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Abstract
Many recent neural models have shown re-001
markable empirical results in Machine Reading002
Comprehension, but evidence suggests some-003
times the models take advantage of dataset bi-004
ases to predict and fail to generalize on out-005
of-sample data. While many other approaches006
have been proposed to address this issue from007
the computation perspective such as new archi-008
tectures or training procedures, we believe a009
method that allows researchers to discover bi-010
ases, adjust the data or the models in an earlier011
stage will be beneficial. Thus, we introduce012
MRCLens, a toolkit which detects whether bi-013
ases exist before users train the full model. For014
the convenience of introducing the toolkit, we015
also provide a categorization of common biases016
in MRC.017

1 Introduction018

The ability of machines to read and comprehend019

texts is a critical skill in natural language process-020

ing. Recently sophisticated neural network models021

such as BiDAF (Seo et al., 2016), RNet (Wang022

et al., 2017) and QANet (Yu et al., 2018) have023

achieved remarkable accuracies on several bench-024

mark datasets like SQuAD (Rajpurkar et al., 2016).025

However, some popular datasets contain superfi-026

cial patterns that can be exploited by models to027

make predictions without learning much about the028

contexts. As a result, the models might fail to gen-029

eralize to out-of-sample datasets (Yogatama et al.,030

2019; Rimell et al., 2009; Paperno et al., 2016) or in031

adversarial settings (Jia and Liang, 2017; Wallace032

et al., 2019).033

The community has approached the problem034

from the modelling perspective (Fisch et al., 2019;035

Takahashi et al., 2019). For example, a popular036

example is to first train a bias-only model based,037

and then combine it with a full model to learn the038

additional information (Sugawara et al., 2018). In039

addition, there are also diagnostic tools such as in-040

teractive frameworks (Lee et al., 2019) or attention041

matrix visualizer (Rücklé and Gurevych, 2017; Liu 042

et al., 2018) to evaluate QA models. A common 043

limitation of these approaches is we cannot dis- 044

cover the biases until the models have been trained 045

and evaluated, which posted a challenge for such 046

analysis when computational resources are limited. 047

Our study contributes to existing work by intro- 048

ducing a toolkit MRCLens which detects bias in 049

MRC datasets. This toolkit tests a given dataset 050

against several known biases before training the 051

full model. Our toolkit can be applied to various 052

SQuAD formatted MRC datasets. This also al- 053

lows researchers to make adjustments to improve 054

the datasets or develop models that target the ex- 055

isting biases. Along our implementation of the 056

toolkit, we find it convenient to categorize the bi- 057

ases. Thus, our second contribution is a summary 058

of common biases in MRC. Through literature re- 059

views, we identify various recurring biases which 060

can fall into three categories. We summarize them 061

as Similarity Bias, Keyword Bias and Question 062

Bias. Furthermore, we introduce the concept of 063

‘distance’ as a way to measure MRC bias. These 064

concepts will be discussed in more detail in section 065

2.2. 066

2 Background 067

2.1 Related Work 068

The MRC task evaluates a system’s ability to re- 069

trieve information and make meaningful inferences 070

(Sutcliffe et al., 2013). Many recent neural mod- 071

els have shown remarkable results, but some mod- 072

els exploit dataset-specific patterns which fail to 073

generalize (Clark et al., 2019; Talmor and Berant, 074

2019; Sen and Saffari, 2020). Min et al. observed 075

that 92% of answerable questions in SQuAD can 076

be answered only using a single context sentence 077

(Min et al., 2018). When confounding sentences 078

which have semantic overlap with the question 079

were added to a dataset, the MRC model’s perfor- 080
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mance dropped significantly (Jia and Liang, 2017).081

In another experiment, many questions in an eas-082

ier subset of the dataset had their answers in the083

most similar sentence and could be answered with084

word-matching (Sugawara et al., 2018). In Story085

Cloze Test tasks, recognizing the superficial fea-086

tures is essential for the models to achieve good087

performance (Schwartz et al., 2017). Consequently,088

many models lack certain advanced skills such as089

inference or multiple-sentence reasoning.090

Biases can also come from a few informative key091

words. For example, entailment models trained on092

MNLI (Bowman et al., 2015) would guess answers093

based on whether a sentence-question pair contains094

the same words (McCoy et al., 2019) or solely the095

existence of keywords (Gururangan et al., 2018;096

Wang et al., 2019). Weissenborn demonstrated that097

more than a third of the questions were answered098

using a simple baseline model which prioritized an-099

swers with question words in the surrounding con-100

text (Weissenborn et al., 2017). Sugawara showed101

that certain questions might require specific lexical102

patterns around the correct answer (Sugawara et al.,103

2018). Researchers have also found certain impor-104

tant words were ignored by MRC models (Jia and105

Liang, 2017; Mudrakarta et al., 2018), while other106

less important patterns were overused (Mudrakarta107

et al., 2018). For example, when negations were108

added to the questions, datasets such as NewsQA109

or TriviaQA failed to update their answers (Sen and110

Saffari, 2020). Other works also found QA mod-111

els can achieve good performance with incomplete112

inputs (Niven and Kao, 2019).113

Furthermore, the questions by themselves some-114

times contain clues used by models to locate an115

answer quickly. As early as 1999, the use of bag-116

of-words, when combined with other heuristics,117

achieved up to 40% accuracy for answering inter-118

rogative queries (Hirschman et al., 1999). Early119

researchers designed heuristic-rules based systems120

specifically to answer ‘wh’ questions (Riloff and121

Thelen, 2000). In more recent studies, some re-122

searchers have found that a notable proportion of123

the questions were still answerable when incom-124

plete questions were given (Sugawara et al., 2018;125

Kaushik and Lipton, 2018). Other works showed126

that the models were not robust when questions127

were paraphrased (Ribeiro et al., 2018; Gan and128

Ng, 2019). Chen et al also found the existence of129

spurious correlations in WikiHop which were ex-130

ploited by the model to achieve good performance131

using only the questions and answers without the 132

contexts (Chen and Durrett, 2019). These studies 133

suggests that keywords in the question allow the 134

model to locate key information without having the 135

model to read and comprehend the context. 136

2.2 Categories of dataset bias in MRC 137

Through the literature review, we observe that the 138

most commonly seen biases in MRC can fall into 139

three main categories. (1) Some biases directly 140

exploit the relationship between the question and 141

sentences similar to the question (that is, question- 142

sentence pairs with high TFIDF scores), and we 143

refer to them as Similarity Bias. (2) The biases can 144

take advantage of a few key words in context. We 145

refer to them as Keyword Bias. (3) The questions 146

by themselves contain information which can be 147

exploited by models to make predictions without 148

carefully reading the passage. We refer to them as 149

Question Bias. 150

The three types of biases are closely related to 151

one another. The similarity between the question 152

and the context usually refers to the TFIDF score, 153

which can be understood as the distance between 154

them. In fact, each category of bias relies on ‘dis- 155

tance’ at different scales. Similarity bias and key- 156

word bias rely on the sentence-level or the local 157

keyword-level distance from a passage to the tar- 158

geted question. Likewise, question bias exploits 159

the distance between question tokens and a passage. 160

In fact, this is not a new concept. For example, 161

previous researchers have applied this concept to 162

incorporate distance supervision to enhance their 163

QA models (Cheng et al., 2020). We are inspired 164

by this abstraction to design our experiments and 165

facilitate our discussion. 166

3 Overview of MRCLens 167

We are inspired by (Sugawara et al., 2020) to use 168

ablation experiments to test the impact of biases. 169

Perturbing the original dataset and reevaluating 170

models using the perturbed data is a method used 171

frequently in various fields of NLP (Belinkov and 172

Bisk, 2017; Carlini and Wagner, 2018; Glockner 173

et al., 2018). Sugawara and their colleagues pre- 174

sented 12 requisite skills which could be used to 175

evaluate an MRC model. For each skill, they per- 176

formed one corresponding ablation by perturbing 177

the dataset. A comparison of the performance on 178

the original dataset versus the perturbed dataset 179

would indicate if the specific requisite skill is 180
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needed by the model to answer questions. Their181

method fits the purpose of our study. However, the182

key difference is that, while they are interested in if183

specific requisite skills are needed, we aim to study184

if specific biases are needed by a model.185

Our toolkit MRCLens incorporates existing186

works into a new tool which can detect if the biases187

described above exist in a given dataset at an earlier188

stage of the training process. MRCLens requires189

data to be SQuAD formatted and will be provided190

via github. It consists of three main parts:191

(1) A preprocessing module which perturbs the192

original dataset in 8 ways corresponding to differ-193

ent biases, and tokenizes the data. Specifically, we194

divide the three categories of biases from section195

2.2 into 8 bias units indexed from 1 to 8, and we re-196

late each bias unit to one ablation. Define X as the197

feature space, Y as the labels, (x, y) as an (input,198

label) pair, and f be a model. Let bi be a potential199

bias and mi be a method which ablates the fea-200

ture that provides the corresponding information201

nj . Suppose f(x) = y for some x in X. We are202

interested in if f(mi(x)) = y, which means x can203

be solved without information ni.204

(2) A neural-network MRC model which trains205

a model and evaluates it against both the original206

test data and the perturbed test data. This model207

is based on a baseline neural-network model put208

forward by (Clark et al., 2019). After preprocess-209

ing, we train a neural-network baseline model on210

the original training data. Then for each bias, we211

test the baseline model against the corresponding212

perturbed dataset. The model’s performance on213

this new dataset would indicate to what extent the214

specific bias impacts the result.215

(3) An evaluation module which presents the216

results in an organized format which allows for in-217

terpretation. MRCLens compares the performance218

between the original and the modified dataset. By219

checking whether the questions are solvable after220

ablations, we can interpret whether the presence221

of a specific bias leads to unintended but correct222

answers. When the performance gap is small, we223

can infer the bias bi is used to answer the questions224

without ni. If the gap is large, a notable proportion225

of the solved questions may require ni.226

4 Experiment and Discussion227

4.1 Experiment Setup228

We use SQuAD (version 1.1) for the experiment.229

The model is a recurrent co-attention model(Clark230

et al., 2019; Chen et al., 2016). The model consists 231

of an embedding layer with character CNN, a co- 232

attention layer, and a shared BiLSTM layer as the 233

pooling layer. We use a 0.2 dropout rate, a learning 234

rate decay of 0.999 every 100 steps(Clark et al., 235

2019). We use a plain loss function which com- 236

putes the negative log likelihood given the model 237

outputs and the labels. Ideally, MRCLens would 238

be agnostic of the model architectures, since we 239

care most about the changes in accuracy before and 240

after ablation, not the accuracy itself. 241

4.2 Experiment Results 242

We performed four experiments to measure Simi- 243

larity Bias, which refers to the similarity between 244

a sentence in context and the question calculated 245

based on TFIDF score. In experiments 1 and 2, 246

we inject noise by adding a part of the question or 247

the full question in front of a sentence that does 248

not contain the original answer. This enhances 249

the similarity score between the question and an- 250

other sentence. If the model relies heavily on the 251

most similar sentence to make predictions, then 252

this change will misguide the model to look for an- 253

swer span in the wrong place and lead the accuracy 254

to drop. e1 and e2 use a truncated version of the 255

dataset where only one question is kept per passage, 256

because multiple questions are often asked based 257

on one passage but it could be confusing to insert 258

information from all questions. 259

In e3, we shuffle the sentence order. If the per- 260

formance doesn’t change significantly, that means 261

the model mainly relies on information from indi- 262

vidual sentences, but not heavily on the contextual 263

relationship between them. 264

Table 1: Similarity Bias - f1 drops after e1, e2 and minor
change after e3 suggest the model relies on context-
question similarity but not so much on the inter-sentence
relationships.

ablation em f1 f1 drop
e1 insert full question 39.72 48.82 30.93
e2 insert half question 53.36 64.13 15.62

e3 shuffle sentence order 66.19 74.48 6.13

We performed two experiments to evaluate Ques- 265

tion Bias. In e4, we keep only the interrogative 266

words in the question, and in e5 we shuffle the or- 267

der of words in the question. Finally, there are 268

three experiments which measure Keyword Bias. 269

We consider nouns, verbs and adjectives from ques- 270

tions as potential keywords and we insert them 271
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Table 2: Question Bias - interrogatives alone can still be
informative, and the sequence of question words is not
essential for making predictions

ablation em f1 f1 drop
e4 interrogatives 17.10 23.62 56.99
e5 shuffle question 56.08 64.05 16.56

words

respectively to a random sentence in the context272

other than the one containing the true answer. Like273

e1 and e2, we use the truncated dev dataset.274

Table 3: Keyword Bias - key nouns from questions bring
the more noise to contexts than verbs and adjectives.

ablation em f1 f1 drop
e6 insert key nouns 51.28 62.29 17.46
e7 insert key verbs 58.68 71.07 8.68
e8 insert key adj. 59.55 72.29 7.46

e3, e4, e5 use the original dev dataset with275

10570 entries whose f1 score is 80.61%, while276

e1, e2, e6, e7, e8 use the truncated dev dataset with277

1943 entries and an f1 score of 79.75%. According278

to Table 1, accuracies dropped notably due to the279

added contents from the questions even though ev-280

erything else remains the same. f1 drops from 80%281

to 64.13% when we insert half of the question, and282

to 48.82% when we insert the full question. The283

model is likely looking for answer in the sentence284

where question words were inserted, as it is now the285

most similar sentence. The result from e3 informs286

us that the sentence order has very little influence287

on the model’s prediction. Thus this dataset is not288

suitable for evaluating a model’s ability to under-289

stand ‘sentence-level compositionality‘(Sugawara290

et al., 2020).291

Results from Table 3 are consistent with those292

from Table 1. Our changes shortened the local dis-293

tance between questions and words or short phrases.294

The drops in accuracies suggest the models were295

misled to some extent to search for answers around296

the inserted words. Nouns retain the most infor-297

mation from questions and thus bring most pertur-298

bation to the passages, while verbs and adjectives299

capture similar amount of information.300

Finally, Table 2 suggests the questions alone301

contain indicative information that could be used302

when not considered in relation to the passages.303

In 17% of the cases, interrogatives are sufficient304

for the model to make predictions. e5 shows the305

model’s performance is affected only slightly after 306

we shuffle the words to make the question non- 307

sensible. 308

4.3 Discussion 309

The distances between questions and contexts are 310

indicative of how biased the dataset is. For exam- 311

ple, e3 shuffles the sentence order but preserves 312

the distance between sentences and questions, so it 313

has the least effects on the performance. Through 314

experiments 8,7,6,2,1, the noise we inserted to the 315

original dataset gradually lengthens the relative 316

distance between the correct answer. As we add 317

key words or phrases to other parts of the para- 318

graph, the effects of similarity bias or keyword bias 319

are diluted because we enhance the relevance be- 320

tween the questions and other parts of the passages. 321

The drop in f1 score increases from around 8% to 322

30.95% as we increase the noise from inserting 323

keywords to inserting the full questions. 324

Our method also provides another way to inter- 325

pret the similarity bias. The distance between the 326

question and the context is one of the most dis- 327

cussed biases in MRC. Indeed, 80% of our dev 328

dataset has the correct answer in the most simi- 329

lar sentence. e2 inserted the full question into a 330

random sentence in each passage so that the most 331

similar sentence will always be the one where the 332

question was inserted, but despite this change, the 333

model still reached an exact match score of 39.72%. 334

This suggests the model did not over-rely on the 335

most similar sentence. 336

5 Conclusion 337

This study presents a toolkit MRCLens which can 338

be used to detect dataset biases at the early stage of 339

a study. MRCLens can be applied to SQuAD for- 340

matted datasets. It outputs helpful interpretations 341

which help researchers to determine to what ex- 342

tent biases exist in the dataset of interest. In future 343

work, we hope to enhance the toolkit to fit datasets 344

of various formats, design methods to quantita- 345

tively evaluate the toolkit’s outputs, and develop 346

methodologies for other Machine Comprehension 347

Tasks. 348
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