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Abstract

Hyperparameter tuning is a fundamental aspect of machine learning research. Set-
ting up the infrastructure for systematic optimization of hyperparameters can take a
significant amount of time. Here, we present PyHopper, an open-source black-box
optimization platform designed to streamline the hyperparameter tuning work-
flow of machine learning research. PyHopper’s goal is to integrate with existing
code with minimal effort and run the optimization process with minimal necessary
manual oversight. With simplicity as the primary theme, PyHopper is powered
by a single robust Markov-chain Monte-Carlo optimization algorithm that scales
to millions of dimensions. Compared to existing tuning packages, focusing on a
single algorithm frees the user from having to decide between several algorithms
and makes PyHopper easily customizable. PyHopper is publicly available under
the Apache-2.0 license at https://github.com/PyHopper/PyHopper.

import pyhopper

def objective(hparams):
model = build_model(hparams["size"],...)
opt = Adam(hparams["lr"])

train_loader, val_loader = ...
# .... train model

val_accuracy = model.evaluate(val_loader)
return val_accuracy

if __name__ == "__main__":
search = pyhopper.Search(

epochs = 100,
size = pyhopper.int(100, 500),
gain = pyhopper.float(0, 10, shape=(10,2)),
opt = pyhopper.choice("adam", "rmsprop"),
lr = pyhopper.float(1e-5, 1e-1, "0.1g"),
...

)
best_params = search.run(

objective, "max",
runtime = "1h 30min",
n_jobs="per-gpu"

)

pip3 install pyhopper

Hyperparameters are dict objects

Use training code without changes

Pythonic search space definition

Multidimensional array parameters

Limit search space via format strings

(e.g. ”0.1g” → 1-significant digit
and loguniform)

User-friendly way to set runtime

Run evaluations in parallel

on each available GPU

Figure 1: Visual abstract showing a typical use of PyHopper and some of its key features.
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1 Introduction

In this work, we introduce PyHopper, a hyperparameter optimization (HPO) platform tailored to the
optimization scenarios we encounter in machine learning research (e.g., training neural networks). In
particular, our HPO platform allows us to streamline the hyperparameter tuning procedures and scale
to hundreds of tuning tasks with minimal effort. The key strengths of PyHopper are:

• An intuitive interface that integrates with existing machine learning code with minimal
change,

• A highly customizable and robust optimization algorithm based on sequential Markov-chain
Monte-Carlo sampling that scales to millions of hyperparameters (HPs),

• Numerous utilities to streamline common use cases, such as 1-line multi-GPU setup, check-
pointing, pruning, and runtime scheduling.

Numerous hyperparameter optimization algorithms have been proposed in the literature, each spe-
cialized for specific use cases and applications. Moreover, many publicly available HPO packages
implement these algorithms. In this section, we first discuss the most important HPO algorithms
and how they compare with each other. In the second part, we describe common HPO packages for
Python and highlight their differences from PyHopper.

1.1 Hyperparameter Optimization Algorithms

Grid Search is arguably the most basic HPO. As its name suggests, Grid search spans a grid over
the parameter space and evaluates every intersection point of the grid. The main advantage of Grid
search is that it explores all parts of the configuration space. Thus it does not get easily trapped in
local optima. However, the major bottleneck of Grid search is that its complexity scales exponentially
with the dimension of the configuration space, thus beeing suitable for low dimensional configuration
spaces, i.e., typically 2 or 3 hyperparameters.

Sequential Model-Based Optimization (SMBO) [7] is a powerful black-box optimization paradigm.
The key idea of SMBO is to fit a simple-form surrogate model to the already evaluated points to
interpolate between unexplored parts of the configuration space. The easily computable optimum
points of the surrogate model are evaluated on the actual objective function. Bayesian Optimization
(BO) extends SMBO by fitting distributions instead of deterministic functions to the evaluated
points of the configuration space. The key benefit of BO over SMBO is that it allows modeling the
uncertainty about the interpolated parts of the configuration space.

Tree-structured Parzen Estimator (TPE) [2] is a sequential model-based optimization algorithm
that can handle conditional configuration spaces efficiently. An example of such a conditional
configuration would be the number of layers and corresponding hidden units in each layer of a neural
network. Particularly, the number of layers in the fifth layer is only needed if the number of layers
exceeds 4.

Random Search (RS) is another straightforward black-box optimization baseline. RS samples candi-
date solutions from a uniform distribution over the entire configuration space. Despite its simplicity,
RS can be competitive and outperform alternative algorithms in high-dimensional configuration
spaces [3].

Markov-chain Monte-Carlo (MCMC) is a family of methods for sampling from a probability
distribution that cannot be described in a simple form explicitly but as the stationary distribution
of a Markov-chain. The most fundamental MCMC optimization method takes the current best
configuration and generates a new sample by adding random noise to it. Such procedures are also
referred to as local search or hill climbing in the optimization literature. Simulated Annealing (SA)
[9] further extends this idea by continuously decreasing the variance of the added noise, i.e., the
"temperature", and also keeping worse new samples with a certain probability.

1.2 Hyperparameter Optimization Packages

There exist a large set of publicly available hyperparameter tuning packages. Here, we briefly discuss
some of the most common tools and highlight some of their unique features.
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HyperOpt [5] is a hyperparameter tuning framework that provides an implementation of the Random
Search and the Tree of Parzen Estimators optimization algorithms. The specialty of HyperOpt is that
parallelization is supported via Apache Spark or in a custom way through a database. This allows
HyperOpt to integrate with an Apache Spark cluster easily at the additional cost of effort to set up
and maintain the Apache Spark cluster.

Optuna [1] is a hyperparameter tuning framework developed by Preferred Networks. Optuna
implements many common optimization algorithms and supports parallel evaluation through a
MySQL database to which remote evaluation workers can connect. The main focus of Optuna is on
experiment tracking and visualization of evaluated configurations.

NeverGrad [16] is a black-box optimization library developed by Meta. It implements various
gradient-free optimization algorithms and allows executing multiple configurations in parallel.

keras-tuner [15] is a hyperparameter tuning library building on top of the Keras API and Tensorflow
2. The package implements common tuning algorithms, including Random Search, Bayesian
optimization, and the HyperBand algorithm [12]. The major limitation of Keras-tuner is that it does
not support running multiple evaluations in parallel.

Autotune [10] is an HPO platform focused on large-scale tuning of traditional models. Autotune
implements several evolutionary sampling algorithms that can be combined during the search.

Dragonfly [8] is a black-box optimization package that implements variants of Bayesian Optimization
algorithms. On-machine multiprocessing for parallel evaluation is available in Dragonfly.

Ray Tune [13] is the hyperparameter library building on top of the Ray distributed computing
framework. Ray Tune provides an enormous set of different hyperparameter tuning algorithms.
Moreover, Ray Tune can serve as a distributed evaluation engine for other hyperparameter tuning
tools such as Optuna, Dragonfly, and HyperOpt. While Ray Tune is relatively flexible in terms
of possible parallelization and tuning procedures, the large number of available algorithms can
overwhelm the user by creating the meta-problem of finding the best HPO algorithm.

2 PyHopper’s Pythonic API Design Characteristics

We design PyHopper’s API to have a flat learning curve and allow integration with existing code with
minimal effort. Our approach to achieving this goal is to make use of concepts that most Python
developers are already familiar with, so working with PyHopper feels natural.

PyHopper’s optimization algorithm. PyHopper’s optimization algorithm is a 2-phase MCMC
sampler. In phase 1, a random search samples candidates uniformly to get a coarse view of the
objective landscape. In phase 2, the search area is continuously narrowed down to the neighborhood
of the current best candidate. A pseudocode description of PyHopper’s optimization algorithm and
further details can be found in Appendix A. The advantage of having a single algorithm is that the
user does not need to bother selecting a suitable algorithm, i.e., replacing the problem of finding the
best hyperparameters with the meta-problem of finding the best HPO algorithm. Moreover, custom
datatypes and sampling strategies are straightforward to implement in PyHopper.

Separating training code from HPO code Typically, the training pipeline is developed before any
thoughts are given about the hyperparameter optimization process. Thus, for a streamlined HPO
interface, the training code should not be aware of any HPO. PyHopper realizes this by storing
hyperparameter candidates as dict objects.

**kwargs configuration space and reusing familiar Python keywords. PyHopper’s configuration
space, i.e., the datatypes and value ranges of the HPs to consider, is defined by passing named
arguments to the initialization of the search object. This results in easily understandable and main-
tainable code. Most Python developers are familiar with the built-in type-casting functions int()
and float(), which is why we use them for defining the search space. Additional properties, such
as quantization and uniform vs log-uniform distributions, can be enabled via optional arguments.

Log-uniform and quantized distributions via format string. Most Python developers are somewhat
proficient with Python format strings of floating-point numbers. For instance the ":0.2f" formats a
floating-point number to two decimal digits after the comma, or ":0.1g" to one significant digit in
scientific notation (e.g., 3e-5). We re-purpose this concept to allow quantization and logarithmic sam-
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Table 1: Results of our experimental comparison of common hyperparameter tuning packages. The
objective function was set to maximize the validation accuracy and minimize the validation mean-
squared error (MSE) for the IMDB and Walker2D task respectively. For the tools supporting 1-line
parallel multi-GPU execution (ray-tune and PyHopper), parallel execution was enabled. Optuna [1],
ray-tune [13], and PyHopper demonstrate competitive optimization performance.

Dataset IMDB [14] Walker2D [11]

HPO Best validation Runtime Best validation Runtime
platform accuracy (minute) MSE (minutes)

Optuna [1] 87.47% 823 0.863 42
HyperOpt [4] 50.00 % 808 1.956 42
ray-tune [13] 87.46% 104 0.897 23
PyHopper (ours) 87.98% 80 0.878 20

pling of the parameter space. For example, passing ":0.2f" to a float-type PyHopper hyperparameter
quantizes it to two decimal digits and uses a (linear) uniform search space. Contrarily, ":0.1g"
makes the float parameter sample from a log-uniform distribution quantized to one significant digit.

Additional features of PyHopper. PyHopper provides a large set of built-in utilities designed
for making the HPO process as smooth as possible. For instance, on multi-GPU systems, Py-
Hopper can evaluate candidates in parallel processes, each using a single GPU (via setting the
CUDA_VISIBLE_DEVICES environment variable of the parallel subprocesses). Additionally, PyHop-
per runtime argument accepts strings such as "24h" or "1day 2h 30min", which allows directly
forwarding arguments from the command line (via argparse instance). Moreover, PyHopper imple-
ments a pruning algorithm similar to those found in Optuna [1], which allows stopping unpromising
candidates early in their evaluation, e.g., if the validation accuracy after the first 10 epochs is not
within the top quantile. Further features and details about PyHopper can be found in Appendix C.

3 Experiments

We set up an experimental evaluation to benchmark four popular hyperparameter optimization
platforms: Optuna [1], HyperOpt[4], ray-tune[13], and PyHopper. For a fair comparison, we
define the exact same configuration spaces for all methods and allow each method to sample 30
hyperparameter configurations in total. The objective function that should be optimized by the tools
consists of training a Transformer model [17] on the IMDB sentiment analysis dataset [14]. Our
second experiment concerns the training of an LSTM network on the Walker2D kinematics modelling
dataset [11]. The hyperparameters include, among others, the learning rate, number of attention
heads, size of the LSTM cell [6], and dropout rate applied to the word embedding. Random seed was
fixed for the training (weight initialization and dataset shuffling). The full configuration space can be
found in Table 3 and Table 4 in Appendix F.

Both ray-tune and PyHopper provide 1-line multi-GPU parallelization capabilities, which we enable
for the evaluation. This significantly reduces the runtime on our machines (8 Titan RTX GPUs for the
IMDB task, and 2 A6000 GPUs for the Walker2D task), however, it potentially limits the optimization
as strictly sequential testing of hyperparameters results in the maximum information being available
for generating informed new candidates.

The results in Table 1 show that Optuna, ray-tune, and PyHopper could find competitive performing
hyperparameter settings for both tasks. Moreover, the runtimes indicate that PyHopper concluded its
search process the fastest. In particular, for IMDB, PyHopper’s runtime is more than 10x faster than
Optuna and HyperOpt, and 1.2x better than ray-tune. Moreover, we observed that HyperOpt was not
able to find good hyperparameter candidates. We hypothesize that HyperOpt’s Bayesian optimization
engine did not allocate the 30 available samples to properly cover the search space.

4 Conclusions

PyHopper is a customizable, open-source, and plug-and-play hyperparameter optimization engine,
that can be integrated with advanced training jobs with minimal effort and low cost, generating
competitive models compared to existing well-established packages.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Appendix E
(c) Did you discuss any potential negative societal impacts of your work? [No]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] Public datasets
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] Public datasets
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] Public datasets

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Optimization algorithm

PyHopper revolves around a single optimization algorithm based on MCMC sampling. The algorithm
consists of two sequential phases, i.e., an exploration and an exploitation phase. In phase 1, a Random
Search draws random samples uniformly over the entire configuration space. The main idea of phase
1 is to gather information about the objective surface, i.e., which parts of the configuration space
seem promising and which do not.

In the second phase, a sequential MCMC sampler takes the current best configuration and generates
new samples by adding random noise. The principle insight of phase 2 is to make incremental but
consistent improvements to the current best solution. To illustrate an example, phase 1 is about
filtering out what hyperparameter combinations do not work at all, while phase 1 is about the details
of the optimal ones, e.g., whether the best learning rate is 0.01 or 0.02. A pseudocode representation
of PyHopper’s algorithm is shown in Algorithm 1.
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Algorithm 1 High-level description of PyHopper’s MCMC sampling algorithm (maximization)

Input Parameter space Ω, objective function f : Ω→ R
θ1, . . . θk ← random samples from Ω ▷ Random search (phase 1)
θbest ← argmaxθi{f(θi}
temperate τ ← 1
while not timeout do

θ ← θbest + random noise with temperature τ ▷ Local search (phase 2)
if f(θ) > f(θbest) then

θbest ← θ
end if
decrease temperature τ

end while
return θbest

A) Objective surface B) Random Search
(20% runtime)

C) Local Search
(50% runtime)

D) Local Search
(90% runtime)

Figure 3: Example illustration of a 2-dimensional optimization problem and how PyHopper’s
optimization algorithm gradually narrows down the search area. A) Objective surface. B) Evaluated
points during the Random Search (phase 1). C) Evaluated points during the beginning of the Local
Search (phase 2). D) Evaluated points during the end of the Local Search (phase 2).
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Figure 2: Visualization of PyHopper’s scheduling. At the beginning, a
Random Search uniformly samples candidates from the entire configu-
ration space. During the second phase, the Local sampling procedure
gradually narrows the search area around the current best configuration.
By default, the Random Search is scheduled to account for 25% of the
total runtime, while annealing of the Local sampling phase is scheduled
for the remaining 75%.

PyHopper adopts the idea
of simulated annealing
and gradually decreases
the magnitude of the noise
over the runtime of the
tuning process. Phase
2 is referred to as local
sampling due to narrow-
ing down the search area
locally around the cur-
rent best solution. The
schematic of the two
phases and corresponding
scheduling is shown in
Figure 2. By default, Py-
Hopper spends 25% of the
runtime performing ran-
dom search (phase 1). The
"temperature", i.e., the
noise variance, then linearly decreases over the remaining runtime in the second phase running
the local search.

PyHopper requires the user to specify the target runtime of the tuning process, which provides two
major benefits. First, it allows exact scheduling between the two phases and the annealing process of
phase 2. This ensures that the tuning process spends sufficient time exploring the configuration space
and exploiting the promising areas. The provided runtime comes with the additional benefit that we
can schedule the tuning process to maximize the usage of available hardware. For instance, we can
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best_params = search.run(
objective_fn,
...
n_jobs="per-gpu"

)

Main process

GPU 1 GPU 2 GPU 3 GPU 4 GPU 5 GPU 6 GPU 7 GPU 8

Worker

process

Worker

process

Worker

process

Worker

process

Worker

process

Worker

process

Worker

process

Worker

process

Query available GPUs

1. CUDA VISIBLE DEVICES

2. nvidia-smi

Figure 4: High level description the parallization built-in by PyHopper. If the n_jobs argument is
set to per-gpu, the objective function is executed in parallel in subprocesses with only a single GPU
visible to each process.

specify PyHopper to run overnight or over the weekend and be done by Monday morning. Figure 3
visualizes on an example how searchable area gradually focuses over the scheduled runtime.

The focus of PyHopper on a single optimization algorithm avoids the dilemma of having to decide
between multiple tuning algorithms, i.e., the meta-problem of finding the best HP tuning algorithm,
as well as it allows for streamlining the user interface.

PyHopper’s algorithm is flexible and customizable. For example, we can skip phase 1 and directly let
the local sampling algorithm improve on a set of hyperparameters the user provides. Such scenarios
often occur when the user finds some decently working hyperparameter through a manual search.
Moreover, PyHopper allows integrating custom sampling and local perturbation (i.e., mutation)
strategies for special types of problems. For instance, the Travelling salesman problem (TSP) is an
NP-complete combinatorial optimization problem that concerns finding the shortest roundtrip over a
set of cities. With PyHopper, we can implement algorithms for heuristically solving the TSP with
very minimal code.

B Parallelization

PyHopper can parallelize the evaluations of hyperparameter candidates by executing the objective
function on multiple processes simultaneously. The sampling of new candidate solutions, scheduling,
and invoking callback functions are all done in the main process. Thus, no code change is required
by the user to use PyHopper’s parallel executing engine.

PyHopper is primarily intended to run on a machine with multiple NVIDIA GPUs installed (single-
machine multi-GPU). We can spawn a parallel evaluation process for each available GPU with a
single argument. PyHopper takes care of detecting the number of installed GPUs and setting the
environment variables accordingly. Multi node parallization may be included in future versions of
PyHopper.

C API design

Machine learning research can involve an enormous amount of hyperparameter tuning. PyHopper’s
API is designed to minimize the necessary changes that have to be made to the training pipeline and
to simplify the integration of the tuned hyperparameter to other code. Particularly, the user interface
of PyHopper aims to remove the friction between the ML code and the hyperparameter tuning code.

C.1 Separation of concerns

Our key idea is that any ML code, i.e., for both training and usage afterward, should be able to run
without any dependency on the hyperparameter tuning package. In particular, this means that the
objective function, i.e., the training and validation, should contain any call to a function from the
tuning package. Consequently, PyHopper does not implement a define-by-run API as done in other
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hparams = {
"lr" : 0.001,
"size": 512,
"weight_decay": 1e-6,
...

}

model = build_model(hparams["size"],...)
opt = Adam(hparams["lr"])

train_loader, val_loader = # ....
# .... fit model

val_accuracy = model.evaluate(val_loader)
# our objective to maximize

def objective(hparams):
model = build_model(hparams["size"],...)
opt = Adam(hparams["lr"])

train_loader, val_loader = # ....
# .... fit model

val_accuracy = model.evaluate(val_loader)
return val_accuracy

if __name__ == "__main__":
search = pyhopper.Search(

size = pyhopper.int(100,500),
lr = pyhopper.float(0.0001,0.1),
...

)
best_params = search.run(

objective, "max",
runtime = "1h 30min",
n_jobs="per-gpu"

)

A) B)

Figure 5: Example code snippet of how PyHopper integrates with existing ML code. A) Typical
machine learning code for training a neural network. B) Adapted code for hyperparamter tuning with
minimal required changes.

Table 2: List of supported datatypes in PyHopper and corresponding examples.
Definition Samples
Integer parameters (uniform)
PyHopper.int(100,500) 350, 250, 500, ...
PyHopper.int(100,500, multiple_of=100) 400, 200, 100, ...
PyHopper.int(0,10, shape=3) (5,2,7), (10,2,6), ...

Integer parameters (logarithmic)
PyHopper.int(2,64, power_of=2) 8, 4, 32, ...

Float parameters (uniform)
PyHopper.int(0,1) 0.5434, 0.83934, ...
PyHopper.int(0,1, precision=1) 0.5, 1.0, 0.3, ...
PyHopper.int(0,1, "0.1f") 0.5, 1.0, 0.3, ...
PyHopper.int(-10,10, shape=2) (-6.22343, 1.5234), (0.3632,-8.90331), ...

Float parameters (logarithmic)
PyHopper.int(1e-5,1e-3,log=True) 0.00023784, 0.000072342 ...
PyHopper.int(1e-5,1e-3,log=True,precision=1) 2e-4, 5e-5, 8e-4, ...
PyHopper.int(1e-5,1e-3,"0.1g") 2e-4, 5e-5, 8e-4, ...

Set parameters (unordered)
PyHopper.choice(["adam","sgd","rmsprop"] "sgd", "adam", ...

Set parameters (ordered)
PyHopper.choice([1,10,100],is_ordinal=True) 10, 1, 100 , ...
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import pyhopper
import argparse

def objective(hparams):
# .... build and fit model
return val_accuracy

if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--runtime", default="2h")
parser.add_argument("--n_jobs", default="1")
args = parser.parse_args()

search = pyhopper.Search(
...

)
best_params = search.run(

objective, "max",
runtime = args.runtime,
n_jobs=args.n_jobs

)

$ python3 script.py --runtime 12h --n_jobs per-gpu

Figure 6: Example of how PyHopper’s run parameters are supposed to be forwarded from the
command line arguments.

hyperparamter tuning packages [1, 15]. Instead, the interface between PyHopper and ML pipeline is
represented by a ython dictionary (i.e., dict) object containing the hyperparameters. Additionally,
this design choice provides the advantage that the tuned hyperparameters in the form of a Python
dictionary can be easily stored, logged, and examined by the user.

The required adaptions of typical ML training pipelines to PyHopper are to wrap the training and
validation into an objective function, define the configuration space, and run the search. The search
space is set up by defining a template hyperparameter dictionary. An example is shown in Figure 5.

C.2 Helper functions

PyHopper implements several helper and utility functions that simplify common tasks involved in
hyperparameter tuning. For instance, instead of defining the runtime of the tuning process in seconds,
a string can be provided that will be parsed, supporting multiple units of time, e.g., hours or minutes.
Another example is the njobs argument, which, if set to "per-gpu" will take care of querying how
many GPU devices are available on the system and scale the tuning process to run an evaluation on
each device in parallel.

C.3 Customization

PyHopper allows defining custom parameter types by defining custom sampling and mutation
strategies. Additionally, PyHopper allows pruning candidates during the evaluation, e.g., if the
validation accuracy does not reach a certain threshold in the first few epochs. Live feedback of
evaluated candidates and current best configurations can be streamed through callback functionalities
in PyHopper. For instance, PyHopper provides a built-in checkpointing mechanism that continuously
saves evaluated candidates and corresponding objective values in a file so that no information is lost
if the machine crashes.
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import pyhopper

search = pyhopper.Search(
lr_lin = pyhopper.float(1e-5, 1e-1),
lr_log = pyhopper.float(1e-5, 1e-1, log=True)

)
# log=False is default
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Figure 7: Difference between a linear and logarithmically distributed float parameter. A) Logarith-
mical sampling of a float parameter can be enabled via the log argument. B) Resulting histogram
of sampled values. The top row shows a linear and the bottom row a logarithmically distributed
parameter. The two plots on the left use a linear x-axis, while the two plots on the right use a
logarithmic x-axis.

C.4 Pruning algorithms

The training of neural networks is an inherently stochastic process. For it instance, the random
seed for the weight initialization affects the final accuracy of a model. This can be problematic for
hyperparameter tuning, as we cannot fully trust the objective function always returns the same value.
In particular, some evaluations might be lucky and report a bit higher performance in the objective
function due to a particularly good random seed.

Fixing the random seed in the training process avoids the stochasticity of the objective function.
However, a fixed seed makes the tuning process potentially overfits the hyperparameters to the specific
train-validation split. As a result, transferring the hyperparameters to a different train-validation split
may result in a drop in performance.

A more reliable way to deal with this problem is to evaluate every HP configuration several times
and report the mean. However, this significantly increases the computational cost of the tuning
procedure. To counteract this cost explosion while maintaining the reliability of testing a configuration
with several random seeds, we can employ pruning algorithms that stop the evaluation process of
unpromising candidates already after their first evaluation. In particular, if the first evaluation of an
HP candidate indicates that this configuration has very little chance of being the best hyperparameter,
the pruning algorithm will stop the remaining evaluations and discard the HP candidate.

The API design for the pruning interface was inspired by Optuna [1].

D Examples

In this section we provide the most fundamental examples demonstrating the real-world use of
PyHopper.

D.1 Available datatypes

In Table 2, we list the available datatypes of hyperparameters in PyHopper. Moreover, Table 2
demonstrates the most common customization patterns and corresponding samples.

For an efficient search, we distinguish between linearly and logarithmically distributed hyperparam-
eters. The default case is parameters with a linear search space and uniform density. This can be
problematic for parameter spaces that range over several orders of magnitude. For instance, for a
learning rate parameter spanning between 10−5 and 10−1, there is a 50% chance that a uniform
sample will be greater than 5 · 10−2, i.e., approximately the center of the interval [10−5, 10−1].
Consequently, the optimization algorithm is biased toward sampling large values and might not
explore values are the lower end of the spectrum with the same frequency. A logarithmic sampling
distribution might resolve this issue and is therefore preferred for parameters that span multiple
orders of magnitude. In Figure 7, we visualize sampling differences between a linear (default) and
logarithmically distributed parameter.
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import pyhopper

def noisy_objective(param):
# ... training of a neural network
# with random initial weights ...
...
return val_accuracy

search = pyhopper.Search(
lr = pyhopper.float(1e-4,1e-1,"0.1g"),
...

)
search.run(

# Mean over 3 runs
pyhopper.wrap_n_times(noisy_objective, n=3),
runtime = "24h",
# Discontinue evaluation if the
# intermedate results are in the bottom 80%
pruner = pyhopper.pruners.QuantilePruner(0.8),

)

Sample parameters

Evaluate objective function 1st time

Is result within bottom 80%?

Prune Evaluate 2nd time

Is result within bottom 80%?

Prune Evaluate 3rd time

Return mean of 3 objective values

Yes No

Yes No

A) B)

Figure 8: Example of how to deal with stochastic objective function and instantiate a pruning
algorithm in PyHopper. A) Code snippet showing that only two lines of code are required to evaluate
the mean of a noisy objective function and instantiate a pruning algorithm that prunes the candidate
if the intermediate results are not within the top 20%. B) Corresponding flow-chart involved in the
pruning decision.

D.2 Command line arguments

PyHopper accepts its runtime and njobs argument in the form of a string that will be parsed. This
allows directly forwarding command line arguments to PyHopper’s run method and building an
intuitive interface for the user with minimal code without limiting the freedom and flexibility of the
developer. An example of this command line argument forwarding is shown in Figure 6.

D.3 Noisy objective and pruning

As highlighted before, one way to deal with a stochastic objective function is to evaluate it sev-
eral times and optimize the mean. Moreover, we mentioned pruning algorithms to discontinue
candidates that turn out to be unpromising already after the first evaluation. In Figure 8, we
demonstrate that only two lines of code are required to implement this behavior. In particular,
the PyHopper.wrap_n_times helper function wraps the objective function into a loop evaluating a
given number of times. Moreover, the intermediate results are sent to the pruning algorithm, which
decides whether to continue or prune the candidate.

D.4 Fault tolerance and preemptive compute instances

A typical hyperparameter tuning process can run for several days or even weeks. It is, therefore,
necessary to prepare for unexpected events, such as power cuts or software bugs, to avoid a loss in
data. Additionally, to optimize costs, we could run the hyperparameter tuning process on preemptive
cloud machines (i.e., spot instances), which can be shut down anytime. PyHopper provides a
checkpointing mechanism that continuously saves its internal state on the disk. Consequently, in case
the tuning process is interrupted, e.g., by a power cut or spot instance shutdown, we can resume the
tuning process from the last checkpoint. In Figure 9, we demonstrate how to use the checkpointing
mechanism of PyHopper.

E Limitations

There cannot be a perfect hyperparameter tuning package, as some features of what makes a good HP
tuner might be contradictory. For instance, implementing several different optimization algorithms
might be both an advantage and a disadvantage. Instead, each hyperparameter tuning package
comes with tradeoffs that were made for specific application areas in mind. The main tradeoff
for PyHopper is the focus on a single optimization algorithm. As highlighted before, having a
single algorithm provides the advantage the user does not need to bother with which algorithm to
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import pyhopper

search = pyhopper.Search(
...

)
opt_params = search.run(

...
checkpoint_path = "ckpt_file.ckpt"

)

(a) In case a filename is pro-
vided, PyHopper will resume
the search from the checkpoint
if the file exists. Continuous
progress of the search will be
stored in the file.

import pyhopper

search = pyhopper.Search(
...

)
opt_params = search.run(

...
checkpoint_path = "ckpt_dir/"

)

(b) In case a directory
is provided, PyHopper
will create a new check-
point within the directory.
Progress is stored in the
new checkpoint file.

import pyhopper

search = pyhopper.Search( ...
)
search.load("ckpt_file.ckpt")
opt_params = search.run(

...
)
search.save("new_ckpt.ckpt")

(c) Manual check-
pointing. Through
the load and save
functions manual
checkpoints can be
created and loaded.

Figure 9: Demonstration of different way to use PyHoppers checkpointing mechanism

Table 3: Configuration space of our experiment setup training a Transformer model [17] on the
common IMDB sentiment dataset [14]

Hyperparameter Range

Learning rate 1e-4 to 1-e2 (loguniform)
Learning rate deacy 0.2 to 1.0 (quantized in 0.1 steps)
Warumup gradient steps 100 to 1000 (quantized in 100 steps)
Learning rate decay every n-th epoch 5,10
Number of attention heads 4 to 8
Dimension per attention head 16 to 128 (quantized in 16 steps)
Feedforward dimension 64 to 512 (quantized in 64 steps)
Weight decay 1e-6 to 1e-4 (loguniform)
Dropout rate 0 to 0.3 (quantized in 0.1 steps)
Number of layers 2 to 6
Apply LayerNorm on word embedding True, False
Word embedding dropout rate 0 to 0.3 (quantized in 0.1 steps)

run, i.e., the meta-problem finding the best hyperparameter tuning algorithms that finds the best
hyperparameters. Moreover, the focus on the single MCMC sampler allows the user to easily
customize the algorithm as there are fewer layers of abstraction than packages that implement
several optimization routines. Nonetheless, PyHopper’s optimization algorithm comes with a set
of disadvantages. First, Bayesian optimization-based approaches might be preferable for lower
dimensional problems and for problems where many candidate configurations can be evaluated.
For such problem instances, enough information about the objective surfaces is available for a
model-based algorithm to accurately approximate the black-box objective function via a surrogate
model and overcome the problem of getting stuck in local optima. Moreover, running multiple
hyperparameter algorithms in parallel might be feasible for problems where our compute budget
is large enough. Consequently, packages that can try several different algorithms might have an
advantage over PyHopper in such cases.

F Experiment details

The configuration space considered for both experiments are listed in Table 3 (IMDB task) and Table
4 (Walker2D task) respectively.
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Table 4: Configuration space of our experiment setup training an LSTM network [6] on the Walker2D
kinematics modelling dataset [11]

Hyperparameter Range

LSTM cell size 64 to 512 (quantized in 64 steps)
Learning rate 1e-4 to 1-e2 (loguniform)
Learning rate deacy 0.2 to 1.0 (quantized in 0.1 steps)
Warumup gradient steps 100 to 500 (quantized in 100 steps)
Learning rate decay every n-th epoch 5,10,20,50
Weight decay 1e-6 to 1e-4 (loguniform)
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