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ABSTRACT

This paper studies the effectiveness of random and grid initialization strategies
in SETUP-BO, a self-tuning Bayesian optimization algorithm. Our experiments
on benchmark functions compare the performance of these initialization strategies
to deterministic initialization. The results show that random initialization outper-
forms other methods, indicating that it can enhance the performance of BO.

1 INTRODUCTION

Optimization methods can be classified into different categories, such as first-order, higher-order,
and derivative-free, based on the gradient information they use (Sun et al., 2019). Bayesian op-
timization (BO) (Mockus & Mockus, 1991) is a powerful framework for optimizing unknown or
expensive-to-evaluate functions. In this paper, we investigate the effectiveness of two alternative
initialization strategies for SETUP-BO1, a recently proposed self-tuning BO algorithm (Vasconce-
los et al., 2022). Specifically, we compare the deterministic initialization strategy to the random
initialization (Bergstra & Bengio, 2012) and grid initialization strategies, hypothesizing that these
simple strategies can outperform the original for certain types of functions.

In order to evaluate the efficacy of these initialization strategies, we have conducted several experi-
ments on two widely-used benchmark functions in the field of optimization research. Our findings
demonstrate that, for these specific benchmarks, the random initialization strategy consistently out-
performs alternative methods. This highlights the potential for straightforward strategies to signifi-
cantly enhance the performance of BO. These results are presented in Section 3.

2 METHODOLOGY

BO relies on the surrogate model, usually a Gaussian process, to capture the characteristics of the
objective function (see A.1) and the acquisition function to suggest the next candidate for assessment
(see A.2). To enhance the performance of BO, Auer et al. (1995) introduced GP-Hedge (see A.3)
algorithm that uses a portfolio of acquisition functions and associates a score to each function based
on its performance since the initial step.

However, GP-Hedge has a limitation; it remembers the initial poor performance of each function.
Accordingly, if a function has a poor initial performance, its candidate would not be considered a
promising one to be selected. To address this limitation, No-Past-BO (see A.4) method was intro-
duced which uses a memory decay factor to discount the score over time (Vasconcelos et al., 2019).
To further improve the performance, Vasconcelos et al. (2022) introduced SETUP-BO (see A.5),
which auto-tunes the parameter while optimizing the objective function.

Since the initialization of the GP prior to the starting of optimization iterations plays a crucial role in
the overall information that BO captures from the objective function, we modified the SETUP-BO
implementation to incorporate random and grid initialization strategies. For random initialization,
multiple samples drawn from a uniform distribution on the search space of the optimization problem

1The implementation of SETUP-BO was released https://github.com/thiago-vasconcelos/setup-bo by Vas-
concelos et al. (2022)
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Table 1: The table summarizes the Mann-Whitney U test results, which compared the performance
of SETUP-BO with random initialization to other methods. A P-value ≤ 0.05 indicates that the
difference in performance is statistically significant, supporting the null hypothesis.

Benchmark Random
Search

Grid
Search

Deterministic
Initialization

Grid
Initialization

Hartmann 3D ≈ 1.8× 10−48 ≈ 3.8× 10−73 ≈ 7.5× 10−165 ≈ 1.1× 10−233

Hartmann 6D ≈ 2.6× 10−69 ≈ 3.3× 10−154 ≈ 1.7× 10−190 ≈ 7.6× 10−76

are used to initialize the GP. For grid initialization, the search space is divided into a grid mesh, and
the evaluation of the objective function on each corresponding point is used to initialize the GP.

3 EXPERIMENTS AND RESULTS

We compared five different methods including random search, grid search, SETUP-BO with de-
terministic initialization, random, and grid initialization on the Hartmann 6D and Hartmann 3D
benchmark functions (see A.6), which are 6- and 3-dim uni-modal functions on a unit hyper-cube,
respectively. The initialization population is equal for both random and grid initialization techniques.

Figure 1 demonstrates that SETUP-BO with random initialization outperforms other methods on
the Hartmann 6D and Hartmann 3D benchmark functions by at least 6 and 93 times more minor
errors, respectively. The convergence rate of SETUP-BO with random initialization is also better
than other methods on these benchmarks. Notably, SETUP-BO with grid initialization performs
poorly, potentially due to converging to local optima resulting from low uncertainty and inability to
explore caused by uniform initialization in every region.

(a) (b)

Figure 1: Comparison of log-absolute error of the best solution found in each iteration w.r.t. the
actual global optima by Random Search, Grid Search, SETUP-BO, SETUP-BO with Grid Initial-
ization, and SETUP-BO with Random Initialization on Hartmann-6D (a) and Hartmann-3D (b)

We also performed a statistical test to compare the performance of SETUP-BO with random initial-
ization against other methods. The Mann-Whitney U test which is a non-parametric test was used
to compare two samples to test whether they were drawn from the same distribution. The test was
implemented using the Scipy library, and the results are presented in table 1. Our null hypothesis
was that the underlying distribution of the absolute error of SETUP-BO with random initialization
was the same as that of the other methods, while our alternative hypothesis was that the distribu-
tion underlying SETUP-BO with random initialization was stochastically less than that of the other
methods. Based on our analysis, we found evidence to support our alternative hypothesis, indicating
that SETUP-BO with random initialization outperforms other methods in our study.

4 CONCLUSION

We investigated two simple initialization strategies for SETUP-BO: random and grid initialization.
Our experiments on benchmark functions demonstrate that the random initialization strategy outper-
forms other methods. These findings suggest that this simple strategy can be effective in improving
the performance of BO. The ideas of random and grid initialization strategies can also be applied to
other population-based optimization methods.
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A APPENDIX

As mentioned Bayesian optimization has two major parts: the surrogate model and the acquisition
function.

A.1 SURROGATE MODEL IN BAYESIAN OPTIMIZATION

The surrogate model is responsible to capture the characteristics of the objective function and the
uncertainty within. The surrogate model is modelled by a Gaussian process. Assume that f : RD →
R is the function we want to optimize and the evaluation on this function in xi is:

yi = f(xi) + ϵi (1)

where ϵi ∼ N (0, σ2) is a random noise. The Gaussian Process can be written as (Rasmussen,
2004):

p(f |X) = N (f |µ, Kf )

p(y|f) = N (y|f , σ2I)

p(y|X) = N (y|µ, Kf + σ2I) (2)

where Kf ∈ RN×N is the covariance matrix calculated by the kernel function k(., .) (i.e [Kf ]ij =
k(xi, xj)).

In inference time, we are interested in predicting the value of function f in x∗ which indicates as
f∗: [

f
f∗

]
= N

([
µ
µ∗

]
,

[
K K∗
KT

∗ K∗∗

])
(3)

where [µ]i is the mean for xi. K, K∗ and K∗∗ are the covariance matrix of train-train, train-test
and test-test respectively.

A.2 ACQUISITION FUNCTION IN BAYESIAN OPTIMIZATION

The main goal of the acquisition function is to suggest the next point to evaluate considering the
captured data by the surrogate model (e.g. uncertainty of estimation in each point). There are 3 most
used acquisition functions (Vasconcelos et al., 2019):

• Probability of Improvement that considers the probability for each point being better than
the best found optimum (Kushner, 1964).

PI(x) = p{f(x) ≤ µ− − ξ} = Φ

(
µ− − ξ − µ(x)

σ(x)

)
(4)

where µ− = miniµ(xi) and µ(x) and σ(x) are the estimated mean and standard deviation
of x respectively. Φ also indicates the CDF of standard Gaussian distribution. ξ adjusts the
balance between exploration and exploitation.

• Expected improvement that also take the amount of improvement into account (Mockus
et al., 1978).

EI(x) = E[µ− − µ(x)] = τ(x)Φ

(
τ(x)

σ(x)

)
+ σ(x)ϕ

(
τ(x)

σ(x)

)
(5)

where τ(x) = µ− − ξ − µ(x) and ϕ is the PDF of standard Gaussian distribution.
• GP - Lower confidence bound (or GP - Upper confidence bound in maximization problems)

that use a linear combination of the mean and standard deviation of the GP (Brochu et al.,
2010).

GP − LCB(x) = µ(x)− kσ(x) (6)
where k adjust the balance between exploration and exploitation

Figure 2 and figure 32 show two consecutive iterations of BO with GP-UCB demonstrating how the
surrogate model and acquisition function work to suggest the next candidate for evaluation.

2These figures were adapted from
https://github.com/fmfn/BayesianOptimization/blob/master/examples/visualization.ipynb.
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Figure 2: Top: The Bayesian Optimization in the 5th iteration; the blue graph and the dotted black
one show the objective function and the prediction of the objective function (a.k.a. surrogate model)
respectively. The red dots indicate the observation, and the cyan region shows the uncertainty with
a confidence level of 95%
Bottom: The acquisition function (GP-UCB) and the star shows the next candidate for evaluation

A.3 GP-HEDGE ALGORITHM

The GP-Hedge algorithm (Auer et al., 1995) examines a predetermined collection of acquisition
functions, organized as a portfolio. Its fundamental principle revolves around the nomination of a
candidate point for evaluation by all acquisition functions during each iteration of Bayesian Opti-
mization. These acquisition functions, utilizing the same surrogate model, collaboratively contribute
to the selection process outlined in Algorithm 1. The probability of choosing a nominated point is
contingent upon the past performance of the associated acquisition function.

Algorithm 1 GP-Hedge Algorithm (Vasconcelos et al., 2022)

Select hyperparameter η ∈ R+

Set G0
j = 0 for j = 1, 2, ..., J ▷ Gt

j is the total score associated with the acquisi-
tion function j up to the time t

for t = 1, 2, ... do
Nominate points from each acquisition function hj : xt

j = argmaxxhj(x)

Select a nominee xt = xt
j with probability ptj =

exp
(
ηGt−1

j

)
∑J

j′=1 exp
(
ηGt−1

j′

)
Compute yt by evaluating the objective on point xt

Augment the data Dt with the new pair
(
xt, yt

)
▷ Dt is the set of observations up to the

time t
Update the surrogate GP model
Update the rewards Gt

j = Gt−1
j − µ

(
xt
j

)
from the updated GP posterior

end for

It should be noted that in the GP-Hedge algorithm, the variable Gt
j represents the cumulative sum

of the scores scorej(xt′

j ) from t = 1 to t. In the GP-Hedge algorithm, the score scorej(x
t
j) corre-
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Figure 3: Top: The Bayesian Optimization in the 6th iteration; As demonstrated, the uncertainty
around the evaluated point is decreased.
Bottom: The acquisition function (GP-UCB) and the star shows the next candidate for evaluation.

sponds to the evaluation µj(x
t
j) of the surrogate model on the point xt

j suggested by the acquisition
function j after updating the surrogate model with the dataset Dt. It is important to mention that the
original GP-Hedge algorithm was initially designed for solving maximization problems. However,
in the case of minimization problems, a modification is introduced where Gt

j is computed as

Gt
j = −

t∑
t′=1

µj(x
t′

j ) (7)

A.4 NO-PAST-BO ALGORITHM

The No-PASt-BO algorithm (Vasconcelos et al., 2019) introduces two modifications to the GP-Hedge
algorithm. It incorporates a memory factor, denoted as 0 ≤ m ≤ 1, during the reward update process
to reduce the influence of past evaluations as the optimization progresses.

Gt
j = mGt−1

j − µ
(
xt
j

)
(8)

By utilizing the memory factor, the algorithm assigns less weight to previous rewards. However, this
adjustment can result in similar rewards at later iterations, causing the algorithm to select acquisition
functions randomly from the portfolio. To address this issue, the No-PASt-BO algorithm introduces
a normalization step to ensure proper selection and maintain the effectiveness of the acquisition
functions.

rtj =
Gt

j − rtmax

rtmin − rtmax

(9)

Here rtmax = max
j

Gt
j , and rtmin = min

j
Gt

j . The full algorithm is presented in Algorithm 2

A.5 SETUP-BO ALGORITHM

In the BO context, the usage of hyperparameters introduces challenges. The evaluation of the costly
objective function makes it undesirable (and often infeasible) to test multiple candidate values for

6
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Algorithm 2 No-Past-BO Algorithm (Vasconcelos et al., 2022)

Select hyperparameter η ∈ R+

Select hyperparameter m ∈ [0, 1]
Set G0

j = 0 for j = 1, 2, ..., J
for t = 1, 2, ... do

Nominate points from each acquisition function hj : xt
j = argmaxxhj(x)

Compute rtmax = max
j

Gt
j

Compute rtmin = min
j

Gt
j

Compute the normalized rewards: rtj =
Gt

j − rtmax

rtmin − rtmax

Select a nominee xt = xt
j with probability ptj =

exp
(
ηrt−1

j

)
∑J

j′=1 exp
(
ηrt−1

j′

)
Compute yt by evaluating the objective on point xt

Augment the data Dt with the new pair
(
xt, yt

)
Update the surrogate GP model
Update the rewards Gt

j = mGt−1
j − µ

(
xt
j

)
from the updated GP posterior

end for

finding the best set of hyperparameters. Thus, it is crucial to develop a strategy to obtain the best
hyperparameters for each optimization task. To address this problem, the SETUP-BO Algorithm
(Vasconcelos et al., 2022) based on the use of Thompson Sampling (TS) (Russo et al., 2018) was
proposed, which allows the automatic adaptation of hyperparameters in each iteration. The portfolio
of acquisition functions can be viewed as a multi-armed bandit problem, where the selection of an
acquisition function that leads to the best evaluation of the black-box function is necessary. There-
fore, applying TS to assist in the selection of the acquisition function is considered a promising
approach.

Two hyperparameters introduced in the No-PASt-BO algorithm (Vasconcelos et al., 2019), namely
the memory factor (m) and the η hyperparameter, are handled by the TS-based approach. For the
memory factor parameter m, a Beta probability distribution was chosen as the prior, since it covers
the range of possible values for m in the interval [0, 1]. A Bernoulli likelihood function is chosen,
where a success (a value equal to one) is defined by a result better than the best result achieved so far.
Conversely, a failure (a zero value) is considered. Consequently, obtaining the posterior distribution
becomes easy, as Beta and Bernoulli are conjugate distributions.

Regarding the η value, a Gamma probability distribution was selected as the prior due to its positive
domain (η ∈ R+). Another reason for choosing the Gamma distribution is its conjugacy with the
exponential distribution. However, the likelihood function takes the form of the Boltzmann distribu-
tion, representing the probability of selecting a certain acquisition function given the energy of the
score. The Boltzmann likelihood is not conjugate with the Gamma prior, which means that a closed-
form solution for the corresponding posterior does not exist. Therefore, approximate inference is
required.

To achieve analytical conjugate posterior updates, some additional considerations are made. It is a
fact that if all the rewards are not equal, there will be at least one rmax=0 and one rmin=−1, due
to the normalization step. Considering a portfolio of three acquisition functions, the probability of
choosing an acquisition function j is approximated as:

ptj =
exp

(
ηrt−1

j

)
1 + exp (−η) + exp

(
ηrt−1

intermediary

) ≈ qtj = C exp
(
ηrt−1

j

)
(10)

where C is the constant and represents the inverse of the mean value of the denominator. Although
this approximation is not entirely accurate, it respects the fact that higher values of η should be
associated with small values of rt−1

j and low values otherwise. Importantly, this approximation
transforms the problem into a Gamma-exponential conjugate pair, for which a closed-form expres-
sion for the posterior distribution exists. The final algorithm is summarized in Algorithm 3.
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Algorithm 3 SETUP-BO Algorithm (Vasconcelos et al., 2022)

Set G0
j = 0 for j = 1, 2, ..., J

for t = 1, 2, ... do
TS step: Sample hyperparameter η ∼ Gamma(α, β)
TS step: Sample hyperparameter m ∼ Beta(a, b)
Nominate points from each acquisition function hj : xt

j = argmaxxhj(x)

Compute rtmax = max
j

Gt
j

Compute rtmin = min
j

Gt
j

Compute the normalized rewards: rtj =
Gt

j − rtmax

rtmin − rtmax

Select a nominee xt = xt
j with probability ptj =

exp
(
ηrt−1

j

)
∑J

j′=1 exp
(
ηrt−1

j′

)
Compute yt by evaluating the objective on point xt

Augment the data Dt with the new pair
(
xt, yt

)
Update the surrogate GP model
Update the rewards Gt

j = mGt−1
j − µ

(
xt
j

)
from the updated GP posterior

if yt is the best point evaluate so far then
Update the posteriors a = a+ 1

else
Update the posteriors b = b+ 1

end if
Update the posteriors α = α+ 1
Update the posteriors β = β + rtj

end for

A.6 BENCHMARK FUNCTIONS

In this section, a comprehensive description of the benchmark objective functions employed in our
study is presented. The functions under consideration include the Hartmann 3D function and the
Hartmann 6D function, where the results of both benchmarks are depicted in figure 1. Furthermore,
we analyze the Branin function, illustrated in figure 6. To evaluate and compare the performance of
these functions, we conducted the Mann-Whitney U test, and the whole results are summarized in
table 2.

1. Hartmann 6D: The Hartmann 6D3 function is a widely used benchmark function for testing
global optimization algorithms. It is a six-dimensional function that is complex and multi-
modal, making it challenging to optimize. Its mathematical formula is given by:

f(x) = −
4∑

i=1

αi exp

−
6∑

j=1

Aij(xj − Pij)
2

 (11)

where x = (x1, . . . , x6) is the input vector, and the parameters αi, Aij , and Pij are pre-
defined constants. The global minimum value is approximately -3.32237, and the optimal
point is given by the vector:

x∗ = (0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573) (12)

The detailed result is depicted in figure 4

2. Hartmann 3D: The Hartmann 3D4 function is a three-dimensional version of the Hartmann
function, commonly used to test global optimization algorithms. It is similar to the six-

3https://www.sfu.ca/ ssurjano/hart6.html
4https://www.sfu.ca/ ssurjano/hart3.html
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Figure 4: Comparison of log-absolute error of the best solution found in each iteration w.r.t. the
actual global optima by Random Search, Grid Search, SETUP-BO, SETUP-BO with Grid Initial-
ization, and SETUP-BO with Random Initialization on Hartmann 6D

dimensional version but has a simpler input space. Its mathematical formula is given by:

f(x) = −
4∑

i=1

αi exp

−
3∑

j=1

Aij(xj − Pij)
2

 (13)

where x = (x1, x2, x3) is the input vector, and the parameters αi, Aij , and Pij are pre-
defined constants. The global minimum value is approximately -3.86278, and the optimal
point is given by the vector:

x∗ = (0.114614, 0.555649, 0.852547) (14)

The detailed result is illustrated in figure 5

Figure 5: Comparison of log-absolute error of the best solution found in each iteration w.r.t. the
actual global optima by Random Search, Grid Search, SETUP-BO, SETUP-BO with Grid Initial-
ization, and SETUP-BO with Random Initialization on Hartmann 3D

9
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Table 2: This table summarizes the Mann-Whitney U test results, which compared the performance
of SETUP-BO with random initialization to other methods on the Hartmann 3D, Hartmann 6D, and
Branin. A P-value ≤ 0.05 indicates that the difference in performance is statistically significant,
supporting the null hypothesis.

Benchmark Random
Search

Grid
Search

Deterministic
Initialization

Random
Initialization

Grid
Initialization

R
an

do
m

B
O

Hartmann 3D 1.8× 10−48 3.8× 10−73 7.5× 10−165 0.5 1.1× 10−233

Hartmann 6D 2.6× 10−69 3.3× 10−154 1.7× 10−190 0.5 7.6× 10−76

Branin 5.5× 10−177 8.2× 10−170 1.1× 10−204 0.5 1.3× 10−167

G
ri

d
B

O Hartmann 3D 1 1 1 1 0.5
Hartmann 6D 2.2× 10−52 1.2× 10−280 4.2× 10−287 1 0.5
Branin 4.7× 10−69 1 1× 10−201 1 0.5

3. Branin: The Branin function5 is a two-dimensional function with three global minima and
many local minima, often used to test optimization algorithms’ ability to escape local op-
tima. The result for the Branin is shown in figure 6. Its mathematical formula is given
by:

f(x) = a(x2 − bx2
1 + cx1 − r)2 + s(1− t) cos(x1) + s (15)

where a, b, c, r, s, and t are pre-defined constants. The global minimum value is approxi-
mately 0.397887, and there are three global optimal points, which are:

x∗
1 = (−π, 12.275)

x∗
2 = (π, 2.275)

x∗
3 = (9.42478, 2.475)

(16)

Figure 6: Comparison of log-absolute error of the best solution found in each iteration w.r.t. the
actual global optima by Random Search, Grid Search, SETUP-BO, SETUP-BO with Grid Initial-
ization, and SETUP-BO with Random Initialization on Branin

5https://www.sfu.ca/ ssurjano/branin.html
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