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Abstract— Accurate 6D object pose estimation is essential for
robotic grasping and manipulation, particularly in agriculture,
where fruits and vegetables exhibit high intra-class variability
in shape, size, and texture. The vast majority of existing
methods rely on instance-specific CAD models or require depth
sensors to resolve geometric ambiguities, making them imprac-
tical for real-world agricultural applications. In this work, we
introduce PLANTPose, a novel framework for category-level 6D
pose estimation that operates purely on RGB input. PLANT-
Pose predicts both the 6D pose and deformation parameters
relative to a base mesh, allowing a single category-level CAD
model to adapt to unseen instances. This enables accurate pose
estimation across varying shapes without relying on instance-
specific data. To enhance realism and improve generalization,
we also leverage Stable Diffusion to refine synthetic training
images with realistic texturing, mimicking variations due to
ripeness and environmental factors and bridging the domain
gap between synthetic data and the real world. Our evaluations
on a challenging benchmark that includes bananas of various
shapes, sizes, and ripeness status demonstrate the effectiveness
of our framework in handling large intraclass variations while
maintaining accurate 6D pose predictions, significantly outper-
forming the state-of-the-art RGB-based approach MegaPose.

I. INTRODUCTION

Robotics is transforming agriculture by offering scalable
solutions for automated harvesting, reducing labor costs, and
improving efficiency[1], [2]. At the core of these advances
lies robotic grasping, which requires accurate 6D pose esti-
mation of fruits and vegetables to enable precise picking and
handling. However, unlike rigid industrial objects, fruits and
vegetables exhibit significant natural variations in shape, size,
and texture not only across different types but also within the
same category due to growth, ripeness, and environmental
conditions, making pose estimation particularly challenging.

Most existing 6D pose estimation methods rely on
instance-level models, where a specific object must be known
beforehand—either as a detailed CAD model [3], [4], [5], [6],
[7] or through multiple reference images [4]. While effective
in structured environments, these approaches are impractical
for agriculture, where fruits and vegetables naturally vary
in form, are encountered in novel configurations, and often
appear amidst dense foliage or in close proximity to other
produce. A more scalable alternative is category-level pose
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Fig. 1: Fruits exhibit significant intra-class variability in
shape, size, and texture, posing challenges for standard 6D
pose estimation methods. PLANTPose addresses this by
simultaneously predicting both the deformation of a base
mesh and the 6D pose, enabling more accurate and adaptable
predictions.

estimation, which generalizes across object instances within
a class without requiring exact geometric models [8], [9].
However, current methods often depend on depth sensors
to resolve geometric ambiguities, require complex non-
differentiable solvers, or involve computationally expensive
iterative refinements, limiting their deployment in real-world
agricultural applications and purely RGB environments. As a
result, achieving robust category-level pose estimation from
RGB images alone remains challenging, particularly when
large shape variability and real-time performance constraints
are involved.

Traditionally, 6D pose estimation methods rely on syn-
thetic data for training, using simulated environments to
generate large-scale datasets [10], [11], [12], [13]. While
synthetic datasets provide controlled and scalable training,
they often fail to capture the full spectrum of real-world
variations, a limitation that is particularly pronounced in
agricultural products. Fruits not only vary in shape and size
but also undergo significant visual changes as they ripen,
making robust 6D pose estimation even more challenging.



Moreover, collecting a comprehensive set of 3D models and
textures for even a single object category is labor-intensive,
impractical, and often infeasible.

To address these shortcomings, we introduce PLANTPose
(Pose estimation using Lattice deformAtioN for caTegories),
a novel framework for 6D pose estimation that employs
intuitive deformations on base meshes to adapt a single
category-level CAD model to unseen instances (see Fig. 1).
By leveraging a compact set of deformation parameters, our
method can capture broad intra-class shape variations without
the need for instance-specific models or depth data. This
makes PLANTPose particularly well-suited for categories
such as agricultural produce, where high shape variability
is the norm. To further enhance realism and improve
generalization to real-world imagery, we employ Stable
Diffusion-based image inpainting on our synthetic datasets,
augmenting them with more realistic texturing to better
mimic the diverse appearance of fruits at different stages of
ripeness. This significantly narrows the domain gap between
synthetic and real images, boosting pose estimation accuracy
in real-world scenarios. We validate PLANTPose on the ba-
nana fruit, which naturally exhibits substantial shape and size
deformations and undergoes significant visual changes as it
transitions from unripe to ripe and eventually to rotten. This
makes bananas an ideal test case for evaluating our frame-
work. Extensive experiments demonstrate that PLANTPose
achieves high pose estimation accuracy while generalizing
well across diverse shapes, sizes, and textures, highlighting
its effectiveness for real-world agricultural applications.

In short, our key contributions are:
• We present a novel framework for category-level 6D

pose estimation of agricultural produce, leveraging in-
tuitive deformations for flexible shape adaptation.

• We enhance the realism of synthetic datasets by lever-
aging Stable Diffusion with curated prompts and depth
conditioning to capture the diverse textures of fruits at
different ripeness stages.

• We compare our method against a widely used state-
of-the-art 6D pose estimation approach, demonstrating
that PLANTPose achieves significantly higher accuracy
while effectively generalizing to diverse intra-class vari-
ations in fruit shapes and textures.

The source code and the synthetic dataset will be made
publicly available.

II. RELATED WORK

Category-level 6D pose estimation Category-level ap-
proaches predict the pose of previously unseen objects within
a defined category. Many works adopt categorical mean
shapes to facilitate feature alignment, improving robustness
under intra-class variation. One of the early methods [8],
introduced a canonical object space where point correspon-
dences between input images and a normalized coordinate
system are used to estimate pose. However, it struggled
with large shape variations, leading to extensions such as
SOCS [9], which introduces semantically-aware keypoint
alignment, and NuNOCS [14], which supports non-uniform

scaling for objects with varying aspect ratios. Several meth-
ods utilize shape priors to handle intra-class variations ef-
fectively. Tian et al. [15] proposed learning a categorical
shape prior via an autoencoder and deforming it to match
observed instances. Zhang et al. [16] improved upon this by
introducing symmetry-aware shape prior deformation , al-
lowing for direct pose regression while mitigating ambiguity
in symmetric objects.

Implicit representations have also become popular in 6D
pose estimation by providing continuous, differentiable shape
modeling. ShAPO [17] jointly predicts shape, pose, and size
using learned implicit fields, while [18] DISP6D separates
shape and pose into distinct latent spaces for improved gener-
alization. Neural Radiance Fields (NeRF) [19] have also been
explored for category-level pose estimation, with approaches
like NeRF-Pose [20] reconstructing object geometry before
estimating pose. Unlike traditional correspondence-based
methods, these techniques work in a continuous space, re-
ducing alignment errors caused by discrete feature matching.

Recent advancements have focused on generalizing pose
estimation beyond specific categories. FoundationPose [4]
demonstrates strong performance on novel objects. Unlike
previous category-specific methods, FoundationPose bridges
model-based and model-free approaches by using implicit
neural representations for novel view synthesis. While pow-
erful, it still requires CAD models or multiple reference
images, limiting its adaptability to truly unconstrained en-
vironments.

Synthetic Data for 6D Pose Estimation Many of the
previous works in 6D pose estimation heavily rely on syn-
thetic data due to the difficulty and time-consuming process
of annotating real images or video datasets [4]. Most methods
use CAD models or mesh models available in large scale 3D
model databases [11], [12], [13], which store 3D object ge-
ometry with vertices, faces, and relative scale, making them
suitable for rendering. To generate datasets, these models
are placed in synthetic environments, such as Blender [21],
where images can be rendered with ground truth annotations
for position and rotation. This approach allows for large-scale
dataset creation without manual annotation. Additionally,
Anagnostopoulou et al. [22] leveraged Stable Diffusion with
ControlNet to generate highly realistic synthetic data for
mushrooms, demonstrating the effectiveness of diffusion-
based approaches in modeling agricultural produce. In con-
trast to previous methods that rely solely on synthetic data,
our generation pipeline combines traditional rendering with
Stable Diffusion. We first generate physically plausible poses
and scenes using physics-based simulation, and then enhance
the results via img2img Stable Diffusion inpainting.

6D Pose Estimation for Agriculture Given the growing
importance of 6D pose estimation in agricultural harvesting,
numerous methods now address this challenge. Retsinas et
al. [23] employed fully convolutional networks with implicit
pose encodings to jointly perform mushroom segmentation
and pose estimation, while Deep-ToMaTOS [24] introduced
a deep learning framework that simultaneously predicts a
tomato’s ripeness level and its 6D pose. Li et al. [25] further



Fig. 2: Overview of the PLANTPose framework. Given a base mesh, we generate deformed object instances using lattice-
based deformations. These instances are placed in physically plausible synthetic scenes rendered in Blender, which are
further refined using Stable Diffusion inpainting to enhance texture realism. The generated dataset is then used to train a
deep learning model for simultaneous 6D pose estimation and deformation prediction.

proposed a method for estimating both the 6D pose and 3D
scale of strawberries, leveraging synthetic data and a YOLO-
based architecture. Costanzo et al. [26] presented a system
for apple grasping with an RGB-D camera, and an evaluation
of different 6D pose estimation algorithms using RGB-D
inputs for grasping was conducted in [27].

Although these approaches specifically target agricultural
tasks, they primarily rely on adaptations of standard 6D pose
pipelines and do not explicitly model object deformations.
In contrast, our method is the first to estimate both the 6D
pose and per-instance deformations—a crucial step toward
accurately handling the natural shape variability of fruits and
vegetables in real-world harvesting scenarios.

III. METHOD

The core concept behind PLANTPose is illustrated in
Figure 2. Starting with a base mesh, we generate various
deformations using lattice-based modeling (Sec. III-A). Next,
we create physically plausible synthetic data with Blender,
which is further refined using Stable Diffusion to enhance
the texture realism of the object of interest (Sec. III-B).
Finally, we train a deep learning model on the resulting
dataset (Sec. III-C). The following sections describe each
step in detail.

A. Lattice Deformations

In order to model intuitively the deformations around the
object, we use lattices. In computational geometry, lattices
serve as a framework for space partitioning, enabling efficient
representation and transformation of spatial data [28].

The concept of lattice-based deformations was introduced
in computer graphics to provide a structured approach for
manipulating 3D objects smoothly. A lattice consists of
a set of control points arranged in a grid, where each
point influences the space around it. The term ”lattice” in
this context refers to its structured, grid-like nature, which

allows for spatial transformations. The deformation of any
given point inside the lattice is controlled by interpolation
between control points. In our case, the bounding box of
the object is the lattice that controls the deformation. This
way, we control the deformation by the 3D movement of the
bounding box boundaries (i.e., the control points). In other
words, we can simulate useful deformations using only 8×3
parameters. Despite its simplicity, such an approach is able to
create non-trivial variations while assisting the formulation
of the estimation step, since the developed neural network
can detect deformation as a regressor of a fixed-sized
feature. To avoid extreme, non-useful cases, we constraint
the magnitude of the deformations to an empirical fixed
upper bound.

Having defined the control points, one should perform
the deformation in the lattice interior using an interpolation
step, typically linear interpolation or B-spline interpolation.
We focus on cubic B-spline interpolation, which provides
smoother (C2) deformations.

Let box min = (minx,miny,minz) and box max =
(maxx,maxy,maxz) be the bounding box corners. A mesh
vertex p = (px, py, pz) is mapped to u = (u, v, w) ∈ [0, 1]3

so each (u, v, w) is the fractional distance along the x, y, z
axes. A cubic B-spline lattice is determined by eight corner
offsets Ci,j,k ∈ R3 for (i, j, k) ∈ {0, 1}3. These corner
offsets can be extended (clamped) to a 4 × 4 × 4 grid for
correct boundary behavior.

The 1D B-spline basis functions for t ∈ [0, 1] are

W0(t) =
1− 3t+ 3t2 − t3

6
, W1(t) =

4− 6t2 + 3t3

6
(1)

W2(t) =
(1 + 3t+ 3t2 − 3t3)

6
, W3(t) =

t3

6
. (2)

They are evaluated at u, v, w along the x, y, z axes, respec-
tively, giving Wi(u),Wj(v),Wk(w). A vertex’s displace-
ment is computed by summing over the three coordinate axes



separately. Let each control point Ci,j,k have components(
Cx

i,j,k, C
y
i,j,k, C

z
i,j,k

)
. Then, for (u, v, w) ∈ [0, 1]3,

δx(u, v, w) =

3∑
i=0

3∑
j=0

3∑
k=0

Wi(u)Wj(v)Wk(w) C
x
i,j,k,

δy(u, v, w) =

3∑
i=0

3∑
j=0

3∑
k=0

Wi(u)Wj(v)Wk(w) C
y
i,j,k,

δz(u, v, w) =

3∑
i=0

3∑
j=0

3∑
k=0

Wi(u)Wj(v)Wk(w) C
z
i,j,k.

These form the displacement vector δ(u, v, w) =[
δx, δy, δz

]
, and the deformed position becomes p′ = p +

δ(u, v, w).
Because B-splines ensure C2 continuity in each dimen-

sion, they produce more natural, smoothly varying defor-
mations, making them preferable for applications requiring
realistic shape modifications.

B. Synthetic Data Generation

Creating a real large-scale dataset that adequately captures
intra-class variations with deformation data and includes
accurate 3D annotations of the pose/deformation is infeasible
in practice. Therefore, we rely on synthetic data generation
to cover a wide range of shape and pose variations. For this,
we use BlenderProc [21], a Python-based API for Blender, to
simulate physically plausible object placement and rendering.

Our synthetic dataset is generated by constructing virtual
environments with 3D object models, where target objects
are placed alongside distractors to introduce occlusions.
Scenes include procedural room geometry (walls, floors) for
context, textured surfaces for realism, and lighting variations
(ambient and directional) to simulate diverse illumination
conditions. To ensure physically plausible positioning, we
utilize a physics simulation where objects are dropped into
the scene and settle naturally based on their physical prop-
erties. Once the scene is stable, we define a point of interest
and sample multiple camera poses around it. Each camera
view follows randomized extrinsic parameters (position and
orientation) while maintaining visibility of the target object.
The intrinsic parameters are fixed to simulate a real-world
camera. Images are then rendered from multiple angles,
capturing variations in occlusion, lighting, and perspective.

Introducing Lattice-Based Deformations We now mod-
ify the previously described synthetic data pipeline and
introduce lattice-based deformations with the following pro-
cedure: We first place a tight lattice bounding box around
the object of interest. Then we randomly perturb the control
points of the lattice within an empirically set constrained
range. Our goal is to have a unique set of annotations
{t,R, δ}, where t is the translation, R the rotation, and δ the
deformation. However, the B-spline interpolation, contrary
to the linear one, may introduce unwanted global translation
and rotation, depending on the random pertubation. To alle-
viate this amgibuity, after deforming the object, we apply the
Umeyama algorithm [29], and compute an optimal similarity

transformation between the original mesh and the deformed
one:

(s,R, t) = Umeyama(Poriginal,Pdeformed), (3)

Here, the function Umeyama estimates the optimal simi-
larity transformation (scaling factor s - which we fix to 1,
rotation matrix R, and translation vector t) that best aligns
the set of original points Poriginal with the deformed points
Pdeformed in a least-squares sense. The lattice points are then
corrected to ensure that deformations remain independent of
pose transformations.

Enhancing realism with Stable Diffusion
As mentioned in the introduction, synthetic data pipelines,

like the one described so far, do not fully capture the texture
variations and realism found in real-world settings. This
limitation is particularly evident in agricultural products,
where surface textures vary significantly due to ripeness,
environmental conditions, and natural inconsistencies. Pre-
vious approaches, such as FoundationPose[4], addressed this
issue by introducing texture variations directly on 3D models
before rendering. However, this approach still involves the
rendering process, leaving a small but non-negligible domain
gap between synthetic and real-world data.

In contrast, we enhance realism after rendering by apply-
ing Stable Diffusion inpainting directly to the final image,
modifying only the object of interest while preserving the
background and scene consistency. To ensure that the object’s
pose remains unchanged, we condition the Stable Diffusion
generation using ControlNet [30], leveraging depth maps
from the rendering pipeline. Finally, we curate a set of
prompts describing various textures and color variations
across different stages of a fruit’s lifecycle—including un-
ripe, ripe, and rotten appearances, as well as natural color
variations. This approach minimizes the domain gap while
maintaining geometric and pose consistency, leading to im-
proved generalization in real-world agricultural applications.

In summary, we aim to acquire a set of very realistic
images via the synthetic scenes, while retaining the 3D
annotations required for training a network.

C. Network and Training

Given the synthetic dataset with the 3D annotations, we
can now train a neural network for detecting both the 6D
pose and the deformation. The input of the network is the
cropped RGB (we do not use depth) image of the desired
object. During training we use the projected 2D vertices of
the object to create the bounding box. For inference, we train
a YOLOv11[31] model on our dataset.

For our neural network model we use a small ViT[32]
backbone with 30.9M parameters as a feature encoder which
uses 32x32 patches, pretrained on ImageNet-21k. After the
ViT encoder, we employ three lightweight heads:
Rotation Head: predicts the 6D rotation representation [33]
that is then orthonormalized into a valid 3×3 rotation matrix.
Translation Head: outputs a 3D vector t representing the
object’s translation in the cropped image frame.



Deformation Head: produces a 24D offset vector that warps
a template mesh via a 2× 2× 2 lattice.

Training Losses. Let r6d be the predicted rotation (in 6D),
t the translation, and δ the lattice offsets. We supervise them
with:

• Rotation Loss: Mean squared error (MSE) on r6d to
match the ground truth rotation.

• Deformation Loss: MSE on δ, comparing them to the
synthetic deformations used in data generation.

• 2D Projection Loss: to auxiliary supervise the esti-
mated set of parameters {t,R, δ} and essentially derive
translation parameters, we project the deformed and
translated/rotated 3D vertices (i.e., the estimated final
mesh) into the cropped image and measure their mean
squared error against 2D keypoints of the ground-truth
mesh.

Formally,

L = λr ∥rpred6d − rgt6d∥
2 + λd ∥δpred − δgt∥2

+ λp ∥Proj(P|R, t, δ)− vgt
2d∥

2.
(4)

This combination aligns the rotation, warping, and final
2D alignment, jointly driving pose and shape accuracy. We
train the network end-to-end with Adam optimizer [34] on
cropped object patches, applying standard image augmen-
tations to improve robustness. We train on 4,000 synthetic
scenes, each with a random deformation, capturing three
images per scene from different camera positions.

D. From cropped to full image

Since the input to the network is the cropped object of
interest, during inference we store the offset

(
xmin, ymin

)
and

scale factor used for cropping and resizing. After predicting
the pose in the cropped frame, we undo these transformations
to re-project the object’s 2D vertices back into full-image
coordinates. From there, we apply a PnP solver [35] using
our lattice-deformed 3D points and the intrinsic parameters
of the camera to find the translation t with respect to the
camera frame.

IV. RESULTS AND EVALUATION

Benchmark Dataset and Metrics To validate our frame-
work, we collected an in-house dataset of six bananas with
distinct shapes and varying ripeness stages (see top part of
Fig. 1). We captured 100 images using an Intel RealSense
D435 and manually annotated them, after first 3D scanning
each banana using an iPhone 14 Pro with a LiDAR sensor.
We evaluate our method using the following metrics: (a)
Chamfer Distance, which measures the geometric discrep-
ancy between the ground truth and predicted meshes, as
the scanned meshes lack per-vertex correspondence with our
base banana model; (b) Mean and Median Rotation Error;
(c) Mean and Median Translation Error; and (d) Deformation
Error. To compute rotation and translation errors, we align
the ground truth scanned meshes with the base banana mesh
using ICP. The deformation error is then computed after

Input MegaPose PlantPose 3D outputs

Fig. 3: Qualitative results on the banana test benchmark com-
paring MegaPose with PlantPose. The final column shows the
predictions in 3D space (with a different angle to facilitate
comparison): the green color denotes the ground truth mesh
and 6D pose, blue is the result of PlantPose, and Red is the
result of MegaPose.

removing the estimated rotation and translation, isolating the
deformation component.

Comparison with State-of-the-Art. We compare our
approach with MegaPose[3], which, like our method, relies
solely on RGB input. In contrast, other category-level pose
estimation methods ([9], [8], [14], [36], [37]), to the best
of our knowledge, rely on depth information (sometimes
additionally to RGB). This highlights a key distinction, as our
method achieves competitive performance without requiring
depth, demonstrating its effectiveness as a purely vision-
based solution. We use the publicly available implementation
of MegaPose and use as input the same banana mesh for all
images. We present results on our benchmark dataset in Ta-
ble I. As we can see, PLANTPose significantly outperforms
MegaPose across all metrics.



TABLE I: Comparison of PLANTPose with MegaPose on the
banana benchmark dataset. For all metrics, lower is better.

Method Chamfer (mm) ↓ Rot. (deg) ↓ Trans. (mm) ↓ Deform. (mm) ↓
Dist. Mean Med. Mean Med. Error

MegaPose [3] 90.1 52.4 43.6 59.9 45.6 29.1
PLANTPose (Ours) 59.8 32.6 23.6 42.5 37.9 12.1

Figure 3 presents qualitative results from our test set.
As shown, MegaPose struggles with accurately predicting
the rotation and translation of the banana, as it relies on
an average banana mesh to explain the visual scene and
lacks the ability to model deformations. This limitation is
particularly evident in the final column, where the results are
visualized in 3D space. In contrast, PLANTPose successfully
captures both the object’s deformation and its 6D pose,
leading to more precise translation and rotation predictions
in the 3D world.

Ablation studies We conduct ablation studies to evalu-
ate the effectiveness of our Stable Diffusion-based realism
enhancement and the impact of omitting the Umeyama step
for correcting deformation-induced rotation and translation.
The results of these experiments are presented in Table II. As
evident from the results, each component plays a crucial role
in achieving optimal performance. The Umeyama correction
effectively resolves ambiguities in rotation and translation
introduced by the initial deformation, while the Stable
Diffusion-enhanced dataset significantly improves general-
ization.

TABLE II: Ablation study results evaluating the impact of
different components on pose estimation accuracy. Chamfer
distance (Dist.), rotation (Rot.), and translation (Trans.) er-
rors are reported as mean (Mean) and median (Med.), along
with the deformation error.

Method Chamfer (mm) ↓ Rot. (deg) ↓ Trans. (mm) ↓ Deform. (mm) ↓
Dist. Mean Med. Mean Med. Error

PLANTPose (Full) 59.8 32.6 23.6 42.5 37.9 12.1

w/o SD 71.5 37.7 23.0 48.9 48.7 13.9
w/o Umeyama 73.1 36.5 26.2 50.3 45.8 12.7
w/o Umeyama and SD 89.7 36.1 26.7 61.1 61.9 26.5

Figure 4 shows that without Umeyama, the model strug-
gles with translation because deformation, rotation, and
translation are not disentangled—deformations inherently
introduce unwanted pose changes. Without Stable Diffusion,
the model performs well on familiar banana textures but fails
on unseen ones, losing the overall pose.

Limitations While our method accurately predicts both
the deformation parameters and 6D pose of an object, it
has several limitations. First, it currently requires training
a separate model for each object category. A more general
solution would accept a base CAD model as an additional
input, adapting across multiple categories without retraining
and still preserving mesh deformation capabilities. Addi-
tionally, in rare cases, even with depth conditioning, Stable
Diffusion may slightly alter the object’s 6D pose. Exploring
more robust approaches for conditioning generative models
could further enhance our synthetic data pipeline.

Fig. 4: Qualitative ablation results from different model
variations on the banana test benchmark. Each row shows a
different input, while columns compare results from different
models.

V. CONCLUSION

We introduced PLANTPose, a category-level 6D pose es-
timation framework that predicts both pose and deformation
parameters from RGB images. By leveraging lattice-based
deformations and Stable Diffusion-based texture augmenta-
tion, our method enables accurate pose estimation across
diverse object instances without requiring instance-specific
models or depth input. Our experiments demonstrate strong
performance on a banana benchmark, significantly outper-
forming the state-of-the-art method MegaPose. For future
work, we aim to expand our approach to multiple object
categories beyond fruits and incorporate the base CAD model
as an input, allowing greater adaptability across different
object types.
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[3] Y. Labbé, L. Manuelli, A. Mousavian, S. Tyree, S. Birchfield, J. Trem-
blay, J. Carpentier, M. Aubry, D. Fox, and J. Sivic, “Megapose: 6d
pose estimation of novel objects via render & compare,” arXiv preprint
arXiv:2212.06870, 2022.

[4] W. Bowen, Y. Wei, K. Jan, and B. Stan, “FoundationPose: Unified 6d
pose estimation and tracking of novel objects,” in CVPR, 2024.

[5] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A
convolutional neural network for 6d object pose estimation in cluttered
scenes,” in Proceedings of Robotics: Science and Systems, 2018.

[6] Y. Labbe, J. Carpentier, M. Aubry, and J. Sivic, “Cosypose: Consistent
multi-view multi-object 6d pose estimation,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2020.

[7] V. N. Nguyen, T. Groueix, M. Salzmann, and V. Lepetit, “Gigapose:
Fast and robust novel object pose estimation via one correspondence,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 9903–9913.

[8] H. Wang, S. Sridhar, J. Huang, J. Valentin, S. Song, and L. J. Guibas,
“Normalized object coordinate space for category-level 6d object pose
and size estimation,” in The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[9] B. Wan, Y. Shi, and K. Xu, “ SOCS: Semantically-aware Object Co-
ordinate Space for Category-Level 6D Object Pose Estimation under
Large Shape Variations ,” in IEEE/CVF International Conference on
Computer Vision (ICCV), 2023, pp. 14 019–14 028.
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