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ABSTRACT

Knowledge graph completion (KGC) is a 3rd-order binary tensor completion task.
Tensor decomposition based (TDB) models have shown great performance in
KGC. In this paper, we summarize existing TDB models and derive a general form
for them. Based on the general form, we show the principles of model design to
satisfy logical rules. However, these models suffer from the overfitting problem
severely. Therefore, we propose a regularization term based on the tensor n-rank
which enforces the low-rankness of the tensor. First, we relax the tensor n-rank to
the sum of the nuclear norms of the unfolding matrix along each mode of the ten-
sor. In order to be computationally efficient, we further give an upper bound of the
sum of the nuclear norms. Finally, we use the upper bound as the regularization
term to achieve low-rank matrix decomposition of each unfolding matrix. Exper-
iments show that our model achieves state-of-the-art performance on benchmark
datasets.

1 INTRODUCTION

A knowledge graph (KG) can be represented by a 3rd-order binary tensor, where each entry cor-
responds to a triplet with the form (head entity, relation, tail entity), 1 indicating a known true
triplet and 0 indicating a false triplet and ? indicating a missing triplet (either a true or a false triplet).
Although commonly used KGs contain a large number of known triplets, they still suffer from the
incompleteness problem that a lot of triplets are missing, i.e., the 3rd-order tensor is incomplete.
The task of KGC is to predict which of the missing triplets are true or false based on known triplets,
i.e., to infer which of the missing entries in the tensor are 1 or 0.

A number of models have been proposed for KGC (Zhang et al., 2021). Among the models, ten-
sor decomposition based (TDB) models achieve the state-of-the-art performance (Trouillon et al.,
2017; Kazemi & Poole, 2018). Different types of tensor decomposition methods have been ap-
plied to KGC. Lacroix et al. (2018); Kazemi & Poole (2018) developed approaches based on CAN-
DECOMP/PARAFAC (CP) decomposition (Hitchcock, 1927). DisMult (Yang et al., 2014) can be
regarded as a particular version of CP that learns a symmetric tensor by sharing the embedding ma-
trices of head and tail entities. In order to learn asymmetric relations, ComplEx (Trouillon et al.,
2017) extends DistMult to the complex space and QuatE (Zhang et al., 2019) further explores the
hypercomplex space. Balažević et al. (2019a) proposed TuckER based on Tucker decomposition
(Tucker, 1966). For a thorough understanding of the thriving TDB models, we summarize main-
stream TDB models and derive a general form for them. Based on the general form, we further
show the principles of model design to enable the model to learn the symmetric, anti-symmetric and
inverse rules.

Theoretically, TDB models are fully expressive (Trouillon et al., 2017; Kazemi & Poole, 2018;
Balažević et al., 2019a), which can represent any ground truth tensor. However, their performance
usually suffers from the overfitting problem severely. In order to alleviate the overfitting problem
of TDB models, various regularizations have been applied to KGC. The squared Frobenius norm
regularization is commonly used in KGC (Nickel et al., 2011; Yang et al., 2014; Trouillon et al.,
2017). Lacroix et al. (2018) proposed a regularization based on tensor nuclear p-norm and demon-
strated better performance than the squared Frobenius norm. Zhang et al. (2020) proposed DURA, a
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regularization based on the duality of TDB models and distance based models, achieving significant
improvements on benchmark datasets. Moreover, they prove the regularization term is an upper
bound of nuclear 2-norm.

In this paper, we propose a regularization term based on the n-rank of tensors. Motivated by the
success of low-rank matrix completion (Nguyen et al., 2019), we aim to achieve low-rank KGC.
However, the definition of tensor rank is not unique, e.g., CP-rank (Gandy et al., 2011) which is
based on CP decomposition and n-rank (Gandy et al., 2011) which is based on Tucker decomposi-
tion. Since Tucker decomposition is more general than CP decomposition, we use the tensor n-rank
instead of the tensor CP-rank. The tensor n-rank is defined as a vector whose i-th entry is the rank
of mode-i unfolding matrix (Kolda & Bader, 2009), which is based on the definition of the matrix
rank. Thus, we can minimize the sum of the matrix ranks to realize low-rank KGC. Therefore,
the task of low-rank tensor completion is transformed into the task of low-rank matrix completion.
Since the matrix rank minimization problem is NP-hard for most problems (Recht et al., 2008), the
matrix nuclear norm is widely used as a convex surrogate of the matrix rank. However, the matrix
nuclear norm is a complicated non-differentiable function (Rennie & Srebro, 2005) and computing
the matrix nuclear norm is expensive for large KG. Therefore, we further propose a computationally
efficient upper bound of the sum of the matrix nuclear norm. Finally, we use the upper bound as
our regularization term. By utilizing the regularization, we can preserve the expressiveness of TDB
models and prevent them from the overfitting problem. It is worth noting that the squared Frobenius
norm and DURA (Zhang et al., 2020) become parts of our regularization term. Our reglarization
term is suitable for almost all TDB models. Experiments show that our tensor n-rank regularization
(TNRR) gains significant improvements on benchmark datasets.

2 RELATED WORK

Tensor Decomposition Based Models There has been extensive research for KGC, we focus here
on tensor decomposition based (TDB) models. CP decomposition (Hitchcock, 1927) and Tucker de-
composition (Tucker, 1966) are two common decompositions in tensor decomposition. Researchers
mainly focus on these two decompositions. CP decomposition represents a tensor as a sum of n rank
one tensors. Tucker decomposition (Tucker, 1966) decomposes a tensor into a core tensor and a set
of matrices. Lacroix et al. (2018) apply the original CP decomposition to KGC. DisMult (Yang et al.,
2014), a variant of CP, which makes the embedding matrices of the head entities and tail entities the
same. SimplE (Kazemi & Poole, 2018), another variant of CP, addresses the independence problem
among the embedding of head entities and tail entities in CP deompostion. ComplEx (Trouillon
et al., 2017) extends DistMult to complex space because DistMult cannot handle asymmetric re-
lations. QuatE (Zhang et al., 2019) further explore the hypercomplex space. Nickel et al. (2016)
propose HOLE based on the circular correlation, while Liu et al. (2017) prove HOLE is equivalent
to ComplEx. ANALOGY (Liu et al., 2017) explicitly exploits the analogical structures in KG. In
addition, Balažević et al. (2019a) propose TuckER based on the Tucker decomposition.

Regularization Although TDB models are fully expressive (Trouillon et al., 2017; Kazemi &
Poole, 2018; Balažević et al., 2019a), they usually suffer from the overfitting problem severely.
Therefore, many regularization terms have been proposed. The squared Frobenius norm regulariza-
tion has been used in KGC widely (Nickel et al., 2011; Yang et al., 2014; Trouillon et al., 2017).
However, Lacroix et al. (2018) showed that the Frobenius norm regularization does not correspond
to regularization with a tensor norm. Therefore, they proposed a N3 regularization term based on
tensor nuclear 3-norm, which is an upper bound of tensor nuclear 3-norm. Zhang et al. (2020)
proposed DURA, a regularization based on the duality of TDB models and distance based models,
which is a upper bound of nuclear 2-norm.

3 METHODS

In this section, we describe the technical details. In Section 3.1, we introduce the notations used
throughout this paper. In Section 3.2, we summarize the proposed TDB models and derive a general
form of TDB models. In Section 3.3, we show the principles of model design to enable the model to
learn the symmetric, anti-symmetric and inverse rules. In Section 3.4, we propose our tensor n-rank
regularization (TNRR).
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Figure 1: Left shows a 3rd order tensor. Middle describes the corresponding mode-i fibers of the
tensor. Fibers are the higher-order analogue of matrix rows and columns. A fiber is defined by fixing
every index but one. Right describes the corresponding mode-i unfolding of the tensor. The mode-i
unfolding of a tensor arranges the mode-i fibers to be the columns of the resulting matrix.

3.1 NOTATIONS

Given a set E of entities and a setR of relations, a KG contains a set of triplets S = {(hi, rj , tk)} ⊂
E × R × E . Let the corresponding KG tensor be X ∈ {0, 1}|E|×|R|×|E|, with Xi,j,k = 1 if
(hi, rj , tk) ∈ S . Denote |E| and |R| as the number of entities and relations. Let H ∈ R|E|×D,R ∈
R|R|×D,T ∈ R|E|×D be the embedding matrices of head entities, relation and tail entities, where
D is the embedding dimension. Let Hi,Ri,Ti be the ith head entity, relation and tail entity. De-
note < a, b, c >=

∑D
i=1 aibici as the triple dot product of three vectors. Denote the mode-

n unfolding (also called matricization) of a tensor X as X(n), see Figure 1 for an example. Let
|| · ||1, || · ||2, || · ||F , || · ||∗ be the L1 norm, the L2 norm, the Frobenius norm and nuclear norm of
matrices or vectors. Let rank(·) be the rank of a matrix, ⊗ be the Kronecker product.

3.2 GENERAL FORM

In this section, we summarize the mainstream TDB models and derive a general form for them to
facilitate the following theoretical analysis. And we analyze the number of parameters and compu-
tational complexity of the general form. For a vector a ∈ RD, we split a into P parts each with d
dimension and denote a as [(a)1, (a)2, . . . , (a)P ], where (a)i is the i-th part of vector a.

CP/DistMult Let P = 1, CP (Lacroix et al., 2018) can be represented as

Xi,j,k =<Hi,Rj ,Tk >

DistMult (Yang et al., 2014), a particular case of CP, which shares the embedding matrix of head
entities and tail entities, i.e., H = T .

ComplEx/HOLE Let P = 2, ComplEx (Trouillon et al., 2017) can be represented as

Xi,j,k =< (Hi)1, (Rj)1, (Tk)1 > + < (Hi)2, (Rj)1, (Tk)2 >

+ < (Hi)1, (Rj)2, (Tk)2 > − < (Hi)2, (Rj)2, (Tk)1 >

Liu et al. (2017) proved HOLE (Nickel et al., 2011) is equivalent to ComplEx.

SimplE Let P = 2, SimplE (Kazemi & Poole, 2018) can be represented as

Xi,j,k =< (Hi)1, (Rj)1, (Tk)2 > + < (Hi)2, (Rj)2, (Tk)1 >
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ANALOGY Let P = 4, ANALOGY (Liu et al., 2017) can be represented as

Xi,j,k =< (Hi)1, (Rj)1, (Tk)1 > + < (Hi)2, (Rj)2, (Tk)2 >

+ < (Hi)3, (Rj)3, (Tk)3 > + < (Hi)3, (Rj)4, (Tk)4 >

+ < (Hi)4, (Rj)3, (Tk)4 > − < (Hi)4, (Rj)4, (Tk)3 >

QuatE Let P = 4, QuatE (Zhang et al., 2019) can be represented as

Xi,j,k =< (Hi)1, (Rj)1, (Tk)1 > − < (Hi)2, (Rj)2, (Tk)1 >

− < (Hi)3, (Rj)3, (Tk)1 > − < (Hi)4, (Rj)4, (Tk)1 >

+ < (Hi)1, (Rj)2, (Tk)2 > + < (Hi)2, (Rj)1, (Tk)2 >

+ < (Hi)3, (Rj)4, (Tk)2 > − < (Hi)4, (Rj)3, (Tk)2 >

+ < (Hi)1, (Rj)3, (Tk)3 > + < (Hi)3, (Rj)1, (Tk)3 >

+ < (Hi)4, (Rj)2, (Tk)3 > − < (Hi)2, (Rj)4, (Tk)3 >

+ < (Hi)1, (Rj)4, (Tk)4 > + < (Hi)4, (Rj)1, (Tk)4 >

+ < (Hi)2, (Rj)3, (Tk)4 > − < (Hi)3, (Rj)2, (Tk)4 >

TuckER Let P = D, TuckER (Balažević et al., 2019a) can be represented as

Xi,j,k =

D∑
l=1

D∑
m=1

D∑
n=1

Wlmn(Hi)l(Rj)m(Tk)n

where W ∈ RD×D×D is the weight tensor.

General Form We notice that all models are a linear combination of triple dot product. The only
difference between these models are the choice of the part P and the weight tensor W. And the
weight tensor of TuckER is parameter tensor, while the weight tensor of other models are predeter-
mined constant tensor. Therefore, we can write a general form of these models as

Xi,j,k =

P∑
l=1

P∑
m=1

P∑
n=1

Wlmn < (Hi)l, (Rj)m, (Tk)n > (1)

where W ∈ RP×P×P is the weight tensor, which can be parameter tensor or predetermined constant
tensor. This general form can also be seen as a special form of Tucker decomposition. For any
weight tensor W ∈ RP×P×P , we create a tensor W∗ ∈ RD×D×D such that W∗dl+s,dm+s,dn+s =

Wlmn(s = 1, 2, . . . , d) and W∗i,j,k = 0 otherwise. Then the general form can also be represented as
:

X = W∗ ×1 H ×2 R×3 T (2)

where ×n is the tensor product along the n-th mode (Kolda & Bader, 2009).

The Number of Parameters and Computational Complexity The parameters of the model come
from two part, the weight tensor W and the embedding matrix H,R,T . The number of parameters
of the weight tensor W is equal to P 3 if W is parameter tensor otherwise equal to 0. The number
of parameters of the embedding matrix is equal to |E|D + |R|D if H = T otherwise equal to
2|E|D + |R|D. The computational complexity is equal to O(DP 2|E|2|R|). The larger the part P ,
the more expressive the model and the more the computation. Therefore, the choice of the part P is
a trade-off between expressiveness and computation.

3.3 LOGICAL RULES

In this section, we analyze how to design models such that the models can learn the symmetric rules,
anti-symmetric rules and inverse rules. In the previous section, we derive a general form Eq.(1) of
the TDB models. Thus, we study how to enable the general form model to learn logical rules. We
first define the logical rules. We denote Xi,j,k = f(Hi,Rj ,Tk) as f(h, r, t) for simplicity.
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A relation r is symmetry if ∀h, t, r(h, t)→ r(t, h). A model is able to learn the symmetric rules if

∃r ∈ RD,∀h, t ∈ Rd, f(h, r, t) = f(t, r,h) ∧ f 6= 0

A relation r is anti-symmetry if ∀h, t, r(h, t) → ¬r(t, h). A model is able to learn the anti-
symmetric rules if

∃r ∈ RD,∀h, t ∈ Rd, f(h, r, t) = −f(t, r,h) ∧ f 6= 0

A relation r1 is inverse to a relation r2 if ∀h, t, r1(h, t) → r2(t, h). A model is able to learn the
inverse rules if

∀r1 ∈ RD,∃r2 ∈ Rd,∀h, t ∈ Rd, f(h, r1, t) = f(t, r2,h) ∧ f 6= 0

Since the difference between TDB models is the part P and the weight tensor W, the properties
of TDB models are determined by P and W. Therefore, we have the following proposition about
logical rules and P and W.

Proposition 1 Assume a model can be represented as the form of Eq.(1), then a model is able to
learn the symmetric rules iff rank(WT

(2)−SWT
(2)) < P . A model is able to learn the anti-symmetric

rule iff rank(WT
(2) + SWT

(2)) < P . A model is able to learn the inverse rules iff rank(WT
(2)) =

rank([WT
(2),SWT

(2)]), where S ∈ RP 2×P 2

is a permutation matrix with S(i−1)P+j,(j−1)P+i =

1(i, j = 1, 2, . . . , P ) else 0, [WT
(2),SWT

(2)] is the concatenation of matrix WT
(2) and matrix SWT

(2).

See proof in Appendix. By Proposition 1, we only need to judge the relationship between the part
P and the matrix rank about W(2). ComplEx, SimplE, ANALOGYY and QuatE design a specific
weight tensor to make the models enable to learn logical rules. We can verify that theses models
satisfy the conditions in Proposition 1.

3.4 TENSOR N-RANK REGULARIZATION

ComplEx (Trouillon et al., 2017), SimplE (Kazemi & Poole, 2018) and TuckER (Balažević et al.,
2019a) have proved their models are fully expressive, which can represent any ground truth tensor.
Therefore, TDB models are fully expressive when P ≥ 2. However, TDB models suffer from
the overfitting problems in practice. In this section, we propose a regularization, tensor n-rank
regularization (TNRR), to alleviate the overfitting problem. Motivated by the success of low- rank
matrix completion (Nguyen et al., 2019), we aim to achieve low-rank KGC. The definition of tensor
rank is not unique, e.g., CP-rank (Gandy et al., 2011) which based on CP decomposition and n-rank
(Gandy et al., 2011) which based on Tucker decomposition. Since the general form Eq.(1) can be
seen as a special form of Tucker decomposition Eq.(2), we propose our regularization based on the
n-rank of the tensor. The n-rank of a N th order tensor X ∈ Rn1×n2×···×nN is defined as the vector
of the ranks of the mode-n unfoldings:

n− rank(X) = (rank(X(1)), rank(X(2)), . . . , rank(X(N)))

In order to achieve low-rank KGC, we can minimize rank(X(1)) + rank(X(2)) + rank(X(3)).
Since the matrix rank minimization problem is NP-hard for most problems (Recht et al., 2008),
the matrix nuclear norm is widely used as a convex surrogate of matrix rank. However, the matrix
nuclear norm is a complicated non-differentiable function (Rennie & Srebro, 2005) and computing
the nuclear norm is expensive for large KG, we do not use the matrix nuclear norm directly. Note
that the matrix nuclear norm and squared Frobenius norm have the following relationship:

Lemma 1 (Srebro & Shraibman (2005)) For any matrix Z:

||Z||∗ = min
Z=UV T

||U ||2F ||V ||2F = min
z=UV T

1

2
(||U ||2F + ||V ||2F )

Since the general form of TDB models can be represented as:

X = W∗ ×1 H ×2 R×3 T
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then we have (Kolda & Bader, 2009)
X(1) = H(W∗(1)(T ⊗R)T ) = (HW∗(1))(T ⊗R)T

X(2) = R(W∗(2)(T ⊗H)T ) = (RW∗(2))(T ⊗H)T

X(3) = T (W∗(3)(R⊗H)T ) = (TW∗(3))(R⊗H)T

By applying Lemma 1 to X(1), X(2) and X(3), we have the following proposition:

Proposition 2 Let L(X) = ||X(1)||∗ + ||X(2)||∗ + ||X(3)||∗. We have that

2L(X) ≤ ||H||2F+||W
∗
(1)(T⊗R)T ||2F+||R||2F+||W

∗
(2)(T⊗H)T ||2F+||T ||2F+||W

∗
(3)(R⊗H)T ||2F

2L(X) ≤ ||HW∗(1)||2F + ||T ⊗R||2F + ||RW∗(2)||2F + ||T ⊗H||2F + ||TW∗(3)||2F + ||R⊗H||2F

By adding the two inequalities in Proposition 2, we get
4L(X) ≤||H||2F + ||R||2F + ||T ||2F

+||T ⊗R||2F + ||T ⊗H||2F + ||R⊗H||2F
+||HW∗(1)||2F + ||RW∗(2)||2F + ||TW∗(3)||2F
+||W∗(1)(T ⊗R)T ||2F + ||W∗(2)(T ⊗H)T ||2F + ||W∗(3)(R⊗H)T ||2F

(3)

The r.h.s. of Eq.(3) is an upper bound of the sum of the nuclear norms. We utilize this upper bound
as our regularization term. We further use the weighted versions of the Eq.(3), in which the regu-
larization term corresponding to the sampled valid triplets, as in (Lacroix et al., 2018; Zhang et al.,
2020). The weighted version of regularization usually outperforms the unweighted regularization
when entries of the matrix or tensor are sampled non-uniformly. And we use different regularization
coefficients for different parts of Eq.(3). This leads to our regularization term (TNRR) as follows:

reg(X) =λ1(||Hi||22 + ||Rj ||22 + ||Tk||22)
+λ2(||Tk||22||Rj ||22 + ||Tk||22||Hi||22 + ||Rj ||22||Hi||22)
+λ3(||HiW∗(1)||22 + ||RjW∗(2)||22 + ||TkW∗(3)||22)

+λ4(||W∗(1)(Tk ⊗Rj)
T ||22 + ||W

∗
(2)(Tk ⊗Hi)

T ||22 + ||W
∗
(3)(Rj ⊗Hi)

T ||22)

(4)

where λi(i = 1, 2, 3, 4) are the regularization coefficients. The intuition behind our regularization
is that it can control the norm of H,R,T and the norm of the intermediate variables in the process
of computing the tensor X. Since the tensor X in Eq.(2) can be computed in different orders, the
intermediate variables will be different. Therefore, the regularization can control the norm of all
intermediate variables in the different processes of computing X. The computational complexity of
TNRR is equal to O(DP 2).

We use the same loss function, multiclass log-loss function, as in (Lacroix et al., 2018; Zhang et al.,
2020). For a training triplet (i, j, k), our loss function is

`i,j,k(X) =− Xi,j,k + log(

|E|∑
k′=1

exp(Xi,j,k′ ))

− Xi,j+|R|,k + log(

|E|∑
i′=1

exp(Xk,j+|R|,i′ ))

+ reg(X)

(5)

At test time, we use Xi,j,: to rank possible right hand sides for query (i, j, ?) and X:,j,k to rank
possible left hand sides for query (?, j, k).

Remark Zhang et al. (2020) prove DURA is an upper bound of tensor nuclear 2-norm based on
CP decomposition. Since the CP decomposition is a special case of Tucker decomposition, our
regularization based on Tucker decomposition is more general. We can write DURA as follows:

DURA(X) =||Hi||22 + ||Tk||22
+||W∗(1)(Tk ⊗Rj)

T ||22 + ||W
∗
(3)(Rj ⊗Hi)

T ||22
which is a part of our regularization term.
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Table 1: Knowledger graph completion results on WN18 and FB15k datasets.

WN18 FB15k

MRR H@1 H@10 MRR H@1 H@10

TransE 0.495 0.113 0.943 0.463 0.297 0.749
RotatE 0.949 0.944 0.959 0.797 0.746 0.0.884

ConvE 0.943 0.935 0.956 0.657 0.558 0.831
HypER 0.951 0.947 0.958 0.790 0.734 0.885

DisMult 0.822 0.728 0.936 0.654 0.546 0.824
ComplEx 0.941 0.936 0.947 0.692 0.599 0.840
HOLEX 0.938 0.930 0.949 0.800 0.750 0.886
SimplE 0.942 0.939 0.947 0.727 0.660 0.838
ANALOGY 0.942 0.939 0.947 0.725 0.646 0.854
QuatE 0.950 0.944 0.962 0.833 0.800 0.900
TuckER 0.953 0.949 0.958 0.795 0.741 0.892

TNRR(λi = 0) 0.948 0.945 0.954 0.815 0.767 0.895
TNRR 0.953 0.948 0.962 0.828 0.784 0.902

Table 2: Knowledger graph completion results on WN18RR and FB15k-237 datasets.

WN18RR FB15k-237

MRR H@1 H@10 MRR H@1 H@10

TransE 0.226 — 0.501 0.294 — 0.465
RotatE 0.476 0.428 0.571 0.338 0.241 0.533

ConvE 0.43 0.40 0.52 0.325 0.237 0.501
HypER 0.465 0.436 0.522 0.341 0.252 0.520

CP 0.438 0.414 0.485 0.333 0.247 0.508
DistMult 0.430 0.390 0.490 0.241 0.155 0.419
ComplEx 0.440 0.410 0.510 0.247 0.158 0.428
QuatE 0.482 0.436 0.572 0.366 0.271 0.556
TuckER 0.470 0.443 0.526 0.358 0.266 0.358

TNRR(λi = 0) 0.448 0.422 0.496 0.308 0.220 0.485
TNRR 0.501 0.460 0.579 0.368 0.273 0.555

4 EXPERIMENTS

In this section, we introduce the experimental settings in Section 4.1 and show the results in Section
4.2. We study the impact of the part P in Section 4.3. Finally, we analyze the impact of the
regularization and compare our regularization to other regularization in Section 4.4.

4.1 EXPERIMENTAL SETTINGS

Datasets We evaluate our model on four popular benchmark datasets, WN18, WN18RR, FB15k
and FB15k-237. WN18 (Bordes et al., 2013) is extracted from WordNet, a database containing
lexical relations between words. WN18RR (Dettmers et al., 2018) is a subset of WN18, with inverse
relations removed. FB15k (Bordes et al., 2013) is extracted from Freebase, a large database of
real world facts. FB15k-237 (Toutanova et al., 2015) is a subset of FB15k, with inverse relations
removed.
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Table 3: The results on WN18RR dataset with different part P .

Part P 1 2 4 10 20 50 100 200

MRR 0.450 0.447 0.461 0.460 0.459 0.465 0.493 0.501
H@1 0.411 0.407 0.425 0.422 0.422 0.427 0.452 0.460
H@10 0.526 0.524 0.538 0.533 0.534 0.541 0.573 0.579

rank(WT
(2) − SWT

(2)) 0 1 2 7 15 44 50 200
rank(WT

(2) + SWT
(2)) 1 1 4 7 17 45 50 200

rank(WT
(2)) 1 1 3 7 15 40 47 200

rank([WT
(2),SWT

(2)]) 1 1 3 8 18 45 50 200

Table 4: The results on FB15k-237 dataset with different part P .

Part 1 2 4 10 20 50 100 200

MRR 0.346 0.340 0.345 0.345 0.347 0.345 0.359 0.368
H@1 0.254 0.250 0.253 0.253 0.255 0.252 0.264 0.273
H@10 0.529 0.522 0.529 0.530 0.533 0.532 0.549 0.555

rank(WT
(2) − SWT

(2)) 0 1 4 10 20 50 100 200
rank(WT

(2) + SWT
(2)) 1 2 4 10 20 50 100 200

rank(WT
(2)) 1 2 4 10 20 50 100 200

rank([WT
(2),SWT

(2)]) 1 2 4 10 20 50 100 200

Hyper-parameters We use the filtered MRR and Hits@N (H@N) (Bordes et al., 2013) as eval-
uation metrics and choose the hyper-parameters with the best filtered MRR on the validation
set. We used Adagrad (Duchi et al., 2011) as the optimizer. We set the batch size to 512 and
learning rate to 0.1, total embedding dimension D to 200, part P to 200 and embedding di-
mension d to 1 for all models. We search the regularization coefficients λi(i = 1, 2, 3, 4) in
{0, 10−4, 3 × 10−4, 10−3, 3 × 10−3, 10−2, 3 × 10−2, 10−1}. We tune hyper-parameters with the
help of Hyperopt, a hyper-parameter optimization framework based on TPE (Bergstra et al., 2011).
In the hyper-parameters search process, we train the model for 20 epochs. And we train the model
for 500 epochs with the best hyper-parameters. Please refer to the supplementary material for more
experimental details.

4.2 RESULTS

In this section, we compare the performance of TNRR with several translational models, including
TransE (Bordes et al., 2013; Nickel et al., 2016), RotatE (Sun et al., 2018), neural networks mod-
els, including ConvE (Dettmers et al., 2018), HypER (Balažević et al., 2019b) and TDB models,
including CP (Zhang et al., 2020), DisMult (Yang et al., 2014), ComplEx (Toutanova et al., 2015),
HOLEX (Xue et al., 2018), SimplE (Kazemi & Poole, 2018), ANALOGY (Liu et al., 2017), QuatE
(Zhang et al., 2019) TuckER (Balažević et al., 2019a). We also train our model without the tensor
n-rank regularization, i.e., λi = 0(i = 1, 2, 3, 4). See Table 1 and Table 2 for the results. Our model
achieves state-of-the-art performance on benchmark datasets.

4.3 THE PART

In Section 3.2, we show that the choice of the part P will affect the expressiveness and computation,
we study the impact of the part P on the model performance in this section. In Section 3.3, we
show that proper part P and weight tensor W can make the model enable to learn logical rules. we
analyze whether the weight tensor learned by the models can automatically satisfy the conditions
in Proposition 1. We evaluate the model on WN18RR and FB15k-237 datasets. We set the total
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Table 5: The results on WN18RR and FB15k-237 datasets with different regularization coefficient
and regularization term.

WN18RR FB15k-237

MRR H@1 H@10 MRR H@1 H@10

λi = 0 0.448 0.422 0.496 0.308 0.220 0.485
λ1 6= 0 0.453 0.424 0.508 0.325 0.237 0.502
λ2 6= 0 0.455 0.426 0.509 0.321 0.235 0.493
λ3 6= 0 0.449 0.423 0.496 0.319 0.228 0.505
λ4 6= 0 0.465 0.429 0.534 0.337 0.247 0.518

F2 0.453 0.424 0.508 0.325 0.237 0.502
N3 0.457 0.426 0.515 0.323 0.236 0.497
DURA 0.484 0.448 0.555 0.363 0.269 0.550
TNRR 0.501 0.460 0.579 0.368 0.273 0.555

embedding dimension to 200, and set the part P to 1, 2, 4, 10, 20, 50, 100, 200. See Table 3 and
Table 4 for the results. The matrix rank is computed by counting the number of singular values which
are greater than 10−3. The results show that the performance generally improves as P increases.
And the learned model can approximately satisfy the conditions in Proposition 1. And we find that
the models learned on WN18RR dataset basically satisfy the conditions in the Proposition 1. While
the models learned on FB15k-237 dataset only satisfy the inverse rule in general. The conditions in
Proposition 1 may be too strong in practice. The models may not need to strictly satisfy the logical
rules.

4.4 REGULARIZATION

In this section, we study which part of our regularization term Eq.(4) is more important and compare
our regularization with squared Frobenius norm (F2) regularization and N3 regularization (Lacroix
et al., 2018) and DURA Zhang et al. (2020) regularization. We use the model with regularization
coefficient λi = 0(i = 1, 2, 3, 4) as the baseline. And we compare the baseline with the models with
one of the regularization coefficient not equal to 0. Meanwhile, we compare our regularization with
squared Frobenius norm (F2) regularization and N3 regularization (Lacroix et al., 2018) and DURA
Zhang et al. (2020) regularization. We evaluate the models on WN18RR and FB15k-237 datasets.
All models have the same hyper-parameters setting except the regularization coefficients. See Table
5 for the result. The first and the second part of the regularization term Eq.(4) contribute the model
nearly because both of them control the scale of the embedding vectors. The third part has the least
contribution and the fourth part has the most contribution. The reason may be that the elements
in the fourth part are closer to the output of the model. The F2 and N3 regularization improve the
models almost equally. DURA is better than N2 and F3, which achieves significant improvement.
TNRR is the regularization that improves the model most. This result is not surprising because F2
and DURA are parts of TNRR.

5 CONCLUSION

In this paper, we analyze the TDB models in KGC. We first summarize the TDB models and derive a
general form for them. Based on the general form, we show the principles of model design to satisfy
logical rules. TDB models often suffer from the overfitting problem, we propose a regularization
term based on the n-rank of the tensor to alleviate the problem by enforcing the low-rankness of the
unfolding matrices. We first relax the tensor n-rank to the sum of the nuclear norm and propose a
computationally efficient upper bound of the sum of the nuclear norm as our regularization term.
Experiments show that our regularization achieves significant improvement on benchmark datasets.
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A APPENDIX

A.1 PROOFS

Proposition 1 Proof: According to the symmetric rule, we have that

P∑
l=1

P∑
m=1

P∑
n=1

Wlmn < (h)l, (r)m, (t)n > −
P∑
l=1

P∑
m=1

P∑
n=1

Wlmn < (t)l, (r)m, (h)n >

=

P∑
l=1

P∑
m=1

P∑
n=1

Wlmn < (h)l, (r)m, (t)n > −
P∑
l=1

P∑
m=1

P∑
n=1

Wnml < (h)l, (r)m, (t)n >

=

P∑
l=1

P∑
m=1

P∑
n=1

(Wlmn −Wnml) < (h)l, (r)m, (t)n >

=

P∑
l=1

P∑
m=1

P∑
n=1

(Wlmn −Wnml)(r)
T
m((h)l � (t)n)

=

P∑
l=1

P∑
n=1

(

P∑
m=1

(Wlmn −Wnml)(r)
T
m)((h)l � (t)n) = 0

where � is the Hadamard product. Since the above equation holds for any h, t ∈ RD, we can get

P∑
m=1

(Wlmn −Wnml)(r)
T
m) = 0
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Table 6: The hyper-parameters of the experiments in Section 4.2.

Part λ1 λ2 λ3 λ4

WN18 0.0003 0.03 0 0.003
FB15k 0.003 0.01 0 0.001
WN18RR 0.01 0.03 0 0.03
FB15k-237 0.0003 0.03 0 0.01

Table 7: The results of our models on WN18, FB15k, WN18RR, FB15k-237 datasets.

Part MR MRR H@1 H@3 H@10

WN18 184.21 0.953 0.948 0.956 0.962
FB15k 43.61 0.828 0.784 0.859 0.902
WN18RR 2923.69 0.501 0.460 0.515 0.579
FB15k-237 179.45 0.368 0.273 0.404 0.555

Therefore, the symmetric rule is transformed into a system of linear equations. This system of
linear equations should have non-zero solution, otherwise it will result in f = 0. Thus, we have
rank(WT

(2) − SWT
(2)) < P .

For the anti-symmetric rule, we can also get rank(WT
(2) + SWT

(2)) < P .

For the inverse rule, we have the following equation:

WT
(2)r1 = SWT

(2)r2

For any r1 ∈ RD, there exists r2 ∈ RD such that the above equation holds. Therefore, the column
vectors of WT

(2) can be expressed linearly by the column vectors of SWT
(2). Since S is a permutation

matrix, we have that S2 = I , thus

SWT
(2)r1 = S2WT

(2)r1 = WT
(2)r2

For any r1 ∈ RD, there exists r2 ∈ RD such that the above equation holds. Thus, the column
vectors of SWT

(2) can be expressed linearly by the column vectors of WT
(2). Therefore, the column

space of WT
(2) is equivalent to the column space of SWT

(2), thus we have

rank(WT
(2)) = rank(SWT

(2)) = rank([WT
(2),SWT

(2)])

A.2 EXPERIMENTAL DETAILS

Hyper-parameters We set the batch size to 512 and learning rate to 0.1, total embedding dimen-
sion D to 200, part P to 200 and embedding dimension d to 1 for all models. We search the regular-
ization coefficients λi(i = 1, 2, 3, 4) in {0, 10−4, 3×10−4, 10−3, 3×10−3, 10−2, 3×10−2, 10−1}.
See Table 6 for the best hyper-parameters we searched. And we show more detailed result of our
model in Table 7.

Initialization of the model Since the model has the general form Eq.(1), we initialize the param-
eters of the model from a uniform distribution with 0 mean and 4

√
1

p3d variance such that the output
of the model has 0 mean and 1 variance.
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