks 967

We evaluate CodePMP’s effectiveness on actual 968

code generation tasks by conducting two types of 969

evaluations: reward model accuracy assessment 970

and code generation evaluation. 971

First, we assess the reward model’s accuracy 972

on the CodeUltraFeedback benchmark, which con- 973

sists of preference pairs in the code domain. We 974

13



MODEL PMP CODEULTRAFEEDBACK
ACCURACY

1.5B ✗ 0.6841
✓ 0.758

7B ✗ 0.6912
✓ 0.7619

Table 14: Performance on CodeUltraFeedback bench-
mark shows that CodePMP improves in-domain code
reward modeling.

BoN Qwen2-7B w/o PMP Qwen2-7B w/ PMP
N=1 0.7134 0.7134
N=2 0.7317 0.7195
N=4 0.7073 0.7622
N=8 0.6890 0.7683
N=16 0.6951 0.7256
N=32 0.6585 0.7378
N=64 0.6829 0.7134
N=128 0.6707 0.7012
N=256 0.6707 0.7195

Table 15: HumanEval results (Pass@1, 0-shot) for dif-
ferent numbers of sampled solutions N . The generator
is deepseek-coder-6.7b-instruct.

fine-tuned Qwen2 models on the CodeUltraFeed-975

back_binarized dataset (8.5k preference pairs),976

both with and without CodePMP initialization. Ta-977

ble 14 presents the accuracy results across model978

sizes.979

As shown in Table 14, reward models initial-980

ized with CodePMP consistently outperform those981

without PMP initialization on the CodeUltraFeed-982

back benchmark. For the 1.5B model, CodePMP983

initialization improves accuracy from 0.6841 to984

0.758, while for the 7B model, accuracy increases985

from 0.6912 to 0.7619. These results demonstrate986

that CodePMP effectively enhances reward models’987

ability to evaluate code quality.988

Beyond reward model evaluation, we also as-989

sess whether this improved evaluation capability990

translates to better code generation outcomes using991

the HumanEval benchmark. For this evaluation,992

we used deepseek-coder-6.7b-instruct as the gener-993

ator and Qwen2-7B as the reward model (RM).994

We fine-tuned the RM on the same CodeUltra-995

Feedback_binarized dataset, both with and without996

CodePMP initialization. Table 15 presents Pass@1997

(0-shot) results under different N values.998

The results in Table 15 indicate that CodePMP999

initialization provides a generally more stable and1000

higher-accuracy selection mechanism compared to1001

direct training, especially as N varies. For most1002

values of N , the model with CodePMP initializa-1003

tion achieves better Pass@1 scores, with particu-1004

larly notable improvements at N = 4 (0.7622 vs.1005

0.7073), N = 8 (0.7683 vs. 0.6890), and N = 32 1006

(0.7378 vs. 0.6585). Without CodePMP, we ob- 1007

serve performance degradation at higher N values, 1008

while CodePMP-initialized models maintain more 1009

consistent performance. This finding is particu- 1010

larly significant since HumanEval evaluates actual 1011

code generation rather than just preference predic- 1012

tion, demonstrating that the benefits of CodePMP 1013

extend beyond improved preference modeling to 1014

better code generation outcomes. 1015

Summary These additional experiments demon- 1016

strate that CodePMP: 1017

• Outperforms majority voting in both simpler 1018

(GSM8K) and more challenging (MATH) set- 1019

tings. 1020

• Demonstrates significant sample efficiency 1021

improvements on logical reasoning tasks (Re- 1022

clor and LogiQA), with models initialized 1023

with CodePMP achieving better performance 1024

with fewer training samples. 1025

• Provides more stable and accurate code eval- 1026

uation on HumanEval, showing benefits for 1027

practical code generation tasks. 1028

Thus, CodePMP provides a scalable and effec- 1029

tive approach to improving large language models 1030

across different domains and tasks. 1031

E Comprehensive Data Diversity Analysis 1032

To validate the quality of our synthetic data, we con- 1033

ducted comprehensive diversity analyses using es- 1034

tablished methodologies from the research on syn- 1035

thetic text data generation (Zhu et al., 2024). These 1036

analyses aim to demonstrate that our synthetic data 1037

maintains sufficient diversity while effectively cap- 1038

turing the distributions present in human-generated 1039

data. 1040

E.1 N-gram Feature Distribution Analysis 1041

We mapped text n-gram features to fixed hash 1042

buckets (100 buckets) and analyzed their distribu- 1043

tion patterns to measure lexical diversity. Figures 1044

10 and 11 show the comparison between human- 1045

generated data and our synthetic data. 1046

Table 16 presents the density values for uni- 1047

gram and bigram distributions across different data 1048

sources. 1049

The distribution graphs show that, compared to 1050

human data, our synthetic data has more uniform n- 1051

gram distributions, without the concentration peaks 1052

common in synthetic data. The density values fur- 1053

14



Figure 10: Unigram distribution comparison (left: distri-
bution for human data, right: distribution for synthetic
data).

Figure 11: Bigram distribution comparison (left: distri-
bution for human data, right: distribution for synthetic
data).

ther quantify this advantage—synthetic text’s n-1054

gram density values (Strong Model: 97,653.69,1055

Weak Model: 93,691.69) are significantly lower1056

than human text (134,538.40), demonstrating more1057

balanced distribution across hash buckets.1058

E.2 Embedding Space Visualization1059

To further evaluate the semantic diversity of our1060

synthetic data, we mapped semantic features of1061

both human and synthetic data to a 2D space, as1062

shown in Figure 12.1063

Figure 12: Embedding space visualization (left: distri-
bution for human data, right: distribution for synthetic
data).

Both synthetic and human data show wide and1064

dispersed distributions in the embedding space with1065

highly overlapping distribution ranges, indicating1066

our synthetic data captures a similarly broad se-1067

mantic space as human data.1068

E.3 KL Divergence Analysis1069

We quantified the distribution differences between1070

synthetic and human data using KL divergence to1071

evaluate how closely our synthetic data approxi-1072

Data Source Unigram Bigram
Human 134,538.40 133,538.41
Strong Model 97,653.69 96,653.70
Weak Model 93,691.69 92,691.70

Table 16: N-gram density values for human and syn-
thetic data.

mates natural distributions. Table 17 presents these 1073

results. 1074
N-gram Human Internal Strong Model Weak Model

(Bootstrap) vs Human vs Human
1-gram 0.2502 0.4290 0.4631
2-gram 0.6904 1.3500 1.4281
3-gram 1.3012 2.5660 2.6693

Table 17: KL divergence values comparing different
data distributions.

These results demonstrate that the distribution 1075

differences between our synthetic data and human 1076

data fall within acceptable ranges relative to inter- 1077

nal human data variation. 1078

E.4 Comprehensive Validation of Synthetic 1079

Preference Data 1080

Our synthetic data generation approach relies on 1081

two key assumptions: (1) larger models from 1082

the same family produce higher-quality code than 1083

smaller ones, and (2) this quality difference creates 1084

consistent preference signals suitable for training. 1085

We conducted both theoretical and empirical vali- 1086

dation to confirm these assumptions. 1087

E.4.1 Validation of Strong-Weak Model 1088

Ability Differences 1089

To validate our first assumption, we analyzed abil- 1090

ity differences between strong and weak models 1091

across various code-related dimensions. 1092

(a) Same model family (b) Different model families
Figure 13: Radar charts showing ability differences
between strong and weak LLMs across various dimen-
sions.

Figure 13a provides strong evidence support- 1093

ing our assumption: when using models from the 1094

same architectural family with different parame- 1095

ter counts, the stronger model consistently out- 1096

performs the weaker model across all ability di- 1097

mensions. This uniform superiority ensures that 1098

synthetic preference pairs have clear and consis- 1099

tent quality differences, creating reliable signals 1100

for training preference models. 1101

15



For comparison, Figure 13b shows what happens1102

when models from different families are paired.1103

Here, we observe irregular and inconsistent differ-1104

ences, with some dimensions showing negligible1105

gaps or even inversions. Such inconsistencies could1106

potentially introduce noise into the preference sig-1107

nals, undermining training data quality.1108

E.4.2 External Evaluation of Preference1109

Consistency1110

Having confirmed the underlying ability differ-1111

ences, we next validated whether these differences1112

translate to consistent preference judgments. We1113

conducted preference annotation experiments using1114

GPT-4o to evaluate the consistency of preferences1115

in our dataset.1116

The results show that our synthetic CodePMP1117

data achieved a preference consistency rate of1118

75.12%. This is notably higher than the more costly1119

CodeUltraFeedback preference dataset (71.56%),1120

demonstrating that the preference distinction in our1121

synthetic data (based on our assumption that "larger1122

models generate better code than smaller models")1123

is sufficiently clear and consistent.1124

This external validation reinforces our first find-1125

ing - not only do larger models from the same1126

family consistently outperform smaller ones across1127

all dimensions, but this performance gap is readily1128

detectable by strong evaluator models, resulting in1129

consistent preference judgments.1130

As CodePMP is fundamentally a pretraining pro-1131

cess, we deliberately simplified our assumptions1132

to enable scalable preference data creation with1133

minimal additional validation. Our multi-faceted1134

validation approach confirms that this simple yet1135

effective methodology produces high-quality, con-1136

sistent preference data suitable for large-scale pre-1137

training.1138

E.5 Source Data Quality and Experimental1139

Validation1140

Our method achieves excellent diversity due to the1141

high quality of our source data:1142

• We collected over 130 million code snippets1143

from GitHub, covering all common program-1144

ming languages and task types on open-source1145

platforms, ensuring breadth and depth in our1146

source data.1147

Furthermore, our experimental results validate1148

the effectiveness of our synthetic data diversity:1149

• As shown in Figure 6a, our synthesis strategy1150

outperforms preference pairs constructed di-1151

rectly from source code, indirectly proving 1152

that our synthesis process enhances data diver- 1153

sity and quality. 1154

This comprehensive diversity analysis confirms 1155

that our synthetic data generation approach pro- 1156

duces high-quality, diverse data that effectively 1157

captures the distribution characteristics of human- 1158

generated code. The balanced distribution patterns 1159

and semantic coverage demonstrate that our syn- 1160

thetic data is well-suited for training robust reward 1161

models. 1162

F Detailed Implementation of CodePMP 1163

In this section, we provide a detailed overview of 1164

the Code Preference Model Pretraining (CodePMP) 1165

implementation. The following description illus- 1166

trates the systematic process of generating and uti- 1167

lizing code-preference pairs for pretraining pref- 1168

erence models, which can then be fine-tuned for 1169

downstream reasoning tasks. 1170

The algorithm begins with a source code repos- 1171

itory, a strong CodeLLM (in our implementa- 1172

tion, deepseek-coder-6.7b-instruct), and a weaker 1173

CodeLLM (deepseek-coder-1.3b-instruct). First, 1174

descriptions are generated for each code snippet in 1175

the repository using the strong model. For each de- 1176

scription, the strong model generates a high-quality 1177

chosen response, while the weaker model gener- 1178

ates a less optimal rejected response. These pairs 1179

are used to calculate both language modeling loss 1180

(on the responses) and reward modeling loss (com- 1181

paring chosen vs. rejected responses). The final 1182

training objective combines these two loss compo- 1183

nents. 1184

This scalable approach allows for creating mil- 1185

lions of preference pairs without expensive human 1186

annotation, providing an effective initialization for 1187

reward models that will later be fine-tuned on spe- 1188

cific reasoning tasks. 1189

G Logical Reasoning Evaluation 1190

Examples 1191

We randomly select and present examples from the 1192

Reclor test set, which consists of multiple-choice 1193

questions based on a given passage. While it is 1194

possible to have the model generate additional can- 1195

didate answers to create a Best-of-N test, it be- 1196

comes difficult to ensure that the original correct 1197

answer remains among the options after introduc- 1198

ing new candidates, and to identify the new correct 1199

answer. We attempt to use GPT-4o to annotate 1200

16



Algorithm 1 Code Preference Model Pretraining

Require: Source code repository S,
Strong CodeLLM Mstrong,
Weak CodeLLM Mweak

Ensure: Pretrained Model
Input: Source code S
Summarize description D using Mstrong on S
for each Di ∈ D do

Generate Chosen Response using Mstrong
Generate Rejected Response using Mweak

end for
Calculate LM Loss LLM on Response
Calculate RM Loss LRM using Chosen Response and Rejected Response
Train PMP Model using LPMP = LRM + LLM

the correct answers for 32 responses, but the con-1201

sistency with manual inspection is low, as is the1202

consistency of GPT-4o’s own multiple annotations.1203

It can be inferred that the consistency rate would1204

worsen if expanded to 256 responses. Therefore,1205

after careful consideration, we decide to use RM to1206

score only the original four manually annotated an-1207

swer options, match the top-ranked option with the1208

manually annotated correct answer, and calculate1209

accuracy. In principle, this method is equivalent to1210

the Best-of-4 test.1211

17



Table 18: Examples from the Reclor test set, illustrating multiple-choice questions format with passages and
questions.
ID Passage Question Ans.
12824 Mayor: When we reorganized the police de-

partment, critics claimed it would make po-
lice less responsive and lead to more crime.
Statistics show an overall decrease in thefts
after reorganization.

Which statement most challenges the mayor’s argument?
(1) Similar reorganizations in other cities led to increased
thefts. (2) Unresponsive police reduce theft reporting
rates. (3) Critics agree police statistics are reliable. (4)
The reorganization saved less money than planned.

2

218 Jupiter is the largest planet with mass 2.5
times that of all other planets combined.
Most of Jupiter’s 70+ moons are water ice.

What best supports that Jupiter’s atmosphere should con-
tain water? (1) Satellites may eventually fall onto planets.
(2) Interstellar water exists as gas. (3) Uranus, also a gas
giant, contains water ice. (4) Satellites and planets form
from the same materials.

3

10376 Lake Dali fish must migrate to river headwa-
ters to breed, though no rivers connect to the
sea. Scientists believe these fish originally
came from the ocean.

What best explains scientists’ belief? (1) Similar fish
elsewhere are larger. (2) The fish quickly die in sea/fresh
water. (3) Lake Dali was once connected to an ocean-
bound river. (4) Fish from Lake Dali survived in far-away
lakes.

2

13334 If nuclear waste posed no threat, it could
be placed in populated areas. But it is only
dumped in sparsely populated regions, sug-
gesting safety concerns.

What would most weaken this argument? (1) Uncertain
safety justifies minimal risk placement. (2) Chemical
waste is also dumped away from population. (3) Acci-
dents affect fewer people in sparsely populated areas. (4)
Remote locations reduce bureaucratic complications.

3

18


	Introduction
	Preliminaries
	Code Preference Model Pretraining
	Model Design
	Data Construction

	Experiments
	Experimental Settings
	CodePMP Settings
	Reasoning Finetuning Settings
	Evaluation Settings

	Experimental Results
	RM Accuracy Results
	BoN Accuracy Results
	Sample Efficiency Analysis
	Scalability Analysis


	Ablation Studies
	Impact of Pair Construction
	Impact of Loss Function
	Cross-Architecture Generalization
	Performance on Larger Backbone Model
	Performance on More Powerful Generator
	Performance on General RM Benchmarks

	Related Works
	Conclusion and Future Works
	Hyperparameters and Computational Cost
	CodePMP Dataset Statistics
	RM Finetuning Dataset
	Mathematical Reasoning
	Logical Reasoning
	Reclor
	LogiQA2.0

	CodeUltraFeedback_binarized

	Further Comparisons and Cross-Domain Evaluations
	Comparison with Majority Voting
	Sample Efficiency Improvements on Reclor and LogiQA
	Performance on Coding Tasks

	Comprehensive Data Diversity Analysis
	N-gram Feature Distribution Analysis
	Embedding Space Visualization
	KL Divergence Analysis
	Comprehensive Validation of Synthetic Preference Data
	Validation of Strong-Weak Model Ability Differences
	External Evaluation of Preference Consistency

	Source Data Quality and Experimental Validation

	Detailed Implementation of CodePMP
	Logical Reasoning Evaluation Examples

