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ABSTRACT

Large Language Models (LLMs) boosts human efficiency but also poses misuse
risks, with watermarking serving as a reliable method to differentiate AI-generated
content from human-created text. In this work, we propose a novel theoretical
framework for watermarking LLMs. Particularly, we jointly optimize both the wa-
termarking scheme and detector to maximize detection performance, while con-
trolling the worst-case Type-I error and distortion in the watermarked text. Within
our framework, we characterize the universally minimum Type-II error, showing
a fundamental trade-off between detection performance and distortion. More im-
portantly, we identify the optimal type of detectors and watermarking schemes.
Building upon our theoretical analysis, we introduce a practical, model-agnostic
and computationally efficient token-level watermarking algorithm that invokes a
surrogate model and the Gumbel-max trick. Empirical results on Llama-13B and
Mistral-8×7B demonstrate the effectiveness of our method. Furthermore, we also
explore how robustness can be integrated into our theoretical framework, which
provides a foundation for designing future watermarking systems with improved
resilience to adversarial attacks.

1 INTRODUCTION

Arising with Large Language Models (LLMs) (Touvron et al., 2023) that demonstrate stunning
power are substantial risks: spreading disinformation, generating fake news, engaging in plagiarism,
etc. Such risks elevate as LLMs are increasingly widely adopted for content generation. Distinguish-
ing AI-generated content from human-written text is then critically demanded and watermarking
serves as an effective solution to address this challenge.

Existing watermarking techniques for AI-generated text can be classified into two categories: post-
process and in-process. Post-process watermarks (Brassil et al., 1995; Yoo et al., 2023; Yang et al.,
2023; Munyer et al., 2023; Yang et al., 2022; Sato et al., 2023; Zhang et al., 2024; Abdelnabi &
Fritz, 2021) are applied after the text is generated, while in-process watermarks (Wang et al., 2023;
Fairoze et al., 2023; Hu et al., 2023; Huo et al., 2024; Zhang et al., 2023; Tu et al., 2023; Ren
et al., 2023) are embedded during generation. Between the two types, in-process watermarking is
more favorable due to its flexibility and numerous techniques have been proposed to seamlessly inte-
grate watermarks into the generation process. Notably, an ideal in-process watermarking scheme for
LLMs should have four desired properties: 1) Detectability: the watermarking can be reliably de-
tected with Type-I error controlled; 2) Distortion-free (Christ et al., 2024; Kuditipudi et al., 2023):
the watermarked text preserves the quality of the original generated text by maintaining the original
text distribution; 3) Robustness (Zhao et al., 2023; Liu & Bu, 2024): the watermark is resistant
to modifications aimed at removing it from the watermarked text; 4) Model-agnostic (Kirchen-
bauer et al., 2023a): detection does not require knowledge of the original watermarked LLMs or the
prompts. Clearly, one expects a tension between these dimensions. Yet, despite the great efforts in
designing watermarking and detection schemes that heuristically balance these factors, theoretical
understanding of the fundamental trade-offs therein is rather limited to date.

Among existing theoretical analyses, Huang et al. (2023) frames statistical watermarking as an inde-
pendent testing problem between text and watermark and analyzes the optimal watermarking scheme
for a specific detection process. While their analysis can be extended to a model-agnostic setting,
they do not propose a practical algorithm. In contrast, Li et al. (2024) proposes a surrogate hy-
pothesis testing framework based on i.i.d. pivotal statistics, with the goal of identifying statistically
optimal detection rules for a given watermarking scheme. However, their method depends on a
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suitably chosen watermarking scheme without optimizing it, and the proposed detection rule is not
necessarily optimal for the original independence testing problem. While these studies provide
useful insights, they fall short of capturing the optimal watermarking scheme and detection rule,
limiting their practicality and effectiveness in real-world applications.

In this paper, we formulate the LLM watermarking problem as an independence test between the
text and an auxiliary variable to jointly optimize both the watermarking scheme and the detector,
achieving universal optimality. Our theoretical framework characterizes the fundamental trade-off
between detectability, distortion, and robustness by minimizing Type-II error. To capture the de-
tectability, we define universal optimality in two aspects: 1) controlling the false alarm rate across
all possible text distributions to ensure worst-case Type-I error performance, and 2) designing a
universally optimal detector that remains effective across all text distributions. Additionally, we
measure the distortion of a watermarked LLM using the divergence between the watermarked text
distribution and the original text distribution. Robustness, on the other hand, depends on modifi-
cations to the watermarked text, such as replacement, deletion/insertion, or paraphrasing. Unlike
existing approaches that evaluate robustness via experiments (Liu & Bu, 2024) or provide detection
error bounds under specific modifications (Kuditipudi et al., 2023; Zhao et al., 2023), our framework
covers a broader range of potential attacks, including those that preserve the semantics of the text.

Our contributions can be summarized as follows:

• We characterize the universally minimum Type-II error, representing the best achievable detection
performance, which reveals a fundamental trade-off between detection performance and distor-
tion. More importantly, we characterize the entire class of detectors and watermarking schemes
that are universally optimal, meaning no other type can achieve the same performance.

• To balance theoretical guarantees and practical implementation, we propose a practical token-level
watermarking scheme that ensures a small Type-II error (exponentially decaying under certain
conditions) while controlling worst-case Type-I error. It also shows inherent robustness against
token replacement attacks. The corresponding algorithm, leveraging a surrogate language model
and the Gumbel-max trick, is both model-agnostic and computationally efficient.

• We conduct extensive experiments over various language models (Llama2-13B (Touvron et al.,
2023), and Mistral-8×7B (Jiang et al., 2023)) on multiple datasets. Comparisons with baseline
methods show the effectiveness of our algorithm, even under token replacement attacks.

• Lastly, we explore how to incorporate robustness against semantic-invariant attacks into our theo-
retical framework, providing insights for designing optimal semantic-based watermarking systems
that are robust to such attacks in the future.

Proofs and additional analyses are deferred to Appendix.

Other Related Literature. The advancement of LLMs boosts productivity but also presents chal-
lenges like bias and misuse, which watermarking addresses by tracing AI-generated content and
distinguishing it from human-created material. Currently, many watermarking methods for LLMs
are proposed (Zhou et al., 2024; Fu et al., 2024; Giboulot & Teddy, 2024; Wu et al., 2023; Kirchen-
bauer et al., 2023b), including biased and unbiased (distortion-free) watermarking. Biased water-
marks (Kirchenbauer et al., 2023a; Zhao et al., 2023; Liu & Bu, 2024; Liu et al., 2024; Qu et al.,
2024) typically alter the next-token prediction distribution slightly, thereby increasing the likelihood
of sampling certain tokens. For example, Kirchenbauer et al. (2023a) proposes to divide the vocab-
ulary into green and red lists, slightly enhancing the probability of green tokens in the next token
prediction (NTP) distribution. Unbiased watermarks (Zhao et al., 2024; Fernandez et al., 2023;
Boroujeny et al., 2024; Christ et al., 2024) maintain the original NTP distributions unchanged, using
various sampling strategies to embed watermarks. The Gumbel-max watermark (Aaronson, 2023)
utilizes the Gumbel-max trick (Gumbel, 1954) for sampling the NTP distributions, while Kuditipudi
et al. (2023) introduces an inverse transform method for this purpose.

Most existing watermarking schemes and detectors are heuristic and lack theoretical support. Tra-
ditional post-process watermarking schemes, which apply watermarks after generation, have been
extensively studied from information-theoretic perspective (Martinian et al., 2005; ?; Chen, 2000;
Merhav & Ordentlich, 2006; Merhav & Sabbag, 2008). For in-process watermarking, while two
prior works attempt to derive theoretically optimal schemes or detectors, their solutions are either
not jointly optimized or lacked universal optimality as achieved in our paper. Huang et al. (2023)
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designs an optimal watermarking scheme for a specific detector, but their detector is not model-
non-agnostic, requiring the original NTP distributions of the watermarked LLM, with experiments
also conducted under this assumption. Li et al. (2024) proposes detection rules using pivotal statis-
tics, formulating the task as a minimax optimization, but their detector’s optimality depends on
the assumption that the pivotal statistics are i.i.d.. In contrast, we propose a framework that jointly
optimizes the watermarking scheme and detector for an optimal configuration of both components.

2 PRELIMINARIES AND PROBLEM FORMULATION

Notations. For any set X , we denote the space of all probability measures over X by P(X ). For
a random variable taking values in X , we often use PX or QX to denote its distribution, and
use the lower-cased letter x to denote a realization of X . For a sequence of random variables
X1, X2, . . . , Xn, and any i, j ∈ [n] with i ≤ j, we denote Xj

i := (Xi, . . . , Xj). We may use
distortion function, namely, a function D : P(X ) × P(X ) → [0,+∞) to measure the dissimilar-
ity between two distributions in P(X ). For example, the total variation distance, as a notion of
distortion, between µ, ν ∈ P(X ) is DTV(µ, ν) :=

∫
1
2 |

dµ
dν − 1| dν. For any set A ⊆ X , we use

δA to denote its characteristic function, namely, δA(x) := 1{x ∈ A}. Additionally, we denote
(x)+ := max{x, 0} and x ∧ y := min{x, y}.
Hypothesis Testing Framework for Watermark Detection. LLMs process text through “tokeniza-
tion”, namely, breaking it down into words or word fragments, called “tokens”. An LLM generates
text token by token. Specifically, let V denote the token vocabulary, typically of size |V| = O(104)
(Liu, 2019; Radford et al., 2019; Zhang et al., 2022; Touvron et al., 2023). An unwatermarked LLM
generates the next token Xt based on a prompt u and the previous tokens xt−1

1 by sampling from a
distribution QXt|xt−1

1 ,u, referred to as the next-token prediction (NTP) distribution at position t. For
simplicity, we will suppress the dependency of the generated tokens on the prompt u in our notation
throughout the paper. The joint distribution of a length-T generated token sequence XT

1 is then
given by QXT

1
(·) :=

∏T
t=1 QXt|Xt−1

1
(·|·), which we assume to be identical to one that governs the

human-generated text.

Preceding          

Random number
generator

Shared

LLM

Auxiliary

Watermarking
LLM

Shared

Detector Watermark
Detection

Watermarked

Figure 1: Generic framework of LLM
watermarking and detection.

Watermarking LLM. We consider a general formulation of
watermarking schemes for LLMs, where the construction of
the NTP distribution for the watermarked LLM exploits an
auxiliary random sequence, as shown in Figure 1. Specifi-
cally, associated with each token position t, there is a random
variable ζt taking values in some space Z (either discrete or
continuous). The NTP distribution for the watermarked LLM
is now in the form of (and denoted by) PXt|xt−1

1 ,ζt
1
, from

which Xt is sampled. The resulted joint distribution of the
watermarked sequence XT

1 is denoted by PXT
1

. The joint structure of sampling ζT1 and the new NTP
distribution PXt|xt−1

1 ,ζt
1
, i.e., the joint distribution PXT

1 ,ζT
1

, characterizes a “watermarking scheme”.
Here, we assess the distortion level of a watermarking scheme by measuring the statistical diver-
gence between the watermarked distribution PXT

1
and the original distribution QXT

1
. Examples of

such divergences include squared distance, total variation, KL divergence, and Wasserstein distance.
Definition 1 (ϵ-distorted watermarking scheme). A watermarking scheme is ϵ-distorted with respect
to distortion D, if D(PXT

1
, QXT

1
) ≤ ϵ, where D can be any distortion metric.

Notably, the auxiliary sequence ζT1 is usually sampled using a shared key accessible during both
watermarked text generation and watermark detection. Our formulation here allows it to take an ar-
bitrary structure, which contrasts the rather restricted i.i.d. assumption considered in Li et al. (2024,
Working Hypothesis 2.1). As shown in the following example, existing watermarking schemes, to
the best of our knowledge, may all be seen as special cases of this formulation.
Example 1 (Existing watermarking schemes). In Green-Red List watermarking scheme (Kirchen-
bauer et al., 2023a), at each position t, the vocabulary V is randomly split into a green list G and
a red list R, where |G| = ρ|V| for some ρ ∈ (0, 1). The splitting can then be represented by a
|V|-dimensional binary auxiliary variable ζt, indexed by x ∈ V , where ζt(x) = 1 means x ∈ G;
otherwise, x ∈ R. The watermarking scheme is as follows. For t = 1, 2, . . . ,

– Compute a hash of the previous token Xt−1 using a hash function h : V × R → R and a shared
secret key, i.e., h(Xt−1, key).
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– Use h(Xt−1, key) as a seed to uniformly sample the auxiliary variable ζt from the set {ζ ∈
{0, 1}|V| : ∥ζ∥1 = ρ|V|} to construct the green list G.

– Sample Xt from the following NTP distribution which increases the logit of tokens in G by δ > 0:

PXt|xt−1
1 ,ζt

(x) =
Q

Xt|x
t−1
1

(x) exp(δ·1{ζt(x)=1})∑
x∈V Q

Xt|x
t−1
1

(x) exp(δ·1{ζt(x)=1}) .

Several other watermarking schemes are also presented in Appendix A.

Watermark Detection. When XT
1 is generated by a watermarked LLM, it depends on ζT1 , while

human-generated XT
1 and ζT1 are independent. Therefore, given a pair of sequences (XT

1 , ζ
T
1 ), the

detection task boils down to discriminating between the following two hypotheses:

• H0: XT
1 is generated by a human, i.e., (XT

1 , ζ
T
1 ) ∼ QXT

1
⊗ PζT

1
;

• H1: XT
1 is generated by a watermarked LLM, i.e., (XT

1 , ζ
T
1 ) ∼ PXT

1 ,ζT
1

.

We consider a model-agnostic detector γ : VT × ZT → {0, 1}, which maps (XT
1 , ζ

T
1 ) to the index

of one of the two hypotheses. In our theoretical analysis, we assume the auxiliary sequence ζT1
can be fully recovered from XT

1 and the shared key. This assumption is however dropped in our
practical implementation.

Performance is measured by Type-I (false alarm) and Type-II (missed detection) error probabilities:

β0(γ,QXT
1
, PζT

1
) := Pr(γ(XT

1 , ζ
T
1 ) ̸= 0 | H0) = (QXT

1
⊗ PζT

1
)(γ(XT

1 , ζ
T
1 ) ̸= 0),

β1(γ, PXT
1 ,ζT

1
) := Pr(γ(XT

1 , ζ
T
1 ) ̸= 1 | H1) = PXT

1 ,ζT
1
(γ(XT

1 , ζ
T
1 ) ̸= 1). (1)

When QXT
1

and PXT
1 ,ζT

1
are fixed, it is well-known that the optimal detector is a likelihood-ratio

test (Cover & Thomas, 2006). However, this is a non-model-agnostic detector, as it requires the
knowledge of QXT

1
. In contrast, in our setting, the watermarking scheme PXT

1 ,ζT
1

is to be designed
and both QXT

1
and PXT

1 ,ζT
1

are unknown to the detector.

Furthermore, since humans can generate texts with arbitrary structures, we must account for con-
trolling Type-I error across all possible distributions QXT

1
. Therefore, our goal is to jointly design

an ϵ-distorted watermarking scheme and a model-agnostic detector that minimizes the Type-II error
while ensuring the worst-case Type-I error supQ

XT
1

β0(γ,QXT
1
, PζT

1
) under a constant α ∈ (0, 1).

Specifically, the optimization problem is:

inf
γ,P

XT
1 ,ζT1

β1(γ, PXT
1 ,ζT

1
) s.t. sup

Q
XT

1

β0(γ,QXT
1
, PζT

1
) ≤ α, D(PXT

1
, QXT

1
) ≤ ϵ. (Opt-O)

The optimal objective value is the universally minimum Type-II error, denoted by β∗
1(QXT

1
, α, ϵ).

3 JOINTLY OPTIMIZE WATERMARKING SCHEME AND DETECTOR

Solving the optimization in (Opt-O) is challenging due to the binary nature of γ and the vast set of
possible γ, sized 2|V|T |Z|T . To address this, we first minimize over PXT

1 ,ζT
1

with a fixed detector,
aiming to uncover a potential structure for the optimal detector.

Consider any model-agnostic detector γ(XT
1 , ζ

T
1 ) = 1{(XT

1 , ζ
T
1 ) ∈ A1}, where A1 ⊆ VT × ZT

defines the acceptance region for H1. We then rewrite the optimization as:

inf
P

XT
1 ,ζT1

β1(γ, PXT
1 ,ζT

1
) s.t. sup

Q
XT

1

β0(γ,QXT
1
, PζT

1
) ≤ α, D(PXT

1
, QXT

1
) ≤ ϵ. (Opt-I)

We first derive a lower bound for the minimum Type-II error in (Opt-I) (and for the Type-II error
in (Opt-O)), which is independent of the detector γ. We then identify a detector and watermarking
scheme that achieves this lower bound, indicating that it represents the universally minimum Type-II
error. Thus, the proposed detector and watermarking scheme is optimal, as presented in Theorem 2.
The theorem below establishes this universally minimum Type-II error for all feasible watermarking
schemes and detectors.
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Theorem 1 (Universally minimum Type-II error). The universally minimum Type-II error attained
from (Opt-O) is

β∗
1 (QXT

1
, α, ϵ) = min

P
XT

1
:D(P

XT
1

,Q
XT

1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+. (2)

By setting D as total variation distance DTV, (2) can be simplified as

β∗
1 (QXT

1
, α, ϵ) =

(∑
xT
1

(QXT
1
(xT

1 )− α)+ − ϵ
)
+
, if

∑
xT
1

(α−QXT
1
(xT

1 ))+ ≥ ϵ.

universally
minimum

Type-II error

distortion-free -distorted

universally
minimum

Type-II error

Figure 2: Universally minimum Type-
II error w/o distortion

Theorem 1 shows that, for any watermarked LLM, the fun-
damental performance limits of watermark detection depend
on the original NTP distribution of the LLM. When the orig-
inal QXT

1
has lower entropy, the best achievable detection er-

ror increases. This hints that it is inherently difficult to detect
low-entropy watermarked text. However, by allowing higher
distortion ϵ, the watermarked LLM has more capacity to re-
duce the detection error again. Figure 2 shows an illustration.
Moreover, we find that β∗

1(QXT
1
, α, ϵ) matches the minimum

Type-II error from Huang et al. (2023, Theorem 3.2), which is
optimal under a specific detector but not universally. Our results demonstrate that β∗

1(QXT
1
, α, ϵ) is

the universally minimum Type-II error for all detectors and watermarking schemes, indicating their
detector is within the set of optimal detectors.
Optimal type of detectors and watermarking schemes. Since we have established the univer-
sally minimum Type-II error, a natural question arises: what is the optimal type of detectors and wa-
termarking schemes that achieve this universal minimum (for all QXT

1
and ϵ)? Let Π∗(QXT

1
, α, ϵ)

denote the set of all solutions (γ∗, P ∗
XT

1 ,ζT
1
) that achieve β∗

1(QXT
1
, α, ϵ).

Theorem 2 ((Informal Statement) Optimal type of detectors and watermarking schemes). The opti-
mal type of detectors is given by

Γ∗ := {γ | γ(XT
1 , ζ

T
1 ) = 1{XT

1 = g(ζT1 )}, for some surjective g : ZT → S ⊃ VT }.

For any γ∗ ∈ Γ∗ and any (QXT
1
, ϵ), the corresponding optimal ϵ-distorted watermarking scheme

P ∗
XT

1 ,ζT
1

is provided in Appendix D, i.e., (γ∗, P ∗
XT

1 ,ζT
1
) ∈ Π∗(QXT

1
, α, ϵ).

Corollary 3 (Universal optimality of detectors Γ∗). For any γ /∈ Γ∗, there exists (Q̃XT
1
, ϵ̃) such that

no ϵ̃-distorted watermarking scheme PXT
1 ,ζT

1
satisfies (γ, PXT

1 ,ζT
1
) ∈ Π∗(Q̃XT

1
, α, ϵ̃).

Theorem 2 and Corollary 3 suggest that, to guarantee the construction of an optimal watermarking
scheme for any arbitrary LLM, the detector must be selected from the set Γ∗.

Using a toy example in Figure 3, we now illustrate how to construct the optimal watermarking
schemes, where

P ∗
XT

1
= argmin

P
XT

1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+.

redundant

Figure 3: A toy example of the optimal de-
tector and watermarking scheme. Links be-
tween V and Z suggest P ∗

X1,ζ1
> 0.

Constructing the optimal watermarking scheme P ∗
XT

1 ,ζT
1

is equivalent to transporting the probability mass P ∗
XT

1
on

V to Z , maximizing P ∗
XT

1 ,ζT
1
(xT

1 , ζ
T
1 ) when xT

1 = g(ζT1 ),
while keeping the worst-case Type-I error below α. With-
out loss of generality, by letting T = 1, we present Fig-
ure 3 to visualize the optimal watermarking scheme. The
construction process is given step by step as follows:
– Identify text-auxiliary pairs: We begin by identifying text-auxiliary pairs (x, ζ) ∈ V × Z with
γ(x, ζ) = 1{x = g(ζ)} = 1 and connect them by blue solid lines.
– Introducing redundant auxiliary value: We enlarge Z to include an additional value ζ̃ and set
γ(x, ζ̃) = 0 for all x. We will call ζ̃ “redundant”.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

– Mass allocation for P ∗
X1

(x) > α: If P ∗
X1

(x) > α, we transfer α mass of P ∗
X1

(x) to the ζ

connected by the blue solid lines. The excess mass is transferred to the redundant ζ̃ (orange dashed
lines). Specifically, for x(1), where P ∗

X1
(x(1)) > α and x(1) = g(ζ(1)) = g(ζ(2)), we move α

units of mass from P ∗
X1

(x(1)) to P ∗
ζ1
(ζ(1)) and P ∗

ζ1
(ζ(2)), ensuring that P ∗

ζ1
(ζ(1)) + P ∗

ζ1
(ζ(2)) = α.

The rest (P ∗
X1

(x(1)) − α) units of mass is moved to ζ̃. Similarly, for x(2), where P ∗
X1

(x(2)) > α

and x(2) = g(ζ(3)), we move α mass from P ∗
X1

(x(2)) to P ∗
ζ1
(ζ(3)) and (P ∗

X1
(x(2))− α) mass to ζ̃.

Consequently, the probability of ζ̃ is Pζ1(ζ̃) = (P ∗
X1

(x(1)) − α) + (P ∗
X1

(x(2)) − α). In this way,
there is a chance for the lower-entropy texts x(1) and x(2) to be mapped to the redundant ζ̃ during
watermark generation.
– Mass allocation for P ∗

X1
(x) < α: For x(3), where P ∗

X1
(x(3)) < α and x(3) = g(ζ(4)), we move

the entire mass P ∗
X1

(x(3)) to P ∗
ζ1
(ζ(4)) along the blue solid line. It means that higher-entropy texts

will not be mapped to the redundant ζ̃ during watermark generation.
– Outcome: This construction ensures that P ∗

ζ1
(ζ) ≤ α for all ζ ∈ {ζ(1), ζ(2), ζ(3), ζ(4)}, keeping

the worst-case Type-I error under control. The Type-II error is equal to P ∗
ζ1
(ζ̃), which is exactly the

universally minimum Type-II error. This scheme can be similarly generalized to T > 1.

In Figure 3, when there is no link between (x, ζ) ∈ V × Z , the joint probability P ∗
X1,ζ1

(x, ζ) = 0.
By letting ϵ = 0, the scheme guarantees that the watermarked LLM remains unbiased (distortion-
free). Note that the detector proposed in Huang et al. (2023, Theorem 3.2) is also included in our
framework, see Appendix D. Furthermore, if P ∗

XT
1
(xT

1 ) > α (i.e., low-entropy text), its correspond-
ing auxiliary variable may be redundant, making it harder to detect as LLMs generated. However,
this ensures better control of false alarm rates for low-entropy texts.

To better illustrate Corollary 3, we provide an example of suboptimal detectors where no water-
marking scheme can achieve universally optimal performance.
Example 2 (Suboptimal detectors). Consider a detector γ(XT

1 , ζ
T
1 ) = 1{f(XT

1 ) = ζT1 }, for some
surjective function f : VT → S ⊆ ZT . The minimum Type-II error attained from (Opt-I) is
minP

XT
1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
s∈S

((∑
xT
1 :f(xT

1 )=s PXT
1
(xT

1 )
)
− α

)
+

, higher than β∗
1(QXT

1
, α, ϵ).

In the robustness discussion at the end of the paper, we will further show that this is, in fact, optimal
in the presence of certain types of text modifications.

4 IMPLEMENTABLE TOKEN-LEVEL OPTIMAL WATERMARKING SCHEME

In our previous analysis, even with the detector having full access to the watermark sequence ζT1 ,
several practical challenges remain. First, designing a proper function g and alphabet ZT can be
difficult since |V|T grows exponentially with T , making it hard to identify all pairs (xT

1 , ζ
T
1 ) such

that 1{XT
1 = g(ζT1 )} = 1. Second, these detectors are not robust to text modifications; even

one changed token misclassifies the entire sequence. Third, the previous watermarking scheme
is only optimal for a fixed T , making it unsuitable for practical scenarios where text is generated
incrementally in segments with varying T .

To tackle these issues, we aim to design a practical detector and corresponding optimal watermark-
ing scheme, balancing detection performance with real-world feasibility. Let’s revisit examples of
heuristic detectors based on specific watermarking schemes.
Example 3 (Examples of heuristic detectors). Two example detectors from existing works:
• Green-Red List watermark detector (Kirchenbauer et al., 2023a): γ(XT

1 , ζ
T
1 ) =

1{ 2√
T
(
∑T

t=1 1{ζt(Xt) = 1} − T
2 ) ≥ λ} where λ > 0, ζt = (ζt(x))x∈V is uniformly sam-

pled from {ζ ∈ {0, 1}|V| : ∥ζ∥1 = ρ|V|} with the seed h(Xt−1, key), ρ ∈ (0, 1) is thegreen list
proportion.

• Gumbel-max watermark detector (Aaronson, 2023): γ(XT
1 , ζ

T
1 ) = 1{−

∑T
t=1 log(1−ζt(Xt)) ≥

λ}} where λ > 0, ζt = (ζt(x))x∈V is uniformly sampled from ∈ [0, 1]|V| with the seed
h(Xt−n

t−1 , key) and h is a hash function.

We observe that the commonly used detectors take the non-optimal form: γ(XT
1 , ζ

T
1 ) =

1
{

1
T

∑T
t=1 Test Statistics of (Xt, ζt) ≥ λ

}
. These detectors, along with corresponding watermark-

6
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ing schemes, can effectively detect incrementally generated watermarked sequences. As T increases,
the earlier watermarks ζt and test statistics remain unchanged. Moreover, at each position t, the wa-
termark alphabet only depends on the constant size |V|. Inspired by these detectors, we propose the
following detector to address the issues mentioned: for some surjective function g : Z → S ⊃ V ,

γ(XT
1 , ζ

T
1 ) = 1

{
1

T

T∑
t=1

1{Xt = g(ζt)} ≥ λ

}
. (3)

This detector combines the advantages of existing approaches with the optimal design from Theorem
2. The test statistic for each token (Xt, ζt) is optimal at position t, enabling a token-level optimal
watermarking scheme that improves the detection performance for each token.

The token-level optimal watermarking scheme is constructed following the same rule in The-
orem 2, but based on the NTP distribution at each position t, acting only on the token vo-
cabulary V . The sequence-level false alarm constraint α is replaced by a token-level false
alarm constraint η ∈ (0,min{1, (α/

(
T

⌈Tλ⌉
)
)

1
⌈Tλ⌉ }], which is typically much greater than α.

For example, the joint distribution P ∗
XT

1
(cf. Theorem 2) will be replaced by P ∗

Xt|xt−1
1

=

minP
Xt|x

t−1
1

:D(P
Xt|x

t−1
1

,Q
Xt|x

t−1
1

)≤ϵ

∑
x∈V(PXt|xt−1

1
(x) − η)+. Under this scheme, the previously

generated watermarks remain unaffected by subsequent tokens. The details are deferred to Appendix
F and the algorithm is provided in Section 5.

Subsequently, we evaluate its Type-I and Type-II errors on the entire sequence (cf. (1)).
Lemma 4 ((Informal Statement) Token-level optimal watermarking detection errors). Under the
detector γ in (3) and the token-level optimal watermarking scheme, for any token-level false alarm
η ∈ (0,min{1, (α/

(
T

⌈Tλ⌉
)
)

1
⌈Tλ⌉ }], the worst-case Type-I error for length-T sequence is upper

bounded by α. If we assume that two tokens with a positional distance greater than n are inde-
pendent, then with a properly chosen detector threshold, Type-II error decays exponentially in T

n .

We show that the token-level optimal watermarking maintains good performance on the entire se-
quence. The formal statement is provided in Appendix G.

Furthermore, we observe that even without explicitly introducing robustness to the token-level op-
timal watermarking scheme, it inherently demonstrates some robustness against token replacement.
The following results shows that if the watermark sequence ζT1 is shared between the LLM and
the detector γ (cf. (3)), the token at position t can be replaced with probability Pr(ζt is redundant)
without affecting 1

T

∑T
t=1 1{Xt = g(ζt)}.

Proposition 5 (Robustness against token replacement). Under the detector γ in (3) and the token-
level optimal watermarking scheme, the expected number of tokens that can be randomly replaced
in XT

1 without compromising detection performance is:

E∏T
t=1 P∗

Xt,ζt|X
t−1
1 ,ζ

t−1
1

[ T∑
t=1

1{ζt is redundant}
]
=

T∑
t=1

EXt−1
1

[∑
x

(
P ∗
Xt|Xt−1

1
(x|Xt−1

1 )− η
)
+

]
,

where P ∗
Xt|Xt−1

1

is induced by P ∗
Xt,ζt|Xt−1

1 ,ζt−1
1

. When ϵ = 0, we have P ∗
Xt|Xt−1

1

= QXt|Xt−1
1

.

Implementation. A challenge in implementing the optimal watermarking scheme is transmitting
the auxiliary sequence ζT1 with a shared key to the detector, as P ∗

ζT
1

depends on P ∗
XT

1
, unknown

to the detector. One practical workaround is enforcing PζT
1

= Unif(ZT ) and sampling ζT1 via a
hash function with a shared key. However, this alternative watermarking scheme (cf. Appendix E)
results in a higher minimum Type-II error compared to β∗

1(QXT
1
, α, ϵ). The gap reflects the cost of

pseudo-transmitting ζT1 via a hash function.

Another practical workaround is to use a surrogate model (much smaller than the watermarked
LLMs) during detection to approximate P ∗

XT
1

based solely on the text XT
1 (without prompt). Al-

though this approximated text distribution may deviate from P ∗
XT

1
, the optimal watermarking scheme

and detector still exhibit superior performance. Algorithmic details are provided in Section 5. In ex-
periments, we demonstrate that even when ζT1 is not fully recovered during detection, the robustness
against token replacement surpasses that of benchmark watermarking schemes.

7
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5 ALGORITHMS AND EXPERIMENTS

Algorithms. To implement our proposed token-level optimal watermarking scheme and detector
in Section 4, we consider the distortion-free setting (ϵ = 0) and design an optimal detector (cf. (3))
that is computationally efficient by defining g as the inverse of a hash function hkey, i.e.,

γ(XT
1 , ζ

T
1 ) = 1

{ 1

T

T∑
t=1

1{hkey(Xt) = ζt} ≥ λ
}
. (4)

Our proposed watermarking scheme relies on NTP distributions during the generation process, but
these distributions are not accessible during the detection process due to the model-agnostic property.
This poses a significant hurdle to practical implementation. To overcome this, we introduce a novel
method using a surrogate language model (SLM) to generate surrogate NTP distributions during the
detection process. The SLMs are smaller in parameter size than the watermarked LLMs but use
the same tokenizer, allowing us to track NTP distributions on the same vocabulary. Along with the
Gumbel-max trick to share pseudo-randomness, we present the following algorithms for sampling
ζt during the generation and recovering it with SLM in the detection phases (cf. Figure 4).

Watermarked text generation (Algorithm 1). Given the detector in (4), we first define the alphabet of
ζt, which includes the unique mappings {hkey(x)}x∈V derived from the vocabulary via the secret
key, along with an additional redundancy ζ̃. For each time step, we first construct the Pζt from the
NTP distribution QXt|xt−1

1 ,u as described in Lines 3 and 4 of Algorithm 1. Then, we employ the
Gumbel-max trick (Gumbel, 1954) to sample ζt from Pζt . Lastly, the next token xt is sampled as
h−1
key(ζt) if ζt is not redundant; otherwise, it will be sampled from a multinomial distribution, as

shown in Line 10.

Algorithm 1 Watermarked Text Generation

Input: LLM Q, Vocabulary V , Prompt u, Secret key, Token-level
false alarm η.

1: Z = {hkey(x)}x∈V ∪ {ζ̃}
2: for t = 1, ..., T do
3: Pζt|xt−1

1 ,u(ζ)← (QXt|xt−1
1 ,u(h

−1
key(ζ))∧ η),∀ζ ∈ Z\{ζ̃}.

4: Pζt|xt−1
1 ,u(ζ̃)←

∑
x∈V(QXt|xt−1

1 ,u(x)− η)+.

5: Compute a hash of tokens xt−1
t−n with key, and use it as a

seed to generate (Gt,ζ)ζ∈Z from Gumbel distribution.
6: ζt ← argmaxζ∈Z log(Pζt|xt−1

1 ,u(ζ)) +Gt,ζ .

7: if ζt ̸= ζ̃ then
8: xt ← h−1

key(ζt)
9: else

10: Sample xt ∼
(

(Q
Xt|x

t−1
1 ,u

(x)−η)+∑
x∈V

(
Q

Xt|x
t−1
1 ,u

(x)−η
)
+

)
x∈V

11: end if
12: end for
Output: Watermarked text xT

1 = (x1, ..., xT ).

Algorithm 2 Watermarked Text Detection

Input: SLM Q̃, Vocabulary V , Text xT
1 , Secret key, Token-

level false alarm η, Threshold λ.
1: score = 0, Z = {hkey(x)}x∈V ∪ {ζ̃}
2: for t = 1, ..., T do
3: P̃ζt|xt−1

1
(ζ)← (Q̃Xt|xt−1

1
(h−1

key(ζ)) ∧ η),∀ζ ∈ Z\{ζ̃}.
4: P̃ζt|xt−1

1
(ζ̃)←

∑
x∈V(Q̃Xt|xt−1

1
(x)− η)+.

5: Compute a hash of tokens xt−1
t−n with key, and use it as a

seed to generate (Gt,ζ)ζ∈Z from Gumbel distribution.

6: ζt ← argmaxζ∈Z log(P̃ζt|xt−1
1

(ζ)) +Gt,ζ .
7: score← score +1{hkey(xt) = ζt}
8: end for
9: if score > Tλ then

10: return 1 ▷ Input text is watermarked
11: else
12: return 0 ▷ Input text is unwatermarked
13: end if

Watermarked text detection (Algorithm 2). During the detection process, due to the inaccessibility
of the original NTP distribution, we obtain a surrogate NTP distribution using a SLM, denoted as
Q̃Xt|xt−1

1
for each t. We then reconstruct Pζt approximately from Q̃Xt|xt−1

1
and sample ζt with

the shared secret key in the same way as the generation process. At each position t, the score
1{hkey(xt) = ζt} = 1 if ζt is not redundant; otherwise, 1{hkey(xt) = ζt} = 0. At the end, we
compute a final score 1

T

∑T
t=1 1{hkey(xt) = ζt} and compare it with the given threshold λ ∈ (0, 1).

If this score exceeds λ, the text is detected as watermarked.

Experiment Settings. We now introduce the setup details of our experiments.
Implementation Details. Our approach is implemented on two language models: Llama2-13B (Tou-
vron et al., 2023), and Mistral-8×7B (Jiang et al., 2023). Llama2-7B serves as the surrogate model
for Llama2-13B, while Mistral-7B is used as the surrogate model for Mistral-8×7B. We conduct our
experiments on Nvidia A100 GPUs. In Algorithm 1, we set η = 0.2 and T = 200.
Baselines. We compare our methods with three existing watermarking methods: KGW-1 (Kirchen-
bauer et al., 2023a), EXP-edit (Kuditipudi et al., 2023), and Gumbel-Max (Aaronson, 2023), where

8
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the EXP-edit and Gumbel-Max are distortion-free watermark. KGW-1 employs the prior 1 token as
a hash to create a green/red list, with the watermark strength set at 2.
Dataset and Prompt. Our experiments are conducted using two distinct datasets. The first is an
open-ended high-entropy generation dataset, a realnewslike subset from C4 (Raffel et al., 2020a).
The second is a relatively low-entropy generation dataset, ELI5 (Fan et al., 2019). The realnewslike
subset of C4 is tailored specifically to include high-quality journalistic content that mimics the style
and format of real-world news articles. We utilize the first two sentences of each text as prompts
and the following 200 tokens as human-generated text. The ELI5 dataset is specifically designed for
the task of long-form question answering (QA), with the goal of providing detailed explanations for
complex questions. We use each question as a prompt and its answer as human-generated text.
Evaluation Metrics. To evaluate the performance of watermark detection, we report the ROC-AUC
score, where the ROC curve shows the True Positive Rate (TPR) against the False Positive Rate
(FPR). A higher ROC-AUC score indicates better overall performance. Additionally, we provide
the TPR at 1% FPR and TPR at 10% FPR to specifically evaluate detection accuracy while con-
trolling the false classification of unwatermarked text as watermarked. The detection threshold λ
is determined empirically by the ROC-AUC score function based on 500 unwatermarked and 500
watermarked sentences. By varying λ, the ROC curve produces different false alarm rates α ∈ [0, 1].

Table 1: Watermark detection performance across different LLMs and datasets.

Language Models Methods C4 ELI5

ROC-AUC TPR@1% FPR TPR@10% FPR ROC-AUC TPR@1% FPR TPR@10% FPR

Llama-13B

KGW-1 0.995 0.991 1.000 0.989 0.974 0.986
EXP-edit 0.986 0.968 0.996 0.983 0.960 0.995
Gumbel-Max 0.996 0.993 0.994 0.999 0.991 0.994
Ours 0.999 0.998 1.000 0.998 0.997 1.000

Mistral-8 × 7B

KGW-1 0.997 0.995 1.000 0.993 0.983 0.994
EXP-edit 0.993 0.970 0.997 0.994 0.972 0.996
Gumbel-Max 0.994 0.989 0.999 0.987 0.970 0.990
Ours 0.999 0.998 1.000 0.999 0.999 1.000

Watermark Detection Performance. The detection performance of unmodified watermarked text
across various language models and tasks is presented in Table 1. Our watermarking method demon-
strates superior performance, especially on the relatively low-entropy QA dataset. This success
stems from the design of our watermarking scheme, which reduces the likelihood of low-entropy
token being falsely detected as watermarked, thereby lowering the FPR. Given the tradeoff between
TPR and FPR, when fixing the same FPR across different algorithms, our algorithm indeed yields a
higher TPR, while other methods fail to maintain the same performance on high-entropy text. More-
over, this suggests that even without knowing the watermarked LLM during detection, we can still
use the proposed SLM and Gumbel-max trick to successfully detect the watermark.

Table 2: Watermark detection performance under token replacement attack.

Language Models Methods C4 ELI5

ROC-AUC TPR@1% FPR TPR@10% FPR ROC-AUC TPR@1% FPR TPR@10% FPR

Llama-13B

KGW-1 0.965 0.833 0.952 0.973 0.892 0.973
EXP-edit 0.973 0.857 0.978 0.967 0.889 0.975
Gumbel-Max 0.776 0.396 0.551 0.733 0.326 0.556
Ours 0.989 0.860 0.976 0.995 0.969 0.994

Mistral-8 × 7B

KGW-1 0.977 0.860 0.962 0.969 0.890 0.970
EXP-edit 0.980 0.861 0.975 0.983 0.932 0.988
Gumbel-Max 0.780 0.402 0.583 0.753 0.385 0.556
Ours 0.990 0.881 0.966 0.993 0.991 0.995

Robustness. We assess the robustness of our watermarking methods against a token replacement
attack. As discussed in Proposition 5, the proposed token-level optimal watermarking scheme has
inherent robustness against token replacement. For each watermarked text, we randomly mask 50%
of the tokens and use T5-large (Raffel et al., 2020b) to predict the replacement for each masked
token based on the context. For each prediction, the predicted token retains a chance of being the
original one, as we do not force the replacement to differ from the original to maintain the sen-
tence’s semantics and quality. Yet, about 35% of tokens in watermarked sentences are still replaced
on average. Table 2 exhibits watermark detection performance under token replacement attacks
across different language models and tasks. It presents the robustness of our proposed watermarking
method against the token replacement attack. Our method remains high ROC-AUC, TPR@1%FPR,

9
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and TPR@10%FPR under this attack compared with other baselines. As pointed out in Proposi-
tion 5, it is primarily attributed to the inherent robustness of our watermark design with redundant
auxiliary variables. These redundant auxiliary variables allow a certain degree of token replacement
without altering the test statistics used by the detector.

Table 3: Theoretical and empirical FPR under different
thresholds.

Theoretical FPR 9.4e-3 2.2e-3 4.9e-4 9.8e-5

Empirical FPR 1.1e-4 9.9e-5 9.3e-5 8.8e-5

Empirical analysis on False Alarm Con-
trol. We conduct experiments to show
the relationship between theoretical FPR
(i.e., α) and the corresponding empirical
FPR. As discussed in Lemma 4, we set the
token-level false alarm rate as η = 0.1 and the sequence length as T = 50, which controls the
sequence-level false alarm rate under α =

(
T

⌈Tλ⌉
)
η⌈Tλ⌉, where λ is the detection threshold. For a

given theoretical FPR α, we calculate the corresponding threshold λ and the empirical FPR based
on 8000 unwatermarked sentences. The results, as shown in Table 3, confirm that our theoretical
guarantee effectively controls the empirical false alarm rate.

6 OPTIMAL ROBUST WATERMARKING SCHEME AND DETECTOR

Thus far, we have theoretically examined the optimal detector and watermarking scheme without
considering adversarial scenarios. In practice, users may attempt to modify LLM output to remove
watermarks through techniques like replacement, deletion, insertion, paraphrasing, or translation.
We now show that our framework can be extended to incorporating robustness against these attacks.

We consider a broad class of attacks, where the text can be altered in arbitrary ways as long as cer-
tain latent pattern, such as its semantics, is preserved. Specifically, let f : VT → [K] be a function
that maps a sequence of tokens XT

1 to a finite latent space [K] ⊂ N+; for example, [K] may index
K distinct semantics clusters and f is a function extracting the semantics. Clearly, f induces an
equivalence relation, say, denoted by ≡f , on VT , where xT

1 ≡f x′T
1 if and only if f(xT

1 ) = f(x′T
1 ).

Let Bf (xT
1 ) be an equivalence class containing xT

1 . Under the assumption that the adversary is
arbitrarily powerful except that it is unable to move any xT

1 outside its equivalent class Bf (xT
1 ) (e.g.,

unable to alter the semantics of xT
1 ), the “f -robust” Type-I and Type-II errors are then defined as

β0(γ,QXT
1
, PζT

1
, f) := EQ

XT
1
⊗P

ζT1

[
supx̃T

1 ∈Bf (X
T
1 ) 1{γ(x̃

T
1 , ζ

T
1 ) = 1}

]
,

β1(γ, PXT
1 ,ζT

1
, f) := EP

XT
1 ,ζT1

[
supx̃T

1 ∈Bf (XT
1 ) 1{γ(x̃T

1 , ζ
T
1 ) = 0}

]
.

Designing universally optimal f -robust detector and watermarking scheme can then be formulated
as jointly minimizing the f -robust Type-II error while constraining the worst-case f -robust Type-I
error, namely, solving the optimization problem

inf
γ,P

XT
1 ,ζT1

β1(γ, PXT
1 ,ζT

1
, f) s.t. sup

Q
XT

1

β0(γ,QXT
1
, PζT

1
, f) ≤ α, DTV(PXT

1
, QXT

1
) ≤ ϵ. (Opt-R)

We prove the following theorem.
Theorem 6 (Universally minimum f -robust Type-II error). The universally minimum f -robust Type-
II error attained from (Opt-R) is

β∗
1 (QXT

1
, α, ϵ, f) := min

P
XT

1
:D(P

XT
1

,Q
XT

1
)≤ϵ

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

.

Notably, β∗
1(QXT

1
, α, ϵ, f) aligns with the minimum Type-II error in Example 2, which is subopti-

mal without an adversary but becomes optimal under the adversarial settting of (Opt-R). The gap
between β∗

1(QXT
1
, α, ϵ, f) in Theorem 6 and β∗

1(QXT
1
, α, ϵ) in Theorem 1 reflects the cost of en-

suring robustness, widening as K decreases (i.e., as perturbation strength increases), see Figure 5
in appendix for an illustration of the optimal f -robust minimum Type-II error when f is a semantic
mapping. Similar to Theorem 2, we derive the optimal detector and watermarking scheme achiev-
ing β∗

1(QXT
1
, α, ϵ, f), detailed in Appendix J. These solutions closely resemble those in Theorem

2. For implementation, if the latent space [K] is significantly smaller than VT , applying the optimal
f -robust detector and watermarking scheme becomes more effective than those presented in The-
orem 2. Additionally, a similar algorithmic strategy to the one discussed in Sections 4 and 5 can
be employed to address the practical challenges discussed earlier. These extensions and efficient
implementations of the function f in practice are promising directions of future research.
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A EXISTING WATERMARKING SCHEMES

• The Gumbel-max watermarking scheme (Aaronson, 2023) applies the Gumbel-max trick
(Gumbel, 1954) to sample the next token Xt, where the Gumbel variable is exactly the auxiliary
variable ζt, which is a |V|-dimensional vector, indexd by x. For t = 1, 2, . . . ,

– Compute a hash of the previous n tokens Xt−n
t−1 using a hash function h : Vn × R → R and a

shared secret key, i.e., h(Xt−n
t−1 , key).

– Use h(Xt−n
t−1 , key) as a seed to uniformly sample the auxiliary vector ζt from [0, 1]|V|.

– Sample Xt using the Gumbel-max trick

Xt = argmax
x∈V

logQXt|xt−1
1

(x)− log(− log ζt(x)).

• In the inverse transform watermarking scheme (Kuditipudi et al., 2023), the vocabulary V is
considered as [|V|] and the combination of the uniform random variable and the randomly permuted
index vector is the auxiliary variable ζt.

– Use key as a seed to uniformly and independently sample {Ut}Tt=1 from [0, 1], and {πt}Tt=1 from
the space of permutations over [|V|]. Let the auxiliary variable ζt = (Ut, πt), for t = 1, 2, . . . , T .

– Sample Xt as follows

Xt = π−1
t

(
min

{
i ∈ [|V|] :

∑
x∈[|V|]

(
QXt|xt−1

1
(x)1{πt(x) ≤ i}

)
≥ Ut

})
,

where π−1
t denotes the inverse permutation.

• In Liu & Bu (2024), they propose a watermarking scheme that applies a similar technique as
Green-Red List, but designs h as a pretrained neural network instead of a hash function. The
auxiliary variable ζt is sampled from the set {v ∈ {0, 1}|V| : ∥v∥1 = ρ|V|} using the seed
h(ϕ(Xt−1

1 ), key), where h takes the semantics ϕ(Xt−1
1 ) of the generated text and the secret key

as inputs. They sample Xt following the same process as that of Green-Red List.

B PROOF OF THEOREM 1

According to the Type-I error constraint, we have ∀xT
1 ∈ VT ,

α ≥ max
Q

XT
1

EQ
XT

1
P

ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}]

≥ Eδ
xT
1
P

ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}]

= EP
ζT1

[1{(xT
1 , ζ

T
1 ) ∈ A1}]

=

{∑
ζT
1
PζT

1
(ζT1 )1{(xT

1 , ζ
T
1 ) ∈ A1}, Z is discrete;∫

PζT
1
(ζT1 )1{(xT

1 , ζ
T
1 ) ∈ A1} dζT1 , Z is continuouts;

.

In the following, for notational simplicity, we assume that Z is discrete. However, the derivations
hold for both discreteZ and continuousZ . The Type-II error is given by 1−EP

XT
1 ,ζT1

[1{(XT
1 , ζ

T
1 ) ∈

A1}]. We have

EP
XT

1 ,ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}] =

∑
xT
1

∑
ζT
1

PXT
1 ,ζT

1
(xT

1 , ζ
T
1 )1{(xT

1 , ζ
T
1 ) ∈ A1}

︸ ︷︷ ︸
C(xT

1 )

, (5)

where for all xT
1 ∈ VT ,

C(xT
1 ) ≤ PXT

1
(xT

1 ) and C(xT
1 ) ≤

∑
ζT
1

PζT
1
(ζT1 )1{(xT

1 , ζ
T
1 ) ∈ A1} ≤ α
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according to the Type-I error bound. Therefore,

EP
XT

1 ,ζT1

[1{(XT
1 , ζ

T
1 ) ∈ A1}] =

∑
xT
1

C(xT
1 ) ≤

∑
xT
1

(PXT
1
(xT

1 ) ∧ α)

= 1−
∑
xT
1

(PXT
1
(xT

1 )− α)+ (6)

where (6) is maximized by taking

PXT
1
= P ∗

XT
1
:= argmin

P
XT

1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+. (7)

For any PXT
1

, the Type-II error is lower bounded by

EP
XT

1 ,ζT1

[1{(XT
1 , ζ

T
1 ) /∈ A1}] ≥

∑
xT
1

(PXT
1
(xT

1 )− α)+.

By plugging P ∗
XT

1
into this lower bound, we obtain a Type-II lower bound that holds for all γ and

PXT
1 ,ζT

1
. Recall that Huang et al. (2023) proposed a type of detector and watermarking scheme that

achieved this lower bound. Thus, it is actually the universal minimum Type-II error over all possible
γ and PXT

1 ,ζT
1

, denoted by β∗
1(QXT

1
, ϵ, α).

Specifically, define ϵ∗(xT
1 ) = QXT

1
(xT

1 )− P ∗
XT

1
(xT

1 ) and we have∑
xT
1 :P∗

XT
1

(xT
1 )≥α

ϵ∗(xT
1 ) =

∑
xT
1 :P∗

XT
1

(xT
1 )≥α,ϵ∗(xT

1 )≥0

ϵ∗(xT
1 ) +

∑
xT
1 :P∗

XT
1

(xT
1 )≥α,ϵ∗(xT

1 )≤0

ϵ∗(xT
1 )

︸ ︷︷ ︸
≤0

≤
∑

xT
1 :P∗

XT
1

(xT
1 )≥α,ϵ∗(xT

1 )≥0

ϵ∗(xT
1 )

=
∑

xT
1 :P∗

XT
1

(xT
1 )≥α,Q

XT
1
(xT

1 )≥P∗
XT

1

(xT
1 )

ϵ∗(xT
1 )

≤
∑

xT
1 :Q

XT
1
(xT

1 )≥P∗
XT

1

(xT
1 )

ϵ∗(xT
1 ) ≤ ϵ

where the last inequality follows from the total variation distance constraint DTV(PXT
1
, QXT

1
) ≤ ϵ.

We rewrite β∗
1(QXT

1
, ϵ, α) as follows:

β∗
1(QXT

1
, ϵ, α) = min

P
XT

1
:DTV(PXT

1
,Q

XT
1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+ (8)

=
∑

xT
1 :P∗

XT
1

(xT
1 )≥α

(P ∗
XT

1
(xT

1 )− α),

=
∑

xT
1 :P∗

XT
1

(xT
1 )≥α

(QXT
1
(xT

1 )− ϵ∗(xT
1 )− α)

=
∑

xT
1 :P∗

XT
1

(xT
1 )≥α

(QXT
1
(xT

1 )− α)−
∑

xT
1 :P∗

XT
1

(xT
1 )≥α

ϵ∗(xT
1 )

≥
∑
xT
1

(QXT
1
(xT

1 )− α)+ − ϵ,
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where the last inequality follows from
∑

xT
1 :P∗

XT
1

(xT
1 )≥α ϵ∗(xT

1 ) ≤ ϵ, i.e. the TV constraint limits

how much the distribution P ∗
XT

1
can be perturbed from QXT

1
. Since β∗

1(QXT
1
, ϵ, α) ≥ 0, finally we

have

β∗
1(QXT

1
, ϵ, α) ≥

(∑
xT
1

(QXT
1
(xT

1 )− α)+ − ϵ

)
+

.

Notably, the lower bound is achieved when {xT
1 : P ∗

XT
1
(xT

1 ) ≥ α} = {xT
1 : QXT

1
(xT

1 ) ≥ P ∗
XT

1
(xT

1 )}
and DTV(QXT

1
, P ∗

XT
1
) = ϵ. That is, to construct P ∗

XT
1

, an ϵ amount of the mass of QXT
1

above α

is moved to below α, which is possible only when
∑

xT
1
(α − QXT

1
(xT

1 ))+ ≥ ϵ. Note that Huang
et al. (2023, Theorem 3.2) points out a sufficient condition for this to hold: |V|T ≥ 1

α . The optimal
distribution P ∗

XT
1

thus satisfies∑
xT
1 :Q

XT
1
(xT

1 )≥α

(QXT
1
(xT

1 )− P ∗
XT

1
(xT

1 )) =
∑

xT
1 :Q

XT
1
(xT

1 )≤α

(P ∗
XT

1
(xT

1 )−QXT
1
(xT

1 )) = ϵ.

Refined constraints for optimization. We notice that the feasible region of (Opt-I) can be further
reduced as follows:

min
P

XT
1

min
P

ζT1 |XT
1

EP
XT

1
P

ζT1 |XT
1

[1− γ(XT
1 , ζ

T
1 )] (Opt-II)

s.t.
∫

PζT
1 |XT

1
(ζT1 |xT

1 ) dζ
T
1 = 1, ∀xT

1∫
PζT

1 |XT
1
(ζT1 |xT

1 )γ(x
T
1 , ζ

T
1 ) ≤ 1 ∧ α

PXT
1
(xT

1 )
, ∀xT

1 (9)

DTV(PXT
1
, QXT

1
) ≤ ϵ,

sup
Q

XT
1

∑
xT
1

QXT
1
(xT

1 )

∫ (∑
yT
1

PζT
1 |XT

1
(ζT1 |yT1 )PXT

1
(yT1 )

)
γ(xT

1 , ζ
T
1 ) dζ

T
1 ≤ α,

where (9) is an additional constraint on PζT
1 |XT

1
. If and only if (9) can be achieved with equality,

the minimum of the objective function EP
XT

1
P

ζT1 |XT
1

[1− γ(XT
1 , ζ

T
1 )] reaches (2).

C PROOF OF EXAMPLE 2

In this proof. we assume that Z is discrete for simplicity. However, the result holds for continuous
Z without loss of generality. If the detector accepts the form γ(XT

1 , ζ
T
1 ) = 1{f(XT

1 ) = ζT1 } for
some surjective function f : VT → S and S ⊆ ZT , we have for any s ∈ S,

α ≥ sup
Q

XT
1

EQ
XT

1
P

ζT1

[1{f(XT
1 ) = ζT1 }] ≥ EP

ζT1

[1{s = ζT1 }]

=
∑
ζT
1

PζT
1
(ζT1 )1{s = ζT1 },

and (5) can be rewritten as

EP
XT

1 ,ζT1

[1{f(XT
1 ) = ζT1 }] =

∑
s∈S

∑
xT
1 :f(xT

1 )=s

∑
ζT
1

PXT
1 ,ζT

1
(xT

1 , ζ
T
1 )1{f(xT

1 ) = ζT1 }︸ ︷︷ ︸
C(s)

,

where
C(s) ≤

∑
xT
1 :f(xT

1 )=s

PXT
1
(xT

1 ) and C(s) ≤
∑
ζT
1

PζT
1
(ζT1 )1{s = ζT1 } ≤ α.
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Therefore, the Type-II error for such type of detector γ is lower bounded by
EP

XT
1 ,ζT1

[1{f(XT
1 ) ̸= ζT1 }]

= 1−
∑
s∈S

C(s) ≥ 1−
∑
s∈S

(( ∑
xT
1 :f(xT

1 )=s

PXT
1
(xT

1 )

)
∧ α

)

=
∑
s∈S

(( ∑
xT
1 :f(xT

1 )=s

PXT
1
(xT

1 )

)
− α

)
+

≥ min
P

XT
1
:DTV(PXT

1
,Q

XT
1
)≤ϵ

∑
s∈S

(( ∑
xT
1 :f(xT

1 )=s

PXT
1
(xT

1 )

)
− α

)
+

,

where the last inequality holds with equality when

PXT
1
= argmin

P
XT

1
:DTV(PXT

1
,Q

XT
1
)≤ϵ

∑
s∈S

(( ∑
xT
1 :f(xT

1 )=s

PXT
1
(xT

1 )

)
− α

)
+

.

This minimum achievable Type-II error is higher than β∗
1(QXT

1
, α, ϵ) (cf. (8)).

D FORMAL STATEMENT OF THEOREM 2 AND ITS PROOF

Theorem 2 [Formal] (Optimal type of detectors and watermarking schemes). The set of all detec-
tors that achieve the minimum Type-II error β∗

1(QXT
1
, α, ϵ) in Theorem 1 for all text distribution

QXT
1
∈ P(VT ) and distortion level ϵ ≥ 0 is precisely Γ∗. After enlarging ZT to include redundant

auxiliary values, the detailed construction of the optimal watermarking scheme is as follows:

P ∗
XT

1
= min

P
XT

1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
xT
1

(PXT
1
(xT

1 )− α)+,

and for any xT
1 ∈ VT , P ∗

ζT
1 |XT

1
(ζT1 |xT

1 ) satisfies (10)
P ∗
XT

1
(xT

1 )
∑

ζT
1
P ∗
ζT
1 |XT

1
(ζT1 |xT

1 )γ(x
T
1 , ζ

T
1 ) = P ∗

XT
1
(xT

1 ) ∧ α, ∀ζT1 s.t. γ(xT
1 , ζ

T
1 ) = 1;

P ∗
XT

1
(xT

1 )
∑

redundant ζT
1
P ∗
ζT
1 |XT

1
(ζT1 |xT

1 ) =
(
P ∗
XT

1
(xT

1 )− α
)
+
, ∀ redundant ζT1 ;

P ∗
ζT
1 |XT

1
(ζT1 |xT

1 ) = 0, otherwise.

Proof. First, we observe that the lower bound on the Type-II error in (2) is attained if and only if
the constraint in (9) holds with equality for all xT

1 and for the optimizer. Thus, it suffices to show
that for any detector γ /∈ Γ∗, the constraint in (9) cannot hold with equality for all xT

1 given any
text distributions QXT

1
. First define an arbitrary surjective function g : ZT → S, where S is on

the same metric space as VT . Cases 1 and 2 prove that VT ⊂ S. Case 3 proves that γ can only be
γ(XT

1 , ζ
T
1 ) = 1{XT

1 = g(ζT1 )}.

• Case 1: γ(XT
1 , ζ

T
1 ) = 1{XT

1 = g(ζT1 )} but S ⊂ VT . There exists x̃T
1 such that for all ζT1 ,

1{x̃T
1 = g(ζT1 )} = 0. Under this case, (9) cannot hold with equality for x̃T

1 since the LHS is
always 0 while the RHS is positive.

• Case 2: γ(XT
1 , ζ

T
1 ) = 1{XT

1 = g(ζT1 )} but S = VT . Let us start from the simple case where
T = 1, V = {x1, x2}, Z = {ζ1, ζ2}, and g is an identity mapping. Given any QX and any
feasible PX such that DTV(PX , QX) ≤ ϵ, when (9) holds with equality, i.e.,

PX,ζ(x1, ζ1) = PX(x1) ∧ α and PX,ζ(x2, ζ2) = PX(x2) ∧ α,

then the marginal Pζ is given by: Pζ(ζ1) = PX(x1) ∧ α+ (PX(x2)− α)+, Pζ(ζ2) = PX(x2) ∧
α+ (PX(x1)− α)+. The worst-case Type-I error is given by

sup
QX

(
QX(x1)

(
PX(x1) ∧ α+ (PX(x2)− α)+

)
+QX(x2)

(
PX(x2) ∧ α+ (PX(x1)− α)+

))

≥ PX(x1) ∧ α+ (PX(x2)− α)+

> α, if PX(x1) > α,PX(x2) > α.
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It implies that for any QX such that {PX ∈ P(V) : DTV(PX , QX) ≤ ϵ} ⊆ {PX ∈ P(V) :
PX(x1) > α,PX(x2) > α}, the false-alarm constraint is violated when (9) holds with equality. It
can be easily verified that this result also holds for larger (T,V,Z) and other functions g : ZT →
VT .

• Case 3: Let Ξγ(x
T
1 ) := {ζT1 ∈ ZT : γ(xT

1 , ζ
T
1 ) = 1}. ∃xT

1 ̸= yT1 ∈ VT , s.t. Ξ(xT
1 ) ∩ Ξ(yT1 ) ̸= ∅.

For any detector γ /∈ Γ∗ that does not fall into Cases 1 and 2, it falls into Case 3. Let us start
from the simple case where T = 1, V = {x1, x2}, Z = {ζ1, ζ2, ζ3}. Consider a detector γ as
follows: γ(x1, ζ1) = γ(x2, ζ1) = 1 and γ(x, ζ) = 0 for all other pairs (x, ζ) ∈ V × Z . Hence,
Ξ(x1) ∩ Ξ(x2) = {ζ1}. When (9) holds with equality, i.e.,

PX,ζ(x1, ζ1) = PX(x1) ∧ α and PX,ζ(x2, ζ1) = PX(x2) ∧ α,

we have the worst-case Type-I error lower bounded by

sup
QX

(
QX(x1)Pζ(ζ1) +QX(x2)Pζ(ζ1)

)
= Pζ(ζ1) = PX(x1) ∧ α+ PX(x2) ∧ α

> α, if PX(x1) > α or PX(x2) > α.

Thus, for any QX such that {PX ∈ P(V) : DTV(PX , QX) ≤ ϵ} ⊆ {PX ∈ P(V) : PX(x1) >
α or PX(x2) > α}, the false-alarm constraint is violated when (9) holds with equality.

If we consider a detector γ as follows: γ(x1, ζ1) = γ(x2, ζ1) = γ(x2, ζ2) = 1 and γ(x, ζ) = 0
for all other pairs (x, ζ) ∈ V × Z . We still have Ξ(x1) ∩ Ξ(x2) = {ζ1}. When (9) holds with
equality, i.e.,

PX,ζ(x1, ζ1) = PX(x1) ∧ α and PX,ζ(x2, ζ1) + PX,ζ(x2, ζ2) = PX(x2) ∧ α,

we have the worst-case Type-I error lower bounded by

sup
QX

(
QX(x1)Pζ(ζ1) +QX(x2)(Pζ(ζ1) + Pζ(ζ2))

)
= sup

QX

(
Pζ(ζ1) +QX(x2)Pζ(ζ2)

)
= Pζ(ζ1) + Pζ(ζ2) = PX(x1) ∧ α+ PX(x2) ∧ α > α, if PX(x1) > α or PX(x2) > α,

which is the same as the previous result.

If we let V = {x1, x2, x3}, Z = {ζ1, ζ2, ζ3, ζ4} and γ(x3, ζ3) = 1 in addition to the afore-
mentioned γ, we can similarly show that the worst-case Type-I error is larger than α for some
distributions QX .

Therefore, it can be observed that as long as Ξ(xT
1 )∩Ξ(yT1 ) ̸= ∅ for some xT

1 ̸= yT1 ∈ VT , (9) can
not be achieved with equality for all QXT

1
and ϵ even for larger (T,V,Z) as well as continuous Z .

In conclusion, for any detector γ /∈ Γ∗, the universal minimum Type-II error in (2) cannot be
obtained for all QXT

1
and ϵ.

Since the optimal detector takes the form γ(XT
1 , ζ

T
1 ) = 1{XT

1 = g(ζT1 )} for some function g :
ZT → S , S ⊃ VT , and the token vocabulary is discrete, it suffices to consider discrete Z to derive
the optimal watermarking scheme.

Under the watermarking scheme P ∗
XT

1 ,ζT
1

(cf. (7) and (10)), the Type-I and Type-II errors are given
by:

Type-I error:

∵∀yT1 ∈ VT , EP∗
ζT1

[1{yT1 = g(ζT1 )}] =
∑
ζT
1

P ∗
ζT
1
(ζT1 )1{yT1 = g(ζT1 )}

=
∑
ζT
1

∑
xT
1

P ∗
XT

1 ,ζT
1
(xT

1 , ζ
T
1 )1{yT1 = g(ζT1 )}

= P ∗
XT

1
(yT1 )

∑
ζT
1

P ∗
ζT
1 |XT

1
(ζT1 |yT1 )1{yT1 = g(ζT1 )} = P ∗

XT
1
(yT1 ) ∧ α
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≤ α,

and since any distribution QXT
1

can be written as a linear combinations of δyT
1

,

∴max
Q

XT
1

EQ
XT

1
P∗

ζT1

[1{XT
1 = g(ζT1 )}] ≤ α.

Type-II error:

1− EP∗
XT

1 ,ζT1

[1{XT
1 = g(ζT1 )}]

= 1−
∑
xT
1

∑
ζT
1

P ∗
XT

1 ,ζT
1
(xT

1 , ζ
T
1 )1{xT

1 = g(ζT1 )}

= 1−
∑
xT
1

P ∗
XT

1
(xT

1 )
∑
ζT
1

P ∗
ζT
1 |XT

1
(ζT1 |xT

1 )1{xT
1 = g(ζT1 )}

= 1−
∑
xT
1

(
P ∗
XT

1
(xT

1 ) ∧ α
)

=
∑

xT
1 :P∗

XT
1

(xT
1 )>α

(P ∗
XT

1
(xT

1 )− α).

The optimality of P ∗
XT

1 ,ζT
1

is thus proved. We note that (9) in (Opt-II) holds with equality under this
optimal conditional distribution P ∗

ζT
1 |XT

1
.

Compared to Huang et al. (2023, Theorem 3.2), their proposed detector is equivalent to
γ(XT

1 , ζ
T
1 ) = 1{XT

1 = ζT1 }, where ZT = VT ∪ {ζ̃T1 } and ζ̃T1 /∈ VT , meaning that it belongs
to Γ∗.

E OPTIMAL WATERMARKING SCHEME WITH UNIFORM PζT1
FOR γ ∈ Γ∗

After enforcing the marginal distribution PζT
1

= Unif(ZT ) and using a shared key to sample ζT1
via a hash function, the alternative watermarking scheme optimal for γ ∈ Γ∗ when g is an identity
mapping is given in the following lemma. The scheme can be generalized to other functions g.

Lemma 7 (Optimal watermarking scheme for γ = 1{XT
1 = ζT1 } when Pζt = Unif(Z)).

When γ = 1{XT
1 = ζT1 }, Pζt = Unif(Z), and α ≥ 1

|Z|T , the minimum Type-II error
is minP

XT
1
:DTV(PXT

1
∥Q

XT
1
)≤ϵ

∑
xT
1

(
PXT

1
(xT

1 ) − 1
|Z|T

)
+

. The optimal ϵ-distorted watermarking
scheme that achieves the minimum Type-II error is

P ∗
XT

1 ,ζT
1
(xT

1 , ζ
T
1 ) =


min{P ∗

XT
1
(xT

1 ),
1

|Z|T }, if xT
1 = ζT1 ;(

P∗
XT

1
(xT

1 )− 1

|Z|T

)
+
·
(

1

|Z|T
−P∗

XT
1
(ζT

1 )
)
+

DTV(P∗
XT

1

,Unif(ZT ))
, otherwise,

where P ∗
XT

1
= argminP

XT
1
:DTV(PXT

1
∥Q

XT
1
)≤ϵ

∑
xT
1

(
PXT

1
(xT

1 )− 1
|Z|T

)
+

.

The proof of Lemma 7 follows from the fact that DTV(µ, ν) = infπ∈Π(µ,ν) π(X ̸= Y ), where
X ∼ µ, Y ∼ ν and Π(µ, ν) is the set of all couplings of Borel probability measures µ and ν. Note
that when Pζt = Unif(Z), if α < 1

|Z|T , the feasible region of (Opt-I) becomes empty. With this
watermarking scheme, the detector can fully recover ζT1 using a pseudorandom generator and shared
key. However, the resulting minimum Type-II error is larger than β∗

1(QXT
1
, α, ϵ) from Theorem 1,

as α ≥ 1
|Z|T . In practice, the gap is significant since 1

|Z|T = O(10−4T ) is much smaller than
typical values of α. This gap reflects the cost of pseudo-transmitting ζT1 using only the shared key.
Nonetheless, if T = 1, it is possible to set false alarm constraint to α = 1

|Z| and mitigate the
performance loss. Motivated by this, we move on to discuss the token-level optimal watermarking
scheme.
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Proof. Consider γ(XT
1 , ζ

T
1 ) = 1{XT

1 = ζT1 } and VT ⊆ ZT , which is a model-agnostic detector.
Let us first assume ϵ = 0. The objective function (i.e. Type-II error) becomes PXT

1 ,ζT
1
(XT

1 ̸= ζT1 ),
whose minimum is well-known as DTV(QXT

1
, PζT

1
) and the minimizer is

P ∗
XT

1 ,ζT
1
(xT

1 , ζ
T
1 ) =

min{QXT
1
(xT

1 ), PζT
1
(ζT1 )}, if xT

1 = ζT1 ;
(Q

XT
1
(xT

1 )−P
ζT1

(xT
1 ))+(P

ζT1
(ζT

1 )−Q
XT

1
(ζT

1 ))+

DTV(QXT
1
,P

ζT1
) , otherwise.

(11)

This holds for any given pair of (QXT
1
, PζT

1
). This watermarking scheme basically tries to force

XT
1 = ζT1 as often as possible. However, we need to design PζT

1
such that the Type-I error proba-

bility supQ
XT

1

EQ
XT

1
P

ζT1

[1{XT
1 = ζT1 }] ≤ α, i.e.,

P ∗
ζT
1
:= argmin

P
ζT1

: sup
Q

XT
1

EQ
XT

1
⊗P

ζT1

[1{XT
1 =ζT

1 }]≤α

DTV(QXT
1
, PζT

1
)

= argmin
P

ζT1
: sup
Q

XT
1

⟨Q
XT

1
,P

ζT1
⟩≤α

∑
xT
1 ∈VT

(
QxT

1
(xT

1 )− PζT
1
(xT

1 )
)
+
.

To further consider cases where we allow distortion D(PXT
1
∥QXT

1
) ≤ ϵ for some ϵ ≥ 0, we solve

(P ∗
XT

1
, P ∗

ζT
1
) := argmin

(P
XT

1
,P

ζT1
):

DTV(PXT
1
∥Q

XT
1
)≤ϵ,

sup
Q

XT
1

⟨Q
XT

1
,P

ζT1
⟩≤α

D(PXT
1
, PζT

1
)

= argmin
(P

XT
1
,P

ζT1
):

D(P
XT

1
∥Q

XT
1
)≤ϵ,

sup
Q

XT
1

⟨Q
XT

1
,P

ζT1
⟩≤α

∑
xT
1 ∈VT

(
PxT

1
(xT

1 )− PζT
1
(xT

1 )
)
+
,

and plug them into (11).

Special case (VT ⊆ S ⊆ ZT and PζT
1
= Unif(S)). For any ζT1 ∈ S, PζT

1
(ζT1 ) =

1
|S| . To ensure

that the false alarm constraint is satisfied, we require α ≥ supQ
XT

1

∑
xT
1
QXT

1
(xT

1 ) · 1
|S| = 1

|S| .

In other words, to enforce lower false alarm probability, we need to increase the size of S. The
minimum Type-II error probability is given by

DTV(QXT
1
,Unif(S)) =

∑
xT
1 ∈VT

(
QXT

1
(xT

1 )−
1

|S|

)
+

.

If |S| = 1
α , this minimum Type-II error is equal to the optimal result

∑
xT
1 ∈VT (QXT

1
(xT

1 ) − α)+.
Otherwise, if |S| > 1

α , this Type-II error is larger and the gap represents the price paid by using the
uniform distribution PζT

1
, i.e., sending pseudorandom numbers.

F CONSTRUCTION OF TOKEN-LEVEL OPTIMAL WATERMARKING SCHEME

The toke-level optimal watermarking scheme is the optimal solution to the following optimization
problem:

inf
P

Xt,ζt|X
t−1
1 ,ζ

t−1
1

EP
Xt,ζt|X

t−1
1 ,ζ

t−1
1

[1− 1{Xt = g(ζt)}]

s.t. sup
Q

Xt|X
t−1
1

EQ
Xt|X

t−1
1

⊗P
ζt|ζ

t−1
1

[1{Xt = g(ζt)}] ≤ η, DTV(PXt|Xt−1
1

, QXt|Xt−1
1

) ≤ ϵ.

The optimal solution P ∗
Xt,ζt|Xt−1

1 ,ζt−1
1

follows the similar rule as that of P ∗
XT

1 ,ζT
1

in Theorem 2 with

(QXT
1
, PXT

1
, α) replaced by (QXt|Xt−1

1
, PXt|Xt−1

1
, η). We refer readers to Appendix D for further

details.
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G FORMAL STATEMENT OF LEMMA 4 AND ITS PROOF

Let P token∗
XT

1 ,ζT
1

and P token∗
ζT
1

denote the joint distributions induced by the token-level optimal water-
marking scheme.

Lemma 4 (Formal) (Token-level optimal watermarking detection errors). Let η = (α/
(

T
⌈Tλ⌉

)
)

1
⌈Tλ⌉ .

Under the detector γ in (3) and the token-level optimal watermarking scheme P ∗
Xt,ζt|Xt−1

1 ,ζt−1
1

, the
Type-I error is upper bounded by

sup
Q

XT
1

β0(γ,QXT
1
, P token∗

ζT
1

) ≤ α.

Assume that when T and n ≤ T are both large enough, token Xt is independent of Xt−i, i.e.,
PXt,Xt−i

= PXt
⊗ PXt−i

, for all i ≥ n+ 1 and t ∈ [T ]. Let IT,n(i) = ([i− n, i+ n] ∩ [T ])\{i}.
By setting the detector threshold as λ = a

T

∑T
t=1 EXt,ζt [1{Xt = g(ζt)}] for some a ∈ [0, 1], the

Type-II error exponent is

− log β1(γ, P
token∗
XT

1 ,ζT
1
) = Ω

(
T

n

)
.

The following is the proof of Lemma 4.

To choose ⌈Tλ⌉ indices out of {1, . . . , T}, there are
(

T
⌈Tλ⌉

)
choices. Let k = 1, . . . ,

(
T

⌈Tλ⌉
)

and Sk

be the k-th set of the chosen indices. The Type-I error is upper bounded by

β0(γ,QX(T ) , P token∗
ζT
1

) = Pr

(
1

T

T∑
t=1

1{Xt = g(ζt)} ≥ λ | H0

)

≤ Pr

( ( T
⌈Tλ⌉)⋃
k=1

{1{Xt = g(ζt)} = 1,∀t ∈ Sk} | H0

)

≤
( T
⌈Tλ⌉)∑
k=1

Pr

(
{1{Xt = g(ζt)} = 1,∀t ∈ Sk} | H0

)
︸ ︷︷ ︸

PFA,k

.

Without loss of generality, let m = ⌈Tλ⌉ and Sk = {1, 2, . . . ,m}. We can rewrite PFA,k as

PFA,k = EQ
X(T )⊗P

ζ(T )
[{1{Xt = g(ζt)} = 1,∀t ∈ Sk}]

= EQ
X(T )⊗P

ζ(T )
[
∏
t∈Sk

1{Xt = g(ζt)}]

= EQX1
⊗Pζ1

[
1{X1 = g(ζ1)}EQX2|X1

⊗Pζ2|ζ1

[
1{X2 = g(ζ2)} · · ·

· · ·EQ
Xm|Xm−1

1
⊗P

ζm|ζm−1
1

[1{Xm = g(ζm)}]
]
· · ·

]]
≤ ηm, ∀QXT

1
.

Then the Type-I error is finally upper bounded by

sup
Q

XT
1

β0(γ,QXT
1
, P token∗

ζT
1

) ≤
(

T

⌈Tλ⌉

)
η⌈Tλ⌉ ≤ α.

We prove the Type-II error bound by applying Janson (1998, Theorem 10).
Theorem 8 (Theorem 10, Janson (1998)). Let {Ii}i∈I be a finite family of indicator random vari-
ables, defined on a common probability space. Let G be a dependency graph of I, i.e., a graph with
vertex set I such that if A and B are disjoint subsets of I, and Γ contains no edge between A and
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B, then {Ii}i∈A and {Ii}i∈B are independent. We write i ∼ j if i, j ∈ I and (i, j) is an edge in
G. In particular, i ̸∼ i. Let S =

∑
i∈I Ii and ∆ = E[S]. Let Ψ = maxi∈I

∑
j∈I,j∼i E[Ij ] and

Φ = 1
2

∑
i∈I

∑
j∈I,j∼i E[IiIj ]. For any 0 ≤ a ≤ 1,

Pr(S ≤ a∆) ≤ exp

{
−min

{
(1− a)2

∆2

8Φ + 2∆
, (1− a)

∆

6Ψ

}}
. (12)

Given any detector γ that accepts the form in (3) and the corresponding optimal watermarking
scheme, for some a ∈ (0, 1), we first set the threshold in γ as

Tλ = a

T∑
t=1

EXt,ζt [1{Xt = g(ζt)}] = a

T∑
t=1

EXt−1
1

[∑
x

(
P ∗
Xt|Xt−1

1
(x|Xt−1

1 )− η
)
+

]
=: a∆T ,

where P ∗
Xt|Xt−1

1

is induced by P ∗
Xt,ζt|Xt−1

1 ,ζt−1
1

. The Type-II error is given by

β1(γ, P
token∗
XT

1 ,ζT
1
) = P token∗

XT
1 ,ζT

1

( T∑
t=1

1{Xt = g(ζt)} < a∆T

)
which is exactly the left-hand side of (12).

Assume that when T and n ≤ T are large enough, token Xt is independent of all Xt−i for all
i ≥ n+1 and t ∈ [T ], i.e., PXt,Xt−i = PXt ⊗PXt−i . Let IT,n(i) = ([i−n, i+n]∩ [T ])\{i}. The
Ψ and Φ on the right-hand side of (12) are given by:

Ψ := max
i∈[T ]

∑
t∈[T ],t∼i

EXt,ζt [1{Xt = g(ζt)}] = max
i∈[T ]

∑
t∈IT,n(i)

EXt,ζt [1{Xt = g(ζt)}] = Θ(n),

Φ :=
1

2

∑
i∈[T ]

∑
j∈[T ],j∼i

E[1{Xi = g(ζi)}1{Xj = g(ζj)}]

=
1

2

∑
i∈[T ]

∑
j∈IT,n(i)

E[1{Xi = g(ζi)}1{Xj = g(ζj)}] = Θ(Tn).

By plugging ∆T , Ω and Θ back into the right-hand side of (12), we have the upper bound

β1(γ, P
token∗
XT

1 ,ζT
1
) ≤ exp

{
−min

{
(1− a)2

∆2
T

8Φ + 2∆T
, (1− a)

∆T

6Ψ

}}
where Ut = EXt−1

1

[∑
x

(
P ∗
Xt|Xt−1

1

(x|Xt−1
1 ) − η

)
+

]
, ∆T :=

∑T
t=1 Ut, Ψ =

maxi∈[T ]

∑
t∈IT,n(i)

Ut, and Φ = 1
2

∑
i∈[T ]

∑
j∈IT,n(i)

E[1{Xi = g(ζi)}1{Xj = g(ζj)}]. This
implies

− log β1(γ, P
token∗
XT

1 ,ζT
1
) ≥ min

{
(1− a)2Θ

(
T

n

)
, (1− a)Θ

(
T

n

)}
=⇒− log β1(γ, P

token∗
XT

1 ,ζT
1
) = Ω

(
T

n

)
.

H DIAGRAM OF PRACTICAL WATERMARKING GENERATION AND
DETECTION ALGORITHMS

In Figure 4, we show an illustration of how our designed algorithms work in practice. We leverage
Gumbel-max trick and SLM to recover the auxiliary sequences ζT1 to ensure high detection accuracy.
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Figure 4: Diagram of practical algorithms for watermark generation and detection.

I PROOF OF THEOREM 6

According to the Type-I error constraint, we have ∀xT
1 ∈ VT ,

α ≥ max
Q

XT
1

EQ
XT

1
⊗P

ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]

≥ Eδ
xT
1
⊗P

ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]
= EP

ζT1

[
sup

x̃T
1 ∈Bf (xT

1 )

γ(x̃T
1 , ζ

T
1 )

]
=

∑
ζT
1

PζT
1
(ζT1 ) sup

x̃T
1 ∈Bf (xT

1 )

γ(x̃T
1 , ζ

T
1 ).

For brevity, let B(k) := Bf (xT
1 ) if f(xT

1 ) = k. The f -robust Type-II error is equal to
1− EP

XT
1 ,ζT1

[inf x̃T
1 ∈Bf (XT

1 ) γ(x̃
T
1 , ζ

T
1 )]. We have

EP
XT

1 ,ζT1

[
inf

x̃T
1 ∈Bf (XT

1 )
γ(x̃T

1 , ζ
T
1 )

]
≤ EP

XT
1 ,ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

γ(x̃T
1 , ζ

T
1 )

]
=

∑
k∈[K]

∑
xT
1 :f(xT

1 )=k

∑
ζT
1

PXT
1 ,ζT

1
(xT

1 , ζ
T
1 ) sup

x̃T
1 ∈Bf (xT

1 )

γ(x̃T
1 , ζ

T
1 )︸ ︷︷ ︸

C(k)

,

where according to the f -robust Type-I error constraint, for all k ∈ [K],

C(k) ≤
∑

xT
1 :f(xT

1 )=k

PXT
1
(xT

1 ), and

C(k) =
∑
ζT
1

PζT
1
(ζT1 )

∑
xT
1 :f(xT

1 )=k

PXT
1 |ζT

1
(xT

1 |ζT1 ) sup
x̃T
1 ∈B(k)

γ(x̃T
1 , ζ

T
1 )

≤
∑
ζT
1

PζT
1
(ζT1 ) sup

x̃T
1 ∈B(k)

γ(x̃T
1 , ζ

T
1 ) ≤ α.
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Therefore,

EP
XT

1 ,ζT1

[
inf

x̃T
1 ∈B(f(XT

1 ))
γ(x̃T

1 , ζ
T
1 )

]
≤

∑
k∈[K]

C(k)

≤
∑

k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
∧ α

)
= 1−

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

,(13)

where (13) is maximized by taking

PXT
1
= P ∗,f

XT
1

:= argmin
P

XT
1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

.

For any PXT
1

, the f -robust Type-II error is lower bounded by

EP
XT

1 ,ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 0}

]
≥

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

.

By plugging P ∗,f
XT

1
into the lower bound, we obtain the universal minimum f -robust Type-II error

over all possible γ and PXT
1 ,ζT

1
, denoted by

β∗
1(f,QXT

1
, ϵ, α) := min

P
XT

1
:D(P

XT
1
,Q

XT
1
)≤ϵ

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

. (14)

J OPTIMAL TYPE OF f -ROBUST DETECTORS AND WATERMARKING SCHEMES

Theorem 9 (Optimal type of f -robust detectors and watermarking schemes). Let Γ∗
f be a collection

of detectors that accept the form

γ(XT
1 , ζ

T
1 ) = 1{XT

1 = g(ζT1 ) or f(XT
1 ) = g(ζT1 )}

for some function g : ZT → S, S ∩ ([K] ∪ VT ) ̸= ∅ and |S| > K. If an only if the detector
γ ∈ Γ∗

f , the minimum Type-II error attained from (Opt-R) reaches β∗
1(QXT

1
, ϵ, α, f) in (14) for all

text distribution QXT
1
∈ P(VT ) and distortion level ϵ ∈ R≥0.

After enlarging ZT to include redundant auxiliary values, the ϵ-distorted optimal f -robust water-
marking scheme P ∗,f

XT
1 ,ζT

1
(xT

1 , ζ
T
1 ) is given as follows:

P ∗,f
XT

1

:= argmin
P

XT
1
:DTV(PXT

1
,Q

XT
1
)≤ϵ

∑
k∈[K]

(( ∑
xT
1 :f(xT

1 )=k

PXT
1
(xT

1 )

)
− α

)
+

,

and for any xT
1 ∈ VT ,

1) for all ζT1 s.t. supx̃T
1 ∈B(f(xT

1 )) γ(x̃
T
1 , ζ

T
1 ) = 1: P ∗,f

ζT
1 |XT

1
(ζT1 |xT

1 ) satisfies∑
x̃T
1 ∈Bf (xT

1 )

P ∗,f
XT

1
(x̃T

1 )
∑
ζT
1

P ∗,f
ζT
1 |XT

1
(ζT1 |x̃T

1 ) sup
x̃T
1 ∈Bf (xT

1 )

γ(x̃T
1 , ζ

T
1 ) =

( ∑
x̃T
1 ∈Bf (xT

1 )

P ∗,f
XT

1
(x̃T

1 )

)
∧ α.

2) ∀ζT1 s.t. |{xT
1 ∈ VT : γ(xT

1 , ζ
T
1 ) = 1}| = 0: P ∗,f

XT
1 ,ζT

1
(xT

1 , ζ
T
1 ) satisfies∑

x̃T
1 ∈Bf (xT

1 )

P ∗,f
XT

1
(xT

1 )
∑

ζT
1 :|{xT

1 :γ(xT
1 ,ζT

1 )=1}|=0

P ∗,f
ζT
1 |XT

1
(ζT1 |xT

1 ) =

(( ∑
x̃T
1 ∈Bf (xT

1 )

P ∗,f
XT

1
(x̃T

1 )

)
− α

)
+

.

3) all other cases of ζT1 : P ∗,f
XT

1 ,ζT
1
(xT

1 , ζ
T
1 ) = 0.
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Proof of Theorem 9. When f is an identity mapping, it is equivalent to Theorem 2. When f : VT →
[K] is some other function, following from the proof of Theorem 2, we consider three cases.

• Case 1: S ∩ ([K] ∪ VT ) ̸= ∅ but |S| < K. It is impossible for the detector to detect all the wa-
termarked text sequences. That is, there exist x̃T

1 such that for all ζT1 , γ(x̃T
1 , ζ

T
1 ) = 0. Under

this case, in Appendix I, C(f(x̃T
1 )) = 0 ̸= (

∑
xT
1 :f(xT

1 )=f(x̃T
1 ) PXT

1
(xT

1 )) ∧ α, which means the
f -robust Type-II error cannot reach the lower bound.

• Case 2: S ∩ ([K] ∪ VT ) ̸= ∅ but |S| = K. Under this condition, the detector needs to accept the
form γ(XT

1 , ζ
T
1 ) = 1{f(XT

1 ) = g(ζT1 )} so as to detect all possible watermarked text. Otherwise,
it will degenerate to Case 1. We can see f(XT

1 ) as an input variable and rewrite the detector as
γ′(f(XT

1 ), ζ
T
1 ) = γ(XT

1 , ζ
T
1 ) = 1{f(XT

1 ) = g(ζT1 )}. Similar the proof technique of Theorem
2, it can be shown that C(k) in Appendix I cannot equal (

∑
xT
1 :f(xT

1 )=k PXT
1
(xT

1 )) ∧ α for all
k ∈ [K], while the worst-case f -robust Type-I error remains upper bounded by α for all QXT

1
and

ϵ.

• Case 3: Let Ξγ(x
T
1 ) := {ζT1 ∈ ZT : γ(xT

1 , ζ
T
1 ) = 1}. ∃xT

1 , y
T
1 ∈ VT , s.t. f(xT

1 ) ̸= f(yT1 )

and Ξγ(x
T
1 ) ∩ Ξγ(y

T
1 ) ̸= ∅. For any detector γ /∈ Γ∗

f that does not belong to Cases 1 and 2, it
belongs to Case 3. Let us start from a simple case where T = 1, V = {x1, x2, x3}, K = 2,
Z = {ζ1, ζ2, ζ3}, and S = [2]. Consider the mapping f and the detector as follows: f(x1) =
f(x2) = 1, f(x3) = 2, γ(x1, ζ1) = γ(x1, ζ1) = 1, γ(x3, ζ2) = 1, and γ(x, ζ) = 0 for all other
pairs (x, ζ). When C(k) = (

∑
xT
1 :f(xT

1 )=k PXT
1
(xT

1 )) ∧ α for all k ∈ [K], i.e.,

PX,ζ(x1, ζ1) + PX,ζ(x1, ζ2) + PX,ζ(x2, ζ1) + PX,ζ(x2, ζ2) = (PX(x1) + PX(x2)) ∧ α,

and PX,ζ(x3, ζ2) = PX(x3) ∧ α,

then the worst-case f -robust Type-I error is lower bounded by

max
Q

XT
1

EQ
XT

1
⊗P

ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]

≥ EP
ζT1

[
sup

x̃T
1 ∈B(1)

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]
= (PX(x1) + PX(x2)) ∧ α+ PX(x3) ∧ α

> α, if PX(x1) + PX(x2) > α or PX(x3) > α.

Thus, for any QX such that {PX ∈ P(V) : DTV(PX , QX) ≤ ϵ} ⊆ {PX ∈ P(V) :
PX(x1) + PX(x2) > α or PX(x2) > α}, the false-alarm constraint is violated when C(k) =
(
∑

xT
1 :f(xT

1 )=k PXT
1
(xT

1 )) ∧ α for all k ∈ [K]. The result can be generalized to larger
(T,V,Z,K,S), other functions f and other detectors that belong to Case 3.

In conclusion, if and only if γ ∈ Γ∗, the minimum Type-II error attained from (Opt-R) reaches
the universal minimum f -robust Type-II error β∗

1(f,QXT
1
, ϵ, α) in (14) for all QXT

1
∈ P(VT ) and

ϵ ∈ R≥0.

Under the watermarking scheme P ∗,f
XT

1 ,ζT
1

, the f -robust Type-I and Type-II errors are given by:

f -robust Type-I error:

∵∀yT1 ∈ VT , EP∗,f
ζT1

[
sup

x̃T
1 ∈Bf (yT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]
=

∑
ζT
1

∑
xT
1

P ∗,f
XT

1 ,ζT
1
(xT

1 , ζ
T
1 ) sup

x̃T
1 ∈Bf (yT

1 ))

1{γ(x̃T
1 , ζ

T
1 ) = 1}

=
∑

xT
1 ∈Bf (yT

1 )

P ∗,f
XT

1
(xT

1 )
∑
ζT
1

P ∗,f
ζT
1 |XT

1
(ζT1 |xT

1 ) sup
x̃T
1 ∈Bf (yT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}
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=

( ∑
xT
1 ∈Bf (yT

1 )

P ∗,f
XT

1
(xT

1 )

)
∧ α ≤ α,

and since any distribution QXT
1

can be written as a linear combinations of δyT
1

,

∴ sup
Q

XT
1

EQ
XT

1
P∗,f

ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]
≤ α.

f -robust Type-II error:

1− EP∗,f
XT

1 ,ζT1

[
sup

x̃T
1 ∈Bf (XT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

]
= 1−

∑
xT
1

∑
ζT
1

P ∗,f
XT

1 ,ζT
1
(xT

1 , ζ
T
1 ) sup

x̃T
1 ∈Bf (xT

1 )

1{γ(x̃T
1 , ζ

T
1 ) = 1}

= 1−
∑

k∈[K]

∑
xT
1 ∈B(k)

P ∗,f
XT

1
(xT

1 )
∑
ζT
1

P ∗,f
ζT
1 |XT

1
(ζT1 |xT

1 ) sup
x̃T
1 ∈B(k)

1{γ(x̃T
1 , ζ

T
1 ) = 1}

= 1−
∑

k∈[K]

(( ∑
xT
1 ∈B(k)

P ∗,f
XT

1
(xT

1 )
)
∧ α

)

=
∑

k∈[K]

(( ∑
xT
1 ∈B(k)

P ∗,f
XT

1
(xT

1 )
)
− α

)
+

.

The optimality of P ∗,f
XT

1 ,ζT
1

is thus proved.

Figure 5 compares the universally minimum Type-II errors with and without semantic-invariant text
modification. distortion-free -distorted

Semantics

semantic-invariant
text modification

universally
minimum

Type-II error

Figure 5: Universally minimum Type-II error w/o distortion and with semantic-invariant text modi-
fication.

K IMPLEMENTATION OF WATERMARKING SCHEME WITH UNIFORM Pζt

K.1 ALGORITHM DESCRIPTION

Algorithm 3 describes the optimal watermarking scheme with uniform Pζt . We first uniformly
sample ζt from Z = {hkey(x)}x∈V . Then, with the sampled ζt, we can derive the new NTP
distribution such that PXt|xt−1

1 ,u(x) = |V|min{QXt|xt−1
1 ,u(x),

1
|V|} for hkey(x) = ζt, while

PXt|xt−1
1 ,u(x) =

|V|
(
Q

Xt|x
t−1
1 ,u

(x)− 1
|V|

)
+
·
(

1
|V|−Q

Xt|x
t−1
1 ,u

(h−1
key (ζt))

)
+

DTV(QXt|x
t−1
1 ,u

,Unif(V)) otherwise. Next token is then

sampled from obtained PXt|xt−1
1 ,u(x).
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Algorithm 4 outlines the corresponding detection process. For any given suspicious text, we analyze
each token sequentially, mirroring the generation process. First, we uniformly sample ζt using
previous tokens as a hash. Then, we compute the score as 1

T

∑T
t=1 1{hkey(xt) = ζt}. Any text with

a score greater than a threshold λ ∈ (0, 1), will be classified as watermarked.

Algorithm 3 Watermarked Text Generation with Uniform Pζt

Input: Language Model Q, Vocabulary V , Prompt u, Secret key, Token-level False alarm η
1: Z ← {hkey(x)}x∈V
2: for t = 1, . . . , T do
3: Compute a hash of previous n tokens, and use it as a seed to uniformly sample ζt from Z .

4: PXt|xt−1
1 ,u(x) =


|V|min{QXt|xt−1

1 ,u(x),
1
|V|}, if hkey(x) = ζt;

|V|
(
Q

Xt|x
t−1
1 ,u

(x)− 1
|V|

)
+
·
(

1
|V|−Q

Xt|x
t−1
1 ,u

(h−1
key (ζt))

)
+

DTV(QXt|x
t−1
1 ,u

,Unif(V)) , otherwise,

5: Sample xt ∼ PXt|xt−1
1 ,u

6: end for
Output: Watermarked text xT

1 = (x1, . . . , xT ).

Algorithm 4 Watermarked Text Detection with Uniform Pζt

Input: Language Model Q, Vocabulary V , Prompt u, Secret key, Token-level False alarm η
1: Z ← {hkey(x)}x∈V
2: score = 0

3: for t = 1, . . . , T do
4: Compute a hash of previous n tokens, and use it as a seed to uniformly sample ζt from V .
5: score = score +1{hkey(xt) = ζt}
6: if score > Tλ then
7: return 1 ▷ Input text is watermarked
8: else
9: return 0 ▷ Input text is unwatermarked

10: end if
11: end for
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