GENERATING LANDMARK NAVIGATION INSTRUCTIONS FROM MAPS AS A GRAPH-TO-TEXT PROBLEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Car-focused navigation services are based on turns and distances of named streets, whereas navigation instructions naturally used by humans are centered around physical objects called landmarks. We present a neural model that takes OpenStreetMap representations as input and learns to generate navigation instructions that contain visible and salient landmarks from human natural language instructions. Routes on the map are encoded in a location- and rotation-invariant graph representation that is decoded into natural language instructions. Our work is based on a novel dataset of 7,672 crowd-sourced instances that have been verified by human navigation in Street View. Our evaluation shows that the navigation instructions generated by our system have similar properties as human-generated instructions, and lead to successful human navigation in Street View.

1 INTRODUCTION

Current navigation services provided by the automotive industry or by Google Maps generate route instructions based on turns and distances of named streets. In contrast, humans naturally use an efficient mode of navigation based on visible and salient physical objects called landmarks. Route instructions based on landmarks are useful if GPS tracking is poor or not available, and if information is inexact regarding distances (e.g., in human estimates) or street names (e.g., for users riding a bicycle or on a bus). We present a neural model that takes real-world map representations from OpenStreetMap as inputs and learns to generate navigation instructions that contain visible and salient landmarks from human natural language instructions.

In our framework, routes on the map are learned by discretizing the street layout, connecting street segments with adjacent points of interest – thus encoding visibility of landmarks, and encoding the route and surrounding landmarks in a location- and rotation-invariant graph representation. Based on crowd-sourced natural language instructions for such map representations, a graph-to-text mapping is learned that decodes graph representations into natural language route instructions that contain salient landmarks. Our work is accompanied by a dataset of 7,672 instances of routes rendered on OpenStreetMap and crowd-sourced natural language instructions. The navigation instructions were generated by workers on the basis of maps including all points of interest, but no street names. They were verified by different workers who had to follow the natural language instructions on Google Street View.

Experimental results on randomly sampled test routes show that our graph-to-text model produces landmarks with the same frequency found in human reference instructions, and located mostly at the end of the navigation instructions, similar to human references. Furthermore, the success rate of human workers finding the correct goal location on Street View is roughly at 50% of the success rate of navigation based on human-generated instructions. Since these routes can have a partial overlap with routes in the training set, we further performed an evaluation on completely unseen routes. The rate of produced landmarks drops slightly compared to human references, and the success rate is at 40% of the success rate for navigating based on human-generated instructions. While there is still room for improvement, our results showcase a promising direction of research, with a wide potential of applications in various existing map applications and navigation systems.

www.openstreetmap.org
www.google.com/streetview
2 RELATED WORK AND DATASETS

Mirowski et al. (2018) published a subset of Street View covering parts of New York City and Pittsburgh. Street View is a navigable environment that is build from real-world 360° panoramas. This data is used by Hermann et al. (2019) to train a visual agent to follow turn-by-turn instructions generated by Google Maps API. Chen et al. (2019) later published a Street View dataset with more recent and higher resolution panorama images that covers the lower half of Manhattan. They further introduce the Touchdown task which goal it is to navigate in Street View in order to find a hidden teddy bear. The data for that task is obtained from human annotators that follow a predefined route in Street View and write down navigation instructions along the way.

Our work puts the task of natural language navigation upside down by learning to generate human-like navigation instructions from real-world map data instead of training an agent to follow human generated instructions. Prior work in this area has used rule-based systems to identify landmarks (Rousell & Zipf, 2017) or to generate landmark-based navigation instructions (Dräger & Koller, 2012; Cercas Curry et al., 2015). Despite having all points of interest on the map available, our approach learns to verbalize only those points of interest that have been deemed salient by inclusion in a human navigation instruction. Previous approaches that learn navigation instructions from data have been confined to simplified grid-based representations of maps for restricted indoor environments (Daniele et al., 2017), or failed to succeed in generating human-like landmark navigation instructions for more complex outdoor environments (de Vries et al., 2018). Other work generates navigation instructions from indoor panoramas along a path (Fred et al., 2018).

3 TASK

The task addressed in our work is that of automatically generating Natural Language Landmark Navigation Instructions (NLLNI) from real-world open-source geographical data from OpenStreetMap. Training data for NLLNI was generated by human crowdsourcing workers who were given a route on an OpenStreetMap rendering of lower Manhattan, with the goal of producing a succinct natural language instruction that does not use street names or exact distances, but rather is based on landmarks. Landmarks had to visible on the map and included churches, commercial buildings of cinemas, banks, or shops, and public amenities such as parks or parking lots. Each generated navigation instruction was validated by another human crowdsourcing worker who had to reach the goal location by following the instruction on Google Street View.

NLLNI outputs are distinctively different from navigation instructions produced by OpenRouteService, Google Maps, or car navigation systems. While these systems rely on stable GPS signals such that the current location along a grid of streets can be tracked exactly, we aim at use cases where GPS tracking is not available, and knowledge of distances or street names is inexact, for example, pedestrians, cyclists, or users of public transportation. The mode of NLLNI is modeled after human navigation instructions that are naturally based on a small number of distinctive and visible landmarks in order to be memorizable while still being informative enough to reach the goal. A further advantage of NLLNI is that they are based on map inputs which are more widely available and less time dependent than Street View images.

4 DATA COLLECTION

Because there is no large scale dataset for NLLNI that is generated from map information only, we collect new data via crowdsourcing. The annotator is shown a route on the map and writes navigation instructions based on that information (Figure 1, top). We take the approach of Chen et al. (2019) and determine correctness of navigation instructions by showing them to other annotators that try to reach the goal location in Street View (Figure 1, bottom).

4.1 RESOURCES AND PREPARATION

We use the static Street View dataset provided by Chen et al. (2019). This allows to replicate the experiments in this work. Because the panorama pictures were taken at the end of 2017, we export
Figure 1: The data collection is split into two tasks. In the navigation instructions task (top) annotators see a rendered map and write instructions to follow the route. The navigation run task (bottom) is used to validate navigation instructions. A different annotator tries to find the goal location in Street View.

We discretize the street layout by creating a node every ten meters along the roads. The resulting structure is further referenced to as OSM graph which nodes are street segments. Based on that graph we sample routes of length between 35 and 45 nodes. A route is the shortest path between its start and end node. It includes a minimum of three intersections (node with more than two edges) and ends in proximity to a POI. We further assure that it is possible to follow the route in Street View by looking for an equivalent subgraph in the Street View graph.

4.2 Crowdsourcing

We use Amazon Mechanical Turk (AMT) to acquire annotators. Before working on the actual tasks, workers were required to pass a tutorial and qualification test. The tutorial introduces the tasks, teaches basic mechanics of Street View and explains meaning of map icons. A feature of AMT and additional IP address lookup ensures that annotators are located in the United States. This increases the probability of native English speakers and people familiar with US street environments. We pay $0.35 per navigation instructions task and $0.20 for the navigation run task. We pay a bonus of $0.15 for successfully reaching the goal location and $0.25 for validated navigation instructions. The amounts are chosen on the basis of $10/hour.

The annotation procedure involves two phases. First an annotator writes navigation instructions for a given route. Afterwards, a different annotator uses the instructions to navigate to the goal location. If one of two annotators does so successfully, the navigation instructions are considered valid.

Navigation Instructions Task As shown in Figure 1 (top) the annotator sees a route on a map which is rendered without street names. Workers were told to write navigation instructions as if ”a

Table 1: Overview of natural language navigation instructions datasets. The instructions in our dataset rely solely on information present in OpenStreetMap. **Dataset**: Talk the Walk (MacMahon et al., 2006); Room-to-Room (Anderson et al., 2018); Touchdown (Chen et al., 2019); Talk2Nav (Vasudevan et al., 2020); Room-X-Room (Ku et al., 2020); map2seq (this work). **#Instructions**: Number of instructions in the dataset. **Environment**: Type of the environment the instructions are written for. **Information Source**: Type of information the annotator uses to write the navigation instructions. **#Nodes**: Number of nodes in the discretized environment. **Avg. Length**: Average number of nodes per route. **Vocabulary**: Number of unique tokens in the instructions. **Avg. Tokens**: Number of tokens per route instruction.

<table>
<thead>
<tr>
<th>Phenomenon</th>
<th>#Nodes</th>
<th>Avg. Length</th>
<th>Vocabulary</th>
<th>Avg. Tokens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference to unique entity</td>
<td>23</td>
<td>5.7</td>
<td>25</td>
<td>6.3</td>
</tr>
</tbody>
</table>
| Coreference | 8 | 0.5 | 15 | 1.1 | "... turn right where Dough Boys is on the corner ..."
| Comparison | 1 | 0.0 | 3 | 0.1 | "... there are two lefts, take the one that is not sharp ..."
| Sequencing | 4 | 0.2 | 21 | 1.6 | "... continue straight at the next intersection ..."
| Count | 4 | 0.2 | 9 | 0.4 | "... go through the next two lights ..."
| Allocentric spatial relation | 20 | 1.2 | 23 | 3.6 | "... go through the next light with Citibank at the corner ..."
| Egocentric spatial relation | 25 | 4.0 | 25 | 5.2 | "... at the end of the park on your right ..."
| Imperative | 22 | 2.8 | 24 | 3.7 | "... head down the block and go through the double lights ..."
| Direction | 7 | 0.4 | 21 | 1.9 | "... go straight until you come to the end of a garden area ..."
| State verification | 2 | 0.1 | 18 | 1.5 | "... you should see bike rentals on your right ..."

Table 2: Linguistic analysis of 25 randomly sampled navigation instructions. Numbers for Room-to-Room (Anderson et al., 2018) and Touchdown (Chen et al., 2019) taken from the latter. c is the number of instructions out of the 25 which contain the phenomenon at least once. µ is the mean number of times each phenomenon occurs in the 25 instructions.

4.3 Dataset

The data collection resulted in 7,672 navigation instructions that were manually validated in Street View. For additional 1,059 instructions, the validation failed which amounts to a validation rate of 88%. Of the validated instructions, 1,033 required a second try in the navigation run task. On average, instructions are 257 characters long and minimum length is 110 (maximum 330). We will release the segmented OSM graph, the routes in that graph paired with the collected navigation instructions, and the data split used in our experiments. Table I gives a comparison of different

Tourist is asking for directions in a neighborhood you are familiar with and to **mention landmarks to support orientation**. The navigation instructions were written in a text box below the map which is limited to 330 characters.

Navigation Run Task Figure 1 (bottom) shows the Street View interface with navigation instructions faded-in at the bottom. It is possible to look around 360° and movement is controlled by the white arrows. In addition there is a button on the bottom left to backtrack which proved to be very helpful. The initial position is the start of the route with facing in the correct direction. The annotators finish the navigation run with the bottom right button either when they think the goal location is reached or if they are lost. The task is successful if the annotator stops the run within a 25 meter radius around the goal location.

Failure Modes A rather common mistake made by instruction writers is to mix up left and right. They see the map in north orientation and have to mentally rotate the image to figure out the direction of the next turn. A conceptual error source are landmarks that are not visible in Street View. This happens due to wrong annotations in OSM, date mismatch between OSM and Street View, or blocked view, e.g., by a truck.

Under review as a conference paper at ICLR 2021
datasets with natural language landmark navigation instructions. Our dataset is the only one whose navigation instructions were written from map information only. The advantage of relying solely on map data is the global availability and longevity of encoded features. In contrast, navigation instructions written from Street View include temporal features like construction utilities, advertisement or vehicles. Table 2 shows a qualitative linguistic analysis of the navigation instructions of different datasets. In general, navigation instructions are driven by giving directions in imperative formulation while referencing to entities along the route. Although the instructions writers in our setting did not see the route in first person perspective, objects are vastly referenced to in egocentric manner (egocentric in respect to the navigating agent). This is because the annotator knows the starting direction and can infer the facing direction for the rest of the route. Because the initial facing direction in Touchdown is random, the first part of their instructions is about rotating the agent. This explains the higher number of occurrences for the state verification phenomenon. In our dataset, state verification is usually used to ensure the correct stopping position. The different setting of data collection is also reflected by the temporal condition phenomenon. Annotators of Touchdown write down instructions while navigating Street View and thus experience the temporal component first hand, while our annotators have a time independent look at the route.

5 Method

The underlying OSM geodata of the rendered map (Figure 2, left) is an XML tree of nodes located in the latitude-longitude coordinate system. The nodes are composed into ways and polygons. These elements in connection with their annotations are used to render the visual map. In order to train a
neural model on this kind of data, we need to bring it into a more convenient format. Because road networks can naturally be expressed as a graph, it is reasonable to incorporate other map features into that graph. In the next section we propose our approach to represent a route and its surrounding map features as a graph that includes all necessary information for generating landmark navigation instructions. The second section describes the neural graph-to-text architecture that is trained to learn inductive representations of the individual route graphs and to decode navigation instructions from them.

5.1 Map-to-Graph Representation

The basis of the graph for a single route is the OSM subgraph (Section 4.1) that includes the actual route nodes. Further, neighboring street segment nodes are added. This is depicted in Figure 2(right) as green and blue circles respectively. In order to decide on the visibility of the POIs, we employ a technique similar to that of Rousell & Zipf (2017). For each street segment, the POIs in a radius of 30 meters are identified. If a line drawn between the street segment and the POI is not interrupted by a building polygon, the POI is considered visible from that particular street segment. If the POI itself is (inside) a polygon, then the line is drawn to the closest point on the POI polygon. The orange circles in Figure 2(right) show the results of the visibility check and how they naturally fit into the graph structure. Each point of interest in OSM has one or more tags in the form of key and value pairs. They store properties like type or name. Note that we only determine the geometric visibility of the POIs and do not incorporate any hand-crafted salience scores as to what would be a good landmark. Saliency of a landmark is implicitly learned from natural language verbalization of the POI in the human-generated instruction.

An example graph representation of the route in Figure 2 is given in Figure 3. Formally, a route representation is a directed graph $G = (V, \mathcal{E})$ where V denotes the set of nodes and \mathcal{E} the set of edges. A node v consists of a node type v^t and a node token v^t. There are V^t node types and V^w node tokens. Street segments are of type $<\text{street}>$. A point of interest has the node type $<\text{poi}>$. An OSM tag key has the node type $<\text{tag_key}>$ and an OSM tag value has the node type $<\text{tag_value}>$. The node token further specifies nodes in the graph. Street segments that belong to the route have a node token according to their sequential position P: $<P>$. The last route segment has the special token $<\text{last}>$. Other street segment nodes have the $<\text{neighbor}>$ token. The actual key and value literals of an OSM tag are the node tokens of the respective node. The OSM name tag is split into multiple nodes with type $<\text{k_name}_N>$ where N is the word position and the node token is the word at that position. All adjacent street segment nodes are connected with an edge in both directions. If a POI is visible from a particular street segment, there is an edge from the corresponding POI node to that street segment node. Each POI node is connected with their tag key nodes. A tag value node is connected to its corresponding tag key node. The name tag nodes of the same POI are connected with each other. Some edges have a geometric interpretation. This is true for edges connecting a street segment with either a POI or with another street segment. These edges $(u, v) \in \mathcal{E}$ have a label attached. The label $\text{ang}(u, v)$ is the binned angle between the nodes relative to route direction. The continuous angle $[0^\circ, 360^\circ)$ is assigned to one of 12 bins. Each bin covers 30° with the first bin starting at 345°. The geometric distance between nodes is not modeled explicitly because street segments are equidistant and POI visibility is determined with a maximum distance. The proposed representation of a route and its surroundings as a directed graph with partially geometric edges is location- and rotation-invariant, which greatly benefits generalization.

5.2 Graph-to-Text Architecture

By representing a route as a graph, we can frame the generation of NLLNI from maps as a graph-to-text problem. The encoder learns a neural representation of the input graph and the sequence decoder generates the corresponding text. The architecture follows the Transformer (Vaswani et al., 2017) but uses graph attentional layers (Velčković et al., 2018) in the encoder. Graph attention injects the graph structure by masking (multi-head) self-attention to only attend to nodes that are first-order neighbors in the input graph. The geometric relations between some nodes are treated as edge labels which are modeled by distinct feature transformation matrices during node aggregation (Schlichtkrull et al., 2018).
The input to a layer of the encoder is a set of node representations, \(x = \{ x_1, x_2, \ldots, x_N \}, x_i \in \mathbb{R}^{d_m} \), where \(N \) is the number of nodes and \(d_m \) is the model size. Each layer \(l : \mathbb{R}^{d_m} \rightarrow \mathbb{R}^{d_m} \) takes \(x \) and produces new node representations \(x' \). The input to the first layer is constructed from the concatenation of type and token embedding: \(x_i = ReLU(W^T[E_{x_i}^r||E_{x_i}^u]) \) where \(W^T \in \mathbb{R}^{2d_m \times d_m} \) is a weight matrix, \(E^r \in \mathbb{R}^{d_m} \) and \(E^u \in \mathbb{R}^{d_m} \) are embedding matrices for node types and node tokens, respectively.

The output of a single graph attention head is the weighted sum of neighboring node representations:

\[
\bar{x}_i = \sum_{j \in \{(v_j, u_j) \in \mathbb{E}\}} \alpha_{ij}(W^U_{r(i,j)}x_j)
\]

The weight coefficient is computed as \(\alpha_{ij} = \text{softmax}_j(e_{ij}) = \frac{\exp(e_{ij})}{\sum_{k \in \{(e_k, x_k) \in \mathbb{E}\}} \exp(e_{ik})} \) where \(e_{ij} \) measures the compatibility of two node representations:

\[
e_{ij} = \text{LeakyReLU}(a^T[W^V x_i||W^U_{r(i,j)}x_j])
\]

where \(a \in \mathbb{R}^{2d_h} \), \(W^V \in \mathbb{R}^{d_m \times d_h} \), \(d_h = d_m / h \) is the attention head dimension and \(h \) is the number of heads. In the case of a geometric relation between nodes, the weight matrix \(W^U_{r(i,j)} \in \mathbb{R}^{d_m \times d_m} \) is selected according to the angle label between the nodes: \(r(i, j) = \text{ang}(u_i, u_j) \), otherwise \(r(i, j) = \text{unlabeled} \). The output of each head is concatenated and after a skip connection forwarded to the next encoder layer. The encoder layer is applied \(L \) times and the final node representations \(x^* \) are used in the decoder context attention mechanism. Thus, no modification of the Transformer decoder is necessary and \(L \) decoder layers are used. Further, the decoder can copy node tokens from the input into the output sequence (See et al., 2017).

The described architecture is able to model all aspects of the input graph. Graph attention models directed edges. Edge labels model the geometric relation between nodes. Heterogeneous nodes are represented by their type embedding and token embedding. The sequentiality of the route is encoded by tokens \(\langle <l> \rangle, \langle <2> \rangle, \ldots \rangle \) of the respective nodes. This is analogous to absolute position embeddings which provide word order information for text encoding (Vaswani et al., 2017; Devlin et al., 2019).

6 Experiments

6.1 Baselines

We consider two baselines. A heuristic rule based system that constructs instructions by stringing together all POIs and intersections along the route. An intersection/light is followed by the turning direction. Similar, POIs are followed by ‘left’ or ‘right’ depending on which side of the street they appear. The end of the route is signaled by the ‘stop’ token. You can see an example sequence in Figure 4. The second baseline is a seq2seq (sequence-to-sequence) model that takes those rule based navigation instructions as input and is trained to generate the corresponding NLLNI from the dataset. The seq2seq model follows the Transformer architecture with copy mechanism and is trained with the same hyperparameters as the graph-to-text model.

6.2 Experimental Setup

We construct a graph for each route as described above. On average there are 144 nodes in a graph and 3.4 edges per node. There are 8 different node types and a vocabulary of 3791 node tokens. The hyperparameter for the graph-to-text architecture are set as follows. The model size is set to 256. We use six encoder and decoder layers with eight attention heads. Cross entropy loss is optimized by Adam (Kingma & Ba, 2015) with a learning rate of 0.5 and batch size of 12. The embedding matrix for node tokens and output tokens is shared. Additionally we experiment with pretraining the graph-to-text model with above mentioned rule based instructions as target. This teaches the model sequentiality of route nodes and basic interpretation of the angle labels. We generate 20k instances for pretraining and further fine tune on the human generated instances. Both models and the seq2seq
baseline are trained on 5667 instances of our dataset. The best weights for each model are selected by token accuracy based early stopping on the 605 development instances.

6.3 Evaluation Metrics

BLEU is a token overlap score and in this work calculated with SacreBLEU (Post, 2018) on lowercased and tokenized text. **#Landmarks** is the number of landmark occurrences per instance. Occurrences are identified by (sequence of) token overlap between navigation text and tag values of points of interest along the route. For example, the count for the instructions in Figure 1 is four: *Dunkin’ Donuts, Bubble Tea & Crepes, Chipotle* and *Broadway Plaza Hotel*. **Time** reports the median time in seconds a human annotator needs for a successful navigation run. **ED** is the length normalized edit distance between the reference sequence of nodes from start to end location, and the traversed nodes by the human annotator. It is computed as the average over all navigation runs that end within a radius of 25 meters around the goal location. A lower score means annotators found the goal location with less detour. **nDTW** is the normalized Dynamic Time Warping metric (Ilharco et al., 2019). Distance between two nodes is defined as meters along the shortest path between them and threshold distance is 25 meters. **SR@25 (50)** is the first try success rate in the navigation run task. Success is achieved if the human navigator stops within a radius of 25 (50) meters around the goal location.

6.4 Experimental Results and Analysis

Results of our experimental evaluation are shown in Table 3. We evaluate our model on unseen data, i.e., routes without any overlap with routes in the training set, and on partially seen data, i.e., routes...
randomly sampled from the training area with partial overlaps. For the baseline models we perform the human evaluation on a 200 instances subset of each test set. The regular test sets include 700 instances each.

On the latter test set, the graph-to-text models produce nearly as many landmarks as human reference instructions. The pretraining elevates the success rate of human navigation based on system-generated instructions to roughly 50% of that of navigation on human-generated instructions and on par with the rule based system. The results show that the instructions generated by the rule based system are exact by including all possible landmarks, thus they yield a high success rate, but they do not resemble natural language and high evaluation time suggests that they are hard to read. When evaluating the graph-to-text models on unseen parts of the map, the number of landmarks produced drops significantly without pretraining. The success rate falls below the rule based baseline which reveals shortcomings in adapting to unseen areas. Despite moderate BLEU scores and reasonable amount of produced landmarks, the sequence-to-sequence baseline fails to generate useful navigation instructions. An interesting observation is that BLEU scores of the trained systems correlate with their navigation success rate.

<table>
<thead>
<tr>
<th>Test Unseen</th>
<th>Reference</th>
<th>Model</th>
<th>Test Partially Seen</th>
<th>Reference</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSM tag</td>
<td>Score</td>
<td>OSM tag</td>
<td>Score</td>
<td>OSM tag</td>
<td>Score</td>
</tr>
<tr>
<td>amenity: cinema</td>
<td>0.58</td>
<td>amenity: pharmacy</td>
<td>0.55</td>
<td>amenity: bank</td>
<td>0.44</td>
</tr>
<tr>
<td>shop: wine</td>
<td>0.55</td>
<td>amenity: pharmacy</td>
<td>0.55</td>
<td>leisure: park</td>
<td>0.35</td>
</tr>
<tr>
<td>shop: computer</td>
<td>0.53</td>
<td>amenity: pharmacy</td>
<td>0.50</td>
<td>amenity: pharmacy</td>
<td>0.32</td>
</tr>
<tr>
<td>amenity: pharmacy</td>
<td>0.51</td>
<td>amenity: cinema</td>
<td>0.46</td>
<td>shop: furniture</td>
<td>0.30</td>
</tr>
<tr>
<td>cuisine: coffee_shop</td>
<td>0.49</td>
<td>cuisine: coffee_shop</td>
<td>0.46</td>
<td>cuisine: burger</td>
<td>0.29</td>
</tr>
<tr>
<td>tourism: hotel</td>
<td>0.44</td>
<td>shop: computer</td>
<td>0.45</td>
<td>leisure: garden</td>
<td>0.29</td>
</tr>
<tr>
<td>shop: convenience</td>
<td>0.42</td>
<td>tourism: hotel</td>
<td>0.41</td>
<td>cuisine: coffee_shop</td>
<td>0.26</td>
</tr>
<tr>
<td>shop: houseware</td>
<td>0.31</td>
<td>shop: pet</td>
<td>0.39</td>
<td>amenity: place_of_worship</td>
<td>0.25</td>
</tr>
<tr>
<td>shop: supermarket</td>
<td>0.33</td>
<td>shop: beauty</td>
<td>0.38</td>
<td>cuisine: american</td>
<td>0.23</td>
</tr>
<tr>
<td>amenity: bank</td>
<td>0.28</td>
<td>shop: wine</td>
<td>0.38</td>
<td>amenity: bicycle_rental</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Table 4: Frequency of OSM tags of landmark occurrences in the instructions, normalized by the number of occurrences in the input graph.

An example output for each system together with the input map is shown in Figure 4. The seq2seq baseline generates navigation instructions that sound human-like and also include landmarks found on the map. However, the directions are incorrect and unusable for navigation. The graph-to-text based models get the directions right while producing fluent natural language sentences. They include landmarks at the correct sequential position but sometimes in incorrect orientation. Depending on the redundancy in the instructions this can lead to an unsuccessful navigation run. Further qualitative evaluation of instructions generated by the graph-to-text models (in the Appendix) shows that intersections are added or dropped when the route has too many turns or turns in quick succession.

7 Conclusion

We presented a dataset and suitable graph-to-text architecture to generate landmark navigation instructions in natural language from OpenStreetMap geographical data. Our neural model includes novel aspects such as a graphical representation of a route using angle labels. Our dataset consists of a few thousand navigation instructions that are verified for successful human navigation. The dataset is large enough to train a neural model to produce navigation instructions that are very similar in several aspects to human-generated instructions on partially seen test data. However, performance naturally drops on unseen data including new types of landmarks in new combinations.

The data split on the map of lower Manhattan is shown in the Appendix.
REFERENCES

