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PixelFade: Privacy-preserving Person Re-identification with
Noise-guided Progressive Replacement

Anonymous Authors

ABSTRACT
Online person re-identification services face privacy breaches from
potential data leaks and recovery attacks, exposing cloud-stored
images to malicious attackers and triggering public concern. The
privacy protection of pedestrian images is crucial. Previous privacy-
preserving person re-identification methods are unable to resist
recovery attacks and compromise accuracy. In this paper, we pro-
pose an iterative method (PixelFade) to optimize pedestrian images
into noise-like images to resist recovery attacks. We first give an
in-depth study of protected images from previous privacy methods,
which reveal that the chaos of protected images can disrupt the
learning of recovery networks, leading to a decrease in the power
of the recovery attacks. Accordingly, we propose Noise-guided
Objective Function with the feature constraints of a specific autho-
rization model, optimizing pedestrian images to normal-distributed
noise images while preserving their original identity information
as per the authorization model. To solve the above non-convex op-
timization problem, we propose a heuristic optimization algorithm
that alternately performs the Constraint Operation and the Par-
tial Replacement operation. This strategy not only safeguards that
original pixels are replaced with noises to protect privacy, but also
guides the images towards an improved optimization direction to
effectively preserve discriminative features. Extensive experiments
demonstrate that our PixelFade outperforms previous methods in
resisting recovery attacks and Re-ID performance. The code will
be released.

CCS CONCEPTS
• Computing methodologies→ Object identification.

KEYWORDS
person re-identification, privacy protection, pedestrian images, ad-
versarial attacks

1 INTRODUCTION
With the flourishing of deep learning, person re-identification (Re-
ID) is widely used in various surveillance systems [28]. Given a
query person, the purpose of Re-ID is to match pedestrians ap-
pearing under different cameras at a distinct time. This necessi-
tates uploading pedestrian images captured by various cameras
to a cloud-based storage system to streamline the Re-ID process.
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Figure 1: (a) The potential influence of pixel distribution on
resisting recovery attacks in protected images. An AD value
(fromAnderson-Darling [18] tests) close to zero signifies that
the pixels of the protected image closely align with a nor-
mal distribution, signifying more chaos image pixels. Lower
SSIM indicates lower quality of the recovered images, signify-
ing stronger resistance to recovery attacks. (b) Visualization
of protected and recovered images from different privacy-
preserving person re-identification (PPPR) methods.

However, potential data leakage [4] raised public concern because
pedestrian images contain a large amount of personal information
(e.g. facial information, profile, appearance, and texture). Public con-
cerns motivate the development of the privacy-preserving person
re-identification (PPPR) task [1, 19, 29, 30], which aims to protect
the visual information of pedestrian images while maintaining their
discriminative features for authorized models.

Existing PPPR methods can be roughly divided into two cate-
gories: First, conventional methods visually scramble the body of
images via blurring, mosaic, or noise adding. Such methods injure
the semantic features of the image, leading to a drop in Re-ID per-
formance. Second, deep learning-based methods [19, 30] achieve a
good balance between privacy and utility by transforming images
into visually obfuscated images that can be recognized by the au-
thorized Re-ID model. However, the above methods face the risk of
recovery attacks [8, 15, 29, 32]. If malicious adversaries are aware
of the principle of protection methods or have access to black-box
control of the privacy model, they can launch recovery attacks
by training a recovery network on the public dataset to learn the
mapping from the protected image to the original image. Then the
trained recovery network can reverse the protected image to the
original image, leading to privacy leakage.

To deal with the above problem, we aim to make the protected
image resistant to recovery attacks, while hiding their visual in-
formation and maintaining the utility for authorized Re-ID mod-
els. We start with the Normality Testing [18] on protected images
from previous privacy-preserving methods to measure their pixel
chaos degree. Here we measure the chaos degree by calculating the
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similarity of the protected image to a normal distribution via the
Anderson-Darling test [18], where lower values from the test (AD
values) represent more chaotic protected images. As illustrated in
Figure 1(a), the following phenomenon was observed: As the pixels
of a protected image are more chaotic, the quality of the recovered
image deteriorates, suggesting an increase in resistance to recovery
attacks. We speculate that the inherent randomness of pixels of pro-
tected images can disrupt the recovery network’s learning of the
mapping from the privacy image to the original image, effectively
diminishing the recovery capability of the adversary. Therefore,
this inspires us to consider the privacy-preserving image recogni-
tion task from a new perspective: Can a pedestrian image be
converted into a nearly normal-distributed noise image to
resist recovery attacks as well as protect visual privacy?

However, naively converting images to random noise damages
semantics information, leading to severe loss of discriminative fea-
tures. It is a challenge to balance the trade-off between privacy
and the utility of images. Fortunately, some works regarding ad-
versarial attacks [5, 10, 16] show that deep neural networks (DNN)
understand images in a different way from humans. In the TypeI
adversarial attack [19, 20], the process transforms the image into
a visually different one, but the model persists in recognizing it
as belonging to the same identity. The above approach gives us
a feasible way to preserve the high recognition performance of a
Re-ID model for visually dissimilar images.

In this paper, we provide a simple yet effective method to itera-
tively optimize pedestrian images into noise-like images to perform
PPPR tasks. We define our Noise-guided Objective Function as ap-
proximating pedestrian images to normal-distributed noise images
to resist recovery attacks and protect privacy. During optimization,
a feature constraint is imposed on the feature distance between
protected and original images in the feature space of the pre-trained
Re-ID model, thereby preserving the utility of protected images.
However, Solving the above objective function is a non-convex
optimization problem, simple optimization methods cannot find the
local optimal point (refer to Section 4.4.2 for more analysis), which
seriously impacts the privacy performance or Re-ID performance.

To achieve a good balance between privacy and utility, we pro-
pose a heuristics optimization strategy, named Progressive Pixel
Fading, to process pixels by replacing them with random noise
in a progressive manner. Specifically, we iteratively perform the
Constraint Operation and the Partial Replacement Operation al-
ternately according to the satisfaction of feature constraints. In
the Constraint Operation, we follow TypeI Attack [19] to derive
gradients to update protected images to minimize their feature loss
with original images. In the Partial Replacement Operation, only
part of scattered pixels are replaced with noise. Our Progressive
Pixel Fading offers superior advantages in terms of both privacy and
utility. On the one hand, the replacement ensures that pixel-level in-
formation from the original image is discarded to safeguard privacy.
On the other hand, the unreplaced coarse-grained appearance (e.g.
color, texture, and contour) of the pedestrians can effectively guide
the optimization direction in Constraint Operation to facilitate the
preservation of discriminative features.

We present a comprehensive experimentwith ourmethod (named
PixelFade) on three widely used Re-ID datasets. Compared to pre-
vious PPPR methods, our PixelFade achieves the best results in

terms of resistance to recovery attacks and Re-ID performance. The
visualization of protected images shows that PixelFade effectively
protects the visual information of pedestrian images. Moreover, our
PixelFade can be easily adapted to a multitude of Re-ID network
architectures, and diverse Re-ID scenarios, highlighting its high
scalability and applicability.

Our main contribution can be summarised as three-fold:
(1) Based on experimental findings, we introduce a Noise-

guided Optimization Objective with feature constraints to
optimize pedestrian images to protect visual privacy and
resist recovery attacks.

(2) We propose Progressive Pixel Fading to replace pixels with
noise progressively, aiming to efficiently retain the discrim-
inative features within pedestrian images.

(3) Extensive experiments demonstrate our PixelFade outper-
forms state-of-the-art PPPR methods in terms of Re-ID
performance and resistance performance.

2 RELATIVE WORK
2.1 Person Re-Identification
Person re-identification (Re-ID) aims to match individuals across
different camera views or at different times within a surveillance
network. With the development of deep learning, many works
adopt or develop deep convolutional network architectures (e.g.,
ResNet [6], MobileNet [9], OSnet [33]) to extract features from
pedestrian images. Some works [7, 11] extract pedestrian features
by developing the Transformer architecture [21]. To adapt to more
practical scenarios, Text-to-Image Re-ID methods [11] aim to match
textual descriptions of individuals with their corresponding images
across different camera views, and Visible Infrared [17, 26, 27] Re-ID
methods aim to address the challenge of Re-ID across visible light
and infrared image modalities. To match pedestrians from different
cameras, it is usually necessary to upload images and store them in
the cloud. However, potential data leakage [4] can result in images
being exposed to malicious attackers, potentially leading to tracking
or even criminal incidents. To protect the privacy of pedestrian
images, we propose a privacy-preserving method that preserves
the discriminative features for Re-ID tasks.

2.2 Privacy-preserving Person Re-identification
Existing PPPR methods can be broadly categorized into two types.
First, conventional approaches visually scramble the body in im-
ages through techniques such as blurring, mosaic, or adding noise.
However, these methods compromise the semantic features of the
image, resulting in decreased Re-ID performance. Second, deep
learning-based methods [19, 30] achieve a good balance between
privacy and utility. PrivacyReID [30] provides a joint learning re-
versible anonymization framework, capable of reversibly generat-
ing full-body anonymous images. AVIH [19] iteratively reduces the
correlation information between the protected and original images
to protect visual privacy while minimizing their distance in fea-
ture space. However, the above methods face the risk of recovery
attacks [8, 15, 29, 32]. If malicious adversaries have access to black-
box control of the privacy model, they can launch recovery attacks
by training a recovery network on the public dataset to learn the
mapping from the protected image to the original image. Recently,
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Ye et al. [29] proposes Identity-Specific Encrypt-Decrypt architec-
ture to encrypt the images to resist recovery attacks. However, the
encrypted images cannot be used for retrieval by any Re-ID mod-
els. Our goal is to protect visual privacy of pedestrian images and
resist recovery attacks while maintaining the performance of the
authorized Re-ID model.

2.3 Adversarial Attacks
Many adversarial attack methods [5, 10, 16] show that deep neu-
ral networks (DNN) understand images in a different way from
humans. In the TypeI adversarial attack [19, 20], the process itera-
tively transforms the image into a visually different one, but the
model persists in recognizing it as belonging to the same identity.
AVIH [19] strives to hide the visual information of face images while
preserving their functional features for face recognition models. In
our paper, we employ AVIH for PPPR task as a comparison method.
In comparison, our method proposes a novel objective function that
explicitly converts images to noise to resist recovery attacks and
introduces a heuristic optimization strategy to effectively improve
the privacy-utility trade-off.

3 PIXELFADE
In this section, we first introduce our Noise-guided Object Function
with feature constraint to optimize pedestrian images to protected
images in Section 3.1. Subsequently, we introduce our novel opti-
mization strategy Progressive Pixel Fading in Section 3.2, followed
by Constraint Operation in Section 3.3 and Partial Replacement
Operation in Section 3.4.

3.1 Noise-guided Objective Function
Recall the experimental discovery in Section 1: As the pixels of
a protected image are more chaotic, the quality of the recovered
image deteriorates, suggesting an increase in resistance to recovery
attacks. We speculate that the inherent randomness of pixels of pro-
tected images can disrupt the recovery network’s learning of the
mapping from the privacy image to the original image, effectively
diminishing the recovery capability of the adversary. Therefore
we take a novel perspective to tackle the PPPR task, with the ex-
plicit objective of converting pedestrian images to random noise to
protect visual information and resist recovery attacks.

However, naively converting pedestrian images into noise im-
ages severely harms the semantic information and causes Re-ID
performance to slip. We therefore introduce a feature constraint
for limiting the feature distance between the protected image and
the original image to be less than a preset threshold to maintain
the Re-ID performance of the protected image.

Mathematically, we suppose there is a set of pedestrian images
to be protected 𝑋 = {𝑥1, . . . , 𝑥𝑁 }. For each 𝑥𝑖 , we sample different
noise images 𝜂𝑖 ∼ N , where N is the standard normal distribution.
Our objective function is defined as:

min
𝑥
𝑝

𝑖

𝑥𝑝𝑖 − 𝜂𝑖

2
𝐹
,

s.t
𝑓 (

𝑥
𝑝

𝑖

)
− 𝑓 (𝑥𝑖 )

2
2
≤ 𝜀,

(1)

where 𝑥𝑖 is 𝑖-th original image and 𝑥𝑝
𝑖
is 𝑖-th protected image. 𝑓 is

a pre-trained Re-ID model. For simplicity, we neglect the index 𝑖 of
images in subsequent passages.

3.2 Progressive Pixel Fading
In this subsection, we aim to employ a suitable optimization strategy
to optimize images into noise. Since Equation (1) is a non-convex op-
timization problem, simple optimization methods such as Random
Perturb or L1 Optimization are not able to find the local optimum
point (refer to Section 4.4.2 for more analysis), which seriously
affects the Re-ID performance or privacy performance. To solve
this problem, we propose a heuristic optimization strategy, named
Progressive Pixel Fading, to update protected images.

The pipeline of PixelFade is depicted in Figure 2(a), where for a
given pedestrian image 𝑥 requiring protection, we initially generate
a random noise image 𝜂 sampled fromN along with a set of binary
masks M. During optimizations, we iteratively carry out Con-
straint Operation (detailed in Section 3.3) to update the protected
image to narrow the feature distance between the protected image
and the original image, aiming to meet the feature constraint. If the
feature distance is less than a specific threshold 𝜖 , we proceed with
one Partial Replacement Operation (detailed in Section 3.4) to
replace parts of scattered pixels with noise to protect the privacy of
protected images. Note that the replacement operation and the con-
straint operation are run alternately according to the satisfaction
of feature constraints.
Discussion. We highlight the advantages of such heuristic opti-
mization over simple optimization in terms of privacy and utility.
For privacy, the replacement with noise values ensures that pixel-
level information from the original image is discarded rather than
merely perturbed, thereby safeguarding privacy. For utility, ran-
domly masking out partially scattered pixels in the image drives
the model to capture the intrinsic features from unmasked content,
facilitating the preservation of discriminative features within the
image during the next Constraint Operation. It helps improve the
Re-ID performance of protected images.

3.3 Constraint Operation
To satisfy the feature constraints in Equation (1), we aim tominimize
feature loss between protected and original images with the Type-I
attack [20]. Specifically, we define optimization loss as the feature
distance between the protected image and the original image for a
particular Re-ID model. Formally,

L𝑓

(
𝑥
𝑝
𝑡 , 𝑥

)
=

𝑓 (𝑥𝑝𝑡 ) − 𝑓 (𝑥)
2
2
, (2)

where 𝑡 indicates the step of optimization. Motivated by [3, 19], we
calculate momentum gradients 𝑔𝑡 to stabilize optimization direc-
tions as:

𝑔𝑡+1 = 𝛼 · 𝑔𝑡 +
∇L𝑓

(
𝑥
𝑝
𝑡 , 𝑥

)
∇L𝑓

(
𝑥
𝑝
𝑡 , 𝑥

)2
2

, (3)

𝑔0 =
∇L𝑓

(
𝑥
𝑝

0 , 𝑥
)

∇L𝑓

(
𝑥
𝑝

0 , 𝑥
)2

2

, (4)
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(a) Progressive Pixel Fading
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Progressive Masks {ℳ1
𝑝
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(b) Partial Replacement Operation
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Figure 2: The framework of our PixelFade. Our goal is to optimize the original image 𝑥 towards the noise image 𝜂 to obtain the
protected image 𝑥𝑝 for protecting visual information and resisting recovery attacks while retaining discriminative features. (a)
The process of Progressive Pixel Fading. Constraint operation and Partial Replacement Operation are run alternately according
to the satisfaction of feature constraints. (b) Partial Replacement Operation on the protected images. The randomly generated
binary masksM𝑝

𝑡 are used to select the positions for replacing pixels with noise in the corresponding image.

where 𝛼 indicates the decay factor of momentum computation. By
applying backpropagation, we iteratively derive the gradient to
update the protected pedestrian image to minimize its feature loss
with the original image:

𝑥
𝑝

𝑡+1 = 𝑥
𝑝
𝑡 − 𝛽 · 𝑔𝑡+1 (5)

3.4 Partial Replacement Operation
In this subsection, we describe the Partial Replacement Operation to
protect privacy. In the person Re-ID task, pedestrian images contain
a wealth of coarse-grained appearance including color, contour, tex-
ture, etc. The trained Re-ID model would consider such appearance
information as important patterns of the pedestrian. Therefore our
intuition is to leverage such coarse-grained appearance information
as guidance to facilitate protected images to preserve discriminative
features during the optimization in Constraint Operation.

In each Partial Replacement Operation, we employ a set of non-
overlapping binary masks to replace part of the scattered pixels
of the image with random noise. Specifically, we first preset a se-
quence of binary masksM = {M1, . . . ,MI }, where I denotes the
number of masks. Each mask of different iteration M 𝑗 ∈ {0, 1} has
the same shape as the original image. As shown in Figure 2(b), the
template maskM′ is entirely composed of the value of one. Then
the masks for each iterationM 𝑗 are generated by randomly assign-
ing a portion of pixels of M′ to zero. Notice that each iteration
does not select the previously picked pixels in one cycle. Formally,
we replace pixels in the original images with noise via these masks:

𝑥
𝑝

𝑡+1 = 𝑥
𝑝
𝑡 ⊙ M 𝑗 + N ⊙ (1 −M 𝑗 ) . (6)

Once the feature constraint is satisfied, one replacement oper-
ation is performed and 𝑗 = ( 𝑗 + 1) mod I + 1 is executed. Until
the final maskMI , all pixels have been processed, guaranteeing
the entire substitution of all pixels in the original image to safe-
guard privacy. Such a process leads to the Fade of pixels from the
pedestrian image in a progressive manner, where the remaining

coarse-grained content would facilitate the model to obtain infor-
mative gradients in Equation (4) during backpropagation. It aids
in updating the image in the Constraint Operation toward a more
optimal direction, contributing to the preservation of discriminative
features in the image.

Algorithm 1: PixelFade
Input: original image 𝑥 ; pretrained Re-ID model 𝑓 ; set of

masksM;
Input: maximum number of iterations 𝑇 ; number of masks

I; threshold of Feature Constraint 𝜖 ;
Output: protected image 𝑥𝑝

𝑇
.

1 𝑥𝑃0 = 𝑥 ; 𝑔0 = 0;
2 Initialize index of masks 𝑗 = 0;
3 Random initialize noise image 𝜂 ∼ N ;
4 while 𝑡 < 𝑇 do
5 Compute 𝐿𝑓 (𝑥

𝑝
𝑡 , 𝑥) via Equation (2);

6 if 𝐿𝑓𝑡 ≥ 𝜖 then
7 Update 𝑥𝑝 by Constraint Operation via

(Equations (3) to (5)) ;
8 end
9 else
10 Update 𝑥𝑝 by Partial Replacement Operation via

(Equation (6)) ;
11 𝑗 = ( 𝑗 + 1) mod I + 1 ;
12 end
13 𝑡 = 𝑡 + 1;
14 end

3.5 Overview and Application of PixelFade
The algorithm is summarized in Algorithm 1. Empirically, for better
privacy protection, we first perform an initialization stage of a few
steps, performing Constraint Operation and Partial Replacement

4
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Operation in turn and ensuring that all pixels have been replaced.
We then officially perform our Progressive Pixel Fading, where
Partial Replacement Operation and Constraint Operation are run
alternately according to the satisfaction of feature constraints. Par-
tial Replacement Operations are performed cyclically, meaning that
if all pixels have been replaced once, a new round of replacement
will continue to be performed.

After reaching the pre-set maximum number of optimization
steps, protected images instead of original images are saved in the
cloud for Re-ID tasks. By feeding query and gallery images from dif-
ferent cameras to the authorized Re-IDmodel, both unprotected and
protected images from the same identity can be correctly matched
by the Re-ID model. If the protected images stored in the cloud are
leaked and fall prey to a malicious attempt at recovery attacks, our
method can robustly prevent the recovery of visual information,
underscoring its effectiveness in thwarting recovery attacks.

4 EXPERIMENTS
4.1 Experiments Settings
4.1.1 Datasets. Three widely used datasets are used for experi-
ments: Market-1501 [31], MSMT17 [25] and CUHK03 [14]. The
Market-1501 dataset consists of 32,668 annotated bounding boxes
under six cameras. The MSMT17 dataset comprises of 4,101 identi-
ties and 126,441 bounding boxes taken by a 15-camera network. The
CUHK03 dataset includes 1,467 identities and 14,097 detected bound-
ing boxes. Besides, we adapt our PixelFade to Text-to-Image Re-ID
on CUHK-PEDES [13] and ICFG-PEDES [2], to Visible-Infrared Re-
ID on SYSU-MM01 [26] and RegDB [17] to demonstrate PixelFade’s
scalability.

4.1.2 Threat Models. We consider that the adversary can access
black-box control of the privacy model and obtain protected images.
Following existing recovery attacks [29], the adversary can obtain
protected images as labels by feeding numerous original images
from the public dataset (training set of Market-1501 or CUHK03)
to the privacy model. Then adversary trains the recovery network
to learn the mapping by minimizing the L1 loss between recovered
and original images. After training, the adversary can reverse the
original images from protected images by the trained recovery
network.

4.1.3 Evaluation Metrics. For Re-ID performance, we use Cumula-
tiveMatching Characteristics (a.k.a., Rank-kmatching accuracy) [22],
mean Average Precision (mAP) [31], and a new metric mean in-
verse negative penalty (mINP) [28]. Higher above metrics represent
higher utility of pedestrian images. For resistance to recovery at-
tacks, we adopt two widely used metrics, i.e. PSNR and SSIM [24]
to measure the similarity between recovered and original images.
Specifically, a lower PSNR and SSIM indicate a lower similarity to
original facial images, indicating better privacy protection.

4.1.4 Implementation Details. We follow the default training of
AGW [28] on Re-ID datasets to obtain pre-trained Re-ID models.
Unless specified, we use the ResNet50 [6] with non-local [23] block
network as the backbone. We set the maximum number of iteration
steps of PixelFade 𝑇 to 100 and the number of steps in the initial-
ization phase is 10 out of 100 steps. The number of masks I is set

to 5. The threshold of Feature Constraint 𝜖 is 0.03. The decay factor
𝛼 is 0.6. Note that we do not perform any replacement operation in
the last 5 steps to ensure that the feature constraint is satisfied.

For compared methods, we pick five methods that protect the
visual privacy of images while maintaining the performance of
models: For (1) FaceBlur [1], We follow the default parameters in
the article to detect and blur the face part. For (2) PrivacyReID [30],
we follow their open-source code to reproduce that work. For (3)
Gaussian blur and (4) Mosaic, we follow the default setting in [30]
to set their radius to 12 and 24 respectively. For (5) AVIH, We use
their open-source code and follow their default parameters (except
the iteration step) to perform the PPPR task. For a fair comparison
with our PixelFade, we set the maximum number of iteration steps
for both two methods to 100.

4.2 Results of Person Re-Identification
We follow the relative work [30] to evaluate the Re-ID performance
under four test settings with different queries and galleries, which
represent four different scenarios: Protected to Protected: Both
query and gallery sets are protected images.Original to Protected:
Query sets are original images while gallery sets are protected im-
ages. Protected to Original: Query sets are protected images while
gallery sets are original images. Original to original: Both query
and gallery sets are original images. The “Upperbound” implies
that an unprotected ReID model trained on the unprotected dataset
performs Re-ID retrieval on the unprotected data.

Table 1 shows Re-ID performance results under different Re-ID
settings. We can see that our PixelFade outperforms other privacy
protection methods in all four settings. Our method almost ap-
proaches Upperbound, i.e., the differences in Rank1 are only 1.4%,
5.9%, and 4.2% on the three datasets even in the most challenging
setting (Protected to Protected). It is worth noting that our method
outperforms another iterative method (AVIH) on the mINP metric
for all three datasets (i.e., 9.2%, 3.6%, 7.6%). This is because our
Progressive Pixel Fading drives the model to maintain the intrin-
sic features within protected pedestrian images, facilitating the
identification of difficult samples across different viewpoints.

4.3 Results of Privacy Protection
Here we investigate PixelFade’s protection of privacy, which we
evaluate in two aspects: resistance to recovery attacks and visual
protection.

4.3.1 Resistance to Recovery Attacks. We suppose that the adver-
sary launches recovery attacks on protected images as discussed
in Section 4.1.2. We compare PixelFace with previous methods to
evaluate its resistance performance against recovery attacks on
datasets of Market-1501 and CUHK03. As shown in the “Recovered
images” part of Figure 3, PixelFade’s recovered images (column f)
are chaotic and almost impossible to recognize the original identity.
On the contrary, recovered images of other methods (column b-e)
fail to resist the recovery attacks. They still reveal some pedestrian
contours, or even almost consistent with the original image. Ta-
ble 2 shows the qualitative results of resistance to reconstruction
attacks. We can see that our method reaches the lowest PSNR and
SSIM, indicating PixelFade outperforms other protection methods
on resistance performance against recovery attacks.
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Table 1: Evaluation of Re-ID Performance on three Re-ID datasets. Rank-1 accuracy(%), mAP(%), and mINP(%) are reported.

Market1501 MSMT17 CUHK03Privacy Settings Methods Rank1 mAP mINP Rank1 mAP mINP Rank1 mAP mINP
Mosaic 64.3 43.4 13.0 10.6 5.7 0.7 8.8 9.9 5.3

Gaussian Blur 67.3 44.2 13.7 15.2 7.2 0.8 8.2 10.7 6.9
PrivacyReID 89.2 74.3 39.4 48.7 28.5 4.9 33.2 34.7 25.0

AVIH 91.2 79.5 48.7 59.0 37.8 6.1 58.3 51.5 36.7
Protected to Protected

PixelFade 94.2 85.2 58.1 62.7 43.1 9.7 63.1 58.5 44.3
Mosaic 75.3 53.6 17.2 16.3 8.7 1.0 17.7 17.6 9.1

Gaussian Blur 40.1 25.4 6.3 21.3 10.7 1.4 14.6 14.8 8.6
PrivacyReID 88.2 72.0 37.0 51.1 29.7 5.2 39.2 38.4 27.2

AVIH 92.6 81.3 50.2 60.1 41.5 8.9 60.2 54.1 39.0
Original to Protected

PixelFade 95.0 86.5 60.7 64.9 46.9 12.2 65.7 62.2 48.7
Mosaic 70.9 54.7 24.1 14.6 9.0 1.6 15.1 17.7 12.3

Gaussian Blur 18.3 15.5 5.2 16.2 9.4 1.5 10.4 12.4 8.4
PrivacyReID 82.5 67.5 36.0 50.5 30.5 5.7 35.3 35.5 25.4

AVIH 92.4 81.1 50.9 59.8 41.1 8.3 58.7 55.5 40.3
Protected to Original

PixelFade 94.3 86.4 61.7 63.1 46.4 11.6 63.4 61.1 49.1
Mosaic 87.4 73.4 39.5 25.0 15.3 2.6 28.5 31.5 22.9

Gaussian Blur 84.8 67.4 32.2 30.5 17.1 2.8 30.4 31.5 22.3
PrivacyReID 91.6 79.4 47.4 51.5 31.1 6.0 41.9 41.7 30.4

AVIH 95.7 88.6 66.7 68.6 49.8 15.0 67.3 65.8 54.6
Original to Original

PixelFade 95.7 88.6 66.7 68.6 49.8 15.0 67.3 65.8 54.6
Unprotected (UpperBound) 95.7 88.6 66.7 68.6 49.8 15.0 67.3 65.8 54.6

Protected 

Images

Recovered

Images

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

Figure 3: Qualitative results of protected and recovered images from different privacy-preserving PPPR methods. (a) Origin; (b)
PrivacyReID [30]; (c) Blurring; (d) Mosaic; (e) AVIH [19]; (f) Our PixelFade.

4.3.2 Visual Protection. The “Protected images” part of fig. 3 shows
the qualitative results, which visualize the protected images of dif-
ferent methods. Previous methods (columns b-d) still expose some
visual information (e.g., clothing color, contour). In comparison,
our PixelFade (column f) effectively hides the visual information of
pedestrians, which is almost consistent with noise images, making
it difficult for malicious attackers to distinguish the identity.

4.4 Ablation Studies of PixelFade
In this subsection, we would like to demonstrate the superiority of
our Noise-guided Objective Function and Progressive Pixel Fading
through ablation experiments. All ablation studies are conducted
on the Market1501 dataset.

4.4.1 Noise-guided Objective Function. First, we would like to ver-
ify the conjecture we presented in Section 1: As the pixels of the
protected image become more chaotic, its ability to resist recovery
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Table 2: Quantitative results of resistance to recovery attacks.
“PSNR” and “SSIM” indicates the quality of recovered images
by malicious attackers. “AD” indicates the value of protected
images from the Anderson-Darling test. The best is in bold.

Datasets Methods PSNR↓ SSIM↓ AD

Market1501

PrivacyReID 26.92 0.94 401.29
Gaussian blur 23.24 0.69 363.63
Mosaic 17.76 0.51 232.14
AVIH 14.30 0.42 82.36
PixelFade 11.37 0.18 19.83

CUHK03

PrivacyReID 23.94 0.89 352.15
Gaussian blur 20.12 0.64 289.01
Mosaic 17.12 0.48 194.88
AVIH 14.69 0.44 72.12
PixelFade 9.04 0.05 18.55

Table 3: Analysis of the effect of pixel chaos degree on recov-
ery attacks. For “Weight of Noise”, we linearly interpolate
the normal-distributed noise with the original image to vary-
ing degrees. "AD" is the value from the Anderson-Darling
test, indicating the pixel chaos degree of protected images.
“PSNR” and “SSIM” denotes the quality of recovered images.

Weights of Noise AD PSNR↓ SSIM↓ Rank1↑ mAP↑ mINP↑
0.2 231.00 14.99 0.48 93.8 84.2 56.0
0.4 112.00 14.49 0.44 93.8 84.5 56.6
0.6 43.35 14.70 0.41 94.2 84.9 57.5
0.8 29.07 13.88 0.36 94.5 85.3 58.4

1.0 (Ours) 19.83 10.92 0.18 94.2 85.2 58.1

Table 4: Ablation Study of the objective function. The objec-
tive images are replaced with other images.

Objective AD PSNR↓ SSIM↓ Rank1↑ mAP↑
Images of Other Identity 546.21 17.24 0.53 94.7 85.7
Zero Images 117.85 12.76 0.25 94.4 85.2
Contrastive Images 36.75 13.43 0.43 93.8 84.7
Noise Image (Ours) 19.83 10.92 0.18 94.2 85.2

attacks increases. We sample a noise image from the Gaussian dis-
tribution with the same shape as the pedestrian image, and then
we mix it with the original image. We replace the objective im-
ages (i.e., 𝜂 in Equation (1)) in our objective function in PixelFade
with such a mixed noise image. The result is shown in Table 3. We
can observe that as AD values decrease, implying that the pixel
chaos degree in protected images is increasing, the quality of the
restored image is deteriorating, indicating an increase in resistance
to recovery attacks. This suggests that the random property of the
pixels disrupts the learning of recovery networks, weakening the
threat of recovery attacks. Therefore our PixelFade is dedicated
to providing a new perspective to realize the privacy-preserving
image recognition tasks that are transforming images into nearly
normal-distributed noise images to resist recovery attacks.

To further evaluate the effectiveness of our objective function,
we replace the objective images with other images instead of noise
images. As shown in Table 4, when the objective images are “images
of other identity”, it achieves a high SSIM of 0.53 that it completely

Ours Random Perturb L1 Optimization

𝑎=0.1

𝑎=0.5

𝑎=1.0

𝑎=5.0

𝑎=10.0

𝑤=0.1

𝑤=1.0

𝑤=5.0

𝑤=10.0

𝑤=0.5
𝑠=2

𝑠=4

𝑠=32

𝑠=8

𝑠=16

Figure 4: Ablation study of optimization strategy. “Random
Perturb” indicates adding random noise of magnitude 𝑎 to
pedestrian images. For “L1 Optimization”, we optimize the
pedestrian image using L1 loss between noise images and
original images, where loss is weighted as𝑤 .

fails to resist recovery attacks, as natural images are poorly able
to disrupt the learning of recovery networks. When the objective
images are “Contrastive Images”, our goal is to enlarge the differ-
ence between protected images and original images, which can be
formally defined as:

max
𝑥𝑝

𝑥𝑝 − 𝑥
 . (7)

It achieves a higher PSNR of 2.51 and a higher SSIM of 0.25 com-
pared to ours, indicating a lower resistance to attacks. If we set
objective images as “Zero Images”, we attempt to optimize pro-
tected images to be zero-valued images. It is still weaker than us
in resisting recovery, with a difference of 1.84 in PSNR and 0.07 in
SSIM. In comparison, our Noise-guided Objective Function explic-
itly optimizes the image into noise, which effectively disrupts the
learning of recovery networks, promoting resistance to reconstruc-
tion attacks.

4.4.2 Progressive Pixel Fading. Weemploy other optimization strate-
gies instead of our Progressive Pixel Fading to optimize images to
noise shown in Figure 4. When “Random Perturb” is employed,
we randomly generate noise with different amplitudes 𝑎, and add
it to the protected image for perturbation. As shown in the left
subplot of Figure 4, As the noise amplitude increases, the SSIM
of the recovered image decreases, implying an increase in resis-
tance to attacks. However, the accompanying side effect is that
the Re-ID performance is also impaired. When “L1 Optimization”
is employed, we minimize the L1 loss between protected images
and noise images, where 𝑤 is the weight to balance L1 loss and
Equation (2). From the right subplot of Figure 4 we can see that
no matter what value of w is taken, the resistance performance
and Re-ID performance are still far lower than ours. We suppose
that the reason for the poor resistance of the above optimization
strategies is that simple perturbation cannot completely remove
the original information from pedestrian images. In comparison,
our Progressive Pixel Fading completely discards the pixel-level
information from the original image to ensure effective privacy pro-
tection. Meanwhile, the progressive way can motivate the model to
effectively capture the intrinsic features of pedestrian images. The
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Table 5: Results on Text-to-Image Re-ID scenario. We employ
IRRA [12] method here for Baseline.

Datasets Methods Rank1↑ mAP↑ mINP↑ PSNR↓ SSIM↓
IRRA w/ AVIH 65.47 58.74 42.76 14.77 0.45
IRRA w/ PixelFade 71.82 63.72 48.77 9.35 0.07CUHK-PEDES
IRRA 73.39 66.13 50.24 +∞ 1.00
IRRA w/ AVIH 39.29 38.73 27.25 14.89 0.38
IRRA w/ PixelFade 45.63 45.26 33.08 10.31 0.13ICFG-PEDES
IRRA 47.24 47.52 35.04 +∞ 1.00

Table 6: Results on Visible Infrared Re-ID scenario. We em-
ploy AGW [28] method here for Baseline.

Datasets Methods Rank1↑ mAP↑ mINP↑ PSNR↓ SSIM↓
AGW w/ AVIH 39.42 41.28 31.63 14.51 0.49
AGW w/ PixelFade 43.74 44.94 33.72 9.34 0.11SYSU-MM01
AGW 47.50 47.65 35.30 +∞ 1.00
AGW w/ AVIH 63.25 59.24 41.76 15.31 0.51
AGW w/ PixelFade 67.32 63.48 47.30 10.36 0.16RegDB
AGW 70.05 66.37 50.19 +∞ 1.00

Table 7: Scalability of PixelFade in terms of Re-ID network
structure.We employ AGW [28]method here. Only the Re-ID
performance of “Protected to Protected” scenario is shown.

Datasets Market1501 MSMT17
Re-ID BackBone Protection Rank1 mAP mINP Rank1 mAP mINP

w/ AVIH 86.9 69.6 28.5 65.7 35.1 2.5
w/ PixelFade 89.4 74.8 39.1 67.9 40.8 3.6MobileNetV2
w/o Protection 91.0 78.3 44.3 69.4 44.2 8.6
w/ AVIH 91.5 79.6 48.6 77.4 51.2 8.6
w/ PixelFade 93.1 83.2 55.1 79.9 56.7 11.2OSNet
w/o Protection 94.8 86.9 62.8 81.2 60.6 17.1
w/ AVIH 90.6 74.5 48.2 79.9 56.4 9.7
w/ PixelFade 92.1 81.7 56.8 82.4 60.5 13.1TransReID
w/o Protection 95.1 89.0 67.4 85.3 67.7 20.4

above advantages allow our optimization strategy to achieve the
optimal trade-off between privacy and utility.

4.5 Scalability of PixelFade
A well-applied PPPR method should generalize to different sce-
narios and backbones. We transfer our PixelFade to other Re-ID
scenarios, namely (1) Text-to-Image person Re-ID, aiming at search-
ing protected images by text, and (2) Visible Infrared person Re-ID,
which aims at searching the protected infrared image using the
original RGB image. We choose an iterative method AVIH for com-
parison, and the experiment results are shown in Table 5 and Table 6.
Our method outperforms AVIH in different scenarios with different
datasets, and the gap to the upper bound is relatively small, sug-
gesting the superior transferability of PixelFade in different Re-ID
scenarios.

We then demonstrate the experiment of our PixelFade’s general-
ization to different backbones in Table 7. We selected three com-
monly used Re-ID backbones for experiments, which have similarly
strong Re-ID performance on Market1501 and MSMT17 datasets
under the "Protected to Protected" setting. The above experiments
demonstrate the high scalability and practicality of our method.

(a) Number of Iterations 𝑇 (b) Step Size 𝛽

(c) Feature Constraint 𝜖 (d) Number of Masks

Figure 5: Parameter analysis of PixelFade. Larger mAP in-
dicates higher Re-ID performance. Smaller SSIM means
stronger privacy performance.

4.6 Parameter Analysis of PixelFade.
In this subsection, we provide an analysis of the impact of some
critical parameters in PixelFade on privacy performance and Re-ID
performance as shown in Figure 5. All experiments of parameter
analysis are conducted on the Market1501 dataset.

Figure 5(a) shows the convergence of our PixelFade on both ReID
performance and privacy performance. As the number of iterations
increases, the Re-ID performance rises and the SSIM decreases.
After 100 steps, the two metrics are almost constant, implying that
our optimization reaches convergence in both two tasks. Figure 5(b)
verifies the robustness of the choice of step size 𝛽 . The default 𝛽 is
0.01, and the result implies that a beta in the range of 0.01 ± 0.005
is robust. Figure 5(c) demonstrates the influence of different feature
thresholds 𝜖 on the results. As the 𝜖 increases, which means that the
distance between protected and original images becomes farther,
leading to a decrease in Re-ID performance and an increase in
privacy performance. PixelFade is robust to the feature threshold 𝜖
when it is less than 0.04. Figure 5(d) shows the influence of different
number of masksI on the results. LargerI means sparser pixels are
replaced in each Partial Replacement Operation, which offers more
remaining information to prompt the model for better optimization.
When I is in the range from 2 to 8, the privacy performance and
Re-ID performance are stable. Generally, our PixelFade is robust to
parameter selection.

5 CONCLUSION
In this paper, we propose an iterative method to explicitly optimize
pedestrian images into noise-like images to resist recovery attacks
while maintaining Re-ID performance for authorized Re-ID models.
Extensive experiments demonstrate the superior performance of
our PixelFade in resisting recovery attacks and Re-ID performance
compared to previous methods. Moreover, we experimentally show
that our PixelFade can be easily adapted to diverse Re-ID scenarios
and network backbones, highlighting its practicality and applica-
bility.
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