
Online Configuration in Continuous Decision Space

Davide Maran∗

Politecnico di Milano
davide.maran@polimi.it

Pierriccardo Olivieri ∗

Politecnico di Milano
pierriccardo.olivieri@polimi.it

Francesco Emanuele Stradi∗
Politecnico di Milano

francescoemanuele.stradi@polimi.it

Giuseppe Urso
Politecnico di Milano

giuseppe.urso@mail.polimi.it

Nicola Gatti
Politecnico di Milano

nicola.gatti@polimi.it

Marcello Restelli
Politecnico di Milano

marcello.restelli@polimi.it

Abstract

In this paper, we investigate the optimal online configuration of episodic Markov
decision processes when the space of the possible configurations is continuous.
Specifically, we study the interaction between a learner (referred to as the con-
figurator) and an agent with a fixed, unknown policy, when the learner aims to
minimize her losses by choosing transition functions in online fashion. The losses
may be unrelated to the agent’s rewards. This problem applies to many real-world
scenarios where the learner seeks to manipulate the Markov decision process to her
advantage. We study both deterministic and stochastic settings, where the losses
are either fixed or sampled from an unknown probability distribution. We design
two algorithms whose peculiarity is to rely on occupancy measures to explore with
optimism the continuous space of transition functions, achieving constant regret
in deterministic settings and Õ(

√
T) regret in stochastic settings, respectively.

Moreover, we prove that the regret bound is tight with respect to any constant
factor in deterministic settings. Finally, we compare the empiric performance of
our algorithms with a baseline in synthetic experiments.

1 Introduction

Reinforcement Learning (RL) investigates the sequential interaction between a learner and an
environment, aiming at continually improving the learner’s strategy (Sutton and Barto, 2018). In this
context, the environment is customarily represented as a Markov Decision Process (MDP) with a
fixed but unknown transition function. We study a general scenario where the interaction occurs in
episodes, each with a predetermined length. Differently from the standard RL setting, we consider
the learner not to be the agent playing the MDP, but the configurator. Precisely, at each episode, the
learner picks the transition functions for the entire MDP (i.e., a configuration) from a fixed continuous
set. Next, she observes the loss suffered and the path traversed by the agent, which depend both on

∗Equal Contribution.

16th European Workshop on Reinforcement Learning (EWRL 2023).

the agent’s fixed policy and the transition chosen for the specific episode. The aim of the configurator
is to minimize her regret between her total loss and that provided by an optimal fixed configuration.

Our model represents various real-world situations where the learner aims to manipulate the stochastic
nature of the MDP to her advantage. For example, consider the sale of hotel rooms, where the MDP
states are characterized by the number of rooms booked in different categories each day, while the
transitions depend on the hotel’s pricing and user behavior. Customarily, the hotels use a fixed pricing
strategy that is trained offline and implemented online. Given that users compare prices across hotels
before booking rooms, a competing hotel (acting as the MDP configurator) can strategically adjust
its pricing to influence user behavior and consequently alter the MDP transitions. Specifically, the
competitor seeks to reduce the number of room reservations obtained by the agent to maximize her
own. Although this example illustrates an adversarial setting, our model applies to general scenarios
that do not require a relationship between the configurator’s loss and the agent’s reward.

1.1 Related Work

Online learning in MDPs Several works initially introduced for on online learning (Cesa-Bianchi
and Lugosi, 2006; Hazan, 2019) have been subsequently extended to MDPs (Auer et al., 2008;
Even-Dar et al., 2009; Neu et al., 2010). In particular, Azar et al. (2017) study the problem of optimal
exploration in episodic MDPs with unknown transitions and stochastic losses when the feedback
is bandit. Rosenberg and Mansour (2019b) study the online learning problem in episodic MDPs
with adversarial losses and unknown transitions when the feedback is full information, presenting an
online algorithm which provides a regret upper bound of Õ(

√
T), where T is the number of episodes.

Rosenberg and Mansour (2019a) study the same setting when the feedback is bandit, providing a
regret upper bound of Õ(T 3/4), which was subsequently improved to Õ(

√
T) by Jin et al. (2019).

Configurable MDPs In MDPs, the transition function is customarily assumed to be fixed, see,
e.g., Sutton and Barto (2018). However, various subsequent works represent environments with
non-fixed transition probabilities, as provided in the works by Satia and Lave (1973), White and
Eldeib (1994), and Bueno et al. (2017). Recently, the concept of Configurable Markov Decision
Processes (Conf-MDPs) was formalized by Metelli et al. (2018). In particular, the authors propose
an algorithm capable of optimizing, at the same time, the environment configuration, namely, the
transition function and the policy of the learning agent. This line of research has been further
expanded upon by Metelli et al. (2019) and Metelli et al. (2022). Moreover, Ramponi et al. (2021)
extend the Conf-MDP setting to an online learning framework. This scenario involves a configurator
who chooses online a transition function from a discrete set and aims to maximize her own reward,
which is independent from the agent’s one.

Adversarial Attacks Several works deal with adversarial attacks in MDPs, see, e.g., Ilahi et al.
(2021). In the bounded state attacks framework, the adversary can manipulate the current state of
an MDP in order to force the learning agent to make suboptimal decisions, see, e.g., Pattanaik et al.
(2017), Korkmaz (2021), and Wu et al. (2022). Instead, in the action attacks setting, the adversary is
capable of modifying the agent’s actions, see, e.g., Lee et al. (2019), Lee et al. (2021) and Tan et al.
(2020). Finally, in the model attacks framework, the attack consists in a (bounded) perturbation of the
transition function of the MDP performed by an adversary, see, e.g., Rakhsha et al. (2020).

1.2 Original Contribution

We investigate the problem of online configuration with continuous decision space in MDPs, where
the rewards may be both deterministic or stochastic. Precisely, we study the problem of an online
configurator which chooses at any round a transition function from a continuous decision space and
receives a loss which depends on both the configuration chosen and the fixed policy of the agent
she is interacting with. First, we show that our setting can be seen as an instance of the well-known
Lipschitz bandit framework, as well as a generalization of many adversarial attacks models. Then, we
propose two algorithms, namely, O-DOSC (Online Deterministic Optimistic Configuration Search)
for deterministic settings and O-SOSC (Online Stochastic Optimistic Configuration Search) for the
stochastic ones. We prove that O-DOSC achieves constant regret, matching the lower bound that we
provide for the deterministic setting. Then, we show that O-SOSC achieves a Õ

(√
T
)

regret bound
in stochastic settings. Finally, we empirically validate our results with synthetic simulations.

2

2 Problem Formulation

2.1 Online MDPs

We introduce online episodic loop-free MDPsM = (X,A,P,R) defined as follows.

• T is the number of episodes, with t ∈ [T] denoting a specific episode.

• X and A are the finite state and action spaces, respectively. By the loop-free property, X is
partitioned into H layers X0, . . . , XH such that the first and the last layers are singletons,
i.e., X0 = {x0} and XH = {xH}. We will refer to H as the horizon. Moreover, we denote
as h(x) the layer of a specific state x.

• P : X ×A→ ∆(X) is the transition function, where, for ease of notation, we denote by
P (x′|x, a) the probability of going from state x ∈ X to x′ ∈ X by taking action a ∈ A. By
the loop-free property, it holds that P (x′|x, a) > 0 only if x′ ∈ Xh+1 and x ∈ Xh for some
h ∈ [0 .. H − 1].

• R is the reward function, which can be deterministic, that is, R : X × A → [0, 1], or
stochastic, namely a distribution over [0, 1] for every (x, a). We refer to the reward of a
specific state-action pair x ∈ X, a ∈ A for a specific episode t ∈ [T] as rt(x, a).

Remark 1. Any episodic MDP with horizon H that is not loop-free can be cast into a loop-free one
by suitably duplicating the state space H times, i.e., a state x is mapped to a set of new states (x, h),
where h ∈ [0 .. H].

A policy π : X → ∆(A) defines a probability distribution over actions at each state. For ease of
notation, we denote by π(·|x) the probability distribution for a state x ∈ X , with π(a|x) denoting
the probability of action a ∈ A.

2.2 Continuous Configurable-MDPs

The framework we propose, called Continuous Configurable-MDPs, is characterized by:

• an agent, which knows the optimal policy π∗ of a fixed MDPM(X,A, P ,R). We assume,
without loss of generality, that π∗ is deterministic, since it is well known that MDPs always
admit an optimal deterministic policy;

• a configurator, which knows X , A, P , H , T and at every episode t ∈ [T] can choose a
configuration (i.e., a transition function) Pt from a bounded set I, in order to minimize
her loss L. Similarly to the reward function, the loss function L can be deterministic, that
is, L : X × A → [0, 1], or stochastic, namely a distribution over (x, a), still bounded in
[0, 1]. We refer to the loss of a specific state-action pair x ∈ X, a ∈ A for a specific episode
t ∈ [T] as ℓt(x, a).

Customarily in the literature, it is assumed that the configurator’s loss is directly tied to the agent’s
reward, namely L = R. Instead, in our setting, the two functions can be independent.

In Algorithm 1, we report the interaction between the agent and the configurator in the online MDP.

Precisely, at the beginning of each episode t, the loss function is either deterministically chosen
(although this term may be slightly abused in this context) or stochastically chosen (refer to Line 2).
Subsequently, the configurator chooses a transition function Pt (as in Line 3), and the MDP is
initialized in the state x0 (as per Line 4). During the episode, the agent traverses all the layers based
on her policy π∗ (as described in Line 6) and the transition Pt (as per Line 7). Upon completion of
the episode, the configurator observes the complete trajectory and losses (as stated in Line 9).

3

Algorithm 1 Agent-Configurator Interaction

1: for t ∈ [T] do
2: ℓt is chosen deterministically or stochastically
3: configurator chooses Pt ∈ I
4: state is initialized to x0

5: for h = 0, . . . ,H − 1 do
6: agent plays ah ∼ π∗(·|xh)
7: environment evolves to xh+1 ∼ Pt(·|xh, ah)
8: end for
9: configurator observes {xh, ah}H−1

h=0 and suffers {ℓt(xh, ah)}H−1
h=0

10: end for

2.3 Occupancy Measures

We introduce the notion of occupancy measure, see Rosenberg and Mansour (2019a). Given a
transition function P and a policy π, the occupancy measure dP,π ∈ [0, 1]|X×A×X| induced by P
and π is such that, for every x ∈ Xh, a ∈ A, and x′ ∈ Xh+1 with h ∈ [0 .. H − 1]:

dP,π(x, a, x′) = P[xh = x, ah = a, xh+1 = x′|P, π]. (1)

Moreover, we also define:

dP,π(x, a) =
∑

x′∈Xh+1

dP,π(x, a, x′), (2)

dP,π(x) =
∑
a∈A

dP,π(x, a). (3)

Then, we can introduce the following lemma, which characterizes valid occupancy measures.

Lemma 1 (Rosenberg and Mansour (2019b)). For every d ∈ [0, 1]|X×A×X|, it holds that d is a valid
occupancy measure of an episodic loop-free MDP if and only if, for every h ∈ [0 .. H − 1], the
following three conditions hold:

∑
x∈Xh

∑
a∈A

∑
x′∈Xh+1

d(x, a, x′) = 1∑
a∈A

∑
x′∈Xh+1

d(x, a, x′) =
∑

x′∈Xh−1

∑
a∈A

d(x′, a, x) ∀x ∈ Xh

P d = P

where P is the transition function of the MDP and P d is the one induced by d (see Equation (4)).

Notice that any occupancy measure d induces a transition function P d and a policy πd as:

P d(x′|x, a) = d(x, a, x′)

d(x, a)
, πd(a|x) = d(x, a)

d(x)
. (4)

2.4 Performance Metric

In order to have a proper performance metric for our algorithms, we introduce the notion of objective
function of an MDP (in terms of loss).
Definition 1 (Expected Loss). The expected loss suffered by the configurator at episode t is defined
as the expected value of the sum of the losses given the configuration chosen. Namely,

Jπ
t (P) := E

[
H∑

h=1

ℓt(xh, ah)
∣∣∣π, P] .

By definition of occupancy measure, this can be also written as

Jπ
t (P) =

∑
x∈X,a∈A

ℓt(x, a)d
P,π(x, a).

4

Thus, we define the cumulative regret as follows.

Definition 2 (Cumulative Regret). The cumulative regret is defined as

RT :=

T∑
t=1

Jπ
t (Pt)− Jπ

t (P
∗),

where P ∗ := argminP∈I Jπ
t (P).

Following the formulation based on the occupancy measure, the cumulative regret can be written
as RT :=

∑T
t=1 ℓ

⊤dPt,π
∗ − minP∈I

∑T
t=1 ℓ

⊤dP,π∗
, or equivalently, RT :=

∑T
t=1 ℓ

⊤dPt,π
∗ −

mind∈∆(I,π∗)

∑T
t=1 ℓ

⊤d, where dP,π is the occupancy measure vector defined on the tuple (x, a)
given a transition function P and a policy π, ∆(I, π∗) is the space of occupancy measures built given
the fixed policy π∗ and the transition function space I, and ℓ is defined as:

• in the deterministic setting, ℓ is the loss vector composed by the loss values associated to
each tuple (x, a), namely L(x, a),

• in the stochastic setting, ℓ, is the vector composed by the expected values of the loss
distribution for every (x, a), namely, El∼L(x,a)[l].

Given the definition of this setting, we aim that the regret is sublinear in T , namely RT = o(T).

The optimization problem described above is linear in the space of the occupancy measures, suggesting
the potential adoption of online convex programming tools such as, e.g., Bandit Linear Optimization
(BLO) algorithms proposed by Abernethy et al. (2008). However, these methods cannot be adopted
to our case. Indeed, without the knowledge of the agent’s policy, the configurator cannot compute
the exact occupancy measure corresponding to her transition and the agent’s policy, thus precluding
the design of online bandit linear optimization algorithms working on the occupancy measure space.
In particular, the configurator can only choose a transition function Pt and the objective function is
highly nonlinear in the space of the transition functions.

3 Generality of the Setting and Interpretation

Our model captures various settings. In the following, we provide two different interpretations. The
first focuses on MDPs with adversarial attacks, while the second focuses on Lipshitz bandits.

3.1 Interpreting Our Model as an MDP with Adversarial Attacks

We show that several forms of adversarial attacks in MDPs can be described by our model.

• Bounded state attacks. The adversary can modify the agent’s state, substituting it with
another state that is similar to the original one. This can be modeled by setting:

I = {P : ∀x ∈ X, a ∈ A,∃x′ ∈ B(x), P (·|x, a) = P (·|x′, a)},

where B(x) = {x′ : d(x, x′) < ε} for some distance function d(·) and ε > 0.

• Action attacks. Differently from the state attack scenarios, the adversary can perturb the
action of the agent. This kind of attacks can be modeled by setting:

I = {P : ∀x ∈ X, a ∈ A,∃a′ ∈ B(a), P (·|x, a) = P (·|x, a′)},

where the set B(a) is defined as in the case of bounded state attacks.

• Model attacks. The adversary can change the transition probabilities and the amount of
the change is upper bounded according to some metrics. In particular, we adopt the total
variation metric, denoted with TV. Therefore, I can be defined as

I = {P : TV(P, P) < ε},

for some ε > 0, where TV(P, P ′) :=
∑

x∈X,a∈A ∥P (·|x, a)− P ′(·|x, a)∥1.

5

3.2 Interpreting Our Model as a Lipschitz Bandit

We can show that the optimization problem faced by the configurator can be seen as a Lipschitz
bandit, namely, the objective function in the optimization problem is Lipschitz continuous.
Theorem 2. Let P, P ′ be two transition functions, and π an arbitrary Markovian policy. Then,

|Jπ(P)− Jπ(P ′)| ≤ H2

2
TV(P, P ′),

where TV(P, P ′) :=
∑

x∈X,a∈A ∥P (·|x, a)− P ′(·|x, a)∥1.

Theorem 2 suggests that algorithms for Lipschitz bandits can be used to solve our problem. In
the specific case of the Zooming algorithm by Kleinberg et al. (2008)—one of the state-of-the-art
algorithms for Lipschitz bandits—, we can derive the following upper regret bound.

Corollary 3. The Zooming algorithm in our setting achieves a regret of RT ≤ T
1+D(I)
2+D(I) , where D(I)

is the Zooming dimension of the space I.

When the decision space I depends on a family of p continuous parameters, its Zooming dimension
is exactly p, so that the regret becomes T

1+p
2+p . As we show in the following, this regret bound can be

dramatically improved and therefore the Zooming algorithm is suboptimal for our problem.

4 Deterministic Settings

We focus on deterministic settings, and we present our algorithm and its theoretical guarantees. More
precisely, we assume there is a fixed function ℓ : X × A → [0, 1], such that the configurator will
always achieve the same loss whenever the agent chooses a particular action in a given state.

4.1 Algorithm

Algorithm 2 provides the pseudo-code of Online Deterministic Optimistic Configuration Search (O-
DOSC), which tackles deterministic losses. As is customary in the online learning, the configurator
needs to face an exploration-exploitation trade-off when searching for the optimal configuration.
Specifically, the choice of Pt needs to balance the exploration of unobserved states with the mini-
mization of the configurator’s losses.

As stated above, we assume that the optimal policy π∗ in the MDP is deterministic. Thus, our
algorithm can safely keep track of the actions played and losses obtained. For this purpose, two sets
are initialized: Π contains all possible deterministic policies, while L̂ contains a loss value of 0 for
every tuple (x, a) (Lines 1–2). Such an initialization for the set L̂ is chosen to guarantee optimism
vs. uncertainty with respect to the actual loss function.

In order to determine the transition function Pt for each episode, an optimistic approach is adopted.
In particular, we minimize the objective over the space of the occupancy measures, which is based on
an estimate of the agent’s policy (as reported in Line 4). This approach is optimistic with respect to
both the policy and the loss function, which is set to be 0 when non-visited. Additionally, it is possible
to simplify the optimization over I and Π by reducing to the optimization over the space ∆(I,Π),
where dP,π ∈ ∆(I,Π). For a detailed study of the computational complexity of the minimization
update, please refer to Appendix A.

Then, once the agent’s trajectory and losses suffered throughout the path have been observed (Line 5),
the sets are updated as follows. For L̂, the 0 values associated with the tuples (x, a) visited during
the episode are substituted with the observed losses (Line 6). Instead, for Π, the actions of the state
traversed but not executed by the agent are discarded from the set (Line 7).

4.2 Upper and Lower Regret Bounds

In this section, we present the theoretical guarantees of our O-DOSC algorithm in deterministic
settings. Initially, we state the regret bound achieved by our algorithm, and, subsequently, we show
that the regret bound matches the lower bound for our specific setting.

6

Algorithm 2 O-DOSC Algorithm

Require: X,A,H, I
1: Π← set of all deterministic policies
2: L̂← {0}∀(x,a)∈X×A

3: for t ∈ [T] do
4: Choose

Pt = argmin
P∈I,π∈Π

∑
x,a

 ∑
x′∈Xh(x)+1

dP,π(x, a, x′)

 ℓ̂(x, a) with ℓ̂(x, a) ∈ L̂

5: Observe {xh, ah, ℓ(xh, ah)}H−1
h=0

6: L̂← {ℓ(xh, ah)}H−1
h=0

7: Π← Π \ {xh, a} ∀a̸=ah,∀h∈[0 .. H−1]

8: end for

In deterministic settings, we show that Algorithm 2 achieves a constant regret bound.

Theorem 4. In deterministic settings, Algorithm 2 guarantees a regret upper bound

RT ≤ (H + 1)|X|.

The previous result is rather intuitive. Indeed, since both the optimal policy and reward function are
deterministic, once the configurator visited the entire MDP, the optimal configuration has been found.

The reader may wonder if the the regret bound shown in Theorem 4 is tight for the setting. In the
following, we show that our result is the best any algorithm can achieve. Therefore, Algorithm 2
matches the lower bound of the deterministic setting. Indeed, we can show that,

Theorem 5. In deterministic settings, any algorithm achieves a regret of order Ω(H|X|).

5 Stochastic Settings

We focus on stochastic settings, and we present our algorithm and its theoretical guarantees. Precisely,
we assume that there is a fixed probability distribution, denoted as L, which drives the sampling of
losses from the interval [0, 1] every time the agent chooses an action in a given state.

5.1 Algorithm

Algorithm 3 provides the pseudo-code of Online Stochastic Optimistic Configuration Search (O-
SOSC) for stochastic losses. Similarly to what happens in deterministic settings, the configurator
needs to address an exploration-exploitation trade-off when seeking for the optimal configuration.
Again, the choice of Pt is required to balance the exploration of non-visited states with the minimiza-
tion of the configurator’s losses. Furthermore, in this case we introduce an additional complexity,
given by the way losses are chosen.

By the theory of MDPs, we can safely assume that the optimal policy π∗ for the MDP is deterministic.
Algorithm 3 keeps track of the action played and the losses obtained by the configurator. For this
purpose, we initialize two sets: Π containing all possible deterministic policies, while L̂ contains a
loss value of 0 for every tuple (x, a) (Lines 1–2). We choose this initialization for the set L̂ to be
optimistic with respect to the actual loss function.

To determine the transition function Pt for each episode, we take an optimistic approach by minimiz-
ing the objective over the space of occupancy measures based on an estimate of the agent’s policy (as
reported in Line 4). It is worth noting that this update is optimistic with respect to both the policy
and the loss function, which is set to 0 when non-visited, and is computed with UCB-like lower
bound once traversed. Moreover, it is possible to simplify the optimization over I and Π by reducing
it to the optimization over the space ∆(I,Π), where dP,π ∈ ∆(I,Π). For a detailed study of the
computational complexity of the minimization update, please refer to Appendix A.

7

Once the agent’s trajectory and losses suffered throughout the path have been observed (Line 5), the
sets are updated as follows. For L̂t, the values associated with the tuples (x, a) visited during the
episode are updated with a UCB-like term that depends on the number of visits of a specific state
Nt(x) (Line 6), which is subtracted to the empirical mean ℓ(x, a) of the losses observed. For Π, the
actions of the state traversed but not executed by the agent are discarded from the set (Line 7).

Algorithm 3 O-SOSC Algorithm

Require: X,A,H, I, δ, T
1: Π← set of all deterministic policies
2: L̂0 ← {0}∀(x,a)∈X×A

3: for t ∈ [T] do
4: Choose

Pt = argmin
P∈I,π∈Π

∑
x,a

 ∑
x′∈Xh(x)+1

dP,π(x, a, x′)

 ℓ̂(x, a) with ℓ̂(x, a) ∈ L̂t

5: Observe {xh, ah, ℓt(xh, ah)}H−1
h=0

6: L̂t+1 ←
{
max

(
0, ℓ(xh, ah)−

√
− log(δ)+log(Nt(xh)(Nt(xh)+1))

2Nt(xh)

)}H−1

h=0
7: Π← Π \ {xh, a} ∀a ̸=ah,∀h∈[0 .. H−1]

8: end for

5.2 Upper Regret Bound

In this section, we present the theoretical result for Algorithm 3. First of all, we can derive a simple
lower bound of the regret in the stochastic case. Our model can be seen as a generalization of the
multi-armed bandit setting. Specifically, given any multi-armed bandit problem, we can build an
equivalent instance of our problem as follows. For every arm of the bandit problem, we have a
transition function in I bringing deterministically from a common initial state to a different state.
This implies that the number of transition functions in the MDP equals the number of arms of the
bandit problem (|I| = |X|). Therefore, the standard lower bound for multi-armed bandits with
|I| = |X| number of arms leads to a regret of RT = Ω(

√
|X|T) which represents a lower bound for

our problem. Now, we show that Algorithm 3 achieves a sublinear regret bound.

Theorem 6. In the stochastic setting, for the choice δ = T−1/2, Algorithm 3 achieves a regret upper
bounded as follows,

RT = Õ
(
|X|
√
T +H|X|

)
.

We are interested in comparing our theoretical guarantees with the regret bounds of the algorithms
available in the literature on online learning for adversarial Markov decision processes. It is well-
established that in the online adversarial MDP setting, every algorithm achieves a regret bound of the
order of Ω(H

√
|X||A|T) (Jin et al., 2018). However, the current state-of-the-art result, achieved by

Jin et al. (2019), provides a regret bound of Õ(H|X|
√
|A|T), leaving a gap of order O(

√
|X|) open.

In our setting, we observe a similar dependency: our regret bound depends linearly on the number
of states, while the multi-armed bandits lower bound suggests that a dependency of order O(

√
|X|)

may be achievable.

6 Empirical Evaluation

In this section, we experimentally evaluate the performance of Algorithms 2 and 3 in terms of empiric
regret. We describe the results obtained in the deterministic and stochastic settings separately. In each
case, we conduct experiments with both discrete and continuous decision spaces I.

As a baseline, we opt for UCB1 (Auer et al., 2002) since, in the case of discrete decision spaces,
UCB1 is a standard baseline, while, in the case of continuous decision spaces, UCB1 can be preferred
to Zooming (Kleinberg et al., 2008) for two reasons. The first reason is that the design of a suitable

8

0 200 400 600 800 1000
Rounds

0

10

20

30

40

Av
er

ag
e

Cu
m

ul
at

iv
e

Re
gr

et

UCB1
O-DOSC

(a)

0 2 4 6 8 10 12 14
Rounds

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

Cu
m

ul
at

iv
e

Re
gr

et

UCB1
O-DOSC

(b)

0 200 400 600 800 1000
Rounds

0

10

20

30

40

Av
er

ag
e

Cu
m

ul
at

iv
e

Re
gr

et

UCB1
O-DOSC

(c)

Figure 1: Average cumulative regret with a 95% confidence interval over 10 experiments in determin-
istic settings with discrete (a, b) and continuous (c) decision spaces.

0 20000 40000 60000 80000 100000
Rounds

0

250

500

750

1000

1250

1500

1750

2000

Av
er

ag
e

Cu
m

ul
at

iv
e

Re
gr

et

UCB1
O-SOSC

(a)

0 20000 40000 60000 80000 100000
Rounds

0

250

500

750

1000

1250

1500

1750

2000

Av
er

ag
e

Cu
m

ul
at

iv
e

Re
gr

et

UCB1
O-SOSC

(b)

Figure 2: Average cumulative regret with a 95% confidence interval over 10 experiments in stochastic
settings with discrete (a) and continuous (b) decision spaces.

covering oracle for Zooming raises several conceptual and computational issues due to the high
number of dimensions whose solutions is open. The second reason is that, in our experimental
settings, the optimal solution is one of the arms, and, in these cases, UCB1 is a more severe baseline
than Zooming as it guarantees a much better regret bound.

In the following experiments, we consider a Markov decision process structured as follows. The
MDP consists of four layers. As is standard in the loop-free model, the first and the last layers are
singletons, while the second and third layers each comprise two states. Additionally, every state is
associated with two actions. For reasons of space, the description of the experimental settings and
additional details on the experimental results can be found in Appendix C.

Deterministic Settings We report in Figure 1 the experimental results obtained with deterministic
settings where the cumulative regret is averaged over 10 runs. In particular, Figure 1(a) shows the
results with discrete settings, while Figure 1(c) shows the results with continuous settings. In both
cases, O-DOSC dramatically outperforms UCB1. Figure 1(b) clearly shows that O-DOSC effectively
computes the optimal transition function during the very initial rounds, and subsequently it ceases
to explore. Indeed, once O-DOSC visited all the states, it can numerically compute the optimal
transition. Instead, UBC1 keeps exploring for a long time.

Stochastic Settings We report in Figure 2 the experimental results obtained with deterministic
settings where the cumulative regret is averaged over 10 runs. In particular, Figure 2(a) shows
the results with discrete settings, while Figure 2(b) shows the results with continuous settings. In
both cases, O-SOSC outperforms UCB1. Differently from what happens in deterministic settings,
O-SOSC does not find the optimal solution in the initial rounds, and additional exploration is required.
However, the performance exhibited by O-SOSC in this setting is remarkably impressive.

9

7 Conclusions and Future Works

In this paper, we propose the problem of online configuration of Markov decision processes with
continuous decision spaces. We study the problem both when the losses are deterministic and
stochastic. We propose O-DOSC algorithm, which achieves constant regret in deterministic settings,
and we show that this result is tight with respect to the lower bound. Then, we propose O-SOSC
which achieves a sublinear regret bound when the losses are stochastic. Finally, we empirically
validate our theoretical results with synthetic simulations.

In future work, we are interested in studying the problem when losses are adversarial, namely no
statistical assumption are made. Furthermore, we aim to study the problem of online configurations
against a learning agent, namely, when the policy of the agent is allowed to be dynamic.

References
Jacob D. Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient

algorithm for bandit linear optimization. In Annual Conference Computational Learning Theory,
2008.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement learn-
ing. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Informa-
tion Processing Systems, volume 21. Curran Associates, Inc., 2008. URL https://proceedings.
neurips.cc/paper/2008/file/e4a6222cdb5b34375400904f03d8e6a5-Paper.pdf.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning, 2017. URL https://arxiv.org/abs/1703.05449.

Thiago P. Bueno, Denis D. Mauá, Leliane N. Barros, and Fabio G. Cozman. Modeling Markov
decision processes with imprecise probabilities using probabilistic logic programming. In Alessan-
dro Antonucci, Giorgio Corani, Inés Couso, and Sébastien Destercke, editors, Proceedings of the
Tenth International Symposium on Imprecise Probability: Theories and Applications, volume 62
of Proceedings of Machine Learning Research, pages 49–60. PMLR, 10–14 Jul 2017. URL
https://proceedings.mlr.press/v62/bueno17a.html.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Eyal Even-Dar, Sham M Kakade, and Yishay Mansour. Online markov decision processes. Mathe-
matics of Operations Research, 34(3):726–736, 2009.

Elad Hazan. Introduction to online convex optimization. CoRR, abs/1909.05207, 2019. URL
http://arxiv.org/abs/1909.05207.

Inaam Ilahi, Muhammad Usama, Junaid Qadir, Muhammad Umar Janjua, Ala Al-Fuqaha, Dinh Thai
Hoang, and Dusit Niyato. Challenges and countermeasures for adversarial attacks on deep
reinforcement learning, 2021.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably effi-
cient? In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates,
Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf.

Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. Learning adversarial mdps with
bandit feedback and unknown transition, 2019. URL https://arxiv.org/abs/1912.01192.

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in metric spaces, 2008.

Ezgi Korkmaz. Investigating vulnerabilities of deep neural policies, 2021.

10

https://proceedings.neurips.cc/paper/2008/file/e4a6222cdb5b34375400904f03d8e6a5-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/e4a6222cdb5b34375400904f03d8e6a5-Paper.pdf
https://arxiv.org/abs/1703.05449
https://proceedings.mlr.press/v62/bueno17a.html
http://arxiv.org/abs/1909.05207
https://proceedings.neurips.cc/paper_files/paper/2018/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf
https://arxiv.org/abs/1912.01192

Xian Yeow Lee, Sambit Ghadai, Kai Liang Tan, Chinmay Hegde, and Soumik Sarkar. Spatiotempo-
rally constrained action space attacks on deep reinforcement learning agents, 2019.

Xian Yeow Lee, Yasaman Esfandiari, Kai Liang Tan, and Soumik Sarkar. Query-based targeted
action-space adversarial policies on deep reinforcement learning agents, 2021.

Alberto Maria Metelli, Mirco Mutti, and Marcello Restelli. Configurable markov decision processes,
2018.

Alberto Maria Metelli, Emanuele Ghelfi, and Marcello Restelli. Reinforcement learning in con-
figurable continuous environments. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 4546–4555. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/metelli19a.html.

Alberto Maria Metelli, Guglielmo Manneschi, and Marcello Restelli. Policy space identification
in configurable environments. Machine Learning, 111(6):2093–2145, 2022. doi: 10.1007/
s10994-021-06033-3. URL https://doi.org/10.1007/s10994-021-06033-3.

Gergely Neu, Andras Antos, András György, and Csaba Szepesvári. Online markov decision
processes under bandit feedback. Advances in Neural Information Processing Systems, 23, 2010.

Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan, and Girish Chowdhary. Robust
deep reinforcement learning with adversarial attacks, 2017.

Amin Rakhsha, Goran Radanovic, Rati Devidze, Xiaojin Zhu, and Adish Singla. Policy teaching via
environment poisoning: Training-time adversarial attacks against reinforcement learning, 2020.

Giorgia Ramponi, Alberto Maria Metelli, Alessandro Concetti, and Marcello Restelli. Learn-
ing in non-cooperative configurable markov decision processes. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neu-
ral Information Processing Systems, volume 34, pages 22808–22821. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
c0f52c6624ae1359e105c8a5d8cd956a-Paper.pdf.

Aviv Rosenberg and Yishay Mansour. Online stochastic shortest path with bandit feedback and
unknown transition function. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019a. URL https://proceedings.neurips.cc/paper/2019/file/
a0872cc5b5ca4cc25076f3d868e1bdf8-Paper.pdf.

Aviv Rosenberg and Yishay Mansour. Online convex optimization in adversarial Markov decision
processes. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 5478–5486. PMLR, 09–15 Jun 2019b. URL https://proceedings.mlr.
press/v97/rosenberg19a.html.

Jay K. Satia and Roy E. Lave. Markovian decision processes with uncertain transition probabilities.
Operations Research, 21(3):728–740, 1973. ISSN 0030364X, 15265463. URL http://www.
jstor.org/stable/169381.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Kai Liang Tan, Yasaman Esfandiari, Xian Yeow Lee, Aakanksha, and Soumik Sarkar. Robustifying
reinforcement learning agents via action space adversarial training, 2020.

Chelsea C. White and Hany K. Eldeib. Markov decision processes with imprecise transition
probabilities. Operations Research, 42(4):739–749, 1994. ISSN 0030364X, 15265463. URL
http://www.jstor.org/stable/171626.

Fan Wu, Linyi Li, Zijian Huang, Yevgeniy Vorobeychik, Ding Zhao, and Bo Li. Crop: Certifying
robust policies for reinforcement learning through functional smoothing, 2022.

11

https://proceedings.mlr.press/v97/metelli19a.html
https://doi.org/10.1007/s10994-021-06033-3
https://proceedings.neurips.cc/paper_files/paper/2021/file/c0f52c6624ae1359e105c8a5d8cd956a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c0f52c6624ae1359e105c8a5d8cd956a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a0872cc5b5ca4cc25076f3d868e1bdf8-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/a0872cc5b5ca4cc25076f3d868e1bdf8-Paper.pdf
https://proceedings.mlr.press/v97/rosenberg19a.html
https://proceedings.mlr.press/v97/rosenberg19a.html
http://www.jstor.org/stable/169381
http://www.jstor.org/stable/169381
http://www.jstor.org/stable/171626

A Computational Complexity of the Minimization Problem

In this section we study the computational complexity of the minimization update performed by
Algorithm 2 and Algorithm 3. Indeed, the optimization problem required to be solved strongly
depends on how the decision space of the transition function is chosen beforehand. In the following,
we show that the minimization update can be performed in polynomial time when the decision space
I is:

• I =
{
P : |P (x′|x, a)− P (x′|x, a)| ≤ ϵ(x, a, x′), ∀(x, a, x′) ∈ Xh ×A×Xh+1

}
• I =

{
P : ||P (·|x, a)− P (·|x, a)||1 ≤ ϵ(x, a), ∀(x, a) ∈ X ×A

}
• I is a discrete set.

Thus, we show that the O-DOSC and O-SOSC optimization problems applied to the previous decision
spaces may be modeled as Linear Programs (or a combination of them), which implies that they can
be solved in polynomial time.

Precisely, the optimization problem that has to be solved in Algorithm 2 is the following:

argmin
P∈I,π∈Π

∑
x,a

 ∑
x′∈Xh(x)+1

dP,π(x, a, x′)

 ℓ̂(x, a)

The idea is to optimize on the occupancy space ∆(I,Π), namely:

argmin
d∈∆(I,Π)

∑
x,a

 ∑
x′∈Xh(x)+1

d(x, a, x′)

 ℓ̂(x, a)

As previously stated, the optimization problems can be formulated as different LPs, depending on the
choice of the set I . Then the output of the LP, namely d∗, allows to compute the probability function
P (played by the algorithm) as:

P d∗
(x′|x, a) = d∗(x, a, x′)∑

y∈Xh(x)+1

d∗(x, a, y)

In the rest of this section we will use the ∀h term to identify ∀h ∈ [0, . . . ,H − 1]. We start with
the optimization problem for the decision space defined by the module of the difference between
transition values for the triple (x, a, x′), namely:

• I =
{
P : |P (x′|x, a)− P (x′|x, a)| ≤ ϵ(x, a, x′), ∀(x, a, x′) ∈ Xh ×A×Xh+1

}

arg min
∑
x,a

 ∑
x′∈Xh(x)+1

d(x, a, x′)

 ℓ̂(x, a) (5)

s.t. ∑
x∈Xh,a∈A,x′∈Xh+1

d(x, a, x′) = 1 ∀h

(6)∑
a∈A,x′∈Xh+1

d(x, a, x′) =
∑

x′∈Xh−1,a∈A

d(x′, a, x) ∀h,∀x ∈ Xh

(7)

d(x, a, x′) ≤ [P (x′|x, a) + ϵ(x, a, x′)] ·
∑

y∈Xh+1

d(x, a, y) ∀h,∀(x, a, x′) ∈ Xh ×A×Xh+1

(8)

12

d(x, a, x′) ≥ [P (x′|x, a)− ϵ(x, a, x′)] ·
∑

y∈Xh+1

d(x, a, y) ∀h,∀(x, a, x′) ∈ Xh ×A×Xh+1

(9)

d(x, a, x′) ≥ 0 ∀h,∀(x, a, x′) ∈ Xh ×A ×Xh+1

(10)∑
x̄∈Xh(x)−1

∑
a′∈A

d(x̄, a′, x) =
∑

x′∈Xh(x)+1

d(x, a, x′) ∀x ∈ X, ∀a ∈ Π(x)

(11)

where X is the set of visited states, Constraints (6),(7),(10) define a valid occupancy measure,
Constraints (8) and (9) define the space of the transition functions and finally Constraint (11) sets to 1
the probability that actions in Π are played. It easy to check the previous optimization problem is a
LP, which can be solved in polynomial time.

We then focus on the case where the distance between transition functions for every tuple (x, a) is
computed by the ∥ · ∥1-norm, namely:

• I =
{
P : ||P (·|x, a)− P (·|x, a)||1 ≤ ϵ(x, a), ∀(x, a) ∈ X ×A

}

arg min
∑
x,a

 ∑
x′∈Xh(x)+1

d(x, a, x′)

 ℓ̂(x, a) (12)

s.t. ∑
x∈Xh,a∈A,x′∈Xh+1

d(x, a, x′) = 1 ∀h

(13)∑
a∈A,x′∈Xh+1

d(x, a, x′) =
∑

x′∈Xh−1,a∈A

d(x′, a, x) ∀h,∀x ∈ Xh

(14)

d(x, a, x′)− P (x′|x, a) ·
∑

y∈Xh+1

d(x, a, y) ≤ ϵ(x, a, x′) ∀h,∀(x, a, x′) ∈ Xh ×A×Xh+1

(15)

P (x′|x, a) ·
∑

y∈Xh+1

d(x, a, y)− d(x, a, x′) ≤ ϵ(x, a, x′) ∀h,∀(x, a, x′) ∈ Xh ×A×Xh+1

(16)

d(x, a, x′) ≥ 0 ∀h,∀(x, a, x′) ∈ Xh ×A×Xh+1

(17)∑
x̄∈Xh(x)−1

∑
a′∈A

d(x̄, a′, x) =
∑

x′∈Xh(x)+1

d(x, a, x′) ∀x ∈ X, ∀a ∈ Π(x)

(18)∑
x′∈Xh+1

ϵ(x, a, x′) ≤ ϵ(x, a) ·
∑

x′∈Xh+1

d(x, a, x′) ∀h,∀(x, a) ∈ Xh ×A

(19)

where Constraints (13),(14),(17) define a valid occupancy measure, Constraints (15), (16) and (19)
define the space of the transition functions and finally Constraint (18) sets to 1 the probability that
actions in Π are played. It easy to check the previous optimization problem is a LP, which can be
solved in polynomial time.

We conclude the section focusing on the case where transition functions are chosen from a discrete
set. We show how the occupancy measure is computed for a fixed transition function Pi. Precisely,
the occupancy measure can be obtained with a LP formulation, which implies that |I| LPs must be

13

solved to obtain the final result. Notice that, since a single LP can be solved in Polynomial time,
performing it |I| times is still polynomial. Moreover, in the discrete case, the value of the occupancy
measure given in output by the LP is not necessary; indeed, it is sufficient to obtain the optimal values
of the objective function and then to minimize over those values.

• I is a discrete set

arg min
∑
x,a

 ∑
x′∈Xh(x)+1

d(x, a, x′)

 ℓ̂(x, a) (20)

s.t. ∑
x∈Xh,a∈A,x′∈Xh+1

d(x, a, x′) = 1 ∀h (21)

∑
a∈A,x′∈Xh+1

d(x, a, x′) =
∑

x′∈Xh−1,a∈A

d(x′, a, x) ∀h,∀x ∈ Xh (22)

d(x, a, x′) = Pi(x
′|x, a)

∑
y∈Xh+1

d(x, a, y) ∀h,∀(x, a, x′) ∈ Xh ×A×Xh+1 (23)

∑
x̄∈Xh(x)−1

∑
a′∈A

d(x̄, a′, x) =
∑

x′∈Xh(x)+1

d(x, a, x′) ∀x ∈ X, ∀a ∈ Π(x) (24)

d(x, a, x′) ≥ 0 ∀h,∀(x, a, x′) ∈ Xh ×A×Xh+1 (25)

where the meaning of the constraints is similar to the ones of the first LP.

In this section, we have shown that the computational complexity of the minimization problem in the
deterministic setting, namely for Algorithm 2, is polynomial. Notice that, the same result holds in the
stochastic setting as well. Specifically, it easy to check that by substituting the loss value with its
lower-bound, which is not an optimization variable, the same results as in the deterministic setting
can be obtained.

B Omitted Proofs

In the following, we provide the omitted proof of the theorems presented in the main paper, and the
related lemmas. For the sake of clarity we name the following subsections as the main paper sections.

B.1 Interpreting Our Model as a Lipschitz Bandit

Theorem 2. Let P, P ′ be two transition functions, and π an arbitrary Markovian policy. Then,

|Jπ(P)− Jπ(P ′)| ≤ H2

2
TV(P, P ′),

where TV(P, P ′) :=
∑

x∈X,a∈A ∥P (·|x, a)− P ′(·|x, a)∥1.

14

Proof. Let us denote as dP,π
h (·) ∈ ∆(X) the distribution of states of layer h under configuration P .

We have, for every h > 1,

∥dP,π
h (·)− dP

′,π
h (·)∥1 =

∑
x∈X

|dP,π
h (x)− dP

′,π
h (x)|

=
∑
x∈X

∑
x0∈X,a∈A

|P (x|x0, a)π(a|x0)d
P,π
h−1(x0)− P ′(x|x0, a)π(a|x0)d

P ′,π
h−1 (x0)|

=
∑
x∈X

∑
x0∈X,a∈A

π(a|x0)|P (x|x0, a)d
P,π
h−1(x0)− P ′(x|x0, a)d

P ′,π
h−1 (x0)|

≤
∑
x∈X

∑
x0∈X,a∈A

π(a|x0)|P (x|x0, a)d
P,π
h−1(x0)− P (x|x0, a)d

P ′,π
h−1 (x0)|

+ π(a|x0)|P (x|x0, a)d
P ′,π
h−1 (x0)− P ′(x|x0, a)d

P ′,π
h−1 (x0)|

=
∑
x∈X

∑
x0∈X,a∈A

π(a|x0)P (x|x0, a)|dP,π
h−1(x0)− dP

′,π
h−1 (x0)|

+ π(a|x0)d
P ′,π
h−1 (x0)|P (x|x0, a)− P ′(x|x0, a)|.

Here, we can swap the order of the two sums, having, for the first,

∑
x0∈X,a∈A

π(a|x0)|dP,π
h−1(x0)− dP

′,π
h−1 (x0)|

∑
x∈X

P (x|x0, a)

=
∑

x0∈X,a∈A

π(a|x0)|dP,π
h−1(x0)− dP

′,π
h−1 (x0)|

≤ ∥dP,π
h−1(·)− dP

′,π
h−1 (·)∥1.

and, for the second,∑
x0∈X,a∈A

π(a|x0)d
P ′,π
h−1 (x0)

∑
x∈X

|P (x|x0, a)− P ′(x|x0, a)|

=
∑

x0∈X,a∈A

π(a|x0)d
P ′,π
h−1 (x0)∥P (·|x0, a)− P ′(·|x0, a)∥1

≤
∑

x0∈X,a∈A

∥P (·|x0, a)− P ′(·|x0, a)∥1 = TV(P, P ′).

It follows that ∥dP,π
h (·) − dP,π

h (·)∥1 ≤ ∥dP,π
h−1(·) − dP

′,π
h−1 (·)∥1 + TV(P, P ′). Thus, applying the

induction, we get

∥dP,π
h (·)− dP

′,π
h (·)∥1 ≤ hTV(P, P ′).

Now we focus on the quantity,

Jπ(P)− Jπ(P ′) :=

H∑
h=1

ℓ(xh, ah)π(ah|xh)d
P,π
h (xh).

Since the loss is bounded by 1, we get

|Jπ(P)−Jπ(P ′)| =

∣∣∣∣∣
H∑

h=1

ℓ(xh, ah)π(ah|xh)(d
P,π
h (xh)− dP

′,π
h (xh))

∣∣∣∣∣ ≤
H∑

h=1

∥dP,π
h (·)−dP

′,π
h (·)∥1,

15

which, applying the previous relation, is bounded by

H2

2
TV(P, P ′).

B.2 Deterministic setting

Before being able to prove our main result, let us focus on a simple proposition that will help in the
next.
Proposition 7. Let π1, π2 be two policies. Then,

TV(dP,π1 , dP,π2) ≤ HdP,π2({π1(x) ̸= π2(x)})

Proof. Let us suppose {π1(x) ̸= π2(x)} corresponds to a single state x⋆ belonging to layer h⋆, in
the opposite case we can simply use linearity and sum their visiting distributions. Then,

TV(dP,π1 , dP,π2) ≤
H∑

h=1

TV(dP,π1

h , dP,π2

h)

=

H∑
h=h⋆

TV(dP,π1

h , dP,π2

h).

This is true since, for h < h⋆ the effect of x⋆ is null. In the opposite case, we have

TV(dP,π1

h , dP,π2

h) = sup
S⊂X

Pπ1
(xh ∈ S)− Pπ2

(xh ∈ S)

= sup
S⊂X

Pπ1
(xh ∈ S)− Pπ2

(xh ∈ S|xh⋆
= x⋆)Pπ2

(xh⋆
= x⋆)

− Pπ2
(xh ∈ S|xh⋆

̸= x⋆)Pπ2
(xh⋆

̸= x⋆),

where the last step holds due to the law of total probabilities. Moreover, under the event {sh⋆
̸= s⋆},

the two process are the same, so that

Pπ1(xh ∈ S|xh⋆ ̸= s⋆)Pπ2(xh⋆ ̸= x⋆) = Pπ2(xh ∈ S|xh⋆ ̸= x⋆)Pπ2(xh⋆ ̸= x⋆).

This leads to, for all h ≥ h⋆,

TV(dP,π1

h , dP,π2

h) = sup
S⊂X

Pπ1
(xh ∈ S)− Pπ2

(xh ∈ S)

= sup
S⊂X

dP,π2(x⋆)(Pπ1
(xh ∈ S|xh⋆

= x⋆)− Pπ2
(xh ∈ S|xh⋆

= x⋆))

≤ dP,π2(x⋆).

Summing over h concludes the proof.

Theorem 4. In deterministic settings, Algorithm 2 guarantees a regret upper bound

RT ≤ (H + 1)|X|.

Proof. Since the policy is fixed and deterministic, the loss in a given state is always the same, and
the dependence on the action can be omitted. For this reason we write

ℓ(x) := ℓ(x, π(x)).

Using algorithm 2, at any timestep we play the configuation Pt ∈ I minimizing the following
quantity

LBt(Pt) := min
P∈I,π∈Π

∑
x

dP,π(x)ℓ̂(x),

16

where ℓ̂ is the loss estimated by the algorithm which, due to the determinism of the loss, is always a
lower bound for the true loss. This means being optimistic on the actions of the policy in unknown
states, assuming they have loss of 0 (the best possible).

In this way, we have, LBt(P) ≤ Jπ(P) at any time step t and for any P ∈ I. From now on, denote
as Xt the set of unknown state at time t. We can underline some crucial facts about the algorithm:

1. If we have visited all the states we play the optimal configuration Pt = P⋆

2. Let us call εt := Jπ(Pt)− LBt(Pt). We can note that, at any time step t, we must have∑
x∈Xt

dPt,π(x) ≥ εt
H + 1

.

Indeed,

Jπ(Pt)− LBt(Pt) =
∑
x∈X

dPt,π(x)ℓ(x)−
∑

x∈X\Xt

dPt,π̂t(x)ℓ(x)

=
∑
x∈X

dPt,π(x)ℓ(x)−
∑

x∈X\Xt

dPt,π(x)ℓ(x)

+
∑

x∈X\Xt

dPt,π(x)ℓ(x)−
∑

x∈X\Xt

dPt,π̂(x)ℓ(x)

=
∑
x∈Xt

dPt,π(x)ℓ(x) +
∑

x∈X\Xt

(dPt,π(x)− dPt,π̂t(x))ℓ(x).

Since the loss is in [0, 1], the first term is bounded by the sum of the visiting distribution of
the unknown states

∑
Xt

dPt,π(x)ℓ(x) ≤
∑
Xt

dPt,π(x),

while the second one is bounded by TV(dPt,π1 , dPt,π2), again since the loss is in [0, 1].
Therefore, we can use proposition 7 to have

TV(dPt,π1 , dPt,π2) ≤ H
∑
Xt

dPt,π(x).

Therefore, substituting in the previous formula for the lower bound we get

Jπ(Pt)− LBt(Pt) ≤
∑
Xt

dPt,π(x) +H
∑
Xt

dPt,π(x) = (H + 1)
∑
Xt

dPt,π(x),

from which

∑
Xt

dPt,π(x) ≥ Jπ(Pt)− LBt(Pt)

H + 1
=

εt
H + 1

.

17

3. Our regret is bounded by E
[∑T

t=1 εt

]
. Indeed,

RT = E

[
T∑

t=1

Jπ(Pt)− Jπ(P⋆)

]

≤ E

[
T∑

t=1

Jπ(Pt)− LBt(Pt)

]

= E

[
T∑

t=1

εt

]
.

Now, let us define the following sequence of random variables Nt for every t ∈ 1, . . . T .

Nt := number of new states discovered at step t.

With this definition, we can also define the number of states visited up to any time t, which corresponds
to the size of Xt at that time t,

Vt :=

t∑
τ=1

Nτ = |Xt|.

Also, we will define

TX := inf{t ∈ 1, . . . T : Vt = |X|}.

With this definitions, we have indeed

TX∑
t=1

Nt = |S| a.s. (26)

Now, recall that, by points 2, 3 we have

RT ≤ E

[
T∑

t=1

εt

]

≤ (H + 1)E

 T∑
t=1

∑
x∈Xt

dPt,π(x)

= (H + 1)E

 TX∑
t=1

∑
x∈Xt

dPt,π(x)

 .

Moreover, since the MDP is assumed without loss of generality to be loop free, the quantity∑
x∈Xt

dPt,π(x) corresponding to the expected time spent in the set Xt at time t, also corresponds
to the expected value of the number of states in Xt visited, as no state can be visited multiple times
in the same episode. This quantity was called Nt in the previous steps. Therefore,

RT ≤ (H + 1)E

 TX∑
t=1

∑
x∈Xt

dPt,π(x)

= (H + 1)E

[
TX∑
t=1

E[Nt]

]
.

18

To conclude, we have only to derive a bound on this quantity based on equation (26). Indeed, we have

RT ≤ (H + 1)E

[
TX∑
t=1

E[Nt]

]

= (H + 1)E

[
TX∑
t=1

Nt

]
eq.26
= (H + 1)|X|.

which concludes the proof.

Proof of the lower bound (deterministic setting) . To prove the lower bound, we propose to use a
family of MDPs which is represented in the following figure:

. . .

.
.
.

.
.
.

x1,1

x2,1 x2,2
x2,N

x3,1 x3,2

xH−1,1 xH−1,2

xH,1

Theorem 8. In deterministic settings, any algorithm achieves a regret of order Ω(H|X|).

Proof. We use the family of MDPs defined in the previous figure. Formally, the state space is defined
in this way

19

1. The first and last layers are trivial.

2. The second layer is made by N states.

3. The layers h = 3, ...H − 1 are made by 2 states.

Instead, the action set corresponds to {1, 2}. The loss is defined as

ℓh(x, a) =

{
1 x = xh,1 h ∈ {3, . . . H − 1}
0 otherwise

.

This means that the loss is only distributed on the first column (the states of the form xh,1 and is
constant +1). The set I of possible transition is defined by the set of transitions P satisfiying the
following conditions

• Ph(·|x, a) is always deterministic

• h = 2 : for any x ∈ X2, a ∈ A

P2(x3,1|x, a) =
{
1 a = 1

0 a = 2
P2(x3,2|x, a) =

{
0 a = 1

1 a = 2
.

In other words, at layer 2, the next state is only decided by the action of the agent.

• h = 3, . . . H − 2 for any x ∈ X2, a ∈ A, we have

Ph(xh+1,1|x, a) =
{
1 x = xh,1

0 x = xh,2
Ph(xh+1,2|x, a) =

{
0 x = xh,1

1 x = xh,2
.

Roughly speaking, this tells us that after the second layer, the process proceeds on the same
vertical line regardless of the action of the agent.

From these two condition, we can see that the only transition that is not fixed is the one from state
x1,1 to the second layer, which can be arbitrary, until it is deterministic. This means that we, as
configurator can choose arbitrarily the second state of the agent. It is then able to choose the state
x3,1 or x3,2, and proceed on all the states xh,1 in the first case or xh,2 in the former.

By definition |I| = N , since it corresponds to the possible choice if the state in h = 2. At this point,
we want to show that for any algorithm there is a problem instance (which in this case is given by
the agent policy π, the only element unknown to the configurator) where it cannot achieve expected
regret less than N(H − 3).

First, note that by Yao’s principle it suffices to show that there exist a distribution over the problem
instances such that any deterministic algorithm suffers at least N/2(H − 3) regret when the instance
that the algorithm runs on is chosen randomly from the distribution. As distribution of instances we
simply choose the uniform distribution over the set Π of the policies π such that

π2(2|y) =
{
1 y = x2,n

0 otherwise
n ∈ [1, . . . N].

Of course, this set has exactly cardinality N . Indeed, any deterministic algorithm can be viewed as a
sequence of permutation of the indexes 1, . . . N , which are repeated until loss 0 is found. In each
round where this is not found, the loss is instead H − 3. Therefore, by the expected regret of such
algorithms can be computed exactly as

E[RT] ≥ (H − 3)
N

2
,

since, whichever the permutation choosen, the expected order of a random element is N/2.

Now, we can rewrite with the substitution |X| = N + 2(H − 2), which gives

20

E[RT] ≥ (H − 3)
|X| − 2(H − 2)

2
=

H|X| − 2H2 − 3|X|+ 10H − 12

2
.

B.3 Stochastic setting

In this section we focus on the more challenging version where the reward is stochastic. Before the
main theorem, we have to prove a minor result.
Lemma 2. Let us consider a sequence of i.i.d. random variables Yt for t = 1, . . . T of mean µ and
bounded in [0, 1]. For every δ > 0, we have

P

(
∃t : |̄Yt − µ| >

√
− log(δ) + log(t(t+ 1))

2t

)
≤ δ.

where

Ȳt :=
1

t

t∑
i=1

Yi.

Proof. By Hoeffding’s bound, we have, for every t,

P

(
Ȳt − µ >

√
− log(δ) + log(t(t+ 1))

2t

)
≤ e−2t

− log(δ)+log(t(t+1))
2t

= elog(δ)−log(t(t+1))

=
δ

t(t+ 1)
.

Now, we can just use the union bound:

P

(
∃t : Ȳt − µ >

√
− log(δ) + log(t(t+ 1))

2t

)
≤

T∑
t=1

P

(
∃t : Ȳt − µ >

√
− log(δ) + log(t(t+ 1))

2t

)

≤
T∑

t=1

δ

t(t+ 1)

= δ.

At the same way, we can prove

P

(
∃t : µ̄− Yt >

√
− log(δ) + log(t(t+ 1))

2t

)
≤ δ,

The two results being equivalent to the thesis.

Theorem 6. In the stochastic setting, for the choice δ = T−1/2, Algorithm 3 achieves a regret upper
bounded as follows,

RT = Õ
(
|X|
√
T +H|X|

)
.

Proof. Since the policy is fixed and deterministic, the reward in a given state is always the same, and
the dependence on the action can be omitted. For this reason we write

ℓ(x) := ℓ(x, π(x)).

21

Our algorithm plays (Line 4), at any time t, the configuration P ∈ I minimizing the following lower
bound

LBt(P) = argmin
P∈I,π∈Π

∑
x,a

 ∑
x′∈Xh(x)+1

dP,π(x, a, x′)

 ℓ̂(x, a)

ℓ̂(x, a) = max

(
0, ℓ(xh, ah)−

√
− log(δ) + log(Nt(xh)(Nt(xh) + 1))

2Nt(xh)

)
.

We will call Pt, πt the couple configuration, policy attaining the minimum.

Define, for every t = 1, . . . T ,

εt := Jπ(Pt)− LBt(Pt).

(Part 1) Failure probability.

Let us note

E :=

{
∃x ∈ X, t ∈ [T] : |ℓ̄t(x)− ℓ(x)| >

√
− log(δ) + log(Nt(x)(Nt(x) + 1))

2Nt(x)

}
,

where Nt(x) denotes the number of visits of state x at time t. By lemma 2, we have P(E) ≤ 2|X|δ.

(Part 2) Decomposition of the regret. Let us suppose at time t we have pulled a suboptimal
configuration Pt. Assume that we are under the event Ec: we have that all lower bounds are
respected, so that at any time step t, LBt(P

∗) ≤ Jπ(P ∗). This fact allows the following inequality

RT = E

[
T∑

t=1

Jπ(Pt)− Jπ(P⋆)

]

≤ E

[
T∑

t=1

Jπ(Pt)− LBt(Pt)

]

= E

[
T∑

t=1

εt

]
.

In this way we have proved that, under the event Ec, our regret is bounded by
∑T

t=1 εt.

(Part 3) From regret to visiting state distribution. By definition, we have at any time t

εt = Jπ(Pt)− LBt(Pt)

=
∑
x∈X

dPt,π(x)ℓ(x)−
∑
x∈X

dPt,π(x)ℓ̂(x)

=
∑
x∈X

dPt,π(x)ℓ(x)−
∑
x∈X

dPt,π(x)ℓ̂(x)

+
∑
x∈X

dPt,π(x)ℓ̂(x)−
∑
x∈X

dPt,π(x)ℓ̂(x)

=
∑
x∈X

dPt,π(x)(ℓ(x)− ℓ̂(x)) +
∑
x∈X

(dPt,π(x)− dPt,π(x))ℓ̂(x).

22

Note that, under the event Ec, we have, for any x ∈ X ,

ℓ(x)− ℓ̂t(x) = ℓ(x)− ℓ̄t(x) +

√
− log(δ) + log(Nt(x)(Nt(s) + 1))

2t

≤ ℓ(x)− ℓ̄t(x) + 2

√
− log(δ) + log(Nt(x)(Nt(x) + 1))

2Nt(x)

= 2

√
− log(δ) + log(Nt(x)(Nt(x) + 1))

2Nt(x)︸ ︷︷ ︸
L(Nt(x),δ)

.

This ensures that

∑
x∈X

dPt,π(x)(ℓ(x)− ℓ̂(x)) ≤
∑
x∈X

dPt,π(x)L(Nt(x), δ). (27)

About the second term, we can say that it is bounded by TV(dP,π1 , dP,π2), since the reward is in
[0, 1]. Therefore, we can use proposition 7 to have∑

x∈X

(dPt,π(x)− dPt,πt(x))ℓ̂t(x) ≤ TV(dP,π, dP,πt) ≤ H
∑
Xt

dPt,π(x),

where, as in the previous proofs, Xt indicates the set of unknown states at time t. If we define the
function

G(Nt(x)) =

{
H Nt(x) = 0

0 Nt(x) ≥ 1

The previous can be rewritten as

∑
x∈X

(dPt,π(x)− dPt,πt(x))ℓ̂t(x) ≤
∑
X

dPt,π(x)G(Nt(x)),

which, together with equation (27), gives

εt ≤
∑
X

dPt,π(x)(L(Nt(x), δ) +G(Nt(x))).

(Part 4) Rewriting the regret. From the previous results, we have

RT ≤ E

[
T∑

t=1

εt

]

≤ E

[
T∑

t=1

∑
x∈X

dPt,π(x)(L(Nt(x), δ) +G(Nt(x)))

]

= E

[∑
x∈X

T∑
t=1

dPt,π(x)(L(Nt(x), δ) +G(Nt(x)))

]
.

Which, noting as 1Pt,t(x) the indicator function of state x being visited at step t by configuration Pt,
can also be written as

23

RT ≤ E

[∑
X

T∑
t=1

dπPt
(x)(L(Nt(x), δ) +G(Nt(x)))

]

= E

[∑
X

T∑
t=1

1Pt,t(x)(L(Nt(x), δ) +G(Nt(x)))

]
. (28)

the last step being valid due to the fact that E[1Pt,t(x)|Ft−1] = dPt,π(x), which is true thanks
to the loop-free assumption, and the fact that the other two random quantities Nt(x), Pt are
Ft−1−measurable. Therefore, we need to bound the two sums

T∑
t=1

1Pt,t(x)L(Nt(x), δ) +

T∑
t=1

1Pt,t(x)G(Nt(x)).

(Part 5) Bounding the two sums. Due to the fact that Nt(x) =
∑t

τ=1 1Pt,t(x), we have

T∑
t=1

1Pt,t(x)L(Nt(x), δ) ≤
T∑

n=1

L(n, δ),

T∑
t=1

1Pt,t(x)G(Nt(x)) ≤
T∑

n=1

G(n).

The second sum is trivial: by definition of G we get exactly H . About the first one we can say that

T∑
n=1

L(n, δ) =

T∑
n=1

2

√
− log(δ) + log(n(n+ 1))

2n

≤
T∑

n=1

2

√
− log(δ)

2n
+ 2

√
log(n(n+ 1))

2n
,

by convexity. The first part is

T∑
n=1

2

√
− log(δ)

2n
=
√
−2 log(δ)

T∑
n=1

1√
n
≤
√
−2 log(δ)(1 + 2

√
T).

While the second is

√
2

T∑
n=1

√
log(n(n+ 1))

n
≤
√
2 log(T (T + 1))

T∑
n=1

√
1

n

≤ 2
√

log(T + 1)

T∑
n=1

√
1

n

≤ 2
√

log(T + 1)(1 + 2
√
T).

Putting all the parts together we have that the sum of all the terms is bounded by

H + (2
√
log(T + 1) +

√
−2 log(δ))(1 + 2

√
T).

(Part 6) Final considerations.

As pointed out, the expected regret is bounded by the expected value of the quantity

24

ST :=

T∑
t=1

1Pt,t(x)L(Nt(x), δ) +

T∑
t=1

1Pt,t(x)G(Nt(x)),

that was bounded in the previous step. The expected regret is then bounded as follows, for every
δ > 0:

1. Under E, which has probability 2δ|X|, the regret is bounded by T .

2. Under Ec, by the previous point

ST ≤
∑
x∈X

H + (2
√
log(T + 1) +

√
−2 log(δ))(1 + 2

√
T)

≤ |X|H + |X|(2
√
log(T + 1) +

√
−2 log(δ))(1 + 2

√
T).

Therefore, choosing δ = T−1/2, we get

RT = TP(E) + STP(Ec)

≤ 2|X|
√
T + |X|H + |X|(2

√
log(T + 1) +

√
log(T))(1 + 2

√
T).

The final expected regret is then bounded by

RT ≤ 2|X|
√
T + |X|H + |X|(2

√
log(T + 1) +

√
log(T))(1 + 2

√
T).

C Experiments

For the sake of clarity, we report in the followings additional details on the five instances presented
in Figures 1,2. Each instance was tested on the MDP presented in Figure 3. We report the original
configuration of the MDP (config 0) and all the configurations used for the discrete case in Table 1:

State Action State Config 0 Config 1 Config 2 Config 3
S0 A1 S1 0.1 0.9 0.5 0.1
S0 A1 S2 0.9 0.1 0.5 0.9
S0 A0 S1 0.1 0.9 0.5 1.0
S0 A0 S2 0.9 0.1 0.5 0.0
S1 A3 S3 0.1 0.9 0.5 1.0
S1 A3 S4 0.9 0.1 0.5 0.0
S1 A2 S3 1.0 1.0 1.0 1.0
S2 A5 S3 0.1 0.9 0.5 0.1
S2 A5 S4 0.9 0.1 0.5 0.9
S2 A4 S4 1.0 1.0 1.0 1.0
S3 A6 E 1.0 1.0 1.0 1.0
S4 A7 E 1.0 1.0 1.0 1.0

Table 1: Tabular representation of the transition function for each configuration.

• Instance of Figure 1a:
– number of rounds T = 1000

– number of experiments Exp = 10

– arms n = 4

– transition functions described in Table 1
– loss vector ℓ = [0.58, 0.42, 0.5, 0.4],

25

• Instance of Figure 1b:
– number of rounds T = 15

– number of experiments Exp = 10

– arms n = 4

– transition functions described in Table 1
– loss vector ℓ = [0.58, 0.42, 0.5, 0.4],

• Instance of Figure 1c:
– number of rounds T = 1000

– number of experiments Exp = 10

– arms n = 4

– transition functions I =
{
P : ||P (·|x, a)− P (·|x, a)||1 ≤ ϵ(x, a), ∀(x, a) ∈ X ×A

}
– ϵ = 5

– loss vector ℓ = [0.58, 0.42, 0.5, 0.4],

• Instance of Figure 2a:
– number of rounds T = 100000

– number of experiments Exp = 10

– arms n = 4

– transition functions described in 1
– mean loss vector ℓ = [0.58, 0.42, 0.5, 0.4],

– unitary variance for each arm
• Instance of Figure 2b:

– number of rounds T = 100000

– number of experiments Exp = 10

– arms n = 4

– transition functions I =
{
P : ||P (·|x, a)− P (·|x, a)||1 ≤ ϵ(x, a), ∀(x, a) ∈ X ×A

}
– ϵ = 5

– mean loss vector ℓ = [0.58, 0.42, 0.5, 0.4],

– unitary variance for each arm

Training Details In the main paper we have presented five experiments, each corresponding to a
different setting. Each experiment is performed with a fixed random seed. The computational time
for one experiment depends on the setting. We run the experiments of each setting in parallel with a
total computational time of approximately 12 hours.

Compute We run the numerical simulations on a server with the following specifications:

• CPU: 128x Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz
• RAM: 512,0 GB
• Operating system: Ubuntu 20.04.5 LTS
• System type: 64 bit

Reproducibility We have performed every experiment with a fixed seed. The seed influences the
loss generation by the environment and the transitions to the next states.

26

S0

S1

S2

S3

S4

E

A0

A1

A2

A3

A4

A5

A6

A7

Figure 3: Graphical representation of the MDP used for our experiments

27

	Introduction
	Related Work
	Original Contribution

	Problem Formulation
	Online MDPs
	Continuous Configurable-MDPs
	Occupancy Measures
	Performance Metric

	Generality of the Setting and Interpretation
	Interpreting Our Model as an MDP with Adversarial Attacks
	Interpreting Our Model as a Lipschitz Bandit

	Deterministic Settings
	Algorithm
	Upper and Lower Regret Bounds

	Stochastic Settings
	Algorithm
	Upper Regret Bound

	Empirical Evaluation
	Conclusions and Future Works
	Computational Complexity of the Minimization Problem
	Omitted Proofs
	Interpreting Our Model as a Lipschitz Bandit
	Deterministic setting
	Stochastic setting

	Experiments

