

EVALUATING BARGAINING SKILLS IN ONLINE SECOND-HAND MARKETPLACE WITH LLM SELLER AGENTS

006 **Anonymous authors**

007 Paper under double-blind review

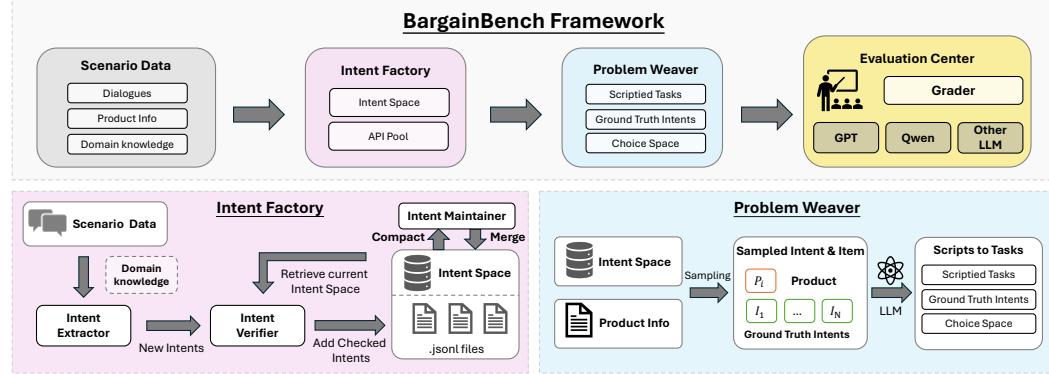
ABSTRACT

013 In online second-hand marketplaces, multi-turn bargaining is a crucial part of
 014 seller-buyer interactions. Large Language Models (LLMs) can act as *seller agents*,
 015 negotiating with buyers on behalf of sellers under given business constraints. A
 016 critical ability for such agents is to track and accurately interpret cumulative buyer
 017 intents across long negotiations, which directly impacts bargaining effectiveness.
 018 We introduce a multi-turn evaluation framework for measuring the bargaining
 019 ability of seller agents in e-commerce dialogues. The framework tests whether
 020 an agent can extract and track buyer intents. Our contributions are: (1) a large-
 021 scale e-commerce bargaining benchmark spanning 622 categories, 9,892 products,
 022 and 3,014 tasks; (2) a turn-level evaluation framework grounded in Theory of
 023 Mind (ToM), enabling detailed assessment of model performance beyond outcome-
 024 only metrics; and (3) an automated pipeline that constructs intent annotations
 025 and evaluation data from large-scale dialogues, transferable across datasets and
 026 negotiation domains.

1 INTRODUCTION

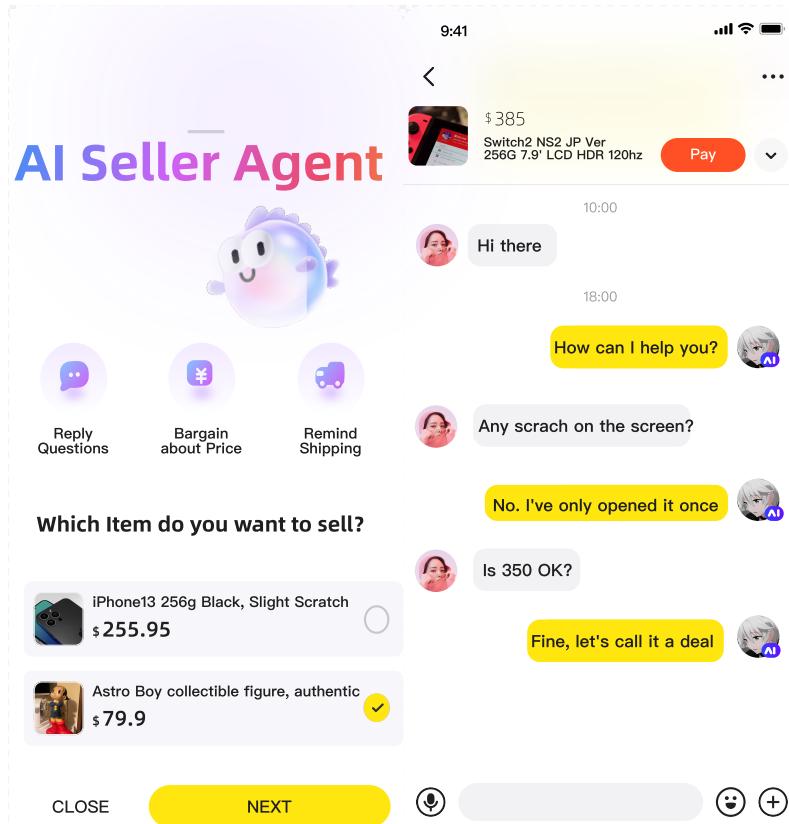
030 Bargaining is a fundamental social intelligence skill with substantial economic impact across industries.
 031 In e-commerce, bargaining is equally critical: studies on negotiation tasks such as Craigslist-
 032 Bargain He et al. (2018) and more recent applied systems like FishBargain Dexin and Xu (2025)
 033 illustrate that effective bargaining improves user experience, increases platform conversion rates,
 034 and ultimately drives revenue. For AI agents aiming to make real impact in commercial contexts,
 035 mastering bargaining is therefore a necessary step.

036 From an intelligence perspective, bargaining sits at the intersection of natural language understanding,
 037 strategic reasoning Qian et al. (2025), and Theory of Mind (ToM) modeling. It requires interpreting
 038 scenario-specific information, reasoning about counterpart goals and constraints Davidson et al.
 039 (2024). Effective bargaining further demands tracking buyer intents across multiple turns, consistently
 040 recalling past commitments, and applying such understanding under domain-specific constraints
 041 Dexin and Xu (2025)—capabilities where current Large Language Models (LLMs) remain fragile.



053 Figure 1: BargainBench framework: **Intent Factory** extracts an intent space, **Problem Weaver** generates scripted dialogues, and **Evaluation Center** scores LLM performance.

054 Current LLMs face distinct challenges in bargaining beyond those seen in standard dialogue tasks.
 055 First, *intent drift*, where buyer goals evolve subtly across turns, forces models to maintain a coherent
 056 belief state while detecting implicit shifts in strategy. Second, *contextual memory degradation*,
 057 meaning models forget earlier commitments or constraints once dialogues exceed typical context win-
 058 dows, leading to inconsistent responses. Third, *adversarial misalignment*, when buyers deliberately
 059 exploit ambiguity or use deceptive tactics, exposes gaps in models trained mainly on cooperative dia-
 060 logue. These vulnerabilities are amplified in commercial settings, where business rules, compliance
 061 requirements, and reputation management add further complexity.



089 Figure 2: Left: Human sellers select items and delegate them to the AI seller agent. Right: Human
 090 buyers interact with the AI agent to ask questions and negotiate prices.
 091

092 To address these challenges, we propose grounding bargaining evaluation in Theory of Mind (ToM)
 093 principles Chan et al. (2024). Rather than evaluating only final negotiation outcomes—which conflate
 094 strategic success with intent understanding—our approach assesses whether models can accurately
 095 infer and track the mental states, intentions, and constraints of their negotiation partners at each
 096 conversational turn. This shift from outcome-based to process-based evaluation enables in-depth
 097 diagnosis of model capabilities, identifies specific failure modes, and provides actionable insights for
 098 targeted improvement.

099 Prior benchmarks either ignore real-world constraints or score only final deals Xia et al. (2024),
 100 missing the intermediate reasoning processes that shape negotiation success. Existing approaches
 101 often simplify bargaining to basic offer-counteroffer exchanges, overlooking the rich information-
 102 seeking and the exploration of hard constraints such as price limits, product condition, or return
 103 policies that characterize realistic negotiations. We introduce the seller-agent setting, where agents
 104 negotiate on behalf of sellers under explicit business rules and product constraints, to isolate and
 105 measure turn-level intent understanding in a controlled yet realistic environment.

106 Our framework extends beyond e-commerce applications to provide a general methodology for
 107 evaluating intent understanding in multi-turn, goal-oriented dialogues. The core *intent-action-tool*
 hierarchy offers a domain-agnostic structure that can be systematically adapted to diplomatic negoti-

108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161

ations, medical consultations, educational tutoring, legal mediation, and other scenarios requiring sustained reasoning about counterpart mental states. This generalization capability positions our work as a foundational contribution to the broader study of social intelligence evaluation Tang et al. (2025), with direct implications for designing human–AI interaction across diverse domains.

Our work makes four main contributions. (1) We present **BargainBench**, a large-scale bargaining benchmark covering 622 product categories, 9,892 listings, and 3,014 evaluation tasks, with authentic business constraints and real-world complexity. (2) We propose a **turn-level evaluation framework** grounded in Theory of Mind, providing ground-truth buyer intents and shifting the focus from outcome-only metrics to reasoning processes that support sustained negotiation. (3) We design an **automated pipeline** for extracting high-quality intent annotations from large-scale dialogue data, enabling reproducible and scalable benchmarking while preserving annotation consistency. (4) We highlight the **cross-domain potential** of our approach: the intent–action–tool hierarchy and turn-level protocol are broadly applicable and can be adapted to settings such as diplomatic negotiations, medical consultations. This positions BargainBench as a foundation for future studies on universal intent-understanding evaluation.

2 RELATED WORK

Multi-turn negotiation benchmarks and tasks. Early datasets such as DealOrNoDeal Lewis et al. (2017) and CraigslistBargain He et al. (2018) established text-based bargaining protocols by modeling buyer–seller negotiation as multi-turn dialogues with real listed products. Later work has moved toward more interactive and applied domains. Xia et al. Xia et al. (2024) formalize bargaining as an asymmetric incomplete information game, while Davidson et al. Davidson et al. (2024) evaluate model agency through negotiation games with both self-play and cross-play settings. More applied systems, such as FishBargain Dexin and Xu (2025) and debt collection negotiation frameworks Wang et al. (2025), extend bargaining research to real-world domains with vertical application requirements Zhu et al. (2025). Despite these advances, most benchmarks continue to emphasize final outcomes such as success rate or profit, leaving the intermediate reasoning processes that drive negotiation effectiveness underexplored.

Intent recognition and tracking in dialogue. Dialogue State Tracking benchmarks such as MultiWOZ Budzianowski et al. (2018) address explicit slot filling and task goals, but bargaining typically involves *implicit, evolving, and context-dependent intents*. NegotiationToM Chan et al. (2024) introduces belief and intention modeling for negotiation dialogues, showing that even advanced LLMs struggle with consistent inference across turns. Guan et al. Guan et al. (2025) survey methods for multi-turn conversation evaluation and highlight intent tracking as a key challenge. More broadly, Theory-of-Mind (ToM) research investigates whether LLMs demonstrate human-like mental state reasoning. Kosinski Kosinski (2024) reports positive performance on classical false-belief tasks, emphasizing the need for more robust benchmarks. Our setting narrows these discussions to negotiation-specific buyer intent extraction and turn-level tracking.

Tool-augmented agents and process-grounded evaluation. Tool-augmented benchmarks have stressed robustness and correctness under domain constraints. τ -Bench Yao et al. (2024) evaluates tool–agent–user interaction in rule-constrained environments. ToolACE Liu et al. (2025) builds large-scale function-calling datasets through synthetic generation, while ACEBench Chen et al. (2025) categorizes tool-use evaluation into multiple multi-agent and ambiguous scenarios. These lines of work highlight the importance of aligning user intent, action selection Ye et al. (2025), and tool execution. In our setting, bargaining agents must ground buyer intents into seller-side actions (e.g., price adjustment, shipping changes, proof requests), providing a natural case study of the *intent–action–tool* hierarchy.

Comparison to Prior Work. Most existing benchmarks assess bargaining only by final outcomes such as success rate or payoff, without capturing how agents reason across turns Lewis et al. (2017); He et al. (2018); Xia et al. (2024); Davidson et al. (2024). Applied systems including FishBargain Dexin and Xu (2025) and debt-collection negotiations Wang et al. (2025) also primarily report transaction completion or recovery metrics, reflecting the same emphasis on end results. What remains missing is an evaluation that explicitly examines the intermediate reasoning process—whether models can track

shifting goals, remember prior commitments, and align actions with task constraints—capabilities essential for realistic negotiations but underexplored in outcome-only evaluations. In contrast, our benchmark adopts a data-oriented task generation method, enabling not only turn-level evaluation in bargaining but also straightforward adaptation of the same methodology to other multi-turn, goal-driven dialogue domains.

Name	Scalability	Ground Truth	# Tasks	Avg. Turns	# Items	# Categories	Avg. Description Length	Evaluation
CraigslistBargain (Lewis et al., 2017)	✗	✗	6,682	9.2	1,402	6	31 words	Human eval+Outcome Metrics
DealOrNoDeal (He et al., 2018)	✗	✗	5,808	6.6	3	20	✗	Outcome Metrics
Measuring Bargaining Abilities (Xia et al., 2024)	✓	✗	930	N/A	930	18	Short texts	Outcome Metrics
BargainBench (ours)	✓	✓	3,014	3	9,892	85	55 words	Turn-level Intents ✓

Table 1: Comparison of bargaining benchmarks in E-commerce field. BargainBench uniquely provides scalability and intermediate ground-truth annotations, along with broader product coverage, more listed items and longer descriptions.

3 METHODOLOGY

To evaluate bargaining ability under realistic yet verifiable conditions, we design **BargainBench**, a three-stage pipeline consisting of the **Intent Factory**, **Problem Weaver**, and **Evaluation Center** (Figure 1). Unlike outcome-based negotiation benchmarks, our framework isolates the capability of *understanding* bargaining context: each turn is paired with explicit ground-truth intent, enabling reproducible and interpretable evaluation. This design exploits the asymmetry between authoring and solving—models can readily generate convincing multi-turn dialogues when given target intents, yet often fail to recover those intents from completed exchanges. By preserving verifiable ground truth at each turn, BargainBench delivers interpretable and transferable performance measurements, and can be readily adapted to other goal-oriented domains such as diplomatic negotiations and cooperative games.

At the core of the framework is a hierarchical decomposition of negotiation behavior into three levels:

- *Intent* — the most abstract, high-level buyer goals
- *Action* — mid-level strategies that operationalize an intent
- *Tool* — the most atomic, directly verifiable move expressed in a single utterance

This structure balances abstraction with verifiability: intents capture long-horizon goals, tools ensure evaluation can be grounded in unambiguous turn-level labels, and actions provide the bridge that groups semantically similar tools into coherent strategies. The hierarchy not only disentangles complex dialogues but also supports multi-granularity diagnosis of model strengths and weaknesses.

The three modules operationalize this design: the **Intent Factory** constructs and refines the hierarchy from raw dialogues, the **Problem Weaver** instantiates bargaining tasks grounded in real-world product metadata, and the **Evaluation Center** executes controlled turn-level testing with standardized metrics.

3.1 INTENT FACTORY

The **Intent Factory** distils raw dialogues, product data, and domain knowledge into the three-level *intent-action-tool* hierarchy and a compact API pool. To ensure both coverage and consistency, we employ a lightweight multi-agent pipeline: The **Extractor** identifies candidate intent-action-tool triplets from both dialogues and product metadata. The **Verifier** checks whether these extracted intents are valid, discarding duplicates or entries already present in the intent space. The **Expert_Guide** leverages domain and expert knowledge to provide a cold-start foundation, re-labeling ambiguous cases and guiding the construction of a coherent intent hierarchy. Finally, the **Maintainer** clusters semantically similar entries, merges redundancy, and outputs a compact but comprehensive hierarchy.

We assess the quality of the mined hierarchy with two metrics: *Coverage* (the proportion of ground-truth intents recalled) and *Duplicate Ratio* (the proportion of redundant entries remaining). Detailed definitions and formulas are provided in the Appendix A. In practice, Coverage remains consistently above 95%, so the main effect of the pipeline is to progressively reduce redundancy, producing a more compact and semantically consistent intent space that is better suited for large-scale task generation.

216 The resulting output of this process is the finalized **Intent Space**, which serves as the foundation for
 217 subsequent task construction and evaluation.
 218

219 **3.2 PROBLEM WEAVER**

220 The **Problem Weaver** turns abstract entries from the Intent Space into concrete, multi-turn bargaining
 221 tasks grounded in real product metadata (title, description, price, category). For each selected product,
 222 it first samples a *ground-truth intent* as the answer key, checks plausibility under product constraints,
 223 and then generates turn-specific *Buyer Messages*. Each turn is paired with (i) a system prompt and
 224 (ii) an *intent choice space* (a candidate set that includes the ground truth and distractors). The process
 225 repeats until the target number of turns is reached, yielding an independent, evaluation-ready task
 226 object (dialogue script, per-turn labels, and choice sets). A task example appears in Figure 10; prompt
 227 templates are given in Appendix B.
 228

229 **Inputs**

230 • Product set \mathcal{P} (real item metadata)
 231 • Intent pool \mathcal{I} (from Intent Factory)
 232 • Prompt templates \mathcal{T} (for Buyer Mes-
 233 sages)
 234 • Target turns L_{target} ; choice size $|\mathcal{C}|$
 235 (e.g., 20)

236 **Outputs**

237 • Task set \mathcal{D} of multi-turn dialogues
 238 • Per-turn ground-truth intents and
 239 choice spaces
 240 • Evaluation-ready JSON objects (script
 241 + labels + metadata)

242 **3.3 EVALUATION CENTER**

243 The **Evaluation Center** executes these scenarios on target LLMs and scores predictions against
 244 turn-level ground truth, with the maximum per-dialogue score equal to the number of annotated
 245 intents. The evaluation checks whether outputs meet format requirements, predicted intents exist
 246 in the intent space, and the predicted sequence matches the reference. At each turn, the model
 247 receives the dialogue so far, product information, and candidate intents. The grader computes per-turn
 248 accuracy and aggregated scores for model comparison.
 249

250 **4 BENCHMARK**

251 **Task Formulation.** The evaluation task is defined as follows. The model input consists of three
 252 components: (1) the **dialogue history**, i.e., the full multi-turn bargaining context up to the current
 253 turn, ensuring that no prior information is omitted; (2) the **product information**, which includes
 254 real-world item descriptions, hierarchical category metadata with four levels, and listing prices; and
 255 (3) the **intent choice space**, a set of 20 candidate options randomly sampled from the complete
 256 intent space. The model output is a prediction of the buyer’s true intent at each turn, selected from

Algorithm 1: Problem Weaver Pipeline

Data: Products \mathcal{P} ;
 Intents \mathcal{I} ;
 Templates \mathcal{T} ;
 $L_{\text{target}}, |\mathcal{C}|$
Result: Task set \mathcal{D}
foreach product $p \in \mathcal{P}$ **do**
 Sample ground-truth intent $i^* \in \mathcal{I}$;
if i^* is plausible for p (consistent with
 product attributes and rules) **then**
 Initialize empty dialogue d ;
while $|d| < L_{\text{target}}$ **do**
 Generate Buyer Message using
 (p, i^*, \mathcal{T}) ;
 Build choice space $\mathcal{C} \subset \mathcal{I}$ with
 i^* + distractors, $|\mathcal{C}|$ fixed;
 Attach system prompt and
 ground-truth label i^* ; append
 turn to d ;
 Package d as a JSON task (script,
 per-turn labels, choice spaces);;
 add to \mathcal{D} ;

270 the choice space. The central challenge is whether the model can continuously track and correctly
 271 identify buyer intent throughout multi-turn interactions.
 272
 273

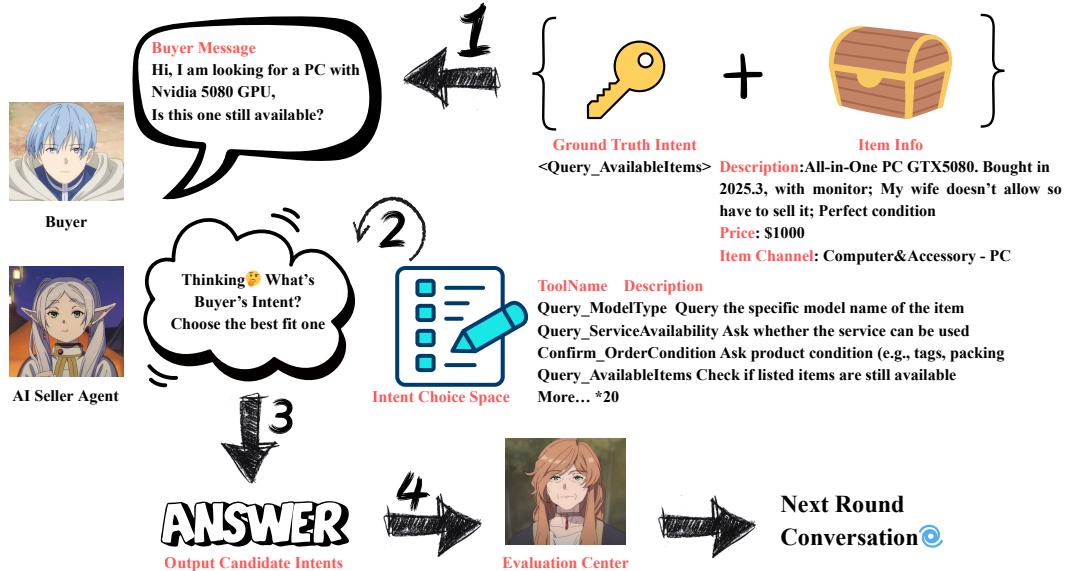


Figure 3: Workflow of intent recognition task. A buyer’s message is paired with ground-truth intent and item information (Step 1). The AI seller agent infers the buyer’s intent by selecting from a predefined intent choice space (Step 2). Candidate intents are produced as output (Step 3) and evaluated for correctness (Step 4), before proceeding to the next round of dialogue.

Data Overview. The benchmark dataset is constructed through the integrated pipeline of *Intent Factory*, *Problem Weaver*, and *Evaluation Center*. The resulting **Intent Space** is distilled from 10k authentic second-hand marketplace dialogues, yielding a three-level hierarchy of 17 intents, 39 actions, and 65 tools (Figure 5). On the listed product side, we curate 9,892 unique listings across 85 top-level categories, with metadata including title, description, price, and hierarchical category labels spanning four levels.

This coverage ensures diversity in both intent types and product domains, supporting realistic and scalable evaluation. The distribution of product categories and intents are shown in Figure 6, and additional dataset preparation details are provided in Appendix D.

Statistic	Value
Total Items	9,892
Average Price	\$209.03
Unique Level 1 Categories	85
Unique Level 2 Categories	700
Unique Level 3 Categories	1,336
Unique Level 4 Categories	1,611

Figure 4: Listed item statistics.

```

Intent: Inquire_Product_Specification
└ Action: Request_Product_Details
  └ Tool: API_QueryClothingLength
    └ Description: Query the specific length of clothing item for buyer refer...
      └ Parameters: ['length_cm', 'fit_reference']

Intent: Inquire_Shipping_Logistics
└ Action: Check_Shipping_Policy
  └ Tool: API_QueryShippingPolicy
    └ Description: Query whether the item is eligible for free shipping based o...
      └ Parameters: ['free_shipping', 'shipping_fee', 'shipping_notes']
  
```

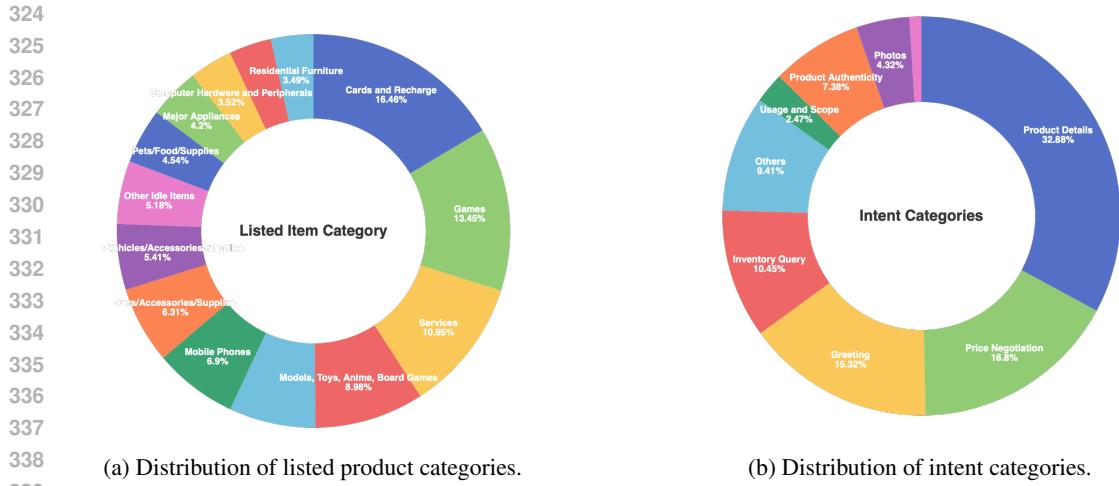
Figure 5: Finalized three-level intent hierarchy: 17 intents, 39 actions, 65 tools.

Metrics. We categorize predicted intents into four types:

Correct Intent (CI) predictions that are in the choice space and exactly match the ground truth.

Mismatched Intent (MMI) predictions that in the choice space but doesn’t match the ground truth.

Missed Intent (MI) intents that are in the ground truth but not predicted.



(a) Distribution of listed product categories.

(b) Distribution of intent categories.

Figure 6: Dataset composition: products vs. intents.

342 Invalid Intent (II) predictions outside the choice space.

344 These four categories capture different aspects of model behavior. To evaluate performance systematically, we define four complementary metrics that measure accuracy, coverage, and robustness:

347 1. **Intent-Precision (IP):** the proportion of correct predictions among all predictions

$$349 \quad IP = \frac{CI}{CI + MMI + II}$$

351 2. **Intent-Recall (IR):** the proportion of ground-truth intents correctly predicted

$$353 \quad IR = \frac{CI}{CI + MI}$$

355 3. **Intent-F1:** the harmonic mean of precision and recall, balancing the two aspects

$$357 \quad F1 = \frac{2 \cdot IR \cdot IP}{IR + IP}$$

359 4. **Failure Rate (FR):** the proportion of invalid predictions

$$361 \quad FR = \frac{II}{CI + MI + II}$$

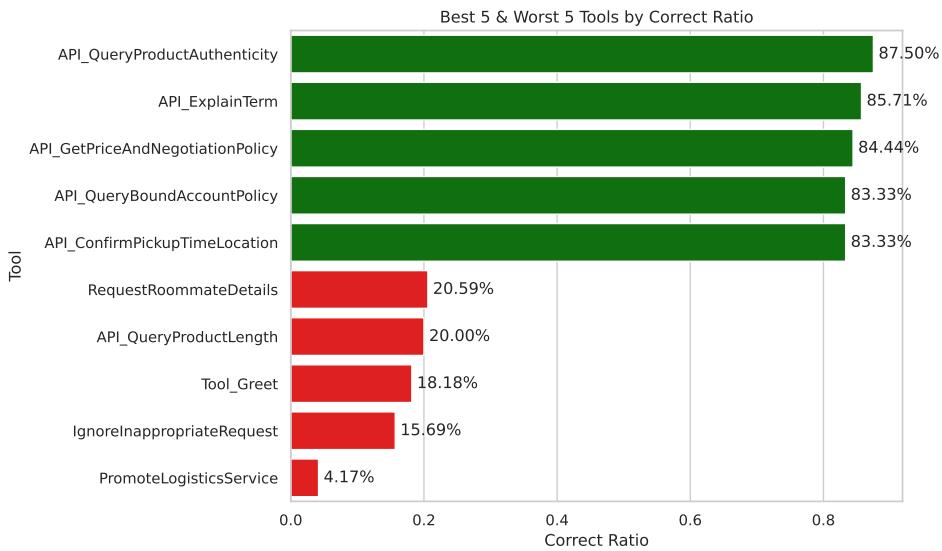
364 5 RESULTS

366 The main results are shown in Table 2.

368 Model	369 Turn-2				370 Turn-3				371 Turn-4+			
	Precision \uparrow	Recall \uparrow	Failure \downarrow	F1 \uparrow	Precision \uparrow	Recall \uparrow	Failure \downarrow	F1 \uparrow	Precision \uparrow	Recall \uparrow	Failure \downarrow	F1 \uparrow
gpt-5-chat-0807-global	52.55	44.72	0.00	48.32	56.73	48.05	0.00	52.03	51.31	42.19	0.00	46.30
gemini-2.5-pro-06-17	44.24	48.91	9.13	46.46	48.31	53.02	8.88	50.56	45.57	49.03	7.47	47.24
gpt-41-0414-global	50.08	46.43	<u>0.17</u>	48.19	51.94	47.08	0.11	49.39	48.85	44.35	0.08	46.49
o3-0416-global	47.09	42.70	0.86	44.79	50.55	44.83	0.11	47.52	47.69	41.44	0.43	44.35
DeepSeek-V3-671B	20.59	23.76	59.89	22.06	24.69	28.85	52.13	26.61	19.91	22.40	56.61	21.08
kimi-k2	46.59	46.74	0.00	46.67	46.55	47.27	0.00	46.91	45.40	45.16	<u>0.07</u>	45.28
qwen2.5-72b-instruct	49.02	50.62	1.20	49.81	<u>53.77</u>	56.34	0.37	55.02	47.89	49.78	0.29	48.81
qwen3-14b	44.60	45.50	0.00	45.04	<u>46.19</u>	47.27	<u>0.10</u>	46.72	44.18	44.05	0.00	44.11
qwen3-32b	48.50	47.83	1.10	48.16	52.84	51.66	2.69	52.24	48.28	45.83	3.06	47.02

375 Table 2: Main experimental results. All metric values in this table are reported as percentages (%).
376 Best and second results are in bold and underlined, respectively. Each column header “Turn-N” refers
377 to tasks comprising N turns.

378 **Stable models show near-zero failure, while weaker ones collapse.** Failure directly reflects
 379 the reliability of a model acting as a seller agent. GPT-5-chat and Kimi-K2 achieve almost zero
 380 failure across all turns, while Qwen2.5-72B-Instruct and Qwen-14B remain similarly stable with
 381 values below 1.2%. In contrast, DeepSeek-V3-671B collapses with failure above 50%, and Gemini
 382 fluctuates near 8%, underscoring weaker robustness in multi-turn bargaining.
 383



402 Figure 7: Accuracy distribution across tools, highlighting the best and worst performing categories.
 403

404

405 **Additional turns improve understanding but amplify inconsistency.** Most models show small
 406 gains at Turn-3 and mild declines at Turn-4+. For example, Qwen2.5-72B-Instruct rises from 49.8%
 407 to 55.0% before dropping to 48.8%. This suggests additional turns can enhance task understanding,
 408 but longer dialogues mainly amplify inconsistency (precision loss) rather than coverage errors (recall
 409 remains steady).

410

411 **GPT-5 is the strongest performer, with Qwen competitive on F1.** GPT-5-chat combines the
 412 highest precision (56.7%) with perfect stability, yielding the most reliable overall performance.
 413 Qwen2.5-72B-Instruct achieves the best F1 balance (55.0% at Turn-3), supported by strong recall,
 414 while Qwen-32B is close behind. Kimi-K2 remains extremely stable but less precise, and DeepSeek-
 415 V3-671B performs worst with F1 below 27%.

416

417 **Comparison with Human Baseline.** To benchmark task difficulty, we conducted a small-scale
 418 human study. Three randomly selected non-expert users were asked to perform the evaluation on
 419 a sample of tasks. Their average precision was 73% and recall 65%, with consistent performance
 420 across tasks with different turn. This provides a practical reference point, showing that while LLMs
 421 lag behind expert-level reasoning, they are approaching general human performance on structured
 422 bargaining tasks.

423

424 **Precision distinguishes strong models, while recall remains steady.** Precision separates strong
 425 from weak systems more clearly than recall. GPT-5-chat leads with the highest precision, while
 426 Qwen2.5-72B-Instruct also performs well above 53%. Recall varies less across systems, with
 427 Qwen2.5-72B-Instruct consistently leading, followed by Gemini. Overall, recall remains steady while
 428 precision determines consistency of intent prediction.

429

430 **Structured queries are easy, while ambiguous or rare intents remain weak.** Accuracy
 431 varies sharply by intent type. Well-structured and explicit queries—such as product authenticity
 432 (INQUIRE_PRODUCT_AUTHENTICITY / QUERYPRODUCTAUTHENTICITY), terminology ex-
 433 planations (EXPLAINTERM), and policy lookups (GETPRICEANDNEGOTIATIONPOLICY)—reach

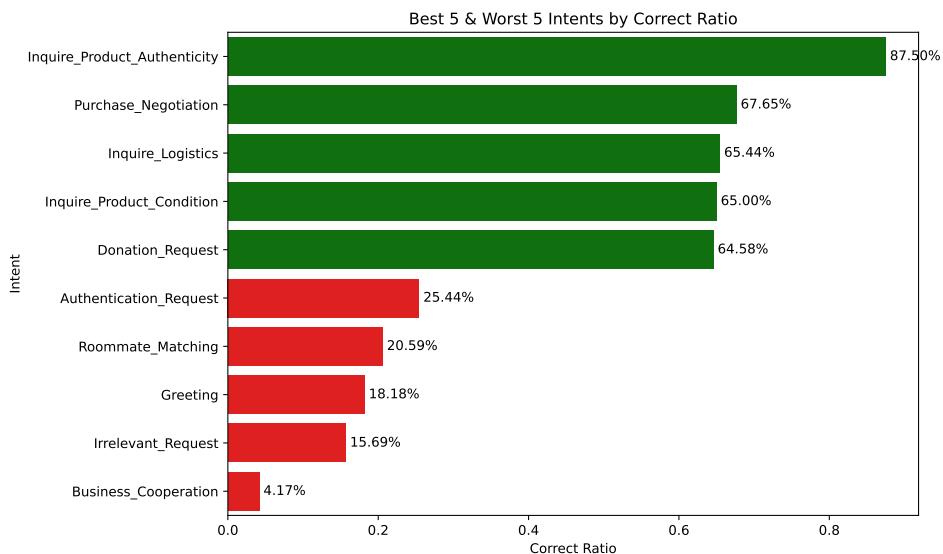


Figure 8: Performance aggregated at the intent level, showing precision variation across buyer intent categories.

83–87%. In contrast, ambiguous or infrequent intents perform poorly: PROMOTELOGISTICSERVICE (4.17%), IGNOREINAPPROPRIATEREQUEST (15.69%), TOOL_GREET (18.18%), and BUSINESS_COOPERATION (4.17%). These cases often span multiple domains or fall outside the core bargaining process, leading to weak coverage and frequent confusion. Taken together, results show models excel when intents are explicit but remain brittle under ambiguity, rarity, or cross-domain signals.

6 CONCLUSION

We introduced **BargainBench**, a large-scale benchmark for evaluating LLMs in multi-turn bargaining tasks within online second-hand marketplaces. Our framework integrates the *Intent Factory*, *Problem Weaver*, and *Evaluation Center*, enabling systematic generation and evaluation of negotiation dialogues with explicit ground-truth intents. Experiments show that strong models such as GPT-5 achieve stable performance with high precision, while others collapse under multi-turn settings. Structured and explicit intents are recognized reliably, while ambiguous or underrepresented intents remain difficult to capture.

Beyond e-commerce, the *intent-action-tool* hierarchy provides a general methodology for assessing social reasoning in domains such as diplomacy and collaborative game. By shifting from outcome-only scoring to turn-level intent tracking, BargainBench offers a process-grounded evaluation framework and a foundation for future research on intent understanding and negotiation capabilities in LLMs.

486 ETHICS STATEMENT
487488 This work uses real-world e-commerce dialogues to construct the intent space in **Intent Factory**.
489 Since these dialogues may contain sensitive personal information, the raw data cannot be released
490 due to compliance requirements. To mitigate this, we verify that similar performance can be achieved
491 with publicly available e-commerce dialogue datasets, which do not include personal identifiers.
492 For the task synthesis stage in **Problem Weaver**, all product information is drawn from publicly
493 accessible online listings. We believe the resulting benchmark poses minimal risks with respect to
494 privacy, fairness, or safety.495 This work does not involve human subjects or applications in high-stakes decision-making domains.
496 The benchmark is designed for evaluating large language models in controlled experimental settings
497 rather than deployment in sensitive or safety-critical environments. We therefore do not anticipate
498 ethical concerns beyond the data anonymization and compliance considerations already described.
499500 REPRODUCIBILITY STATEMENT
501

502 Code and scripts are provided in the supplementary material to replicate the empirical results.

503 The package implements all components of **BargainBench** (Intent Factory, Problem Weaver, Evaluation
504 Center), with pipelines for dataset generation, model evaluation, and visualization. A ready-to-use
505 evaluation script reproduces our main results with only an API key. Due to privacy constraints, we
506 provide anonymized dialogue samples but include the full generation pipeline, enabling dataset
507 regeneration. System requirements and parameters are documented to ensure faithful reproduction.508 To ensure reproducibility, we release the full source code, configuration files, and documentation
509 in the supplementary materials. The codebase implements all components of the **BargainBench**
510 framework, including the **Intent Factory**, **Problem Weaver**, and **Evaluation Center**. The package
511 contains pipelines for intent space generation, dialogue synthesis, and model evaluation, along with
512 standardized interfaces for multiple LLMs. We also include visualization and analysis tools that allow
513 researchers to inspect intermediate outputs such as the distribution of intents, the quality of scripted
514 tasks, and model-specific evaluation results.515 REFERENCES
516517 Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, Iñigo Casanueva, Stefan Ultes, Osman
518 Ramadan, and Milica Gašić. MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset
519 for Task-Oriented Dialogue Modelling. In *Proceedings of the 2018 Conference on Empirical
520 Methods in Natural Language Processing*, pages 5016–5026, Brussels, Belgium, 2018. Association
521 for Computational Linguistics. doi: 10.18653/v1/D18-1547. URL <http://aclweb.org/anthology/D18-1547>.522 Chunkit Chan, Yauwai Yim, Zheye Deng, Wei Fan, Haoran Li, Xin Liu, Hongming Zhang, Weiqi
523 Wang, and Yangqiu Song. NegotiationToM: A Benchmark for Stress-testing Machine Theory of
524 Mind on Negotiation Surrounding. In *Findings of the Association for Computational Linguistics:
EMNLP 2024*, pages 4211–4241, Miami, Florida, USA, 2024. Association for Computational
525 Linguistics. doi: 10.18653/v1/2024.findings-emnlp.244. URL <https://aclanthology.org/2024.findings-emnlp.244>.526 Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
527 Wang, Weinan Gan, Yuefeng Huang, Wulong Liu, Xinzhi Wang, Defu Lian, Baoqun Yin, Yasheng
528 Wang, and Wu Liu. ACEBench: Who Wins the Match Point in Tool Usage?, July 2025. URL
529 <http://arxiv.org/abs/2501.12851>. arXiv:2501.12851 [cs].530 Tim R. Davidson, Veniamin Veselovsky, Martin Josifoski, Maxime Peyrard, Antoine Bosselut,
531 Michal Kosinski, and Robert West. Evaluating Language Model Agency through Negotiations.
532 arXiv, March 2024. doi: 10.48550/arXiv.2401.04536. URL <http://arxiv.org/abs/2401.04536>. arXiv:2401.04536 [cs].

540 Kong Dexin and Yan Xu. FishBargain: An LLM-Empowered Bargaining Agent for Online Fleamarket
 541 Platform Sellers. Erscheinungsort nicht ermittelbar, 2025. Association for Computing Machinery.
 542 ISBN 979-8-4007-1331-6. doi: 10.1145/3701716.

543 Shengyue Guan, Haoyi Xiong, Jindong Wang, Jiang Bian, Bin Zhu, and Jian-guang Lou. Evaluating
 544 LLM-based Agents for Multi-Turn Conversations: A Survey, March 2025. URL <http://arxiv.org/abs/2503.22458> [cs].

545

546 He He, Derek Chen, Anusha Balakrishnan, and Percy Liang. Decoupling Strategy and Generation in
 547 Negotiation Dialogues. In *Proceedings of the 2018 Conference on Empirical Methods in Natural
 548 Language Processing*, pages 2333–2343, Brussels, Belgium, 2018. Association for Computational
 549 Linguistics. doi: 10.18653/v1/D18-1256. URL <http://aclweb.org/anthology/D18-1256>.

550

551 Michal Kosinski. Evaluating Large Language Models in Theory of Mind Tasks. *Proceedings of
 552 the National Academy of Sciences*, 121(45):e2405460121, November 2024. ISSN 0027-8424,
 553 1091-6490. doi: 10.1073/pnas.2405460121. URL <http://arxiv.org/abs/2302.02083> [cs].

554

555

556 Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh, and Dhruv Batra. Deal or No Deal?
 557 End-to-End Learning of Negotiation Dialogues. In *Proceedings of the 2017 Conference on
 558 Empirical Methods in Natural Language Processing*, pages 2443–2453, Copenhagen, Denmark,
 559 2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1259. URL <http://aclweb.org/anthology/D17-1259>.

560

561 Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
 562 Gan, Zhengying Liu, Yuanqing Yu, Zehong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin
 563 Wang, Chuhan Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
 564 Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. ToolACE: Winning the
 565 Points of LLM Function Calling, July 2025. URL <http://arxiv.org/abs/2409.00920>.
 566 arXiv:2409.00920 [cs].

567

568 Crystal Qian, Kehang Zhu, John Horton, Benjamin S. Manning, Vivian Tsai, James Wexler, and
 569 Nithum Thain. Strategic Tradeoffs Between Humans and AI in Multi-Agent Bargaining, September
 570 2025. URL <http://arxiv.org/abs/2509.09071>. arXiv:2509.09071 [cs].

571

572 Xiangru Tang, Tianrui Qin, Tianhao Peng, Ziyang Zhou, Daniel Shao, Tingting Du, Xinming Wei,
 573 Peng Xia, Fang Wu, He Zhu, Ge Zhang, Jiaheng Liu, Xingyao Wang, Sirui Hong, Chenglin Wu,
 574 Hao Cheng, Chi Wang, and Wangchunshu Zhou. Agent KB: Leveraging Cross-Domain Experience
 575 for Agentic Problem Solving, July 2025. URL <http://arxiv.org/abs/2507.06229>.
 arXiv:2507.06229 [cs].

576

577 Xiaofeng Wang, Zhixin Zhang, Jinguang Zheng, Yiming Ai, and Rui Wang. Debt Collection
 578 Negotiations with Large Language Models: An Evaluation System and Optimizing Decision
 579 Making with Multi-Agent, February 2025. URL <http://arxiv.org/abs/2502.18228>.
 arXiv:2502.18228 [cs].

580

581 Tian Xia, Zhiwei He, Tong Ren, Yibo Miao, Zhuosheng Zhang, Yang Yang, and Rui Wang. Measuring
 582 Bargaining Abilities of LLMs: A Benchmark and A Buyer-Enhancement Method. arXiv, June
 583 2024. doi: 10.48550/arXiv.2402.15813. URL <http://arxiv.org/abs/2402.15813>.
 arXiv:2402.15813 [cs].

584

585 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. $\$7\$$ -bench: A Benchmark for
 586 Tool-Agent-User Interaction in Real-World Domains. arXiv, June 2024. doi: 10.48550/arXiv.2406.
 587 12045. URL <http://arxiv.org/abs/2406.12045>. arXiv:2406.12045 [cs].

588

589 Junjie Ye, Changhao Jiang, Zhengyin Du, Yufei Xu, Xuesong Yao, Zhiheng Xi, Xiaoran Fan,
 590 Qi Zhang, Tao Gui, Xuanjing Huang, and Jiecao Chen. Feedback-Driven Tool-Use Improvements
 591 in Large Language Models via Automated Build Environments, September 2025. URL <http://arxiv.org/abs/2508.08791>. arXiv:2508.08791 [cs].

592

593 Shenzhe Zhu, Jiao Sun, Yi Nian, Tobin South, Alex Pentland, and Jiaxin Pei. The Automated but
 594 Risky Game: Modeling Agent-to-Agent Negotiations and Transactions in Consumer Markets, June
 595 2025. URL <http://arxiv.org/abs/2506.00073>. arXiv:2506.00073 [cs].

594 APPENDIX

595

596 A INTENT FACTORY: MULTI-AGENT PIPELINE & QUALITY METRICS

597

598 A.1 FUNCTIONALITY OF EACH MODULE

600 • **Extractor** Baseline intent extractor that surfaces every candidate *intent-action-tool* triplet
 601 from raw marketplace dialogues and product descriptions without filtering or normalization.

602 • **Verifier** Gatekeeper that compares each newly extracted item against the current intent
 603 space; exact or near-duplicate entries are rejected, preventing redundancy.

604 • **Expert_guide** Domain-expert LLM invoked in a few-shot setting to re-label or re-categorize
 605 intents according to predefined taxonomic rules and canonical examples, ensuring semantic
 606 consistency across the hierarchy.

607 • **Maintainer** Post-processing aggregator that clusters semantically similar intents (via em-
 608 bedding similarity and synonym lists) and collapses redundant nodes, yielding a compact,
 609 non-redundant hierarchy while preserving coverage.

610

611 GENERATION-QUALITY METRICS

612

613 **Coverage & Duplicate Ratio.** We evaluate the mined hierarchy on a 10k marketplace dialogues:

614

615 **Variables**

616 • G — number of ground-truth intents in the held-out dialogue set
 617 • M — number of intents our tools successfully match to at least one ground-truth intent
 618 • T — total number of intents we initially extract (before deduplication)
 619 • U — number of unique intents left after removing duplicates

620

621 **Formulas**

622 • Coverage = $\frac{M}{G}$
 623 • Duplicate Ratio = $\frac{U}{T}$

624

625 In practice, Coverage > 95 %, so the smaller the Duplicate Ratio (i.e., the fewer unique intents we
 626 keep), the cleaner and higher-quality the final intent space.

627

628 **Refinement Curve.** Figure 9a shows how each module progressively reduces the intent count. The
 629 9 confirms that the final intent space size converges as raw data increases, indicating bounded growth
 630 and stable quality.

631

632 A.2 PROMPTS

633

634 The prompt of extractor is shown in Prompt 1, and the prompt of verifier is shown in Prompt 2.

635

636 B PROBLEM WEAVER: DETAILED DEFINITION

637

638 B.1 PROMPTS

639

640 The prompt of problem weaver is shown in Prompt 4

641

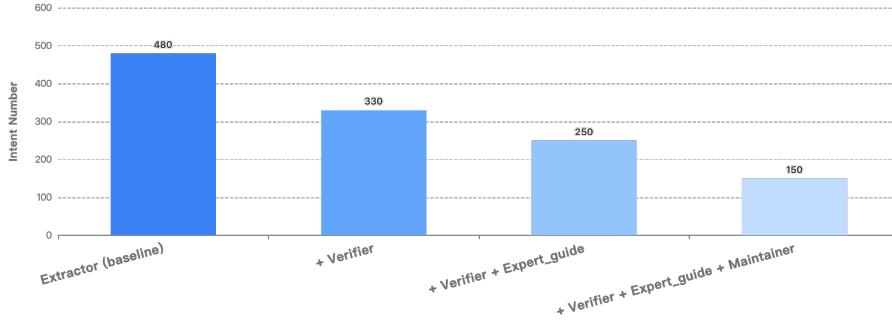
642 C DISCUSSION ON FRAMEWORK ADVANTAGES

643

644 Taken together, the **Intent Factory**, **Problem Weaver**, and **Evaluation Center** form an integrated
 645 pipeline for constructing and administering controlled bargaining evaluations. The bottom-up design

648
649
650
651
652
653
654
655
656

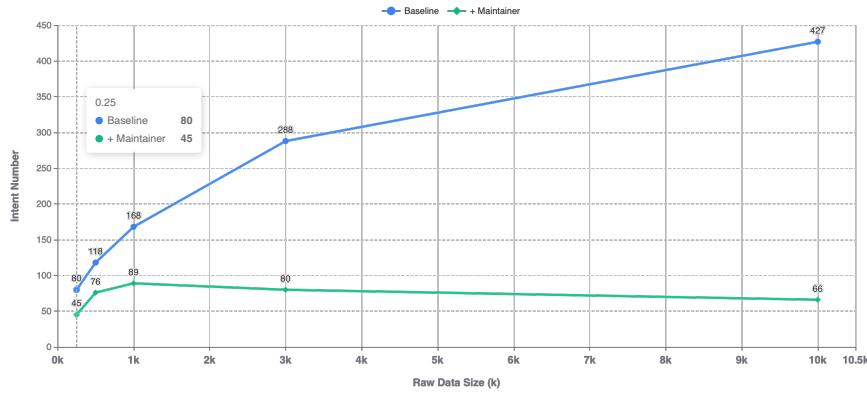
How modules in Intent Factory improve generation quality



667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688

(a) Effect of progressively adding modules refining intent number. This show how we improve our Intent Factory Module. We would like to create a compact and concise intent space given sufficient intent coverage already. Basically, smaller the intent space size is, better the method is

Convergence in Intent Factory Generation



689
690
691
692
693
694
695
696
697
698
699
700
701

(b) Convergence of intent space size as raw data increases. Interestingly, green curve (+maintainer) which is our official conduct has dropped from 89 to 66 even input dialogue size multiply by 3x. LLM has found internal relation between these intents thus aggregate the cluster and remove the unnecessary ones

Figure 9: Results of the Intent Factory module.

702 ensures that every evaluation instance originates from realistic scenario data, is framed by a well-
 703 defined *intent–action–tool* hierarchy, and is paired with explicit turn-level ground truth.
 704

705 Unlike benchmarks that stage end-to-end negotiation matches and judge performance by win–loss
 706 outcomes, our framework isolates the specific capability of *understanding* bargaining context: models
 707 are asked to infer buyer intent from dialogue history and structured choice spaces, rather than to
 708 simply generate plausible conversation turns. This design exploits the asymmetry between authoring
 709 and solving — models can readily produce convincing multi-turn interactions when given target
 710 intents, yet often fail to reliably recover those intents from completed exchanges.
 711

712 By preserving verifiable ground truth at each turn, our method delivers interpretable, reproducible, and
 713 fine-grained performance measurements. Furthermore, because it is grounded in general principles of
 714 intent extraction, scenario synthesis, and structured evaluation, the approach can be directly adapted
 715 to other multi-turn, goal-oriented domains such as diplomatic negotiations, collaborative planning,
 716 and multi-party discussions.
 717

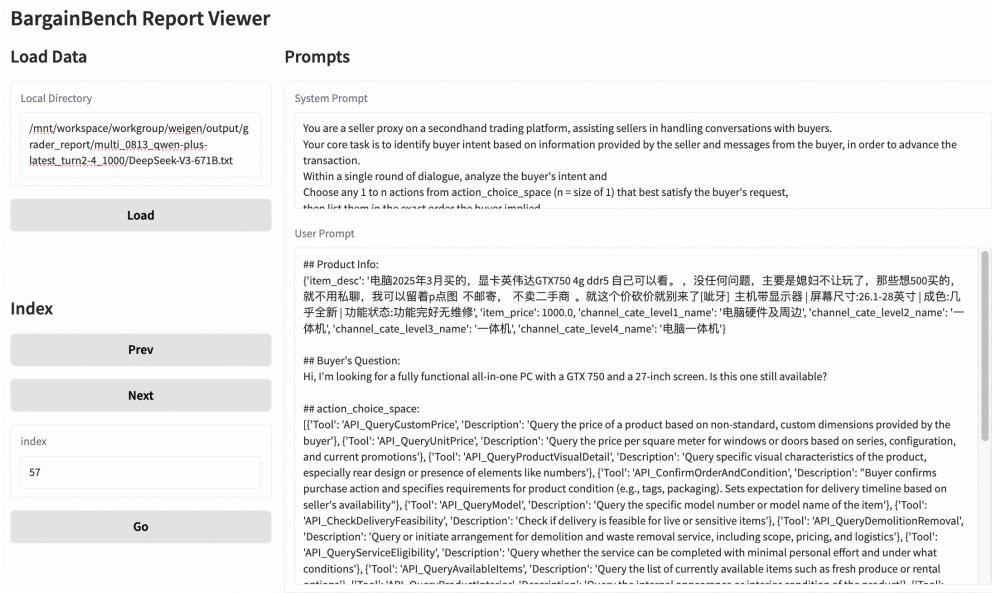
D DATA PREPARATION DETAILS

719 The benchmark dataset is constructed through the integrated pipeline of *Intent Factory*, *Problem*
 720 *Weaver*, and *Evaluation Center*.
 721

722 The **Intent Space** is derived from 10k authentic second-hand marketplace dialogues, focusing on
 723 extracting and aggregating buyer intents. We employ the advanced *qwen-plus-latest* model
 724 to perform large-scale extraction and refinement, consuming approximately 400M tokens; detailed
 725 prompting strategies are provided in the Appendix. The resulting structure contains 17 intents, 39
 726 actions, and 65 tools (tools is the most granular level of intent hierarchical tree).
 727

E EVALUATION TASK SAMPLE

730 There is a case of evaluation result in Figure 10 and Figure 11. Task generated by problem weaver,
 731 consist of system prompt, product info and context. Candidate model have to choose the best fit
 732 intent from a intent space of 20.
 733



753 Figure 10: An illustration of evaluation sample. In User Prompt, the Chinese (original product
 754 description language) saying the PC was bought in 2025.3, with NVIDIA GTX750 GPU, in perfect
 755 condition and with monitor. He want to sell it because his wife doesn't allow it.
 756

756	Results		
757	Score		
758	1.0		
759			
760	Actions		
761	Ground Truth		
762	action	Round	Tool
763	1 API_QueryAvailableItems	1	API_QueryAvailableIter
764	Query the list of currently available items such as fresh		
765	Choice Space		
766	Tool	Description	
767	1 API_QueryCustomPrice	Query the price of a product based on non-standard, custom dimensions provided by the buyer	
768	2 API_QueryUnitPrice	Query the price per square meter for windows or doors based on series, configuration, and current prom	
769	3 API_QueryProductVisualDetail	Query specific visual characteristics of the product, especially rear design or presence of elements	
770	4 API_ConfirmOrderAndCondition	Buyer confirms purchase action and specifies requirements for product condition (e.g., tags, packaging	
771	5 API_QueryModel	Query the specific model number or model name of the item	
772	6 API_CheckDeliveryFeasibility	Check if delivery is feasible for live or sensitive items	
773	7 API_QueryDemolitionRemoval	Query or initiate arrangement for demolition and waste removal service, including scope, pricing, and	
774	8 API_QueryServiceEligibility	Query whether the service can be completed with minimal personal effort and under what conditions	
775	9 API_QueryAvailableItems	Query the list of currently available items such as fresh produce or rental options	
776	10 API_QueryProductInterior	Query the internal appearance or interior condition of the product	

Figure 11: When Candidate Intents match with Ground Truth, LLM/candidate will get point on that task. Below are part of the Choice Space(20 in total), where LLM has to choose the best one

F LLM USAGE

We used a large language model (ChatGPT/GPT-5) to assist with paper writing. Specifically, it was employed for improving grammar, clarity, and presentation of text, as well as for refining section structure and readability. All ideas, experiments, analyses, and conclusions are original to the authors, who remain fully responsible for the accuracy and integrity of the paper.

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

Prompt 1: The Prompt of extractor

You will use the Hierarchical Intent Decomposition (HID) framework to analyze the data. This framework is used to extract and structure intents from dialogue data, forming a tree-like hierarchical structure. HID decomposes intents into three orthogonal levels to ensure atomicity, orthogonality, and scalability:

!!! Note, you are an advanced text understanding master and intent recognition expert with rich knowledge. Please fully understand the text and provide intents, not limited to the examples I give.

- Intent (Root): The coarse-grained overall goal of the dialogue

- Action (Level 1 Branches): Mutually exclusive mid-level stages or categories, with no overlap. These are orthogonal, and if needed, can be expanded through sub-branches.

- Tool (Leaves): Fine-grained atomic operations with a single intent and callable, with parameters (e.g., { 'name': 'API_QueryPrice', 'description': 'Query item price', 'returns': { 'price': { 'type': 'number' } } }). Tools have no child nodes to maintain atomicity.

When processing input data (e.g., raw dialogue JSON with context, history, and features), follow these steps:

1. Extract the root-level Intent based on the overall goal.

2. Decompose into orthogonal Actions, selecting from a predefined set or expanding if necessary (ensuring no overlap).

3. Generate atomic Tools for each Action in JSON object format, including 'name', 'description', and 'returns' (including type/enum where appropriate).

4. For Tool generation, abstract and extract elements from the original text as much as possible, without needing to be very specific.

Ensure the output is consistent, atomic (each Tool has a single purpose), orthogonal (no category overlap), and extensible (if data introduces new intents, suggest new Actions/Tools without violating rules). For the given input, generate the HID decomposition result.

I provide a dialogue segment, where "I buyer I" indicates the buyer's real person role, "I seller I" indicates the seller's real person role, "I bot I" indicates the bot role. Please generate the HID decomposition result for the "I buyer I" i.e., the buyer's role utterances in the dialogue content.

Output format: Please output in JSON format, including the keys, in English:

- Intent: string only

- Action: string only

- Tool: JSON format, including attributes like name, description, returns, etc., name strictly requires English output, others no requirements

Prompt 2: The Prompt of verifier

You will be responsible for checking whether the newly added Intent-Action-Tool conflicts with the existing action space. Assume that the new Intent-Action-Tool itself is valid (atomicity, clarity, etc., all meet requirements), your only task is to check whether it conflicts with the Intent-Action-Tool in the existing space, including category overlap (non-orthogonal) or functional similarity (duplication).

Each Intent-Action-Tool is a triplet, with "Intent", "Action", "Tool" three key values respectively.

In the action space, all Intent-Action-Tools are organized into three levels: Intent → Action → Tool. First, find the corresponding Tools information based on Intent and Action information, and check if the target Tool conflicts with existing Tools.

Verification principles (focusing on conflict detection): - Each Tool is represented in JSON format, including name, description, parameters, etc., need to compare each piece of information one by one - Read and understand name, description information to judge whether there is duplication or conflict - Check if the new Action overlaps with existing Actions (e.g., if existing has 'bargaining', new 'price negotiation' overlaps). - Check if the new Tool's function is similar to existing Tools, you can assist judgment by checking description and parameters (e.g., if existing has 'API_QueryPrice', new 'API_GetItemCost' is functionally duplicate). - Ensure orthogonality: new items should not cross or copy existing categories. - If there is no conflict at all, accept; otherwise reject.

Verification steps: 1. Compare the new Intent-Action-Tool with the existing space. 2. Output only one of the following two (strictly follow the format, no additional explanation): - "1: No conflict, accept new API" - "2: Has conflict, reject"

Input example: Existing space: 'Intent': 'Facilitate transaction', 'Actions': ['name': 'Information query', 'Tools': ['name': 'API_QueryPrice']]; New item: 'Action': 'Bargaining', 'Tool': 'name': 'API_ProposeCounteroffer'. Output requirements: Please output in JSON format, including the following keys: - status: 1 means no conflict, 2 means has conflict

864

865

866

867

Prompt 3: intent-tool-action example

868

869

870

871

872

873

874

875

"Inquire_Product_Details": { "Request_Specification": { "API_QueryProductSpec": { "description": "Query specific technical parameters of the product, such as power, voltage, or model specifications", "parameters": { "spec": { "type": "string", "description": "Technical specification requested by the buyer" } } }, "Request_Visual_Info": { "API_QueryProductVisualDetail": { "description": "Query specific visual characteristics of the product, especially rear design or presence of elements like numbers", "parameters": { "has_number_on_back": { "type": "boolean", "description": "Indicates whether the back of the product has a number" }, "visual_description": { "type": "string", "description": "Textual description of the back appearance" } } } },

876

877

878

879

880

881

882

Prompt 4: The Prompt of problem weaver

883

Task description You are a master script-to-task writer. Your ONLY inputs are:

1. product_info - a short text containing the item description, price, and category. 2. ground_truth_action - an ordered list of API calls that the buyer must eventually issue.

Notes: Product info are match with format: item_desc, item_price, channel_cate_level1_name, channel_cate_level2_name, channel_cate_level3_name, channel_cate_level4_name

Your job is first generate buyer_question in English that naturally triggers the ground_truth_action. Feel free to add a plausible personal context so the question looks realistic.

Rules - Keep the question under 40 words. - Mention only the **first** API in the Ground Truth list; do not reveal the rest. - Translate any Chinese terms in product_info into natural English. - Do not quote the API names literally; phrase the concern in everyday language.

— Case

Sample Input product_info: Sam's Club Elsa Princess Dress, size 140. Worn once for photos—like new. ¥58. Kids' Apparel > Dresses > Princess Dresses. [API_CheckHeightFit, API_QueryShippingPolicy, API_CalculateOfferPrice]

Above action refers to: "API_CheckHeightFit": { "description": "Check if the product (e.g., bicycle) is physically suitable for the buyer based on their height or body measurements", "parameters": { "fit_result": { "type": "string", "enum": ["suitable", "too_small", "too_large", "uncertain"] }, "reason": { "type": "string" } } },

"Inquire_Shipping_Logistics": { "Check_Shipping_Policy": { "API_QueryShippingPolicy": { "description": "Query whether the item is eligible for free shipping based on product details and seller settings", "parameters": { "free_shipping": { "type": "boolean", "description": "Indicates if the item is eligible for free shipping" }, "shipping_fee": { "type": "number", "description": "The shipping cost if not free, in yuan" }, "shipping_notes": { "type": "string", "description": "Additional notes about shipping" } } }, "API_CalculateOfferPrice": { "description": "Calculate a reasonable offer price based on item's marked price, bottom price, and negotiation stage", "parameters": { "offered_price": { "type": "number" }, "shipping_included": { "type": "boolean" } } },

Sample "buyer_question" output: "My daughter is 135 cm—will the size 140 be too big for her? Could you do 50 yuan with free shipping?"

— Inputs

product_info: product_info

ground_truth_action: ground_truth_action

— Output Format

Your output should strictly follow the format. Otherwise, a cute kitty will starve for a dinner.

Ignore the parameters for now.

Please output in JSON format, including following keys: "buyer_question": string, a single-turn buyer question in English, in natural language.

915

916

917