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ABSTRACT

The combination of Evolutionary Algorithms (EAs) and Deep Reinforcement
Learning (DRL) has been recently proposed to merge the benefits of both solu-
tions. Existing mixed approaches, however, have been successfully applied only
to actor-critic methods and present significant overhead. We address these is-
sues by introducing a novel mixed framework that exploits a periodical genetic
evaluation to soft update the weights of a DRL agent. The resulting approach is
applicable with any DRL method and, in a worst-case scenario, it does not ex-
hibit detrimental behaviours. Experiments in robotic applications and continuous
control benchmarks demonstrate the versatility of our approach that significantly
outperforms prior DRL, EAs, and mixed approaches. Finally, we employ formal
verification to confirm the policy improvement, mitigating the inefficient explo-
ration and hyper-parameter sensitivity of DRL.

1 INTRODUCTION

The key to a wider and successful application of DRL techniques in real scenarios is the ability
to adapt to the surrounding environment by generalizing from training experiences. These solu-
tions have to cope with the uncertainties of the operational environment, requiring a huge number
of trials to achieve good performance. Hence, devising robust learning approaches while improv-
ing sample efficiency is one of the challenges for wider utilization of DRL. Despite the promising
results (Tai et al., 2017; Zhang et al., 2017; Marchesini et al., 2019), DRL also suffer from conver-
gence to local optima, which is mainly caused by the lack of diverse exploration when operating
in high-dimensional spaces. Several studies address the exploration problem (e.g., curiosity-driven
exploration (Pathak et al., 2017), count-based exploration (Ostrovski et al., 2017)), but they typi-
cally rely on sensitive task-specific hyper-parameters. The sensitivity to such hyper-parameters is
another significant issue in DRL as it typically results in brittle convergence properties and poor
performance in practical tasks (Haarnoja et al., 2018).

Evolutionary Algorithms (Fogel, 2006) have been recently employed as a promising gradient-free
optimization alternative to DRL. The redundancy of these population-based approaches has the ad-
vantages of enabling diverse exploration and improve robustness, leading to a more stable conver-
gence. In particular, Genetic Algorithms (GA) (Montana & Davis, 1989) show competitive results
compared to gradient-based DRL (Such et al., 2017) and are characterized by low computational
cost. These gradient-free approaches, however, struggle to solve high-dimensional problems having
poor generalization skills and are significantly less sample efficient than gradient-based methods.

An emergent research direction proposes the combination of gradient-free and gradient-based
methods following the physical world, where evolution and learning cooperate to assimilate
the best of both solutions (Simpson, 1953). The first mixed approach, Evolutionary Rein-
forcement Learning (ERL) (Khadka & Tumer, 2018), relies on actor-critic architecture to in-
ject information in an evolutionary population while both the gradient-free and gradient-based
training phases proceed in parallel. Similarly, Proximal Distilled ERL (PDERL) (Bodnar,
2020) extends ERL with different evolutionary methods. CEM-RL (Pourchot, 2019) brings
this research direction into the family of distributed approaches, combining a portfolio of
TD3 (Fujimoto et al., 2018) learners with the Cross-Entropy Method (Yan Duan, 2016).
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Figure 1: Supe-RL overview.

These mixed approaches however also present several limitations,
which we address through our work: (i) the parallel training phases
of the DRL and EA components (Khadka & Tumer, 2018; Bodnar,
2020), or the multitude of learners (Pourchot, 2019) result in sig-
nificant overhead (detailed in Section 4). (ii) The actor-critic for-
malization of previous mixed approaches, allows them to be easily
evaluated in continuous locomotion benchmarks (Brockman et al.,
2016; Todorov et al., 2012). However, this also hinders their combi-
nation with value-based DRL (Marchesini & Farinelli, 2020a). This
is important as recent work (Matheron et al., 2019) shows the limitation of actor-critic in determin-
istic tasks, that in contrast can be effectively addressed with value-based DRL. In particular, Section
4 shows that a value-based implementation of Khadka & Tumer (2018) does not converge in our
discrete robotic task. (iii) The combination strategy does not ensure better performance compared
to the DRL agent as it does not prevent detrimental behaviours (e.g., drop in performance). This is
shown in the poor performance of a value-based implementation of ERL and PDERL (Section 4).

We propose a novel mixed framework, called Soft Updates for Policy Evolution (Supe-RL), that
enables us to combine the characteristics of GAs with any DRL algorithm, addressing the limitations
of previous approaches. Supe-RL (Figure 1) benefits from the high sampling efficiency of gradient-
based DRL while incorporating gradient-free GA to generate diverse experiences and find better
policies. Summarizing, Supe-RL based algorithms perform a periodical genetic evaluation applying
GAs to the agent network. A selection operator uses a fitness metric to evaluate the population,
choosing the best performing genome (i.e., the weights of the network) that is used to update the
weights of the DRL agent. In contrast to previous work, our genetic evaluation is only performed
periodically, drastically reducing the overhead. Furthermore, our soft update (Section 3) allows a
direct integration of GAs to any DRL algorithm as it is similar to perform a gradient step towards a
better policy, avoiding detrimental behaviours. As detailed in Section 3.1, this allows using value-
based DRL, exploiting the variety of optimizations developed for the well-known DQN (van Hasselt
et al., 2016; Schaul et al., 2016; Wang et al., 2016; Fortunato et al., 2017; Bellemare et al., 2017).
Crucially, our genetic component influences the DRL agent policy only if one of its mutated version
performs better in a subset of evaluation episodes. Hence, as detailed in Section 3, with a sufficient
number of episodes we obtain a good estimation of the overall performance of the population.

Our evaluation focuses on mapless navigation, a well-known problem in robotics and recent DRL
(Zhang et al., 2017; Wahid et al., 2019; Marchesini & Farinelli, 2020b). In particular, we consider
two tasks developed with Unity (Juliani et al., 2018): (i) a discrete action space indoor scenario with
obstacles for a mobile robot and (ii) a continuous task for aquatic drones, with dynamic waves and
physically realistic water. Besides considering standard metrics related to performance (success rate
and reward), we also consider safety properties that are particularly important in these domains (e.g.,
the agent does not collide with obstacles). In more detail, we employ formal verification ((Corsi
et al., 2020)) to compute the percentage of input cases that cause violations of these properties.
This is important to confirm our claim that Supe-RL based approaches correctly bias the exploration
process in the direction of more robust policy regions with higher returns.

Results show that Supe-RL algorithms improve performance (i.e., training time, success rate, av-
erage reward), stability, and safety over value-based and policy-gradient DRL (Rainbow (Hessel
et al., 2018), PPO (Schulman et al., 2017)) and ERL. Finally, we performed additional comparisons
of Supe-RL with: (i) PDERL (Bodnar, 2020) to evidence the poor performance of previous mixed
approaches when combined with value-based DRL; (ii) CEM-RL (Pourchot, 2019) in the aquatic
scenario, to show the differences with a multi learner approach; (iii) ERL in standard continuous
benchmarks (i.e., MuJoCo locomotion (Brockman et al., 2016; Todorov et al., 2012)), where results
confirm the superior performance of Supe-RL.

2 BACKGROUND AND RELATED WORK

We formalize robotic navigation as a RL problem, defined over a Markov Decision Process, as de-
scribed in recent DRL literature (Tai et al., 2017; Zhang et al., 2017; Wahid et al., 2019). DRL
for robotic navigation focus exclusively on continuous action algorithms such as actor-critic DDPG
(Lillicrap et al., 2015), TD3 (Fujimoto et al., 2018) and PPO (Schulman et al., 2017). Such methods
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have been adopted following the idea that value-based DQN (Mnih et al., 2013) can not deal with
high-dimensional action spaces. However, discrete value-based solutions typically result in shorter
training time being more sample efficient, and show better performance even in continuous settings.
In detail, Marchesini & Farinelli (2020b) shows that discrete DRL is a more efficient alternative to
continuous DRL in robotic navigation. Moreover, Tavakoli et al. (2018) proposes an adaptation of
Dueling DQN (Wang et al., 2016) with Double DQN (van Hasselt et al., 2016) that achieves compet-
itive results in locomotion benchmarks (Brockman et al., 2016; Todorov et al., 2012). More recently,
de Wiele et al. (2020) designed a DQN-based algorithm to handle enormous discrete and continuous
action spaces. These researches further motivate our contribution in the design of a mixed approach
that also works with value-based DRL.
Evolutionary Algorithms EA are an alternative black-box optimization characterized by three main
operators (Fogel, 2006): generation, alteration, and selection. In detail, Montana & Davis (1989)
evolves a population of N individuals, each one represented by the network vector parameter θ
(genome). Each θi (i ∈ [0, .., N − 1]) is evaluated to produce a fitness F (θi), used by the selection
operator to choose the best genome. For the EA component of Supe-RL, we consider a mutation-
based GA that shown competitive performance over gradient-based DRL (Such et al., 2017).
Combining EA and DRL Following the trend of using EA as an alternative for DRL (Salimans
et al., 2017), an emergent research field focuses on combining gradient-free and gradient-based so-
lutions. In particular, ERL (Khadka & Tumer, 2018) considers an actor-critic DDPG agent (Lillicrap
et al., 2015) and a concurrent EA training that generates a population of individuals, which are mu-
tated and selected based on their fitness. The DRL agent is trained in parallel from the samples
generated by both the training phases and it is periodically injected in the running population which
is used to collect the training performance. The mutation function of ERL ensures that, in a certain
number of episodes, the gradient-based policy outperforms its evolutionary siblings, introducing the
gradient-based benefits into the population. Hence, biasing the selection process of the next gen-
eration and its performance. In their experiments, the authors highlight an efficient transfer of in-
formation between the two families of algorithms, outperforming DDPG in well-known locomotion
benchmarks (Brockman et al., 2016; Todorov et al., 2012). However, both the introduction of all the
experiences in the buffer and forcing the DRL agent to perform better than the EA population, bias
the training and can cause detrimental behaviours. Inspired by ERL, several combinations have been
proposed (Bodnar, 2020; Colas et al., 2018; Pourchot, 2019; Khadka et al., 2019). While GEP-PG
(Bodnar, 2020) can be considered as a simplified version of a mixed approach, where a curiosity-
driven approach is used to fill the buffer of the agent, Proximal Distilled ERL (PDERL) (Bodnar,
2020) addresses the EA component of ERL, introducing novel operators to compensate for the sim-
plicity of the genetic representation (as investigated by Lehman et al. (2018), where authors address
destructive behaviors of biologically-inspired variation operators applied to neural networks, which
causes catastrophic forgetting). However, as detailed in Section 3.1, our genetic evaluation is used
to soft update the DRL agent only in the case of performance improvement, hence it does not show
such catastrophic forgetting. We also mention CERL (Khadka et al., 2019) and CEM-RL (Pourchot,
2019) as they are extensions of ERL for distributed training (which we do not consider here) with
multiple active learners, which leads to non-negligible overhead (nonetheless, Section 4.2 reports
an additional experiment in our continuous task with CEM-RL, to provide a more heterogeneous
overview of the superior performance of Supe-RL). These works share a common baseline as they
all rely on actor-critic DRL and are built on the insights of ERL, which is the most closely related to
Supe-RL. Hence, we choose ERL for complete performance comparison. Section 4.2 also shows a
comparison with PDERL, to further highlights the poor performance of previous approaches when
combined with value-based DRL.

Finally, we use formal verification to support our claims on the beneficial effects of our genetic com-
ponent into the policy. We report in Appendix A a brief description of the considered methodology.

3 SUPE-RL

The main insight of Supe-RL is to soft update a DRL agent towards better policy regions, enabling
the combination with any DRL algorithm. In detail, we combine a mutation-based GA (Such et al.,
2017) with two DRL algorithms1: (i) Rainbow (Hessel et al., 2018) as a value-based algorithm for

1We evaluated a variety of different learning algorithms for both action domains. Among Rainbow, PPO,
DDPG, and TD3, we chose the best-performing ones.
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the discrete task and (ii) PPO (Schulman et al., 2017) as policy-gradient one for the continuous
scenario, giving rise to two algorithms named SGRainbow and GPPO.

A typical Supe-RL based algorithm (Appendix B provides a general pseudocode) proceeds as fol-
lows: the weights of a DRL agent drla (referred as genome or θa interchangeably), are initialized
with random values and, as in a standard training setup, drla starts to collect experiences interacting
with its environment. Such experiences are stored in a buffer R to train the network. Periodically
(every GE episodes), Supe-RL makes a genetic evaluation by generating a population of children,
each one characterized by a different genome. Weights θa are used to create the N individuals ap-
plying noise to the parameter vector: θa+mutpn, where n ∼ N (0,mutv) andmutp is the mutation
probability. In contrast, the mutation function of ERL multiplies the randomly chosen weights by
N (0,mutv). Such mutations act in a similar fashion of a dropout layer, biasing the DRL agent to
perform better than the evolutionary population in the long term. In more detail, ERL authors mu-
tate 10% of the network weights in each episode (or epoch), multiplying them by N (0, 0.1) (plus a
mutation with standard deviation 10 or a reset mutation in a small percentage of cases). Given that
their evolutionary component is running in parallel with the gradient-based agent, we noticed that
the weights in the population tend to 0, hence causing a detrimental behavior. The population and
a copy of θa are then independently tested over a set of evaluation episodes which shares the same
goals, to find the overall best performing individual θbest based on the fitness (the fitness definition is
domain-specific; in the case of navigation, it is computed as the number of targets the agent reaches
over the evaluation episodes). In this phase, we can also store a portion of diverse experiences in the
buffer R used by drla, to further exploit the population-based component. Finally, if the selected
genome belongs to one of the children, drla weights are updated towards the mutated version and
the training phase continues with the new weights. In contrast, if the best score belongs to drla, the
training phase, which was running in parallel, continues. Since the evaluation does not require any
interaction among the population, we instantiate an independent copy of the environment for each
N + 1 population component in a separate thread and test them in parallel, drastically reducing the
overhead for the drla. The multi-thread nature of the Unity game engine makes this parallel testing
phase straightforward and particularly efficient. This approach has both the advantage of search
a better-performing policy exploiting GA mutations (similar to noisy exploration (Fortunato et al.,
2017)) and enrich the replay buffer with new diversified experiences. As detailed in our empirical
evaluation and the experiments with formal verification tools (Section 3.1), our genetic evaluation
leads to safer policies and a significant reduction in training time, with Supe-RL resulting approxi-
mately two times faster than ERL in the same scenario.

It is important to mention that both Supe-RL and previous mixed approaches are especially designed
for scenarios in which it is possible to parallelize the learning process. Hence, when the training
phase is performed on real physical systems, it is not possible in general to evaluate the population
in parallel. This could significantly increase the convergence time.

Crucially, in contrast to previous mixed approaches, Supe-RL based algorithms are designed to
improve the performance of drla as our combination schema does not bias the choice of the better-
performing children in the long term. In the worst-case scenario, the main agent is always the best
genome in the population and does not improve the current policy, hence a Supe-RL based training
will match the performance of the chosen DRL algorithm.

3.1 VALUE-BASED AND POLICY-GRADIENT IMPLEMENTATIONS

Robotic navigation allows evaluating Supe-RL in a variety of scenarios (e.g., discrete and continuous
action spaces). Hence, our two tasks present different characteristics (e.g., static and dynamic envi-
ronments, sparse and dense rewards). In this section, we present the value-based and policy-gradient
implementation of Supe-RL, combined with a mutation-based GA (Such et al., 2017).

3.1.1 SGRAINBOW IN DISCRETE INDOOR NAVIGATION

We consider a Turtlebot32 indoor environment with obstacles, using a discrete action space and a
dense reward function.

2https://www.turtlebot.com/
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Environment description Target goals randomly spawn in the scenario and are guaranteed to be
obstacle-free. The reward rt is structured as two sparse value in case of reaching the targetRreach =
1 within error µ = 5cm from the target goal, or crashing Rfail = −1 which terminates an episode
(resetting the robot to its starting position). A dense part is used during the travel: ω(dt−1 − dt),
where dt−1, dt indicate the euclidean distance between the robot and the goal at two consecutive
time steps and ω = 10 is a multiplicative factor.
Network architecture: the input layer contains 19 sparse laser scans, sampled in [−90, 90] degrees
in a fixed angle distribution and the target position (expressed in polar coordinates); a similar setting
is used in Tai et al. (2017); Long et al. (2018). We did explore other encodings for the problem (e.g.,
adding linear velocities as output) but a higher complexity of the problem causes longer training
times with negligible improvements. We performed multiple trials on different network sizes and
seeds (Chen & Chang, 1996) and the outcome led us to use two relu hidden layers with 64 neurons
each and 5 linear nodes to encode the output angular velocities [−90,−45, 0, 45, 90] deg/s.

Methodology for SGRainbow: the genetic evaluation of the value-based agent presents challenges
due to the instability of the training algorithm (which is a known drawback of DQN-based algo-
rithms) and the poor scalability on high-dimensional action spaces. Nonetheless, recent work shows
the benefits of such solutions (Marchesini & Farinelli, 2020b; Tavakoli et al., 2018; de Wiele et al.,
2020) in these challenging settings, further motivating the requirement for a mixed approach that
works also with value-based DRL. Here we will discuss only the elements of the algorithm which
are relevant to SGRainbow, referring the interested reader to (Hessel et al., 2018) for further details
on Rainbow. We developed different approaches to update the drla with the genome of the better
performing child. We firstly switch drla with the child, soft updating only the target network (origi-
nally developed for DDQN van Hasselt et al. (2016)) to approach the new weights. We tried different
settings for the target network, but a soft update with τ ′ = 0.1 showed us better performance. This
method however leads to an unusual optimizer choice, which is crucial considering the high-variance
of a value-based algorithm. In particular, the widely adopted Adam optimizer (Kingma & Ba, 2014)
with its self-adaptable learning rate typically requires minimal hyper-parameter tuning but, after a
switch of the drla model with a better genome, a drop of performance occurs. We motivate this as
the current learning rate of Adam is ”balanced” for the old drla weights and requires time to adjust
its value for the new unexpected and better-performing model. For this reason, this first application,
which we refer to as GRainbow, required to tune an SGD optimizer for this scenario, decaying its
initial learning rate from 0.1 to 0.001 based on the current success rate of the model. As shown in
Section 4, this approach already outperformed both the Rainbow algorithm and the GA. The tuning
for SGD requires several trials and is one of the main limitations of GRainbow. To address this,
we considered Tessler et al. (2019), where authors improved DDQN stability by copying the agent
model to the target when the former performs better. Hence, we flipped our approach by soft up-
dating drla towards the best genome (using τ ′ = 0.1) and switching the target network with such
genome. This enabled us to use the Adam optimizer, improving the performance of GRainbow. We
refer the interested reader to Appendix C of the Supplementary Material for a performance compar-
ison between GRainbow with SGD and Adam.

Finally, we further improved both training performance and stability, exploiting the soft update
(Lillicrap et al., 2015) technique for both networks. We refer to the resultant algorithm as Soft
GRainbow (SGRainbow). In particular, we soft update both the drla agent and target models towards
the weights of the best performing child to smooth the transition of the networks towards the better-
mutated policy. The update rule for the drla networks is then: θa = τ ′θa + (1− τ ′)θbest. We tried
different values for τ ′ (results in Appendix C), obtaining the best performance with τ ′ = 0.3. We
believe that these periodical slight changes in the drla policy, that simulate a gradient step towards
better network weights, are the core mechanism that allowed Supe-RL to work and improve the
performance of value-based Supe-RL, while also reducing the variance across different runs. A
useful side message is that using SGD seems better than Adam when drla ”jumps” due to target
network instabilities, as Adam works better if the transition of the target network is more stable.
Finally, results in Section 4 introduce part of the experiences of the genetic evaluation into the same
prioritized buffer of the drla (Appendix C contains an ablation experiment on the influence of these
diversified experiences with SGRainbow).
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3.1.2 GPPO IN CONTINUOUS AQUATIC NAVIGATION

We consider an aquatic drone navigation task characterized by dynamic waves, with a continuous
action space and a sparse reward function. Sources of the aquatic simulator as a novel DRL task and
a video with an overview of the environment are available at tinyurl.com/y22xh43c.

Environment description: The aquatic drone is a differential drive platform, where a continuous
action is mapped to the motor power. The drone receives a sparse reward rt structured as two values
in case of reaching the target Rreach = 1 within error µ = 5 cm from the target goal, or reaching
timeout Rfail = −1 which terminates an episode (resetting the robot to its starting position).
Network architecture: the input layer contains the target position expressed in polar coordinates
with respect to the drone and the pitch of the boat. It is possible to retrieve these values using the
GPS and the compass of the boat. Our initial evaluation for the network size led us to use two tanh
hidden layers with 32 neurons each. Finally, two tanh output nodes encode each motor velocity
(multiplied by a constant value to obtain our velocity limit).

Methodology for GPPO: in contrast to the value-based implementation, the stability of on-policy
PPO does not present issues related to the Adam optimizer. Hence, we considered the same soft
update strategy adopted with SGRainbow. Trivially we did not use experiences of the best child
due to the on-policy nature of the algorithm. For further details on the implementation of the PPO
algorithm, we refer to (Schulman et al., 2017).

4 EMPIRICAL EVALUATION

The goal of our empirical evaluation is to investigate whether Supe-RL approaches combine the
benefits of GA with both value-based and policy-gradient DRL while maintaining minimal overhead
for the training. Data are collected on an i7-9700k, using the implementation of Section 3.1. We
considered the same set of hyper-parameters (reported in Appendix D) for the baselines and Supe-RL
based approaches. Our ERL implementations refer to (Khadka & Tumer, 2018) for the evolutionary
component, while we use Rainbow and PPO for the gradient-based part. In order to get reproducible
and consistent results when comparing different algorithms, the random seed is fixed across a single
run of every algorithm (because there may exist a sequence of targets that favor a run or a better
network initialization), while it varies in different runs. As a consequence, a certain run of every
algorithm executes the same sequence of targets and initializes the networks with the same weights.

All the trained models, except for the value-based ERL (ERL-R) and the GA, are able to navigate
generalizing: starting and target position, and velocity. The Turtlebot3 lidar allows navigating in
unknown environments with different obstacles, while the boat maintains similar performance in
different wave conditions. For each graph, we report the mean and standard deviation of ten statisti-
cally independent runs, considering (i) success rate: how many successful trajectories are performed;
(ii) total reward. Results are smoothed over one hundred episodes.

Table 1: Performance in the evaluation phase

Model Reward Step Time (s)
Rainbow 36.2 370 42
SGRainbow 39.1 269 29
PPO 4.5 98 27
ERL 4.6 96 27
GPPO 4.8 89 22

To collect significant data in the evaluation of navi-
gation performance, we chose a set of targets reach-
able by every model. Table 1 resumes the results for
the discrete (Rainbow, SGRainbow) and the contin-
uous (PPO, ERL, GPPO) tasks, considering only
models with acceptable performance (i.e., we did
not include GA and ERL-R). For clarity, in the
aquatic task we collected the dense reward used in
the discrete one. Hence, rewards will be similar
(agents navigate towards the target, collecting positive rewards), but time and number of steps (i.e.,
trajectory length) differ significantly (≈31% and ≈37.5% for SGRainbow over Rainbow; ≈18%
and ≈8% for GPPO over PPO and ERL, respectively). In both tasks, Supe-RL outperforms DRL
algorithms and ERL in every considered metric.

4.1 VALUE-BASED EVALUATION

Here we compare the GA, Rainbow, ERL-R, GRainbow, and SGRainbow. As previously discussed,
Figures 2A, B show that a direct combination of ERL with the value-based algorithm can not cope
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Figure 2: Left: indoor navigation (GA, Rainbow, ERL-R, GRainbow, SGRainbow). Right: aquatic
navigation (GA, PPO, ERL, GPPO). (A, C) Average success rate. (B, D) Average total reward.

Figure 3: Left: cumulative number of Supe-RL genetic soft updates in continuous aquatic naviga-
tion. Right: cumulative number of injection of the DRL agent using ERL in the same environment.

the issues of such DRL approaches, resulting in very poor performance. Given these results, we
decided to perform an additional experiment with the improved version of ERL, PDERL (Bodnar,
2020), which introduces novel genetic operators to improve ERL robustness. Nonetheless, we con-
jecture that the detrimental behaviour of previous mixed approaches is related to their DRL injection
pattern, rather than the simplicity of the genetic approach (the goodness of a simple genetic repre-
sentation is evident in our results and in Such et al. (2017)). In contrast, our periodical genetic
evaluation with a soft update strategy simulates a gradient step towards a better policy while, in a
worst-case scenario, we do not update the DRL agent, avoiding detrimental behaviours. Our re-
sults (detailed in Section 4.2) confirm the superior performance of PDERL over ERL in both our
environments. However, PDERL still provides inferior performance compared to Supe-RL based
approaches and shares the poor performance of ERL when combined with the value-based algo-
rithm. In further detail, Figure 2A shows that even GRainbow with the SGD optimizer, where the
best genome fully substitutes the main DRL agent, outperforms Rainbow (i.e., 80% of success rate
over 60%). Moreover, the soft genetic update further improves the performance while reducing the
variance and SGRainbow reaches a performance of 90% success rate in about 2000 epochs that cor-
respond to 60 minutes of training (in contrast, Rainbow reached 60% success rate in similar training
time). Furthermore, the standalone GA was not able to cope with the complexity of the task, where
the algorithm needs to generalize the navigation while exploiting the laser values to avoid obstacles.

4.2 POLICY-GRADIENT EVALUATION

Here we compare PPO, an adapted version of ERL with PPO, and GPPO. Figures 2C, D show
that also in the continuous domain, Supe-RL based method offers better performances considering
our evaluation metrics. In detail, GPPO reaches over 98% of average success rate in about 1300
epochs that correspond to 110 minutes of training, while PPO, similarly to ERL, was able to reach
≈ 82% of average success rate in ≈ 1700 epochs (160 and 210 minutes of training, respectively).
Furthermore, as reported in Table 1, GPPO uses a lower number of actions compared to PPO and
ERL, which translates into shorter paths and travel time for the drone towards the same target.

In this task, we also compared the efficiency of our genetic evaluation in finding better policies with
respect to ERL. Figure 3 shows the cumulative number of injections (ERL) and evaluations (Supe-
RL) (x-axis), over the successful ones (y-axis) through the training, to reach similar performance.
We compare injections and evaluations as they represent the approaches of ERL and Supe-RL to
improve the policy, respectively. Results show that our mutation schema finds more often better-
performing policies, in contrast to ERL where successful network injection occurs more rarely (ERL
requires 400% more injection trials, i.e., 250 over 25, to match Supe-RL performance, i.e., 98%
success).
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Figure 4: Performance of Supe-RL, PPO and ERL in MuJoCo benchmarks: (A) Reacher-v2; (B)
HalfCheetah-v2; (C) Hopper-v2; (D) Ant-v2.

Figure 5: Comparison with CEM-RL in aquatic navigation: (A) average success rate; (B) average
training time. Comparison with PDERL in the navigation tasks: (C) Value-Based implementation of
PDERL in the discrete task; (D) Policy-Gradient implementation of PDERL in the continuous task.

Evaluation in Standard Benchmarks We performed additional experiments on Reacher-v2,
HalfCheetah-v2, Hopper-v2, and Ant-v2 MuJoCo tasks (Brockman et al., 2016; Todorov et al.,
2012) with GPPO and ERL. In particular, we considered the same specifics for data collection
detailed in Khadka & Tumer (2018), hence we report the same performance metrics instead of a
success rate. Our ERL implementation with PPO returned comparable results to the original ones
presented in Khadka & Tumer (2018); Pourchot (2019); Khadka et al. (2019) (data were collected
using the same hardware, GPPO parameters, and averaged over 5 runs). Crucially, Figure 4A, B,
C, D shows that our Supe-RL based algorithm has comparable or better performance across the
considered tasks. Furthermore, 4C highlights the detrimental behaviour of ERL.

Comparison with CEM-RL and PDERL To confirm that previous mixed approaches can not be di-
rectly combined with value-based approaches, due to their injection pattern rather than their genetic
representation, we performed an additional experiment with PDERL (Bodnar, 2020). Such approach
addresses the poor genetic representation of ERL, improving its performance and robustness. Fig-
ure 5C, D shows the collected data in the discrete scenario, where we combined PDERL with our
value-based baseline, and in the continuous task, where we combined it with the PPO baseline. We
considered PDERL GitHub for the genetic component, and the same hyper-parameters and random
seeds used in our previous experiments. Results confirm the superior performance of PDERL over
ERL in both environments (i.e., improved success rate and reduced variance). Furthermore, the two
parallel training phases do not provide a robust evaluation of the gradient-free population in the
same set of tasks, hence, the resultant best agent does not represent an overall best policy for the
task. Follows that PDERL shares the detrimental performance of previous mixed approaches when
combined with value-based algorithms. Finally, as detailed in Section 2, the recent field of mixed
approaches has been extended with distributed solutions that use a portfolio of active DRL learn-
ers, such as CERL (Khadka et al., 2019) and CEM-RL (Pourchot, 2019). This intuitively results in
significant overhead in the training process. We decided to compare GPPO with the TD3 version
of CEM-RL, as the authors claim it outperforms previous mixed approaches (to further confirm the
overhead, Sec. 5.2.2 of CEM-RL (Pourchot, 2019) state that tests are on limited timesteps, due to
computational demands). In contrast, Supe-RL uses one DRL learner and the population is only
used for policy evaluation. We used the GitHub provided by the authors to test CEM-TD3 in the
continuous scenario (aquatic drone) and Figures 5A, B show that, as expected, CEM-RL required
significantly more time (250 minutes over 110). In particular, CEM-TD3 reaches 98% success rate
(the performance of Supe-RL at epoch 1200) in approximately 600 episodes. However, it required
125% more wall-clock time with respect to the time required by Supe-RL to reach similar perfor-
mance (data were collected using the same hardware and averaged over 5 runs).
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Table 2: Verification results of: (top) indoor task; (bottom) aquatic task

Violation (%) Time (s) Memory (MB)
Model ΘI,0 ΘI,1 ΘI,2 ΘI,0 ΘI,1 ΘI,2 ΘI,0 ΘI,1 ΘI,2

Rainbow 2.21 9.11 0 79.7 75.5 92.6 3.74 3.96 6.92
SGRainbow 0 4.75 0 66.7 74.1 80.5 2.18 2.91 4.1

Violation (%) Time (s) Memory (MB)
Model ΘA,0 ΘA,1 ΘA,0 ΘA,1 ΘA,0 ΘA,1

PPO 0.9 1.2 3.4 124 0.1 5.8
ERL 0.5 0.7 3.4 3.4 0.1 0.15
GPPO 0 0.1 3.1 3.2 0.1 0.1

4.3 ROBUSTNESS OF SUPE-RL USING FORMAL VERIFICATION

An important result in both tasks is the limited variance shown by Supe-RL approaches, across runs
with different network initialization seeds. Appendix E shows a more detailed analysis of our results,
where Supe-RL based approaches seem to not suffer from detrimental network initialization seeds.

To further confirm our claims on the beneficial transfer of information of mixed approaches, we
employ a formal verification tool Corsi et al. (2020), to verify the behavior of our trained models
with respect to a series of safety properties. The idea behind this evaluation is to confirm that models
trained with mixed approaches lead to more robust policies. Given the inferior performance of ERL,
we also expect that Supe-RL based models will present fewer configurations that cause undesirable
behaviors (i.e., violates the safety property). According to the navigation scenarios, we selected the
following safety properties for the I indoor and A aquatic navigation tasks:

ΘI,0: If TurtleBot3 has obstacles too close on the right and on the front, it must turn left.
ΘI,1: If TurtleBot3 has obstacles too close on the left and on the front, it must turn right.
ΘI,2: If TurtleBot3 has obstacles too close on the front, it must turn in any of the other directions.
ΘA,0: If the aquatic drone has a target on the right, it must turn right.
ΘA,1: If the aquatic drone has a target on the left, it must turn left.

Table 2 shows violation percentage, computation time, and memory returned by the verification
tool, to test our safety properties. In detail, models trained with mixed approaches (i.e., SGRain-
bow, GPPO, and ERL) present fewer violations in every considered property. Furthermore, there
is also a significant improvement over the computation time and memory required by the verifier.
This confirms our claims on the policy improvement of mixed approaches as they evaluate with a
significant difference the output values, which translates into fewer bounds re-computations for the
verifier. Crucially, the superior safety performance of Supe-RL based approaches compared to ERL,
further motivate the introduction of our framework.

5 DISCUSSION

We presented Supe-RL, a novel mixed framework that exploits the robustness of population-based
GA to improve value-based and policy-gradient DRL agents. We evaluate Supe-RL in two mapless
navigation scenarios: an indoor navigation for a TurtleBot3 platform, an aquatic navigation task, and
in locomotion benchmarks. Our empirical evaluation shows that Supe-RL significantly outperforms
DRL baselines (Rainbow and PPO), the GA, and the recent ERL and PDERL, which also show poor
performance when combined with value-based DRL. Crucially, Supe-RL is the first framework that
combines GA and DRL in the field of value-based discrete methods. Furthermore, we exploited a
formal verification tool to confirm the beneficial effects of mixed approaches in policy improvement.
This evaluation confirms the superior performance of Supe-RL based approaches, that returned safer
models. This work paves the way for several interesting research directions which include exploiting
complex evolutionary mechanisms and different crossover techniques to further improve our frame-
work as well as the possibility of extending Supe-RL to concurrently optimize the total reward and
the desired safety properties.
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A INTERVAL ANALYSIS FOR FORMAL VERIFICATION

Figure 6: Bound analysis in
formal verification tools.

We consider formal verification to support our claims on the bene-
ficial effects of our genetic component on the policy. We briefly de-
scribe the main verification concept and refer the interested reader
to the references provided. Recently, Wang et al. (2018); Singh et al.
(2019) propose an extension of interval analysis for the verification
of neural networks. Given a set of input bounds (area) and a safety
property to verify, these methods propagate the input, layer by layer,
to compute the bounds for each output node. Afterwards, they ex-
ploit a standard formalization from interval algebra (Moore, 1963):
y0 = [a, b] < y1 = [c, d] ⇒ b < c to prove or deny properties. In
decision-making scenarios, such as our navigation, we can verify a
property by analyzing the relationships among the computed output
bounds. To simplify the understanding of this process, we visualize
it as a 2d graph in Figure 6 which shows the possible scenarios after computing the bounds for a
decision-making task: (i) there is an overlap between output bounds; (ii) an output bound that sat-
isfy the property is always higher than the others; (iii) an output bound corresponding to an action
that violates the property is greater than the others. In the last two cases, we can conclude that the
property is either verified or denied in the input set. However, the first case requires to re-compute
the output bounds in smaller input subsets (Figure 6 shows the bounds on three smaller subsets on
the x-axis) to obtain a more precise estimation that falls in one of the other verifiable cases.

In summary, by exploiting formal verification (and specifically Corsi et al. (2020)) we can measure
the number of input configurations that would cause a violation of our safety properties. We measure
this as the percentage of area that may cause a violation with respect to the entire input area (i.e.,
the violation percentage). The lower this number, the more robust is the policy (i.e., properties may
be violated by a lower amount of input configurations). This translates, de facto, in an overall better
policy as the trained network correctly evaluate with a significant difference the output values (output
bounds have very different values), i.e., the action to choose. In detail, fewer bounds re-computation
(i.e., fewer overlaps) means faster computation and less required memory.

B SUPE-RL PSEUDOCODE

We introduce a general pseudocode of Supe-RL based algorithms.

Algorithm 1 Supe-RL
1: Input: size N of the population P , periodicity GE for the genetic evaluation, seed s, timeout
T . Initialize network weights θa, replay buffer R and env with seed s.

2: for episode = 1 to∞ do
3: for t = 1 to T do
4: Following the algorithm policy, select action at
5: Execute action at, observe reward rt and state st+1, and Store (st, at, rt, st+1) in R
6: end for
7: env ← ResetEnvironment()
8: Sample a random mini-batch of transitions from R
9: Perform a gradient descent step, updating θa

10: if episode % GE == 0 then
11: Start periodical genetic evaluation, in parallel
12: P,Genvs← GenerateChildren(N , θa, env)
13: Score← GeneticEvaluation(P,Genvs)
14: θbest ← Select best θ ∈ P based on Score
15: θa ← GeneticUpdate(θa, θbest)
16: End periodical genetic evaluation
17: end if
18: end for
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Algorithm 2 Function GenerateChildren
1: procedure GenerateChildren(N , θa, env)
2: Children← Initialize with N + 1 copies of θa
3: Cenvs← Initialize with N + 1 copies of env
4: for i = 1 to N do
5: for iteration = 1 to mutp * |Children[i]| do
6: Randomly sample indices r, c for Children[i]
7: Children[i][r, c]+ = N (0,mutv)
8: end for
9: end for

10: Return Children, Cenvs

C ADDITIONAL SGRAINBOW EXPERIMENTS

In this section, we show the performance of GRainbow with SGD and Adam and the results of the
tuning of τ ′ parameter for SGRainbow. We also present an ablation experiment on the influence of
the population experiences in the buffer of the DRL agent.

Adam and SGD GRainbow Tessler et al. (2019) improved the original DDQN evaluating the per-
formance of the agent model over its target model. In particular, they show that a more stable training
phase can be obtained replacing the target model with the agent weights when the latter statistically
perform better than the former. Inspired by this approach, when our genetic evaluation finds a better
child, the main agent is soft updated towards the best genome, and the latter substitutes the target
model. As Figure 7A shows, this precaution allows us to use GRainbow with Adam and outperform
the manually tuned GRainbow with SGD.

Tuning τ ′ for SGRainbow We further improved GRainbow performance, exploiting the soft up-
date (Lillicrap et al., 2015) developed to improve the naive approach in DDQN which periodically
substitutes the target with the agent model. We performed multiple trials with different seeds to find
the best value of τ ′ for the soft genetic update function that characterizes SGRainbow. In particular,
Figure 7B clearly shows that SGRainbow outperforms GRainbow and reports the average success
rate of our training phases with τ ′ ∈ [0.15, 0.3, 0.6].

Population Experiences in SGRainbow Finally, given our best performing algorithm (i.e.,
SGRainbow with τ ′ = 0.3), we performed an ablation experiment to test the influence of the
experiences collected in the genetic evaluation phase in the main agent buffer. Figure 7C shows
performance improvement with the introduction of the best child experiences.

D HYPER-PARAMETERS

Genetic Evaluation We use the same genetic hyper-parameters for both SGRainbow and GPPO for
the genetic evaluation. In particular, the size N of the population P is set to 10 and the number
of trials conducted in the evaluation phase to compute the fitness score ranges from 10 to 20 across
tasks. The mutation probability of a network weight ismutp = {0.75, 0.4, 0.1} based on the current
success rate of the drla and a constant mutation value mutv = 0.1.

Figure 7: Additional value-based experiments: Average success rate for (A) SGD and Adam GRain-
bow; (B) Tuning of τ ′ for SGRainbow; (C) Ablation on population experiences in agent buffer.
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Rainbow, GRainbow, and SGRainbow Here we discuss only the hyper-parameters of the algo-
rithmic implementations which are relevant to GRainbow and SGRainbow, referring to the original
papers for further details (notice that the three approaches share the same hyper-parameters). Based
on our experiments, we decided to use a Priority Experience Replay (Schaul et al., 2016) buffer of
size 30000 with a batch size of 64, α = 0.6, βstart = 0.4 and βincrement = 0.0005. The soft update
of the target network (Lillicrap et al., 2015) for Rainbow is performed with τ = 0.01. Furthermore,
given the well-structured reward function, we notice that a simple ε − greedy exploration strategy
with decay = 0.99 and εmin = 0.02 led to a faster training phase compared to the introduction of
noisy exploration in the network (Fortunato et al., 2017). Finally, we noticed that a genetic evalua-
tion collects on average 30000 total transitions, and adding a random 10% of these transitions into
the priority buffer (i.e., transp = 0.1), showed the best results.

PPO, GPPO, and ERL First, PPO presents two versions and we choose to implement the clipped
one, which was recommended in the original work (Schulman et al., 2017), to which we remind the
interested reader for further details. We choose to use a buffer of 256 elements with mini-batches of
size 64 for the considered algorithms, while we used the original ERL (Khadka & Tumer, 2018) for
specific algorithm parameters.

E ROBUSTNESS OF SUPE-RL

A more detailed analysis of our results reveals that the high variance of GA, PPO, and ERL is due
to a specific seed that results in a pathological performance of the approach (a similar phenomenon
occurs for Rainbow). In particular, Figure 8A, B, C, D report the success rate and total reward of the
only bad initialization seed that causes GA, Rainbow, PPO, and ERL to perform poorly, compared
to the previous runs. On the other hand, GPPO, GRainbow, and SGRainbow do not present this
issue, reaching similar results to the other training phases. Even if this analysis is not as relevant as
previous results, as it is not averaged over multiple seeds, we do believe that this is an important
aspect of our framework and will need further investigation. Crucially, Figure 9A, B, C, D show
that SGRainbow, and GPPO perform better than other approaches even in the selected runs without
such detrimental seed.

Figure 8: (A) Average success rate and (B) total reward considering only the simulation with the
bad initial seed in the indoor navigation. (C) Average success rate and (D) total reward considering
only the aquatic simulation with the bad initial seed.

Figure 9: (A) Average success rate and (B) total reward when the bad initial seed is removed from
the indoor simulations. (C) Average success rate and (D) total reward when the bad initial seed is
removed from the aquatic simulations.
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